(12) STANDARD PATENT (11) Application No. AU 2015369925 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Computer readable storage media for dynamic service deployment and methods and
systems for utilizing same

International Patent Classification(s)
GOG6F 9/54 (2006.01) GO6F 15/16 (2006.01)

Application No: 2015369925 (22) Date of Filing: 2015.12.17
WIPO No: WO16/106064

Priority Data

Number (32) Date (33) Country
14/581,417 2014.12.23 us
Publication Date: 2016.06.30

Accepted Journal Date: 2021.01.07

Applicant(s)
Document Storage Systems, Inc.

Inventor(s)
Katieb, Ralph

Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 43 101 Collins Street, Melbourne, VIC, 3000, AU

Related Art
US 20080082614 A1
US 20080082645 A1

wO 2016/106064 A 1[I I NVFV0 0 00000 0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
30 June 2016 (30.06.2016)

—~
é

=

\

WIPOIPCT

(10) International Publication Number

WO 2016/106064 A1

(51) International Patent Classification:
GO6F 9/54 (2006.01)

(8D

GOGF 15/16 (2006.01)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2015/066303 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
17 December 2015 (17.12.2015) KZ, IA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
14/581,417 23 December 2014 (23.12.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: DOCUMENT STORAGE SYSTEMS, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
[US/US]; 12575 US Highway 1, Suite 200, Juno Beach, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Florida 33408 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventor: KATIEB, Ralph; 2854 Hayes Strect NE, Min- DK, EE, ES, FL FR, GB, GR, HR, HU, IL, IS, IT, LT, LU,
neapolis, Minnesota 55418-3054 (US) LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
’ ' SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
(74) Agents: HAYDEN, Bridget M. et al; 50 South Sixth GW, KM, ML, MR, NE, SN, TD, TG).
Street, Suite 1500, Minneapolis, Minnesota 55402-1498 Published:

(US).

with international search report (Art. 21(3))

(54) Title: COMPUTER READABLE STORAGE MEDIA FOR DYNAMIC SERVICE DEPLOYMENT AND METHODS AND

SYSTEMS FOR UTILIZING SAME

(57) Abstract: Systems and methods for service de-

PUBLISHED
ENDPOINT
526C

PUBLISHED
ENDPOINT
5268

PUBLISHED
ENDPOINT
525C

PUBLISHED
ENDPOINT
5264

ployment are disclosed herein. Certain implementa-

PUBLISHED
ENDPOINT
526N

tions may include a memory encoded with computer
executable instructions that when executed cause a
processing unit to operate a service deployment en-

gine and use consistent APIs both (a) internally via a

SERVICE AP

—

520

| package API when consuming deployment packages
in order to expose them, and (b) externally via a ser-

PACKAGE API
532
OPERATIONS AND
BUSINESS LOGIC
534

PACKAGE API
532

OPERATIONS AND
BUSINESS LOGIC
534

PACKAGE 5304 PACKAGE 530

PACKAGES AND SERVICES 525

PACKAGE APt
532

QPERATIONS AND
BUSINESS L0GIC
534

PACKAGE 530N

vice API when exposing available packages and ser-
vices to the outside world or enterprise server. By
doing so, calling applications can depend on the
consistency of the service API engine while the en-
terprise server itself can reliably consume and inter-
act with a dynamic set of packages organized in a
consistent and predictable way. The service deploy-
ment engine may be configured to act as a dynamic
library loader to interrogate, deploy, start/stop,
and/or uninstall packages and services in real time.

' SERVICE DEPLOYMENT ENGINE

527

The packages and services may all implement the
same package API.

COMPUTER-READABLE MEDIA i23

FlG. 4

12 Jun 2020

2015369925

10

15

20

25

30

1003059920

COMPUTER READABLE STORAGE MEDIA
FOR DYNAMIC SERVICE DEPLOYMENT AND METHODS AND SYSTEMS FOR
UTILIZING SAME
TECHNICAL FIELD

Embodiments of the present disclosure relate generally to network services, and
more specifically to dynamic deployment of network services.

BACKGROUND

In typical enterprise systems, an enterprise server connects to a back-end resource
(e.g., an application, data server, or service provider) in response to a request from a client
application via a web service. Typically, the web service is published to the enterprise
server in such a way that allows clients to treat the service as a remote procedure call rather
than as a discrete request to an outside caller. This is done, in part, because most integrated
development environments allow developers of client applications to easily embed such
services into applications. While easy for the developer, this act introduces hidden hard
links between the application and the remote service. The hard links may be described as a
kind of contract between the application and the service that is memorialized in a specific
description. While this contract may be beneficial in some circumstances, changes to the
service or client may invalidate the contract held between the devices and break links. This
may result in buggy, incompatible software and a poor user experience, which is
problematic in an ever-shifting enterprise landscape. Repairing or updating the hard links
may take time and resources and may result in an interruption of services provided by the
server. Therefore, there exists a need in the art to provide robust client-server capabilities
that reduces the risk of invalidating remote service contracts.

Reference to any prior art in the specification is not an acknowledgement or
suggestion that this prior art forms part of the common general knowledge in any
jurisdiction or that this prior art could reasonably be expected to be combined with any
other piece of prior art by a skilled person in the art.

By way of clarification and for avoidance of doubt, as used herein and except
where the context requires otherwise, the term "comprise” and variations of the term, such
as "comprising”, "comprises" and "comprised", are not intended to exclude further

additions, components, integers or steps.

SUMMARY

In an aspect, the present invention provides a system comprising a processor unit

12 Jun 2020

2015369925

10

15

20

25

30

1003059920

coupled to a memory, wherein the memory is encoded with computer executable
instructions that when executed cause the processor to: receive a client message at a
published endpoint, the message formatted according to a description of a first application
programming interface; parse the message; pass parsed content of the message to a
package capable of executing an operation associated with the passed parsed content,
wherein the package comprises a second application programming interface and a logic,
the second application programming interface is configured to receive and respond to
results based on execution of the operation and the logic.

