
(12) STANDARD PATENT (11) Application No. AU 2015369925 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Computer readable storage media for dynamic service deployment and methods and
systems for utilizing same

(51) International Patent Classification(s)
G06F 9/54 (2006.01) G06F 15/16 (2006.01)

(21) Application No: 2015369925 (22) Date of Filing: 2015.12.17

(87) WIPO No: WO16/106064

(30) Priority Data

(31) Number (32) Date (33) Country
14/581,417 2014.12.23 US

(43) Publication Date: 2016.06.30
(44) Accepted Journal Date: 2021.01.07

(71) Applicant(s)
Document Storage Systems, Inc.

(72) Inventor(s)
Katieb, Ralph

(74) Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 43 101 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
US 20080082614 Al
US 20080082645 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/106064 Al
30 June 2016 (30.06.2016) W IPO IPOT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 9/54 (2006.01) G06F 15/16 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) InternationalApplicationNumber: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2015/066303 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

17 December 2015 (17.12.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
14/581,417 23 December 2014 (23.12.2014) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: DOCUMENT STORAGE SYSTEMS, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[US/US]; 12575 US Highway 1, Suite 200, Juno Beach, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Florida 33408 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventor: KATIEB, Ralph; 2854 Hayes Street NE, Min- DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

neapolis, Minnesota 55418-3054 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

(74) Agents: HAYDEN, Bridget M. et al.; 50 South Sixth GW, KM, ML, MR, NE, SN, TD, TG).
Street, Suite 1500, Minneapolis, Minnesota 55402-1498 Published:
(US).

with international search report (Art. 21(3))

(54) Title: COMPUTER READABLE STORAGE MEDIA FOR DYNAMIC SERVICE DEPLOYMENT AND METHODS AND
SYSTEMS FOR UTILIZING SAME

(57) Abstract: Systems and methods for service de
ployment are disclosed herein. Certain implementa
tions may include a memory encoded with computer

PUBLISHED PUBLISHED PUBLISHED PUBLISHED PUBLISHED executable instructions that when executed cause a
-ENDPOINT ENDPOINT ENDPOINT ENDPOINT • ENDPOINT pTcSigui10Orae Svcedlymne26A 52B 26C US 56Nprocessing unit to operate aservice deployment en

gine and use consistent APIs both (a) internally via a

SERVICE API 520 package API when consuming deployment packages
in order to expose them, and (b) externally via a ser
vice API when exposing available packages and ser

PACKAGEAPI PACKAGEAPI PACKAGEAPI vices to the outside world or enterprise server. By
532 532 532 doing so, calling applications can depend on the

consistency of the service API engine while the en
°OPjE°TIO^G ND OPRTIN AN C . B.SRATION ANc terprise server itseClf can reliably consume and inter - ~ ~~BUSINESS LOGIC BUSINESS LOGIC BUSINESS LOGICtepisrvislfaeibycnu adne

534 534 sa4 act with a dynamic set of packages organized in a

PACKAGE 530A PACKAGE 530R PACKAGE 530N consistent and predictable way. The service deploy
ment engine may be configured to act as a dynamic

PACKAGESANDSERVICES 525 library loader to interrogate, deploy, start/stop,
and/or uninstall packages and services in real time.

SERVICE DEPLOYMENT ENGINE 527 The packages and services may all implement the
same package API.

COMPUTER-READABLE MEDIA 123

FIG. 4

1003059920

COMPUTER READABLE STORAGE MEDIA

FOR DYNAMIC SERVICE DEPLOYMENT AND METHODS AND SYSTEMS FOR

UTILIZING SAME

TECHNICAL FIELD

5 Embodiments of the present disclosure relate generally to network services, and

more specifically to dynamic deployment of network services.

BACKGROUND

In typical enterprise systems, an enterprise server connects to a back-end resource

(e.g., an application, data server, or service provider) in response to a request from a client

10 application via a web service. Typically, the web service is published to the enterprise

server in such a way that allows clients to treat the service as a remote procedure call rather

than as a discrete request to an outside caller. This is done, in part, because most integrated

development environments allow developers of client applications to easily embed such

services into applications. While easy for the developer, this act introduces hidden hard

15 links between the application and the remote service. The hard links may be described as a

kind of contract between the application and the service that is memorialized in a specific

description. While this contract may be beneficial in some circumstances, changes to the

service or client may invalidate the contract held between the devices and break links. This

may result in buggy, incompatible software and a poor user experience, which is

20 problematic in an ever-shifting enterprise landscape. Repairing or updating the hard links

may take time and resources and may result in an interruption of services provided by the

server. Therefore, there exists a need in the art to provide robust client-server capabilities

that reduces the risk of invalidating remote service contracts.

Reference to any prior art in the specification is not an acknowledgement or

25 suggestion that this prior art forms part of the common general knowledge in any

jurisdiction or that this prior art could reasonably be expected to be combined with any

other piece of prior art by a skilled person in the art.

By way of clarification and for avoidance of doubt, as used herein and except

where the context requires otherwise, the term "comprise" and variations of the term, such

30 as "comprising", "comprises" and "comprised", are not intended to exclude further

additions, components, integers or steps.

