发明名称
炎热带气候影响下深部土体胀缩变形的监测方法

摘要
本发明公开了一种模拟炎热带气候影响下深部土体胀缩变形的监测方法，其步骤：A. 制样与装样；模型槽底部铺粉砂层或透水石，土样风干后粉碎过滤并测含水率与密度，将配制好的土样以分层铺设方式装样，然后将模型槽密封静置，得到沉降固定；B. 干湿循环试验：将蒸馏水通过洒水器对土样进行淋滤，反射型加热器对土样进行烘烤；C. 采集数据：记录干湿过程的各个百分表读数，土体内部含水率以及土体内和室温；D. 处理数据：实施加湿过程前记录各个百分表的数值为初始值，试验过程中记录的各个百分表读数减去初始值为土样的变形值。本发明减小了外界环境对实验结果的影响，提高了监测结果的可靠度，操作简单。
1. 一种炎热多雨气候影响下深部土体胀缩变形的监测方法，其步骤为：

A. 制样与装样

首先，将土样取回后经风干后粉碎，过 2mm 筛，测含水率与密度；在模型槽底部铺厚 0.1m 的粉砂层或透水石，然后将风干土按天然土样的含水率与密度配比好后，以分层铺设方式放置模型槽中；当模型槽填满后，检查土体表面是否平整，将模型槽密封静置 24 小时；在距土样表面 0m、0.2m、0.35m 处埋设沉降片，沉降片上架设百分表。

B. 干湿循环试验

将蒸馏水通过洒水壶（5）对土样进行淋滤，反射型加热器（6）对土样进行烘烤；每次加热后当土体出现明显裂纹且其含水率低于 10% 后，一次干燥过程完毕；每次降雨后土体含水率大于 100% 后加湿过程完毕。

C. 采集数据

记录干湿过程的各个百分表读数；记录利用探针式土壤水分仪与温度计观测土体的含水率与温度，同时记录利用温度计监控的室内温度。

D. 处理数据

实施加湿或加热过程前纪录各个百分表的数值为变形的初始值，实验过程中记录的各个百分表读数减去初始值为土样的变形值；以土样变形值为纵坐标，深度、含水率、加湿或加热时间、循环次数为横坐标绘制关系曲线，获得不同深度、含水率、加湿或加热时间、循环次数下的土体胀缩变形。
炎热多雨气候影响下深部土体胀缩变形的监测方法

技术领域
[0001] 本发明属于岩土工程与工程地质中土体监测领域，具体涉及一种室内模拟多雨炎热气候影响下深部土体胀缩变形的监测方法。减小了外界环境对实验结果的影响，提高了监测结果的可靠性，操作简单。

背景技术
[0002] 某些土体（如裂隙黏土、膨胀土、红土等）对气候变化特别敏感，在降雨和蒸发的作用下土体内部水分发生干湿循环的周期性变化，此过程中不均匀膨胀会使土体产生无序的破裂裂缝，生成较大变形，对建筑物基础与边坡稳定性破坏严重。因此，研究多雨炎热气候影响下土体胀缩变形规律就显得格外重要。
[0003] 由于野外现场试验造价昂贵且受周围环境影响显著，目前对于这一领域的研究多采用室内试验。中国土工试验方法标准（GB/T 50123-1999）提出的土的膨胀与收缩试验是目前使用较多的试验方法，但该方法中将土样是置于直径为61.8 mm或79.8 mm，高度为20mm的环刀中，这样小尺度的模型试验得到结果与实际情况有较大偏差，同时该方法仅能测量环刀内小范围土样的位移，对不均匀胀缩变形无法测量。为此，河海大学的陈亮等发明了一种土体裂缝发育的监测方法（专利号：CN200910026062.9），该方法虽然解决了在大尺度空间范围内监测土体胀缩变形，但仅能实现对土体裂缝发育的监测，无法对由裂缝引起的变形进行监测。唐朝生等在文献（唐朝生，施斌，刘春，王宝军。影响黏性土表面干缩裂缝结构形态的因素及定量分析。水利学报，2007，38（10），1186-1193）将土样配制泥浆放入16cm×16cm×3cm的长方体玻璃箱内，然后放入烘箱中恒温干燥失水，采用计算机图片处理技术分析了黏土表面干缩裂缝的发育规律，进而探讨了受其影响的干缩变形规律，但该方法仅是对土体表面裂缝的研究，无法获得深部土体的变形规律。
[0004] 综上可见，目前关于土体胀缩变形监测的室内试验方法并不理想，为此，必须开发一种全新的大尺度测量范围的土体的胀缩变形的监测方法，更重要的是，设计的试验方法应与久旱降雨与多雨炎热气候下基础发生病害实际工况相吻合，且试验装置应能测量深部土体的不均匀胀缩变形，这可为我国南方地区的地基处理与设计以及边坡稳定性分析提供理论依据与技术支持。