In another aspect, the present invention provides a computer hardware system
comprising: a processor; a plurality of published endpoints; a memory comprising: a
plurality of packages implementing a package application programming interface; a
description of the functionality of a service application programming interface; a service
deployment engine, comprising computer executable instructions that when executed
cause the processor to deploy the plurality of packages to a plurality of endpoints
according to the description of the functionality of the service application programming
interface; wherein the service application programming interface, comprises computer
executable instructions that when executed cause the processor to, upon receipt of a client
message formatted according to the description at one of the plurality of published
endpoints: parse an instruction from the message using the description; and pass the
instruction to one of the plurality of packages via the package application programming
interface.

In another aspect, the present invention provides a system comprising a plurality of
user devices executing client applications; and an enterprise server connected to the
plurality of client devices via a network, the server having a processor and a memory
comprises: a plurality of packages; a service deployment engine, comprising computer
executable instructions that when executed cause the processor to deploy the plurality of
packages to a plurality of endpoints according to a description of a service application
programming interface; and a set of instructions, wherein each package has a service and
implements a consistent package application programming interface; wherein the
enterprise server enables the client applications to access the service through the execution
of the set of instructions by the processor; and wherein the set of instructions are computer
executable instructions that when executed cause the at least one processor to: parse a
client message from the client application containing arguments formatted according to

the description of the service application programming interface; and perform an action

1A

12 Jun 2020

2015369925

35

40

45

50

55

60

65

1003059920

comprising one or more of: responding to the client message, detecting whether the client
message contains a valid request, or passing the client message to the service via the
service application programming interface.

In another aspect, the present invention provides a system comprising: a plurality
of user devices executing client applications; and an enterprise server connected to the
plurality of client devices via a network, the server having a processor and a memory,
wherein the memory comprises: a plurality of packages comprising a plurality of version
packages, each version package capable of being used simultaneously on the enterprise
server by different user devices; a service deployment engine, comprising computer
executable instructions that when executed cause the processor to deploy the plurality of
packages to a plurality of endpoints according to a description of a service application
programming interface; and a set of instructions, wherein each package has a service and
implements a consistent package application programming interface, wherein the
enterprise server enables the client applications to access the service through the execution
of the set of instructions by the processor, and wherein the set of instructions are computer
executable instructions that when executed cause the at least one processor to: parse a
client message from the client application containing arguments formatted according to
the description of the service application programming interface; and perform a requested
operation from one of the plurality of version packages.

In another aspect, the present invention provides a system comprising: a processor;
a plurality of published endpoints; a memory comprising: a plurality of packages
implementing a package application programming interface, the plurality of packages
comprising a plurality of version packages, each version package capable of being used
simultaneously by different user devices; a description of the functionality of a service
application programming interface; and a service deployment engine, comprising
computer executable instructions that when executed cause the processor to deploy the
plurality of packages to a plurality of endpoints according to the description of the
functionality of the service application programming interface, wherein the service
application programming interface comprises computer executable instructions that when
executed cause the processor to, upon receipt of a client message formatted according to
the description at one of the plurality of published endpoints: parse an instruction from the
message using the description; and perform a requested operation from one of the plurality
of version packages.

Also disclosed herein is a computer system comprising at least one processing unit

1B

12 Jun 2020

2015369925

70

~]
wn

1003059920

coupled to a memory, wherein the memory is encoded with computer executable
instructions that when executed cause the at least one processing unit to: receive a client
message at a published endpoint, the message formatted according to a first description of
a first application programming interface; parse an instruction from the message according
to a second description; pass the instruction to a package via a function of the first
application programming interface, the package having a second application programming
interface and a logic; receive, over the second application programming interface, a result
based on the instruction and the logic; and respond to the client message based on the

result. The first description may have a substantially generic format, for

1C

WO 2016/106064 PCT/US2015/066303

example, tn the form of a jagged string amray. In addition, the first application
programming interface may be substantially more generic than the second application
programming interface. The first and second descriptions are formed from an interface

description language (e.g., Web Services Description Language). The client message may

(94

be formatted in plain text.

In addition or alternatively, imoplementations may include a compuier hardware
systern comprising: a processor; a plurality of published endpoints; a memory comprising
a package application programming interface; a description of the functionality of a
service application programming interface; a service deployment engine, comprising
10 computer execuiable instructions that when executed cause the processor deploy a

plurality of packages to a plurality of endpoints without substantially modifving the
description, each package implementing the package application programming interface; a
service application programming interface, comprising computer executable instructions
that when executed cause the processor 10, upon receipt of a client message formatted
15 according to the description at one of the plurality of published endpoints: parse an
mstruction from the message using the description; and pass the instraction to one of the
plurality of packages via the package application programming interface. The service
deployment engine may further comprise instructions that when executed cause the
processor to detect when a previous version package of the plurality of packages has
20 completed all outstanding operations, prevent the previous version package from
accepting new operations, and remove the previous version package. The substantially
generic format may be, for example, a jagged string array. The first and second
description may be formed from an interface description language, such as Web Services

Deescription Language. The client message may be formatted in plain text.

LA

S
A

In addition or alternatively, iraplementations may include a networked system
comprising a plurality of user devices executing client applications and an enterprise
server connected to the plurality of client devices via a network. The server may have a
processor and a memory comprising a plurality of packages and a set of instructions. Each
package may have a service and implement the same package application programmming
30 interface. The enterprise server may enable the client applications to access the service
through the execution of the set of instructions by the processor. The set of instructions
may be computer executable instructions that when executed cause the at least one
processor {0 parse a message from the client application containing arguments formatied
according to a generic description of a simple application prograrnming interface and pass

7

WO 2016/106064 PCT/US2015/066303

the instruction to one of the plurality of packages.