SUMMARY

In an aspect, the present invention provides a system comprising a processor unit

1

1003059920

coupled to a memory, wherein the memory is encoded with computer executable

instructions that when executed cause the processor to: receive a client message at a

published endpoint, the message formatted according to a description of a first application

programming interface; parse the message; pass parsed content of the message to a

5 package capable of executing an operation associated with the passed parsed content,

wherein the package comprises a second application programming interface and a logic,

the second application programming interface is configured to receive and respond to

results based on execution of the operation and the logic.

In another aspect, the present invention provides a computer hardware system

10 comprising: a processor; a plurality of published endpoints; a memory comprising: a

plurality of packages implementing a package application programming interface; a

description of the functionality of a service application programming interface; a service

deployment engine, comprising computer executable instructions that when executed

cause the processor to deploy the plurality of packages to a plurality of endpoints

15 according to the description of the functionality of the service application programming

interface; wherein the service application programming interface, comprises computer

executable instructions that when executed cause the processor to, upon receipt of a client

message formatted according to the description at one of the plurality of published

endpoints: parse an instruction from the message using the description; and pass the

20 instruction to one of the plurality of packages via the package application programming

interface.

In another aspect, the present invention provides a system comprising a plurality of

user devices executing client applications; and an enterprise server connected to the

plurality of client devices via a network, the server having a processor and a memory

25 comprises: a plurality of packages; a service deployment engine, comprising computer

executable instructions that when executed cause the processor to deploy the plurality of

packages to a plurality of endpoints according to a description of a service application

programming interface; and a set of instructions, wherein each package has a service and

implements a consistent package application programming interface; wherein the

30 enterprise server enables the client applications to access the service through the execution

of the set of instructions by the processor; and wherein the set of instructions are computer

executable instructions that when executed cause the at least one processor to: parse a

client message from the client application containing arguments formatted according to

the description of the service application programming interface; and perform an action

1A

1003059920

35 comprising one or more of: responding to the client message, detecting whether the client

message contains a valid request, or passing the client message to the service via the

service application programming interface.

In another aspect, the present invention provides a system comprising: a plurality

of user devices executing client applications; and an enterprise server connected to the

40 plurality of client devices via a network, the server having a processor and a memory,

wherein the memory comprises: a plurality of packages comprising a plurality of version

packages, each version package capable of being used simultaneously on the enterprise

server by different user devices; a service deployment engine, comprising computer

executable instructions that when executed cause the processor to deploy the plurality of

45 packages to a plurality of endpoints according to a description of a service application

programming interface; and a set of instructions, wherein each package has a service and

implements a consistent package application programming interface, wherein the

enterprise server enables the client applications to access the service through the execution

of the set of instructions by the processor, and wherein the set of instructions are computer

50 executable instructions that when executed cause the at least one processor to: parse a

client message from the client application containing arguments formatted according to

the description of the service application programming interface; and perform a requested

operation from one of the plurality of version packages.

In another aspect, the present invention provides a system comprising: a processor;

55 a plurality of published endpoints; a memory comprising: a plurality of packages

implementing a package application programming interface, the plurality of packages

comprising a plurality of version packages, each version package capable of being used

simultaneously by different user devices; a description of the functionality of a service

application programming interface; and a service deployment engine, comprising

60 computer executable instructions that when executed cause the processor to deploy the

plurality of packages to a plurality of endpoints according to the description of the

functionality of the service application programming interface, wherein the service

application programming interface comprises computer executable instructions that when

executed cause the processor to, upon receipt of a client message formatted according to

65 the description at one of the plurality of published endpoints: parse an instruction from the

message using the description; and perform a requested operation from one of the plurality

of version packages.

Also disclosed herein is a computer system comprising at least one processing unit

1B

1003059920

coupled to a memory, wherein the memory is encoded with computer executable

70 instructions that when executed cause the at least one processing unit to: receive a client

message at a published endpoint, the message formatted according to a first description of

a first application programming interface; parse an instruction from the message according

to a second description; pass the instruction to a package via a function of the first

application programming interface, the package having a second application programming

75 interface and a logic; receive, over the second application programming interface, a result

based on the instruction and the logic; and respond to the client message based on the

result. The first description may have a substantially generic format, for

1C

WO 2016/106064 PCT/US2015/066303

example, in the form of a jagged string array. In addition, the first application

programming interface may be substantially more generic than the second application

programming interface. The first and second descriptions are formed from an interface

description language (e.g., Web Services Description Language). The client message may

5 be formatted in plain text.

In addition or alternatively, implementations may include a computer hardware

system comprising: a processor; a plurality of published endpoints; a memory comprising

a package application programming interface; a description of the functionality of a

service application programming interface; a service deployment engine, comprising

10 computer executable instructions that when executed cause the processor deploy a

plurality of packages to a plurality of endpoints without substantially modifying the

description, each package implementing the package application programing interface; a

service application programming interface, comprising computer executable instructions

that when executed cause the processor to, upon receipt of a client message formatted

15 according to the description at one of the plurality of published endpoints: parse an

instruction from the message using the description; and pass the instruction to one of the

plurality of packages via the package application programming interface. The service

deployment engine may further comprise instructions that when executed cause the

processor to detect when a previous version package of the plurality of packages has

20 completed all outstanding operations, prevent the previous version package from

accepting new operations, and remove the previous version package. The substantially

generic format may be, for example, a jagged string array. The first and second

description may be formed from an interface description language, such as Web Services

Description Language. The client message may be formatted in plain text.

