

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 June 2011 (30.06.2011)

(10) International Publication Number
WO 2011/076837 A1

(51) International Patent Classification:
F02D 41/00 (2006.01) *F02D 41/24* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2010/070470

(22) International Filing Date:
22 December 2010 (22.12.2010)

(25) Filing Language: English

(26) Publication Language: English

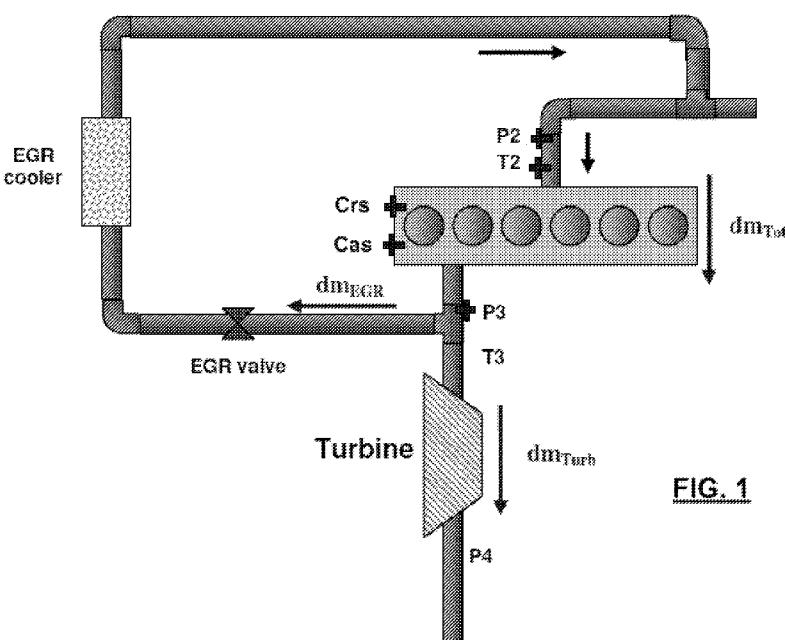
(30) Priority Data:
09180649.7 23 December 2009 (23.12.2009) EP

(71) Applicant (for all designated States except US): **IVECO MOTORENFORSCHUNG AG** [CH/CH]; Schlossgasse 2, CH-9320 Arbon (CH).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **AUCKENTHALER, Theophil** [CH/CH]; Tutilostrasse 55, CH-9011 St. Gallen (CH).

(74) Agents: **BORSANO, Corrado** et al.; NOTARBARTOLO & GERVASI S.p.A., Corso di Porta Vittoria 9, I-20122 Milan (IT).


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR MEASURING AND CONTROLLING THE EGR RATE IN A COMBUSTION ENGINE.

(57) Abstract: The present invention provides for a method and apparatus for measuring and controlling the EGR rate in a combustion engine system, comprising an EGR cooler, an EGR valve and a turbine, and determining the EGR mass flow (dm_{EGR}) from the difference between the total exhaust gas mass flow (dm_{Total}) across the engine cylinders, and the turbine mass flow (dm_{Turb}) across the turbine.

Published:

— *with international search report (Art. 21(3))*

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

METHOD AND APPARATUS FOR MEASURING AND CONTROLLING THE EGR RATE IN A COMBUSTION ENGINE.

Field of the invention

The present invention relates to a method and 5 apparatus for measuring and controlling the EGR rate in a combustion engine.

Description of the prior art

The NOx emissions of a combustion engine can be significantly reduced using exhaust gas recirculation 10 (EGR). Exhaust gas is recirculated in order to reduce the oxygen content of the combustion gas. This leads to a reduced flame temperature, which in turn results in lower NOx emissions of the engine.

Thereby, the NOx emissions react very sensitively to 15 variations of the EGR rate.

The EGR rate is given by the mass ratio between the recirculated exhaust gas and the total gas in the cylinder. Dependent on the emission target, EGR rates between 20% and 60% are aimed at, which leads to an NOx reduction factor of 20 about 3 to 10 times.

Since increasing EGR rates involve higher soot emissions, often higher fuel consumption and generally increased wear of the engine, this technique should only be applied where necessary.

Therefore, an accurate sensing and control concept of the EGR rate is crucial and necessary, for a precise and reproducible control of the NO_x emissions.

Several EGR mass flow or EGR rate measurement methods

5 are known.

The first most common measurement method is the measurement of the fresh air mass flow at the inlet of the engine. This mass flow is subtracted from the total cylinder mass flow, which can be obtained from the boost air pressure p_2 , the boost air temperature T_2 , the engine speed, and also other quantities, as depicted in Figure 1, for example from sensors of crank speed C_{rs} and cam speed C_{as} . The resulting mass flow is the EGR mass flow.

The first major problem of this concept is the accuracy.

15 The measurement error of the air mass flow is amplified by the ratio between the air mass flow and the EGR mass flow. If e.g. an air mass flow of 80kg/h with 10 % error (i.e. 8 kg/h), and a total gas mass flow of 100 kg/h is measured, an EGR mass flow of 20 kg/h with an error of 8 kg/h is 20 obtained, which corresponds to a relative error of 40 %.

The second major problem is the time delay, which occurs from the distance between the air measurement device and the cylinder. In order to obtain an accurate EGR rate also under transient conditions, the time delay must be 25 accounted for, which is a difficult task.

A second possibility is the use of a direct EGR mass flow measurement device. Various measurement principles can be applied, such as hot film measurement, or pressure difference over a Pitot tube or a Venturi device.