BRIEF DESCRIPTION OF THE DRAWINGS

FiG. 1 illustrates a schematic block diagram of certain implementations of a

networked client application and a remote service.

(94

FIG. 2 illustrates certain implementations of a generic format in the form of a
multi-dimensional array.

FiG. 3 illastrates a schematic block diagram of certain implementations of a
computer networking environment.

FIG. 4 ilustrates a schematic block diagram of particular modules located on a
1¢ computer readable media according to certain implementations.

FIG. 5 is a flowchart of a method for processing requests according to certain
implementations.

FIG. 6 is a flowchart of a method for acting on a package according to certain
mplementations.

15 DETAILED DESCRIPTION

Systems and methods for dynamic service deployment are disclosed herein.

Certain details are set forth below to provide a sufficient understanding of embodiments of

the disclosure. However, embodiments of the disclosure may be practiced without these

particular details. Moreover, the particular embodiments are provided by way of example

2 and should not be construed as imiting. In other instances, well-known circuits, control

signals, timing protocols, and software operations have not been shown in detail to avoid
unnecessarily obscuring the invention.

Disclosed embodiments generally relate to services provided by a server to a client

over a network. For example, a user may direct the client to interact with a service to

LA

S
A

access a server s resources or functionality {o produce desired resulis. Servers are often
configured to interact with clients of various hardware and software architectures, which
introduces compatibility concerns. As such, servers may define vartous layers of
abstraction in order to achicve greater compatibility with different client architectures.
However, if the abstraction layers are too flexible or abstract, the clicnt and server may
30 encounter difficulties ensuring consistent understanding of requests and formatting. As
such, mutual definitions and formatting may be beneficial. This may be accomplished
through the use of delivery protocols formatted according to an interface description
{anguage (1L} description.

An DL may be a language or format ased to describe functionality offered by a

WO 2016/106064 PCT/US2015/066303

service, such as a web service provided by a server. In particular, the {DL may be used to
specify, often via a file containing an IDL. description, the maonner in which the service
may be called, parameters expected by the service, types of responses provided by the

service in response to the call (e.g., types of data structures returned), and/or other

(94

functionality. The IDL may be its own unique language, a way of formatting or preparing

a description in a known or existing language (e.g., Extensible Markup Language (XML)),

or a combination thereof. Examples of IDLs include Web Service Description Language

(WSDL), Web Application Description Language, and Android™ Interface Definition

Language.

16 In some instances, an DL description may be used in combination with one or
more delivery protocols specifying the manner in which data are exchanged between two
or more applications over a network. Fach protocol may, for instance, provide a structiwed
messaging framework. These protocols may include but are not limited to simple object
access protocol (SOAP) and representational state transfer (REST). In turn, these delivery

15 mechanisros may rely on one or more application layer transport protocols, such as
hypertext transport protocol (HTTP) or simple mail transport protocol (SMTP).

FI1G. 1 illustrates an embodiment of a system 10, including an application 50
configured to communicate with a remote service 70 over a network 110, As an exampie,
the application 50 may comprise instructions executing on a user computing device and

2 the remote service 70 may comprise instructions execufing on an enterprise server. In

certain implementations, the application 50 may bave three primary functions: provide a

user inferface to a user, prepare and format messages 90 {e.g., calls) to the remote service

70, and receive and process responses from the remote service 70. The user interface may

be a way of providing output to and receiving input from the user. This input and output

LA

may be related fo requests o and responses from the remote service 70.

S
A

In certain tnplementations, the application 50 may format and provide a message

G0 over the network 110 fo the remote service 70 according to an IDL description 60

known or accessible to the client application 50. The remote service 70 may include an

DL description 80 that is compatible with the IDL description 60 {(e.g., the iDL

30 description £0 and the TDL description 80 are the same). The remote service 70 may

receive the message 90 and parse the message 90 according to the protocol and the IDL
description &0.

The message 90 may be formatied in various ways. For example, the message 90

may be formatted as plain text. Plain text may be described as a format that lacks

4

WO 2016/106064 PCT/US2015/066303

stgnificant processing or formatting. For example, plain text may be encoded according to
ASCH, UTF-8, or the like. Plain text does not require interprefing as binary objects as
would be done with, for example, images and encoded numbers.

Depending on the contents of the message 90, the remote service 70 may take a

(94

certain action, including but not limited to accessing particular resources, performing a

process, and preparing a response o the client application 30 according to an agreed upon

format. 1o this manner, the application 50 and the remote service 70 may operate in
accordance with a remote service contract defined by the complimentary IDL descriptions

64, 80.

16 In some instances, bowever, the remote service 70 or client application 50 may be
modified (e.g., upgraded). If the DL descriptions 60, 80 were formatted in a particularly
specific manner, then the IDL descriptions 60, §0 may no longer accurately describe the
services offered. As a result, the contract between the application 50 and the remote
service 70 may be invalidated because the application 50 and service 7() may be unable to

15 format and parse messages 90 according to compatible IDL descriptions 60, 80. The
incompatibility may result in the application 50 no longer providing valid requests to the
remote service 70 and receiving valid responses. The communication according to the
meompatible IDL descriptions 60, 80 may result in erroneous data, application instability,
or other problems. However, generic IDL descriptions 60, 80 may be implemented such

2¢ that contracts may remain intact despite modifications and/or apgrades to the underlying

service. The IDL descriptions 60, 80 may be written in a generic format (o serve as an
entry point for various services. Certain implementations of the generic format may
nclude the use of data structures including but not limited to a multidimensional arvay of

strings.