25 In addition or alternatively, implementations may include a networked system

comprising a plurality of user devices executing client applications and an enterprise

server connected to the plurality of client devices via a network. The server may have a

processor and a memory comprising a plurality of packages and a set of instructions. Each

package may have a service and implement the same package application programming

30 interface. The enterprise server may enable the client applications to access the service

through the execution of the set of instructions by the processor. The set of instructions

may be computer executable instructions that when executed cause the at least one

processor to parse a message from the client application containingarguments formatted

according to a generic descriptionof asimpleapplication programming interfaceand pass

WO 2016/106064 PCT/US2015/066303

the instruction to one of the plurality of packages.

BRIEF DESCRIPTIONOFTHE DRAWINGS

FIG. 1 illustrates a schematic block diagram of certain implementations of a

networked client application and a remote service.

5 FIG. 2 illustrates certain implementations of a generic format in the form of a

multi-dimensional array.

FIG. 3 illustrates a schematic block diagram of certain implementations of a

computer networking environment.

FIG. 4 illustrates a schematic block diagram of particular modules located on a

10 computer readable media according to certain implementations.

FIG. 5 is a flowchart of a method for processing requests according to certain

implementations.

FIG. 6 is a flowchart of a method for acting on a package according to certain

implementations.

15 DETAILED DESCRIPTION

Systems and methods for dynamic service deployment are disclosed herein.

Certain details are set forth below to provide a sufficient understanding of embodiments of

the disclosure. However, embodiments of the disclosure may be practiced without these

particular details. Moreover, the particular embodiments are provided by way of example

20 and should not be construed as limiting. In other instances, well-known circuits, control

signals, timing protocols, and software operations have not been shown in detail to avoid

unnecessarily obscuring the invention.

Disclosed embodiments generally relate to services provided by a server to a client

over a network. For example, a user may direct the client to interact with a service to

25 access a server's resources or functionality to produce desired results. Servers are often

configured to interact with clients of various hardware and software architectures, which

introduces compatibility concerns. As such, servers may define various layers of

abstraction in order to achieve greater compatibility with different client architectures.

However, if the abstraction layers are too flexible or abstract, the client and server may

30 encounter difficulties ensuring consistent understanding of requests and formatting. As

such, mutual definitions and formatting may be beneficial. This may be accomplished

through the use of delivery protocols formatted according to an interface description

language (IDL) description.

An IDL may be a language or format used to describe functionality offered by a

3

WO 2016/106064 PCT/US2015/066303

service, such as a web service provided by a server. In particular, the IDL may be used to

specify, often via a file containing an IDL description, the manner in which the service

may be called, parameters expected by the service, types of responses provided by the

service in response to the call (e.g., types of data structures returned), and/or other

5 functionality. The IDL may be its own unique language, a way of formatting or preparing

a description in a known or existing language (e.g., Extensible Markup Language (XML)),

or a combination thereof. Examples of IDLs include Web Service Description Language

(WSDL), Web Application Description Language, and AndroidTM Interface Definition

Language.

10 In some instances, an IDL description may be used in combination with one or

more delivery protocols specifying the manner in which data are exchanged between two

or more applications over a network. Each protocol may, for instance, provide a structured

messaging framework. These protocols may include but are not limited to simple object

access protocol (SOAP) and representational state transfer (REST). In turn, these delivery

15 mechanisms may rely on one or more application layer transport protocols, such as

hypertext transport protocol (HTTP) or simple mail transport protocol (SMTP).

FIG. I illustrates an embodiment of a system 10, including an application 50

configured to communicate with a remote service 70 over a network 110. As an example,

the application 50 may comprise instructions executing on a user computing device and

20 the remote service 70 may comprise instructions executing on an enterprise server. In

certain implementations, the application 50 may have three primary functions: provide a

user interface to a user, prepare and format messages 90 (e.g., calls) to the remote service

70, and receive and process responses from the remote service 70. The user interface may

be a way of providing output to and receiving input from the user. This input and output

25 may be related to requests to and responses from the remote service 70.

In certain implementations, the application 50 may format and provide a message

90 over the network 110 to the remote service 70 according to an IDL description 60

known or accessible to the client application 50. The remote service 70 may include an

IDL description 80 that is compatible with the IDL description 60 (e.g., the IDL

30 description 60 and the IDL description 80 are the same). The remote service 70 may

receive the message 90 and parse the message 90 according to the protocol and the IDL

description 80.

The message 90 may be formatted in various ways. For example, the message 90

may be formatted as plain text. Plain text may be described as a format that lacks

4

WO 2016/106064 PCT/US2015/066303

significant processing or formatting. For example, plain text may be encoded according to

ASCII, UTF-8, or the like. Plain text does not require interpreting as binary objects as

would be done with, for example, images and encoded numbers.

Dependingon the contents of the message 90, the remote service 70 may take a

5 certain action, including but not limited to accessing particular resources, performing a

process, and preparing a response to the client application 50 according to an agreed upon

format. In this manner, the application 50 and the remote service 70 may operate in

accordance with a remote service contract defined by the complimentary IDL descriptions

60,80.