发明内容
[0005] 本发明的目的在于提供了一种模拟多雨炎热气候影响下深部土体胀缩变形的监测方法，方法易行，操作简便，减小了外界环境对实验结果的影响，提高了监测结果的可靠性。
[0006] 为了实现上述目的，本发明采用如下技术方案：
一种模拟多雨炎热气候影响下深部土体胀缩变形的监测方法，其步骤是：
1、制样与装样
说明书

首先，在模型槽底部铺厚0.1m的粉砂层或透水石，将土样取回后经风干后粉碎，过2mm筛，测含水率与密实度，将风干土按天然土样的含水率与密度配比好后，以分层铺设方式放置模型槽中，当模型槽填满后，检查土体表面是否平整，然后将模型槽密封静置24小时，在距土样表面0.0.2m、0.35m处埋设沉降片，沉降片上架设百分表。

2. 干湿循环试验

将蒸馏水通过洒水壶以淋浴的方式对土样进行模拟多雨环境，利用反射型加热器对土样进行烘烤模拟高温环境。每次加热后当土体出现明显裂纹且其含水率低于10% 后，认为一次干燥过程完毕，每次降雨后当土体含水率大于100% 后认为加湿过程完毕。

3. 采集数据

记录干湿循环过程中各个百分表读数。利用探针式土壤水分仪与温度计观测土体的含水率（10%~100%）与实时温度（10℃~60℃），利用温度计对室内温度（10℃~40℃）进行监控。

4. 处理数据

实施加湿或加热过程前纪录各个百分表的数值作为变形的初始值。此后试验过程中纪录的各个百分表读数减去初始值即为土样的变形值。以土样变形值为纵坐标，深度（分别是0m、0.2m、0.35m）、含水率（10%~100%）、加湿时间（5分钟~60分钟）、加热时间（1天~7天）、循环次数（1次~5次）为横坐标绘制关系曲线，由此获得不同深度、含水率、加湿时间、加热时间、循环次数下土体胀缩变形情况。

一种模拟多雨炎热气候影响下监测深部土体胀缩变形的实验装置，包括模型槽、接水台、洒水壶、反射型加热器、第一百分表、第一沉降片，其特征在于：接水台上连接模型槽，模型槽的开有漏水孔，接水台两侧分别放上第一架设台，第二架设台，第一架设台顶部架设洒水壶，第二架设台顶部架设反射型加热器。

第一支架上焊接有第一钢筋条，第二钢筋条，第三钢筋条，第四钢筋条，第五钢筋条，第六钢筋条，第一支架中部设有螺纹旋入口。

第一架整体放在模型槽顶部，并用夹板固定。

第一钢筋条下部架设第一百分表，第一百分表的量杆放在第一沉降片的上垫片上，第一沉降片由上垫片与下垫片通过连接棒连接组成，连接棒及下垫片埋入土体内。

第二钢筋条与第二百分表及第二沉降片的位置结构关系同第一钢筋条与第一百分表及第一沉降片的位置结构关系。

同样，第三钢筋条与第二百分表及第二沉降片、第四钢筋条与第四百分表及第四沉降片、第五钢筋条与第五百分表及第五沉降片、第六钢筋条与第六百分表及第六沉降片的结构均同前；第二沉降片、第三沉降片、第四沉降片、第五沉降片、第六沉降片的结构均同第一沉降片。