LA

FiG. 2 illustrates certain voplementations of a generic format in the form of a

S
A

multi-dimensional wray 210, The multi-diumensional atray 210 includes elersents 230,
231, 232 which may contain references 240, 241 to other arrays 250, 251. The other arrays
250, 251 may also themselves define elements. These elements may comprise references
to yet other data structures or data. In the certain illusirated implementations, the other
36 arrays 250, 251 may contain character data, making the multi-dimensional array 210 a
jagged string array. The element 232 does not contain a reference to another array and may
be described as having a null reference. The mult-dimensional array may have various
qualities including but not limited to: having a fixed length, having a variable length, cast
o a particular type (e.g. a string), and other atrributes typically found in multi-dimensional

5

WO 2016/106064 PCT/US2015/066303

arrays.
FIG. 3 illustrates a schematic diagram of certain implementations of a computer
networking environment 100, including a wser device 102, the network 110, and an

enterprise server 120, The user device 102 may comprise a computing device, including

(94

but not limited to 2 modem, a router, a gateway, a server, a thin client, a laptop, a deskiop,
a computer, a tablet, a media device, a smart phone, a television, a phablet, a cellular phone
or other mobile device, or any combination or sub-combination of the same. The user
device 102 may include a computer-readable media 62 encoded with executable
mstructions that may operate in conjunction with one or more processing units 64 of the
10 user device 102 to provide functionality allowing execution of an application 50. The
computer-readable media 62 may also inclade the IDL description 60. The application 50
may be an application. such as an executable program, that may interface with one or more
services provided by the enterprise server 120. The user device 102 may be configured to
commmunicate over a network 110 with any number of devices, including but not limited to

15 the enterprise server 120,
The network 110 may comprise one or more networks, such as local area networks
(LANs). wide arca networks (WANs), metropolitan arca networks (MANs), cellular
networks, and/or the Internet. Communications provided to, from, and within the network
110 may wired and/or wireless, and further may be provided by any networking devices
26 known in the art, now or in the future. Devices communicating over the network 110 may
communicate with a communication protocol, such as Transmission {Control
Protocol/Internet Protocol {TCP/IP) or User Datagram Protocol (UDP). Additionally, the
user device 102 and the enterprise server 120 may be configured to communicate using

known protocols such as Hypertext Transfer Protocol (HTTP), Hypertext Transfer

LA

Protocol Secure (HTTPS), Secure Sockets Layer (851), sexrver-resident protocols, or other

S
A

protocols. Server-resident protocels may include named pipes, shared memory, and other
protocols. Such protocols may also be used to share information between an application
server {e.g., a server that manages, runs back end processes, or hosts an application) and
the enterprise server 120 i the sane physical unit.

30 The enterprise server 120 may include one or more processing units 121 operably
coupled to one or more computer readable media 123. Computer readable media 123 may
include any form of computer readable storage or computer readable memory, ransitory
or non-transitory, including but not limited to, externally or internally attached hard disk
drives, solid-state storage (such as NAND flash or NOR flash media), tiered storage

6

WO 2016/106064 PCT/US2015/066303

solutions, storage area networks, network attached storage, and/or optical storage.
The computer readable media 123 may store various modules, including but not
{imited to executable instructions for operating a service deplovment engine 527, the DL

description 80, and a plurality of packages and services 525. As described, the instractions

(94

stored on the computer readable media 123 may be executed on the one or more

processing units 121 or other processing units,

The executable instructions for operating the service deployment engine 527 may
include instructions that, when executed on a processing unit 121, enable the operation of
the service deployment 527 on the enterprise server 120 to act as a dynamic library loader
1¢ tointerrogate, deploy, start/stop, and/or uninstall packages and services 525 in real time,

further examples of which are provided below. Although the executable instructions for
the service deployment engine 527 are shown on a same computer readable media 123, in
some embodiments any or all sets of instructions may be provided on multiple computer
readable media and may not be resident on the same media.

15 The packages and services 525 may be one or more software components and
resources that have been packaged together in ovder to provide particular functionality or
services when executed on the processing unit 121 of the enterpuise server 120. With
reference to Fig. 4, packages and services 525 may comprise a plurality of individual
packages 530 (e.g., 530A through 330N). The packages 530 may be organized according

20 to package self-assigned version nuombers, and allow multiple versions of the same

package to exist simultaneously. For large enterprises especially, this built-in versioning

functionality enables scaling into a new version of a critical package 530 rather than
requiring a cut-over approach, the latter often being fraught with hidden traps and the

dangers of service interruptions. Allowing multiple versions of the same package 530 to

LA

S
A

exist sunultancously, enables the two versions to exist and be used simultancously on the
enterprise server 120 by different user devices 102.

With continuing reference to FIG. 4, this figure illustrates a detailed view of
patticular modules located on the computer readable media 123, and includes a service
application programuming interface (APD 520, packages and services 325, publishing
30 endpoinis 526 (e.g., 526A through 526IN) and a service deployment engine 527,

The publishing endpoints 326 may be locations (e.g. a port, Uniform Resource
Identifier (URI) such as a Uniform Resource Link (URL), named tokens, a named pipe, a
block of shared memory, or other locations) exposed by the enterprise server 120 where
the client application may access a function {e.g. an API) implemented by the enterprise

7

WO 2016/106064 PCT/US2015/066303

server 120. Different types of communication may be enabled over different endpoints.
For example, there may be a TCP/IP endpoint, a SOAP endpoint, etc. During calls t©
various services, a specific type of endpoint 526 (e.g., Windows™ Comimunication

Foundation (WCF), JavaScript Object Notation (JSON), SOAP, REST, TCP/IP, named

(94

pipes) may be chosen by the communication capabilities of application 50 sending the

message 90. The enterprise server 120 may publish its own IDL description 80 on all

publishing endpoints 526 concurrently, and publish live changes (i.e. zero-downtime) out

to all of these concurrently as well. This means that when a package 530 is deployed into

the enterprise server 120, it is sinmitancously and instantancously available and reachable
10 wvia any and all of the desired endpoints 526.