10 In some instances, however, the remote service 70 or client application 50 may be

modified (e.g., upgraded). If the IDL descriptions 60, 80 were formatted in a particularly

specific manner, then the IDL descriptions 60, 80 may no longer accurately describe the

services offered. As a result, the contract between the application 50 and the remote

service 70 may be invalidated because the application 50 and service 70 may be unable to

15 format and parse messages 90 according to compatible IDL descriptions 60, 80. The

incompatibility may result in the application 50 no longer providing valid requests to the

remote service 70 and receiving valid responses. The communication according to the

incompatible IDL descriptions 60, 80 may result in erroneous data, application instability,

or other problems. However, generic IDL descriptions 60, 80 may be implemented such

20 that contracts may remain intact despite modifications and/or upgrades to the underlying

service. The IDL descriptions 60, 80 may be written in a generic format to serve as an

entry point for various services. Certain implementations of the generic format may

include the use of data structures including but not limited to a multidimensional array of

strings.

25 FIG 2 illustrates certain implementations of a generic format in the form of a

multi-dimensional array 210. The multi-dimensional array 210 includes elements 230,

232which may containreferences 240, 241 to other arrays 250, 251. The other arrays

250,251 may also themselves define elements. These elements may comprise references

to yet other data structures or data. In the certain illustrated implementations, the other

30 arrays 250, 251 may contain character data, making the multi-dimensional array 210 a

jagged string array. The element 232 does not contain a reference to anotherarray and may

be described as having a null reference. The multi-dimensional array may have various

qualities including but not limited to: having a fixed length, having a variable length, cast

to a particular type (e.g. a string), and other attributes typically found in multi-dimensional

5

WO 2016/106064 PCT/US2015/066303

arrays.

FIG. 3 illustrates a schematic diagram of certain implementations of a computer

networking environment 100, including a user device 102, the network 110, and an

enterprise server 120. The user device 102 may comprise a computingdevice, including

5 but not limited to a modem, a router, a gateway, a server, a thin client, a laptop, a desktop,

a computer, a tablet, a media device, a smart phone, a television, a phablet, a cellular phone

or other mobile device, or any combination or sub-combination of the same. The user

device 102 may include a computer-readable media 62 encoded with executable

instructions that may operate in conjunction with one or more processing units 64 of the

10 user device 102 to provide functionality allowing execution of an application 50. The

computer-readable media 62 may also include the IDL description 60.The application 50

may be an application, such as an executable program, that may interface with one or more

services provided by the enterprise server 120. The user device 102 may be configured to

communicate over a network 110 with any number of devices, including but not limited to

15 the enterprise server 120.

The network 110 may comprise one or more networks, such as local area networks

(LANs). wide area networks (WANs) metropolitan area networks (MANs), cellular

networks, and/or the Internet. Communications provided to, from, and within the network

110 may wired and/or wireless, and further may be provided by any networking devices

20 known in the art, now or in the future. Devices communicating over the network 110 may

communicate with a communication protocol, such as Transmission Control

Protocol/internet Protocol (TCP/IP) or User Datagram Protocol (UDP). Additionally, the

user device 102 and the enterprise server 120 may be configured to conunicate using

known protocols such as Hypertext Transfer Protocol (HTTP), Hypertext Transfer

25 Protocol Secure (HTTPS), Secure Sockets Layer (SSL), server-resident protocols, or other

protocols. Server-resident protocols may include named pipes, shared memory, and other

protocols. Such protocols may also be used to share information between an application

server (e.g., a server that manages, runs back end processes, or hosts an application) and

the enterprise server 120 in the same physical unit.

30 The enterprise server 120 may include one or more processing units 121 operably

coupled to one or more computer readable media 123. Computer readable media 123 may

include any form of computer readable storage or computer readable memory, transitory

or non-transitory, including but not limited to, externally or internally attached hard disk

drives, solid-state storage (such as NAND flash or NOR flash media), tiered storage

6

WO 2016/106064 PCT/US2015/066303

solutions, storage area networks, network attached storage, and/or optical storage.

The computer readable media 123 may store various modules, including but not

limited to executable instructions for operating a service deployment engine 527, the IDL

description 80, and a plurality of packages and services 525. As described, the instructions

5 stored on the computer readable media 123 may be executed on the one or more

processing units 121 or other processing units.

The executable instructions for operating the service deployment engine 527 may

include instructions that, when executed on a processing unit 121, enable the operation of

the service deployment 527 on the enterprise server 120 to act as a dynamic library loader

10 to interrogate, deploy, start/stop, and/or uninstall packages and services 525 in real time,

further examples of which are provided below. Although the executable instructions for

the service deployment engine 527 are shown on a same computer readable media 123, in

some embodiments any or all sets of instructions may be provided on multiple computer

readable media and may not be resident on the same media.

15 The packages and services 525 may be one or more software components and

resources that have been packaged together in order to provide particular functionality or

services when executed on the processing unit 121 of the enterprise server 120. With

reference to Fig. 4, packages and services 525 may comprise a plurality of individual

packages 530 (e.g., 530A through 530N). The packages 530 may be organized according

20 to package self-assigned version numbers, and allow multiple versions of the same

package to exist simultaneously. For large enterprises especially, this built-in versioning

functionality enables scaling into a new version of a critical package 530 rather than

requiring a cut-over approach, the latter often being fraught with hidden traps and the

dangers of service interruptions. Allowing multiple versions of the same package 530 to

25 exist simultaneously, enables the two versions to exist and be used simultaneously on the

enterprise server 120 by different user devices 102.