第二支架和第三支架的整体结构同第一支架，第一支架、第二支架、第三支架通过螺纹旋入螺纹旋入口连接；所述的模型槽为钢制，底部漏水孔的直径为0.2cm，孔间距为1cm；所述的接水台为高4cm、直径1.2m的钢制容器。

与现有技术相比，本发明具有如下优点和有益效果：

1. 该试验方法为一种大尺度模型试验，减小了室内试验与实际工况间的尺寸效应，数
说明书

据结果可靠性明显提高。

[0019] 2. 利用洒水器与加热器实施降雨与蒸发烘干过程，进行土体的肿胀试验，试验条件与旱震降雨与多雨热气候下基础发生病害实际工况相吻合，该方法操作简单。

[0020] 3. 通过在不同区域不同深度埋设深降片，在其上架设百分表来监测土体变形情况，可对土体内部的不均匀肿胀变形进行连续动态的监测，减小了人为与外界环境对实验的影响。

附图说明

[0021] 图 1 为大尺度的模拟多雨炎热气候影响下测量深部土体肿胀变形的试验装置整体结构示意图；

图 2 为下部接水台的主视图；
图 3 为模型槽底部俯视图；
图 4 为沉降片的构造图；
图 5 支架主视图；
图 6 支架俯视图；
图 7 夹板构造示意图；
图 8 监测点位置布置图。

[0022] 图中：1 模型槽；2a 第一支架；2b 第二支架；2c 第三支架；3a 第一接地台；3b 第二接地台；4 水台；5 洒水器；6 反射型电热器；7a 第一张百表；7b 第二张百表；7c 第三张百表；7d 第四张百表；7e 第五张百表；7f 第六张百表；8a 第一沉降片；8b 第二沉降片；8c 第三沉降片；8d 第四沉降片；8e 第五沉降片；8f 第六沉降片；9 溺水孔片；10a 一上垫片；10b 一下垫片；11 连接棒；12 螺丝；13 螺丝旋入口；14a 第一钢筋条；14b 第二钢筋条；14c 第三钢筋条；14d 第四钢筋条；14e 第五钢筋条；14f 第六钢筋条；15 夹板。

具体实施方式

[0023] 实施例 1：

下面结合附图对我发明作进一步详细说明。

一种模拟多雨炎热气候影响下深部土体肿胀变形的监测方法，其步骤是：

1. 制样与装样

制样前在模型槽底部铺上厚 0.1m 的粉砂层，或者用透水石代替粉砂层。将土样取回后经风干后粉碎，过 2mm 筛，测得含水率与密度。将风干土按天然土样的含水率与密度配比好后，以分层铺设方式放置模型槽 1 中。当模型槽 1 被填满后，用气泡水平仪检测土体表面是否平整，然后将模型槽 1 密封静置 24 小时，使之得到初步的沉降固定。在制样同时需同时安装用来监测变形的沉降片（附图 4），埋设的监测点位置如附图 5 与附图 6 所示，垫片 10a 上部接百表，垫片 10b 埋设在土体内部。第一支架 2a 上的垫片 10b 埋设深度为据土样表面 0m；第二支 2b 上的垫片 10b 埋设深度为据土样表面 0.2m；第三支架 2c 上的垫片 10b 埋设深度为据土样表面 0.35m，各个支架通过螺丝 12 旋入螺丝旋入口 13 连接，并用夹板 15 固定在模型槽 1 上。沉降片的埋设必须水平，否则得到的土体变形值会产生一定误
2. 干湿循环试验