The service API 520 may be a simple interface that enables a set of basic fanctions

(e.g. create, read, update, delete, and invoke) to be performed. The IDL description 80

may describe the functionality of the service API 520. For example, the IDL descriptions

60, 80 may describe a generic “lavokeOp” function that allows a client application 50 to

15 send a message 90 that instructs the enterprise server 120 to execute a specific function

according to an addressing scheme. For example:

“InvokeOp(“company.packagel20].operation™)”. which may execute operation

“operation” from version 2.0 of the package “package” from company “company”. The

enterprise server 120 may be configured such that if the caller would instead like the latest

2 wversion, they simply need to request version [*] (l.e. wildcard version), which always

rescives internally in the enterprise server 120 to the latest version of the package

mstalied. The enterprise server 120 may be configured such that if no version is specified,

to assume that the application 50 would simply like the latest or highest-versioned package

to perform the requested operation.

)
L1

The service APL 520 may expose the same iDL description 80 to all client
applications 50 and implement operation dynamisi as a function of the enterprise server
120 itself. This structure enables the client application 50 and the enterprise server 120 to
keep the contractual agreement made between the IDL descriptions 60, 80. The enterprise
server 120 may cxpose a simople IDL description with a simple entry point {e.g. ouly a
30 single entry point) into the published packages and sexvices 525 that utilizes a generic
format {e.g. an array-of-arrays or a jagged string array described in connection with Fig. 2)
in order to guarantees that the communication mechanism between the client application 50
and the enterprise server 120 will not change in such a way as to invalidate the IDL
description contract between the enterprise server 120 and the client application 50. Client

8

WO 2016/106064 PCT/US2015/066303

applications 50 that are dependent on the IDL description 80 remaining consistent across
mulktiple messages can do so and will not be affected by the deploy/undeploy operations
taking place beneath the surface exposed to the enterprise server 120 itself.

FIG. 5 illustrates a flowchart of a method 5000 for processing messages 90

(94

according to cerfain implementations. At step 5100, the enterprise server 120 receives a
message at a published endpoint 520, Next, at step 53200, preliminary processing may be
performed on the message. This step 5200 may include handling networking tasks
associated with receiving the message 90, including waiting for additional packets,
performing error correction on the packet. preliminary packet parsing, and other
10 processes. Addirionally, the enterprise server 120 may perform authentication steps such
as ensuring that the message is from an authenticated user, or ensuring that the calling
application 50 is using a legitimate session identifier to identify itself or the user. Next, at
step 5300, the message 90 is parsed according to the IDL description 80. After parsing the
message 90, at step 5400, the enterprise server 120 performs an operation based on the
15 contents of the message 90, including but not limited to passing the message 90 to a
package 530, passing a particular content of the message 90 to a particular package 530,
responding to the message 90 without passing the contents to a package 530, and detecting
whether the message 90 contains a valid request (e.g., testing whether the contents are
directed to a valid package). In certain implementations, message passing may he
2 performed according o a package API 532 implemented by the particular package 530.
Additionally, according to certain implementations, once the service APL 520 receives the
call, the service APL 520 performs no conversion on the calling request object. This
process may decrease latency between receiving a message and acting on it

Returning to FIG. 4, the enterprise server 120 may use its own addressing

LA

S
A

nomenclature in order to provide access to individual packages 530 and their operations
534 without having to change the IDL description 80. The IDL description 80 may
describe or expose a generic method for invoking an operation. The arguments may
change in order to specify parameters. The syntax may be extended in order to support
versioned and/or unversioned calis. Certain implementations may do so without adding
30 additional parameters to the IDL. Instead, the certain implementations may define the
operation to allow specific versions to be embedded in the addressing nomenclature itself,
for exampile, by including the desired version number in the addressing nomenclature
itself.

This approach to {DL-independent version calling presents several advantages.

4

WO 2016/106064 PCT/US2015/066303

For example, the user device 102 may be programmed to request the highest version
number and test the result for accuracy or ervors. If the result contains an error, then the
client may request a series of incrementally fower version numbers until it receives an

accurate/error-free result or it runs out of version pumbers to call. This may be useful if,

(94

for example, an undiscovered error is present in a newer version of the package. In
addition, this system could be used to configure the client application o utilize functions
from across different versions of the operation. For example, a user may prefer some
featares found in one version {e.g. version 1.0} of an application, but prefers other features
found in another version {e.g. version 2.0}. The user or the application may specify ©
10 utilize version 1.0 for some features and to utilize version 2.0 for all other featires. In
addition, the separate nature of the packages enables a particular version to be recalled or

discontinued as many times as needed without internupting users of different versions.
Additionally, a custom solution could be created that wraps other services in a
master service and requires that all calling applications use this wrapper service instead of
15 depending on breakable linkages to the individual services themselves. However, this
approach may introedace overhead since the master service may be unlikely to insulate
current callers from dependent-service intermuptions. It may also be time-intensive
because the link hetween the wrapper/master service and ifs dependencies infroduces a
web of connection-to-connection calls that may inerease the load on the network between

20 the wrapper and wrapped services.

With continued reference to Fig. 4, in certain implementations, each package 530
may implement a package API 532 and an operations and business logic 534. The package
APT 532 1s the particular interface through which the package 530 and the enterprise server

120 communicate, which may include providing access to the underlying operations and

S
A

LA

business logic 534 of the package 530. The package AP 532 and the operations and
business logic 334 may also enable the enterprise sexver 120 to provide the remote service
70. As such, the enterprise server 120 may be configured to pass parsed arguments from
the message 90 via the package API 532 to the operations and business logic 534.