With continuing reference to FIG. 4, this figure illustrates a detailed view of

particular modules located on the computer readable media 123, and includes a service

application programming interface (API) 520, packages and services 525, publishing

30 endpoints 526 (e.g., 526A through 526N) and a service deployment engine 527.

The publishing endpoints 526 may be locations (e.g. a port, Uniform Resource

Identifier (URI) such as a Uniform Resource Link (URL), named tokens, a named pipe, a

block of shared memory, or other locations) exposed by the enterprise server 120 where

the client application may access a function (e.g. an API) implemented by the enterprise

7

WO 2016/106064 PCT/US2015/066303

server 120. Different types of communication may be enabled over different endpoints.

For example, there may be a TCP/IP endpoint, a SOAP endpoint, etc. During calls to

various services, a specific type of endpoint 526 (e.g., WindowsTM Communication

Foundation (WCF), JavaScript Object Notation (JSON). SOAP, REST, TCP/IP, named

5 pipes) may be chosen by the communication capabilities of application 50 sending the

message 90. The enterprise server 120 may publish its own IDL description 80 on all

publishing endpoints 526 concurrently, and publish live changes (ie. zero-downtime) out

to all of these concurrently as well. This means that when a package 530 is deployed into

the enterprise server 120, it is simultaneously-and instantaneously available and reachable

10 via anyand all of the desired endpoints 526.

The service API 520 may be a simple interface that enables a set of basic functions

(e.g. create, read, update, delete, and invoke) to be performed. The IDL description 80

may describe the functionality of the service API 520. For example, the IDL descriptions

60, 80 may describe a generic "InvokeOp" function that allows a client application 50 to

15 send a message 90 that instructs the enterprise server 120 to execute a specific function

according to an addressing scheme. For example:

"InvokeOp("company.package[20].operation")", which may execute operation

"operation" from version 2.0 of the package "package" from company "company". The

enterprise server 120 may be configured such that if the caller would instead like the latest

20 version, they simply need to request version [*] (i.e. wildcard version), which always

resolves internally in the enterprise server 120 to the latest version of the package

installed. The enterprise server 120 may be configured such that if no version is specified,

to assume that theapplication 50 would simply like the latest or highest-versioned package

to perform the requested operation.

25 The service API 520 may expose the same IDL description 80 to all client

applications 50 and implement operation dynamism as a function of the enterprise server

120 itself. This structure enables the client application 50 and the enterprise server 120 to

keep the contractual agreement made between the IDL descriptions 60, 80. The enterprise

server 120 may expose a simple IDL description with a simple entry point (e.g. only a

30 single entry point) into the published packages and services 525 that utilizes a generic

format (e.g. an array-of-arrays or a jagged string array described in connection with Fig. 2)

in order to guarantee that the communication mechanism between the client application 50

and the enterprise server 120 will not change in such a way as to invalidate the IDL

description contract between the enterprise server 120 and the client application 50. Client

8

WO 2016/106064 PCT/US2015/066303

applications 50 that are dependent on the IDL description 80 remaining consistent across

multiple messages can do so and will not be affected by the deployundeploy operations

taking place beneath the surface exposed to the enterprise server 120 itself.

FIG. 5 illustrates a flowchart of a method 5000 for processing messages 90

5 accordingtoceitain implementations. At step 5100, the enterprise server 120 receives a

message at a published endpoint 526. Next, at step 5200, preliminary processing may be

performed on the message. This step 5200 may include handling networking tasks

associated with receiving the message 90, including waiting for additional packets,

performing error correction on the packet, preliminary packet parsing, and other

10 processes. Additionally, the enterprise server 120 may perform authentication steps such

as ensuring that the message is from an authenticated user, or ensuring that the calling

application 50 is using a legitimate session identifier to identify itself or the user. Next, at

step 5300, the message 90 is parsed according to the IDL description 80. After parsing the

message 90, at step 5400, the enterprise server 120 performs an operation based on the

15 contents of the message 90, including but not limited to passing the message 90 to a

package 530, passing a particular content of the message 90 to a particular package 530,

responding to the message 90 without passing the contents to a package 530, and detecting

whether the message 90 contains a valid request (e.g., testing whether the contents are

directed to a valid package). In certain implementations, message passing may be

20 performed according to a package API 532 implemented by the particular package 530.

Additionally, according to certain implementations, once the service API 520 receives the

call, the service API 520 performs no conversion on the calling request object. This

process may decrease latency between receiving a message and acting on it

Returning to FIG. 4, the enterprise server 120 may use its own addressing

25 nomenclature in order to provide access to individual packages 530 and their operations

534 without having to change the IDL descriptionSO. The IDL description 80 may

describe or expose a generic method for invoking an operation. The arguments may

change in order to specify parameters. The syntax may be extended in order to support

versioned and/or unversioned calls. Certain implementations may do so without adding

30 additional parameters to the IDL. Instead, the certain implementations may define the

operation to allow specific versions to be embedded in the addressing nomenclature itself.,

for example, by including the desired version number in the addressing nomenclature

itself.

This approach to IDL-independent version calling presents several advantages.