洒水壶 5 与反射型电热器 6 的高度度模型槽 1 顶端表面 20 cm，将蒸馏水通过洒水壶 5 以淋洗的方式对土样进行模拟多雨环境利用反射型电热器 6 对土样进行烘干模拟高温环境。每次加热后当土体出现明显裂纹且其含水率低于 10% 后，认为一次干燥过程完毕；每次降雨后当土体含水率大于 100% 后认为加湿过程完毕。例如某设计方案为：干湿循环为 4 次，先加热再降雨，共 4 次，每次循环时间不小于 1 周。

3. 采集数据

由于增湿与干燥过程能引发土体裂隙的产生与发展，在增湿过程中小裂隙会闭合而大裂隙会扩展，在干燥过程中小裂隙会扩展而大裂隙会收缩，因此，干湿过程会导致土体重多较变形。本发明对土体变形的监测是通过在不同位置与不同深度埋设沉降片（8a~8f），然后在其上架设百分表（78a~8f），通过记录干湿过程的百分表（78a~8f）读数进而获得土体的变形值。同时为了研究含水率与温度对土体变形的影响，在记录百分表（78a~8f）读数时需采用探针式土壤水分仪与温度计观测土体的含水率（10~100%）与实时温度（10°C ~60°C），同时利用温度计对室内温度（10°C ~40°C）进行监控。

4. 处理数据

实施加湿或加热过程前纪录各个百分表的数值作为变形的初始值，此后试验过程中记录的各个百分表读数减去初始值即为土样的变形值，以土样变形值为纵坐标，深度（分别是 0.0、0.2m、0.35m）含水率（10~100%）、加湿时间（10 分钟~60 分钟）、加湿时间（1 天~7 天）、循环次数（1 次~5 次）为横坐标绘制关系曲线，由此获得不同深度、含水率、加湿时间、加湿时间、循环次数下的土体膨胀变形情况。

实施例 2：

一种模拟多雨热气候影响下监测深部土体膨胀变形的实验装置，包括模型槽 1、接水台 4、洒水壶 5、反射型电热器 6、第一百分表 7a、第一沉降片 8a，其特征在于：

接水台 4 上连接模型槽 1，模型槽 1 的开有漏水孔 9，接水台 4 两侧分别放上第一架设台 3a、第二架设台 3b，第一架设台 3a 顶部架设洒水壶 5，第二架设台 3b 顶部架设反射型电热器 6。

第一支架 2a 上焊接有第一钢条 14a、第二钢条 14b、第三钢条 14c、第四钢条 14d、第五钢条 14e、第六钢条 14f；第一支架 2a 中部设有螺纹旋入口 13。

第一架设台 2a 整体放在模型槽 1 顶部，并用夹板 15 固定。

第一钢条 14a 下部架设第一百分表 7a，第一百分表 7a 的量杆放在第一沉降片 8a 的上垫片 10a 上，第一沉降片 8a 由上垫片 10a 与下垫片 10b 通过连接棒 11 连接组成；连接棒 11 及下垫片 10b 埋入土体内。

第二钢条 14b 与第二百分表 7b 及第二沉降片 8a 的位置结构关系同第一钢条 14a 与第一百分表 7a 及第一沉降片 8a 的位置结构关系。

同样，第三钢条 14c 与第二百分表 7c 及第二沉降片 8c、第四钢条 14d 与第四百分表 7d 及第四沉降片 8d、第五钢条 14e 与第五百分表 7e 及第五沉降片 8e、第六钢条 14f 与第六百分表 7f 及第六沉降片 8f 的结构均同上；

第二沉降片 8b、第三沉降片 8c、第四沉降片 8d、第五沉降片 8e、第六沉降片 8f 的结构
均同第一沉降片 8a。

[0033] 第二支架 2b 和第三支架 2c 的整体结构均同第一支架 2a。第一支架 2a、第二支架 2b、第三支架 2c 三者均通过螺丝 12 旋入螺丝旋入口 13 连接。

[0034] 所述的模型槽 1 为钢制, 底部漏水孔 9 的直径为 0.2cm, 孔间距为 1cm。

[0035] 所述的接水台 4 为高 4cm, 直径 1.2m 的铜制容器。