In certain implementations, the enterprise server 120 may simultaneously deploy
30 any package and any operation across any publishing endpoint 526 capable of interacting
with a generic format (e.g. a simple string-of-strings) calling pattern. This may be
accomplished, for example, by exposing a consistent and simple service API 520
externally and leveraging a consistent package APL 532 mnternally that package developers
must use in order to deploy to the enterprise server 120. The consistent package APT 532

10

WO 2016/106064 PCT/US2015/066303

allows exposure to client applications 50 using various protocols to communicate with the
enterprise server 120,

This functionality may be achieved by, for example, utilizing consistent package

APIs 532 internally to the enterprise server 120 in order to install business logic 534 as a

53 recognized package 530 on the enterprise server 120. The package API 532 may provide

the internally-consistent abstraction layer that allows the enterprise server 120 1o

dynamically adjust and respond to various service requests without allowing those

changes to be seen or felt by a calling application 50. Specifically. packages 530 may be

deployed and undeployed without having to alter the IDL description 80. The abstraction

10 provided by the service API 320 may be substantially broader, more generic, and/or more
flexibie than the package APY 532 such that the IDL description 80 may remain consistent
despite changes to the packages and services 525 (e.g., a package 530 being deployed,
redeployed, or undeployed). This arrangement may enable the package API 532 to operate
independently of the IDL description 80 by insulating the “what to do” described by the

15 IDL description 80 from the “how it is being done” of the package API 532 and other
underlying functionality. In certain implementations, the package AP 532 enables a fixed
contract on a binary level without the risk of breaking links by implementing a dynamic
regisiration concept that paraliels IDL description functionality (e.g. operation lookup
functionality, operation invocation, and other functions).

24 Because the system 100 ntilizes a consistent internal package API 532 and does not
expose these packages 530 outright to calling client applications 30 {e.g., without the
abstraction provided by the service API 520), the system 100 is able to expose the
operations and services provided by the package 530 through many client routes

stmultaneously. For example, an installed package 530 with operations 534 may be

)
L1

autoratically and simultaneously published and made available to the enterprise via a
plurality of endpoints 526, such as WCTF, SOAP, JISON, REST, named pipes, TCP/IP, and
others. Since the enterprise server 120 and packages 532 both use the same proprietary
and well-known package API 532 (the server 120 consuming or expecting it and the
package developer consuming or implementing if), the packages 530 may act as dynamic
30 real-time extensions to the enterprise server 120 itself. The installed packages 530 may
also be published and made available to other packages 530. This wide-publish
functionality may be provided without the package developer having to perform extra
sieps, request it, or wrile any additional/different code.

Certain embodiments may enable a consistent package API 532 by having the

11

WO 2016/106064 PCT/US2015/066303

enterprise server 120 itself publish and consume a low-level “abstract interface” in the
form of a library (¢.g., a Dynamic Link Library (BLL)). The binary image of that abstract
class may be Jocated in the same directory on the enterprise server 120 as the server

executable itself, as well as an identical version of that interface library being published o

(94

package developers via a package interface software development kit. By linking their
respective projects directly to the package interface library and instantiating the abstract
classes therein, the enterprise server 120 can detect what a package developer’s package
{binary image) will contain when it arrives in an internal directory for deployment.
In addition, the enterprise server 120 may verify that the developer of the package
10 530 implemented all required abstract class methods by querving the library for validity
and completeness {e.g., using Microsoft™ NET introspection to query a DLL) prior to
linking with it and loading/deploying it as a live package on the enterprise server 120.
While a developer would be hard-pressed to try to create or huild an incomplete library
using the standard developer tools, a developer could potentially construct a
15 partialffragmented library with non-standard developer tools. In certain implementations,
querying for validity may be combined with internal (e.g. within the same enterprise
server) hinary hard-links to published or expected library class interface implementations.
This may aid the package API 532 to enable the enterprise server 120 to publish a package
530 and simultaneously provide the package 530 with myriad services (e.g. single sign on,
2 enterprise metadata dictionaries, Health Level-7 integration points, and other services).
In certain implementations, the service APl 520 may perform a lock-up of the
options available and rveturn them to a calling application 50. This may be performed
through a dynamic IDL function. The look-up may give a real-time update as to what

packages and services 325 are installed or available to the application 50. For example,

)
L1

the application 50 may request the packages and services 5325 available, and the service
APT 520 may return a list of options based on a dot-notation to specify the programiming
level for which the user or calling application 30 wants to know what options are available.
As an example, a user may be running a 1.1 version of software of which versions 1.0, 1.1,
and 2.0 are available on the server. The user may request the available operations relating
36 wal.1 version and receive a list of the publishing endpoints available to the 1.1 version of
the software.

An alternate way of implementing this approach would be to allow applications 50
to index or inferrogate a dynamic list of services available on any given enterprise server
120 and then consume those services ad-hoc. This type of functonality is achievable

12

WO 2016/106064 PCT/US2015/066303

through, for example, a directory listing of available binary extensions {(e.g. PHP:
Hypertext Preprocessor (PHP) execuiables) or using XML and Universal Description,
Discovery and integration (UDDI). The deployment of these services may be

one-dimensional and only available on the enterprise server 120 and protocol of original

(94

deployment.

In addition, certain implementations of the service deployment engine 527 may
isolate and integrate all packages 530 dynamically in order to expose their operations (e.g.
SOAP-invoked business logic) to clients in an orderly manner without affecting the
delivery of other services or operafions currently in progress. This isolation may be
10 accomplished by providing a predetermined, controlled set of resources (e.g., memory,

processor cycles, eic.) to the package 530 in order to prevent or limit damage in case the
packages crashes. In addition, this isolation enables the package 530 to be executed
without substantially interfering or substantially being affected by other operations
occurring on the enterprise server 120, In certain implernentations, the service deployment
15 engme 527 may also wrap the individoal packages in a robust in-process exception and/or
error scope to ensure that no package has the capability of crashing the server. In addition,
packages may be meonitored by the enterprise server 120 to ensure that resource-bungry
processes arc throttled to allow all concurrently-executing processcs to have proper
resources fo complete their functions.
24 FIG. 6 illustrates a flowchart of a method 6000 for undeploying or redeploying a
package 530 according 0 certain implementations. First, at step 6100, the service
deployment engine 527 may receive an instruction to perform a particular operation on a
package 530. This instruction may be received from various sources. The instruction may

be transmitted over one of the published endpoints 526 and be processed according to, for

LA

S
A

exarople, the method of FIG. 3. In certain embodiments, the instruction may be received
from a user interacting directly with the enterprise server 120 over, for example, a terminal
or workstation attached to the enterprise server. The instructions may describe a particular
method to be performed on a specific package 530, which may include an undeploy or
overwrite command.