9

WO 2016/106064 PCT/US2015/066303

For example. the user device 102 may be programmed to request the highest version

number and test the result for accuracy or errors. If the result contains an error, then the

client may request a series of incrementally lower version numbers until it receives an

accurate/error-free result or it runs out of version numbers to call. This may be useful if,

5 for example, an undiscovered error is present in a newer version of the package. In

addition, this system could be used to configure the client application to utilize functions

from across different versions of the operation. For example, a user may prefer some

features found in one version (e.g. version 1.0) of an application, butLprefers other features

found in another version (e.g. version 2.0) The user or the application may specify to

10 utilize version 1.0 for some features and to utilize version 2.0 for all other features. In

addition, the separate nature of the packages enables a particular version to be recalled or

discontinued as many times as needed without interrupting users of different versions.

Additionally, a custom solution could be created that wraps other services in a

master service and requires that all calling applications use this wrapper service instead of

15 depending on breakable linkages to the individual services themselves. However, this

approach may introduce overhead since the master service may be unlikely to insulate

current callers from dependent-service interruptions. It may also be time-intensive

because the link between the wrapper/master service and its dependencies introduces a

web of connection-to-connection calls that may increase the load on the network between

20 the wrapper and wrapped services.

With continued reference to Fig. 4, in certain implementations, each package 530

may implement a package API 532 and an operations and business logic 534. The package

API 532 is the particular interface through which the package 530 and the enterprise server

120 communicate, which may include providing access to the underlying operations and

25 business logic 534 of the package 530. The package API 532 and the operations and

business logic 534 may also enable the enterprise server 120 to provide the remote service

70. As such, the enterprise server 120 may be configured to pass parsed arguments from

the message 90 via the package API 532 to the operations and business logic 534.

In certain implementations, the enterprise server 120 may simultaneously deploy

30 any package and any operation across any publishing endpoint 526 capable of interacting

with a generic format (e.g. a simple string-of-strings) calling pattern. This may be

accomplished, for example, by exposing a consistent and simple service API 520

externally and leveraging a consistent package API 532 internally that package developers

must use in order to deploy to the enterprise server 120. The consistent package API 532

10

WO 2016/106064 PCT/US2015/066303

allows exposure to client applications 50 using various protocols to communicate with the

enterprise server 120.

This functionality may be achieved by, for example, utilizing consistent package

APIs 532 internally to the enterprise server 120 in order to install business logic 534 as a

5 recognized package 530 on the enterprise server 120. The package API 532 may provide

the internally-consistent abstraction layer that allows the enterprise server 120 to

dynamically adjust and respond to various service requests without allowing those

changes to be seen or felt by a calling application 50. Specifically, packages 530 may be

deployed and undeployed without having to alter the IDL description 80. The abstraction

10 provided by the service API 520 may besubstantially broader, more generic, andor more

flexible than the package API 532 such that the IDL description 80 may remain consistent

despite changes to the packages and services 525 (e.g., a package 530 being deployed,

redeployed, or undeployed). This arrangement may enable the package API 532 to operate

independently of the IDL description 80 by insulating the "what to do" described by the

15 IDL description 80 from the "how it is being done" of the package API 532 and other

underlying functionality. In certain implementations, the package API 532 enables a fixed

contract on a binary level without the risk of breaking links by implementing a dynamic

registration concept that parallels IDL description functionality (e.g. operation lookup

functionality, operation invocation, and other functions).

20 Because the system 100 utilizes a consistent internal package API 532 and does not

expose these packages 530 outright to calling client applications 50 (e.g., without the

abstraction provided by the service API 520), the system 100 is able to expose the

operations and services provided by the package 530 through many client routes

simultaneously. For example, an installed package 530 with operations 534 may be

25 automatically and simultaneously published and made available to the enterprise via a

plurality of endpoints 526, such as WCF, SOAP, JSON, REST, named pipes,TCP/IP, and

others. Since the enterprise server 120 and packages 532 both use the same proprietary

and well-known package API 532 (the server 120 consuming or expecting it and the

package developer consuming or implementing it), the packages 530 may act as dynamic

30 real-time extensions to the enterprise server 120 itself. The installed packages 530 may

also be published and made available to other packages 530. This wide-publish

functionality may be provided without the package developer having to perform extra

steps, request it, or write any additional/different code.

Certain embodiments may enable a consistent package API 532 by having the

11

WO 2016/106064 PCT/US2015/066303

enterprise server 120 itself publish and consume a low-level "abstract interface" in the

form of a library (e.g., a Dynamic Link Library (DLL)), The binary image of that abstract

class may be located in the same directory on the enterprise server 120 as the server

executable itself, as well as an identical version of that interface library being published to

5 package developers via a package interface software development kit. By linking their

respective projects directly to the package interface library and instantiating the abstract

classes therein, the enterprise server 120 can detect what a package developer's package

(binary image) will contain when it arrives in an internal directory for deployment.

In addition, the enterprise server 120 may verify that the developer of the package

10 530 implemented all required abstract class methods by querying the library for validity

and completeness (e.g., using MicrosoftTM .NET introspection to query a DLL) prior to

linking with it and loading/deploying it as a live package on the enterprise server 120.

While a developer would be hard-pressed to try to create or build an incomplete library

using the standard developer tools, a developer could potentially construct a

15 partial/fragmented library with non-standard developer tools. In certain implementations,

querying for validity may be combined with internal (e.g. within the same enterprise

server) binary hard-links to published or expected library class interface implementations.