30 At step 6200, the service deployment engine 527 may monitor the specific package
530 to detect whether the package 530 has completed all outstanding operations. Acting
on a currently operating package 330 {(e.g. removing the package 530) may cause
instabifity for the client application 50 or a loss of data. This detection may be performed
by, for example, monitoring the resource usage of the package 530 or monitoring an active

13

WO 2016/106064 PCT/US2015/066303

process list.

At step 6300, the package 530 may be prevented from accepting new operations.
This step may include certain substeps, including but not limited to preventing the package
530 from using any resources, making the package 330 invisible to additional requests,

53 changing a permission level of the package 530, and locking the package 530.

At step 8400, the package may be removed. This step 6400 may include deleting
the package 530 entirely. However, in certain iroplementations, the package 530 may
remain stored on the computer readable media 123 but remain in a substantially anusabie
state, for example, as a result of performing one of the certain substeps of step 6300.

16 At step 6300, depending on the instructions received, a new package 530 may need
to be added or deployed. This may include the substeps of verifying the validity of the
package, publishing the package to endpoints 526, installing the package 530, and other
such substeps.

The described method may he utilized to perform dynamic deployment that

15 respects the versioning of the packages and services 525. For example, if the method is
used to redeploy version 3 of a particular package, then the previous version 3 finishes its
calls and is gracefully replaced with a new version 3 of the particular package.

From the foregoing it will be appreciated that, although specific embodiments of
the invention have been described herein for purposes of illustration, various

2 modifications may be made without deviating from the spirit and scope of the invention.

Accordingly, the invention is not limited except as by the appended claims.

14

12 Jun 2020

2015369925

10

15

20

25

30

1003059920

CLAIMS

1. A system comprising a processor unit coupled to a memory, wherein the
memory is encoded with computer executable instructions that when executed cause the
processor to:

receive a client message at a published endpoint, the message formatted according
to a description of a first application programming interface;

parse the message; and

pass parsed content of the message to a package capable of executing an operation
associated with the passed parsed content, wherein the package comprises a second
application programming interface and a logic, the second application programming
interface is configured to receive and respond to results based on execution of the

operation and the logic.

2. A computer hardware system comprising:
a processor;
a plurality of published endpoints;
a memory comprising;:
a plurality of packages implementing a package application programming
interface;
a description of the functionality of a service application programming
interface;
a service deployment engine, comprising computer executable instructions
that when executed cause the processor to deploy the plurality of packages to a
plurality of endpoints according to the description of the functionality of the
service application programming interface;
wherein the service application programming interface, comprises
computer executable instructions that when executed cause the processor to, upon
receipt of a client message formatted according to the description at one of the
plurality of published endpoints:
parse an instruction from the message using the description; and
pass the instruction to one of the plurality of packages via the

package application programming interface.

15

12 Jun 2020

2015369925

10

15

20

25

30

1003059920

3. A system comprising
a plurality of user devices executing client applications; and
an enterprise server connected to the plurality of client devices via a network, the
server having a processor and a memory comprises:
a plurality of packages;
a service deployment engine, comprising computer executable instructions
that when executed cause the processor to deploy the plurality of packages to a
plurality of endpoints according to a description of a service application
programming interface; and
a set of instructions,
wherein each package has a service and implements a consistent package
application programming interface;
wherein the enterprise server enables the client applications to access the service
through the execution of the set of instructions by the processor; and
wherein the set of instructions are computer executable instructions that when
executed cause the at least one processor to:
parse a client message from the client application containing arguments
formatted according to the description of the service application programming
interface; and
perform an action comprising one or more of: responding to the client
message, detecting whether the client message contains a valid request, or passing

the client message to the service via the service application programming interface.

4. A system comprising:

a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of client devices via a network, the
server having a processor and a memory, wherein the memory comprises:

a plurality of packages comprising a plurality of version packages, each
version package capable of being used simultaneously on the enterprise server by
different user devices;

a service deployment engine, comprising computer executable instructions
that when executed cause the processor to deploy the plurality of packages to a
plurality of endpoints according to a description of a service application

programming interface; and

16

12 Jun 2020

2015369925

10

15

20

25

30

1003059920

a set of instructions,
wherein each package has a service and implements a consistent package
application programming interface,
wherein the enterprise server enables the client applications to access the service
through the execution of the set of instructions by the processor, and
wherein the set of instructions are computer executable instructions that when
executed cause the at least one processor to:
parse a client message from the client application containing arguments
formatted according to the description of the service application programming
interface; and
perform a requested operation from one of the plurality of version

packages.

5. A system comprising:

a processor;

a plurality of published endpoints;
a memory comprising:

a plurality of packages implementing a package application programming
interface, the plurality of packages comprising a plurality of version packages,
each version package capable of being used simultaneously by different user
devices;

a description of the functionality of a service application programming
interface; and

a service deployment engine, comprising computer executable instructions
that when executed cause the processor to deploy the plurality of packages to a
plurality of endpoints according to the description of the functionality of the
service application programming interface,
wherein the service application programming interface comprises computer

executable instructions that when executed cause the processor to, upon receipt of a client

message formatted according to the description at one of the plurality of published

endpoints:
parse an instruction from the message using the description; and
perform a requested operation from one of the plurality of version
packages.