This may aid the package API 532 to enable the enterpriseserver 120 to publish a package

530 and simultaneously provide the package 530 with myriad services (e.g. single sign on,

20 enterprise metadata dictionaries, Health Level-7 integration points, and other services).

In certain implementations. the service API 520 may perform a look-up of the

options available and return them to a calling application 50. This may be performed

through a dynamic IDL function. The look-up may give a real-time update as to what

packages and services 525 are installed or available to the application 50. For example,

25 the application 50 may request the packages and services 525 available, and the service

API 520 may return a list of options based on a dot-notation to specify the programming

level for which the user or calling application 50 wants to know what options are available.

As an example, a user may be running a 1.1 version of software of which versions 1.0, 1.1,

and 2.0 are available on the server. The user may request the available operations relating

30 to a 1.1 version and receive a list of the publishing endpoints available to the 1.1 version of

the software.

An alternate way of implementing this approach would be to allow applications 50

to index or interrogate a dynamic list of services available on any given enterprise server

120 and then consume those services ad-hoc. This type of functionality is achievable

12

WO 2016/106064 PCT/US2015/066303

through, for example, a directory listing of available binary extensions (e.g. PHP:

Hypertext Preprocessor (PHP) executables) or using XML and Universal Description,

Discovery and Integration (UDDI). The deployment of these services may be

one-dimensional and only available on the enterprise server 120 and protocol of original

5 deployment.

In addition, certain implementations of the service deployment engine 527 may

isolateandinterate all packages 530 dynamically in order to expose their operations (e.g.

SOAP-invoked business logic) to clients in an orderly manner without affecting the

delivery of other services or operations currently in progress. This isolation may be

10 accomplished by providing a predetermined, controlled set of resources (e.g., memory,

processor cycles. etc.) to the package 530 in order to prevent or limit damage in case the

packages crashes. In addition, this isolation enables the package 530 to be executed

without substantially interfering or substantially being affected by other operations

occurring on the enterprise server 120. In certain implementations, the service deployment

15 engine 527 may also wrap the individual packages in a robust in-process exception and/or

error scope to ensure that no package has the capability of crashing the server. In addition,

packages may be monitored by the enterprise server 120 to ensure that resource-hungry

processes are throttled to allow all concurrently-executing processes to have proper

resources to complete their functions.

20 FIG. 6 illustrates a flowchart of a method 6000 for undeploying or redeploying a

package 530 according to certain implementations. First, at step 6100, the service

deployment engine 527 may receive an instruction to perform a particular operation on a

package 530. This instruction may be received from various sources. The instruction may

be transmitted over one of the published endpoints 526 and be processed according to, for

25 example, the method of FIG. 5. In certain embodiments, the instruction may be received

from a user interacting directly with the enterprise server 120 over, for example, a terminal

or workstation attached to the enterprise server. The instructions may describe a particular

method to be performed on a specific package 530, which may include an undeploy or

overwrite command.

30 At step 6200, the service deployment engine 527 may monitor the specific package

530 to detect whether the package 530 has completed all outstanding operations. Acting

on a currently operating package 530 (e.g. removing the package 530) may cause

instability for the client application 50 or a loss of data. This detection may be performed

by, for example, monitoring the resource usage of the package 530 or monitoring an active

13

WO 2016/106064 PCT/US2015/066303

process list.

At step 6300, the package 530 may be prevented from accepting new operations.

This step may include certain substeps, including but not limited to preventing the package

530 from using any resources, making the package 530 invisible to additional requests,

5 changing a permission level of the package 530, and locking the package 530.

At step 6400, the package may be removed. This step 6400 may include deleting

the package 530 entirely. However, in certain implementations, the package 530 may

remain stored on the computer readable media 123 but remain in a substantially unusable

state, for example, as a result of performing one of the certain substeps of step 6300.

10 At step 6500, depending on the instructions received, a new package530 may need

to be added or deployed. This may include the substeps of verifying the validity of the

package, publishing the package to endpoints 526, installing the package 530, and other

such substeps.

The described method may be utilized to perform dynamic deployment that

15 respects the versioning of the packages and services 525. For example, if the method is

used to redeploy version 3 of a particular package, then the previous version 3 finishes its

calls and is gracefully replaced with a new version 3 of the particular package.

From the foregoing it will be appreciated that, although specific embodiments of

the invention have been described herein for purposes of illustration, various

20 modifications may be made without deviating from the spirit and scope of the invention.

Accordingly, the invention is not limited except as by the appended claims.

14

1003059920

CLAIMS

1. A system comprising a processor unit coupled to a memory, wherein the

memory is encoded with computer executable instructions that when executed cause the

processor to:

5 receive a client message at a published endpoint, the message formatted according

to a description of a first application programming interface;

parse the message; and

pass parsed content of the message to a package capable of executing an operation

associated with the passed parsed content, wherein the package comprises a second

10 application programming interface and a logic, the second application programming

interface is configured to receive and respond to results based on execution of the

operation and the logic.

2. A computer hardware system comprising:

15 a processor;

a plurality of published endpoints;

a memory comprising:

a plurality of packages implementing a package application programming

interface;

20 a description of the functionality of a service application programming

interface;

a service deployment engine, comprising computer executable instructions

that when executed cause the processor to deploy the plurality of packages to a

plurality of endpoints according to the description of the functionality of the

25 service application programming interface;

wherein the service application programming interface, comprises

computer executable instructions that when executed cause the processor to, upon

receipt of a client message formatted according to the description at one of the

plurality of published endpoints:

30 parse an instruction from the message using the description; and

pass the instruction to one of the plurality of packages via the

package application programming interface.