17

12 Jun 2020

2015369925

10

15

20

25

30

1003059920

6. The system of claim 1, wherein the first application programming interface

provides an abstraction layer relative to the second application programming interface.

7. The system of claim 4 or 5, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:
detect when a version package of the plurality of packages has completed
all outstanding operations; and
prevent the version package from accepting new operations or remove the

version package.

8. The system of claim 7, wherein the processor prevents the version package
from accepting new operations by one or more of: preventing the version package from
using resources, making the version package invisible to additional requests, changing a

permission level of the version package, or locking the version package.

9. The system of claim 7, wherein the processor removes the version package
by one or more of: deleting the version package or storing the version package in an

unusable state.

10. The system of any one of claims 4 to 9, wherein the processor installs a new

version package.

11. The system of claim 10, wherein the processor installs the new version
package by one or more of: verifying the version package is valid or publishing the version

package to endpoints.
12. The system of any one of claims 4 to 11, wherein the server is configured to
cause a highest-versioned package to perform the requested operation where no version is

specified.

13. The system of any one of claims 4 to 12, wherein the server uses its own

addressing nomenclature to provide access to the plurality of packages.

18

12 Jun 2020

2015369925

10

15

20

25

30

35

1003059920

14. The system of any one of claims 4 to 13, wherein the server is configured to
perform the requested operation from a series of incrementally lower versions in response

to client requests.

15. The system of any one of claims 4 to 14, wherein the server is configured to
perform the requested operation from a first version package of the plurality of packages
and perform a further requested operation from a second version package of the plurality

of packages.

16. The system of any one of claims 4 to 15, wherein the service deployment
engine further comprises instructions that when executed cause the processor to:
recall or discontinue a version package of the plurality of packages; and
perform the requested operation from one of the other of the plurality of

packages.

17. The system of any one of the preceding claims, wherein the description

comprises a multi-dimensional array that is a jagged string array.

18. The system of any one of the preceding claims, wherein the description is

formed from an interface description language.

19. The system of claim 18, wherein the interface description language is Web

Services Description Language.

20. The system of any one of the preceding claims, wherein the client message

is formatted in plain text.

21. The system of any one of the preceding claims, wherein the processor is

further caused to authenticate the client message.

22. The system of claim 21, wherein multiple version numbers of each package

exist simultaneously.

23. The system of claim 1 or 2, wherein the published endpoint is one of a

plurality of published endpoints.

19

12 Jun 2020

2015369925

1003059920

24. The system of claim 23, wherein the published endpoints comprise
client-accessible locations, the client-accessible locations comprising one or more of a
port, a Uniform Resource Identifier, a named token, a named pipe, or a block of shared

memory.

25. The system of claim 24, wherein different types of client-communication

are enabled simultaneously across different published endpoints.

20

PCT/US2015/066303

WO 2016/106064

1/5

08
NOILL4IYO53Q
1a

QL
BN TAv-ELN
ERLOI)

I

HHOMIIN

7~

06

FOYSSIN

)/

)
NOLLJIMDS3d
Ial

85
NOUYINddY
JNGNO

PCT/US2015/066303

WO 2016/106064

2/5

(- 757
L g
\ -~ 1z
74
< \ * (- o5z
o

&)
o~
od

PCT/US2015/066303

WO 2016/106064

3/5

0zt

HIAHIS ISNA4YILNT

1 Y4

VI3 318VAVIH-Y3LNR4NOD

T4
SATIAMIS GNY SIDVHOVL

08
NOLE4IHDS30 10

4]
ANIDNT INFINAOT4Q J0IAYES

Vv

TZT

{SILINM DNISSIDOU

\'4

€ Old

01t
(SHUOMLIN

01 I0MA3A HISN
£9 VIGIW 9YAVIE-HILNGNGD
] NOLLYONddY
0% NOILJIYISIQ 10!

A
\ 4

29 {SILIND DNISSID0Nd

00t

PCT/US2015/066303

WO 2016/106064

4/5

¥ 'Ol

€ZT VI3 31gVavIH-HALNANGD

£Z5

INIDNT INFNACTDIA 3DIAU3S

MOEs JO0V0Vd

PES
21207 SSINISNY
GNY SNOLUYY3d0

28 SITIAMES QNV S3IDYAIVd

80Es IDVADY

1435
JAS07 SSINISNG
GNV SNOLIYYI4O

YoeS 30VNOvd

PES
ADOT SSINISNE
ANV SNOLLVY340

[A3 [AN &S
idY 3DYN0Vd dV 3DVH0Yd idY 3DVHOVd
174 idV 3DIAH3S
i TAN J8ES 388 8924 ¥S9Zs
ANIC4ANT ¢ o ANICdANI INIOdONT LINICdONT LNIOdONI
a3Hsgnd g3Hsngnd G3IHSENd diHsignd aIaHsnand

PCT/US2015/066303

WO 2016/106064

5/5

0003

9 "Bid

JOVHOYL MAN VY AaV

@@@m./

FDVNDVYd IHL IAOWIY

SNOLIVYI40 M3N DNILHIOOY
INOYd FDWHIIYE 3HL ENJATYd

mmww/

SNOUYH34O0 DNIGNYLSLNO
T d3131dWN0D SYH
ATV 3HL NIHM 103133

mmﬁm/

SNOILINYLSNI 3AEDEY

§ 'Did

JOVSSIN JHL
40 SINILINOD 3HL NO 435vE
NOIIVHId0 NV INJO4HEd

NOILJIMOSIA G 3HL OL
DNIGH0OI0V 1DVSSIN 354vd

IDVESIN IHL NO DNISSIO0OHd
AUYNINIT YL WHOAY3d

ANIGHUNT Q3HSHENd
¥V 1Y IDVSSIIAL IAII0TY

&

L5y

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