15

1003059920

3. A system comprising

a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of client devices via a network, the

server having a processor and a memory comprises:

5 a plurality of packages;

a service deployment engine, comprising computer executable instructions

that when executed cause the processor to deploy the plurality of packages to a

plurality of endpoints according to a description of a service application

programming interface; and

10 a set of instructions,

wherein each package has a service and implements a consistent package

application programming interface;

wherein the enterprise server enables the client applications to access the service

through the execution of the set of instructions by the processor; and

15 wherein the set of instructions are computer executable instructions that when

executed cause the at least one processor to:

parse a client message from the client application containing arguments

formatted according to the description of the service application programming

interface; and

20 perform an action comprising one or more of: responding to the client

message, detecting whether the client message contains a valid request, or passing

the client message to the service via the service application programming interface.

4. A system comprising:

25 a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of client devices via a network, the

server having a processor and a memory, wherein the memory comprises:

a plurality of packages comprising a plurality of version packages, each

version package capable of being used simultaneously on the enterprise server by

30 different user devices;

a service deployment engine, comprising computer executable instructions

that when executed cause the processor to deploy the plurality of packages to a

plurality of endpoints according to a description of a service application

programming interface; and

16

1003059920

a set of instructions,

wherein each package has a service and implements a consistent package

application programming interface,

wherein the enterprise server enables the client applications to access the service

5 through the execution of the set of instructions by the processor, and

wherein the set of instructions are computer executable instructions that when

executed cause the at least one processor to:

parse a client message from the client application containing arguments

formatted according to the description of the service application programming

10 interface; and

perform a requested operation from one of the plurality of version

packages.

5. A system comprising:

15 a processor;

a plurality of published endpoints;

a memory comprising:

a plurality of packages implementing a package application programming

interface, the plurality of packages comprising a plurality of version packages,

20 each version package capable of being used simultaneously by different user

devices;

a description of the functionality of a service application programming

interface; and

a service deployment engine, comprising computer executable instructions

25 that when executed cause the processor to deploy the plurality of packages to a

plurality of endpoints according to the description of the functionality of the

service application programming interface,

wherein the service application programming interface comprises computer

executable instructions that when executed cause the processor to, upon receipt of a client

30 message formatted according to the description at one of the plurality of published

endpoints:

parse an instruction from the message using the description; and

perform a requested operation from one of the plurality of version

packages.

17

1003059920

6. The system of claim 1, wherein the first application programming interface

provides an abstraction layer relative to the second application programming interface.

5 7. The system of claim 4 or 5, wherein the service deployment engine further

comprises instructions that when executed cause the processor to:

detect when a version package of the plurality of packages has completed

all outstanding operations; and

prevent the version package from accepting new operations or remove the

10 version package.

8. The system of claim 7, wherein the processor prevents the version package

from accepting new operations by one or more of: preventing the version package from

using resources, making the version package invisible to additional requests, changing a

15 permission level of the version package, or locking the version package.

9. The system of claim 7, wherein the processor removes the version package

by one or more of: deleting the version package or storing the version package in an

unusable state.

20

10. The system of any one of claims 4 to 9, wherein the processor installs a new

version package.

11. The system of claim 10, wherein the processor installs the new version

25 package by one or more of: verifying the version package is valid or publishing the version

package to endpoints.

12. The system of any one of claims 4 to 11, wherein the server is configured to

cause a highest-versioned package to perform the requested operation where no version is

30 specified.

13. The system of any one of claims 4 to 12, wherein the server uses its own

addressing nomenclature to provide access to the plurality of packages.

18

1003059920

14. The system of any one of claims 4 to 13, wherein the server is configured to

perform the requested operation from a series of incrementally lower versions in response

to client requests.

5 15. The system of any one of claims 4 to 14, wherein the server is configured to

perform the requested operation from a first version package of the plurality of packages

and perform a further requested operation from a second version package of the plurality

of packages.

10 16. The system of any one of claims 4 to 15, wherein the service deployment

engine further comprises instructions that when executed cause the processor to:

recall or discontinue a version package of the plurality of packages; and

perform the requested operation from one of the other of the plurality of

packages.

15

17. The system of any one of the preceding claims, wherein the description

comprises a multi-dimensional array that is a jagged string array.

18. The system of any one of the preceding claims, wherein the description is

20 formed from an interface description language.

19. The system of claim 18, wherein the interface description language is Web

Services Description Language.

25 20. The system of any one of the preceding claims, wherein the client message

is formatted in plain text.

21. The system of any one of the preceding claims, wherein the processor is

further caused to authenticate the client message.

30
22. The system of claim 21, wherein multiple version numbers of each package

exist simultaneously.

23. The system of claim 1 or 2, wherein the published endpoint is one of a

35 plurality of published endpoints.

19

1003059920

24. The system of claim 23, wherein the published endpoints comprise

client-accessible locations, the client-accessible locations comprising one or more of a

port, a Uniform Resource Identifier, a named token, a named pipe, or a block of shared

5 memory.

25. The system of claim 24, wherein different types of client-communication

are enabled simultaneously across different published endpoints.

20

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