5 From a point of view of accuracy, this approach is the most robust one. However, most available sensors exhibit significant problems with deterioration caused by the aggressive environment with high loads of soot. Soot deposits can even lead to a blocking of the sensing 10 elements. Another problem is the high level of pulsations in the EGR line. These pulsations may lead to significant measurement errors.

A third possibility is the measurement of the oxygen concentration (O_2 or air/fuel ratio Lambda) at engine inlet 15 or outlet. From this oxygen content, the EGR rate can be calculated directly, if the amount of injected fuel and the total gas mass flow are known. The latter is obtained from p_2 , T_2 , the engine speed, and also other quantities, as in the first method (Figure 1).

20 In order to achieve a sufficient accuracy of the EGR rate, the oxygen sensors have to be very accurate, especially, if low EGR rates are applied, which is common in heavy-duty applications. Currently, no sensors are available on the market, which meet the accuracy 25 requirements.

A fourth possibility is the measurement of carbon dioxide (CO_2) upstream or downstream of the cylinders, which is widely applied in engine test benches. The calculation of the EGR rate is done in a similar way as
5 when an oxygen sensor is used.

Though ideal from an accuracy point of view, no sensors are currently available for mobile applications.

A fifth possibility is the measurement of the pressure drop over the EGR line and turbine upstream temperature T_3 .

10 Taking into account the EGR valve position, the EGR mass flow can be obtained using a throttle equation.

The flow resistance characteristic of the EGR line may significantly change over the lifetime because of soot deposits, EGR cooler fouling, etc. Additionally, EGR valve
15 characteristics may significantly vary because of production scatter. Therefore, it is very difficult to ensure a stable EGR rate over the engine lifetime with this measurement principle.

Summary of the invention

20 Therefore it is the main object of the present invention to provide a method and apparatus for measuring and controlling the EGR rate in a combustion engine which overcomes the above problems and drawbacks.

The basic idea of the invention is the determination
25 of the EGR rate using pressure and temperature sensors.

Instead of calculating the EGR rate directly from the pressure drop over the EGR line, the EGR mass flow [dm_{EGR}] is obtained from the difference between the total exhaust gas mass flow [dm_{Tot}] across the cylinders and the turbine

5 mass flow [dm_{Turb}] across the turbine.

These and further objects are achieved by means of a method and apparatus for measuring and controlling the EGR rate in a combustion engine as described in the attached claims, which form an integral part of the present

10 description.

Brief description of the drawings

The invention will become fully clear from the following detailed description, given by way of a mere exemplifying and non limiting example, to be read with

15 reference to the attached drawing figures, wherein:

- Figure 1 shows a schematic of a part of an engine circuit including sensors for the implementation of the method of the invention;
- Figure 2 shows a block diagram of a control circuit

20 for implementation of a variant of the method.

The same reference numerals and letters in the figures designate the same or functionally equivalent parts.

Detailed description of the preferred embodiments

The EGR rate, or EGR mass flow, is determined from the

25 difference between the total gas mass flow and the fuel

mass flow in the cylinders and the gas mass flow through the turbine.

Both the total gas mass flow and the turbine mass flow are obtained from models, which make use of the pressure 5 sensors p2 (boost air pressure), p3 (turbine inlet pressure), temperature sensor T2 (boost air temperature), and, if available, p4 (turbine outlet pressure), and T3 (turbine inlet temperature).

Figure 1 shows the sensors in a known schematic of a 10 part of an engine circuit, including the engine, an EGR cooler, a turbine, where the outlet of the EGR cooler is brought to the inlet of the cylinders, and the outlet of the cylinders is brought to the turbine and to the inlet of the EGR cooler through an EGR valve.

15 Optionally, in order to increase the accuracy of this measurement concept, the turbine mass flow is adapted such that it matches the total gas mass flow, when the EGR valve is closed and thus the EGR mass flow is zero.

The basic idea of the invention is the determination 20 of the EGR rate using pressure and temperature sensors. Instead of calculating the EGR rate directly from the pressure drop over the EGR line, the EGR mass flow dm_{EGR} is obtained indirectly from the difference between the total exhaust gas mass flow dm_{Tot} across the cylinders and the 25 turbine mass flow dm_{Turb} across the turbine.

The total exhaust gas mass flow dm_{Tot} is obtained from a model, where the total gas charge in a cylinder per stroke is calculated using p_2 , T_2 , and possibly also p_3 and T_3 . Such models, which are often referred to as "speed-density models" are widely used and known.

Together with the engine speed, the actual gas mass flow can be calculated from the gas charge. The total exhaust gas mass flow dm_{Tot} is then obtained as the sum of the total gas mass flow and the fuel mass flow.

10 The calculation of the total gas mass flow dm_{Tot} can be made applying well known expressions.

The turbine mass flow dm_{Turb} is calculated using a model.

15 If a fix geometry turbine is used, the turbine mass flow dm_{Turb} can be obtained from the upstream and the downstream pressures p_3 and p_4 of the turbine, respectively, and from the upstream temperature T_3 of the turbine. The pressure p_3 is obtained from a sensor, the pressure p_4 from a model or from a sensor. T_3 is usually 20 obtained from a model.

If a variable geometry turbine (VGT) is used, the VGT position has also to be taken into account for the determination of the turbine mass flow dm_{Turb} .

In case of a waste gate turbine, the opening of the waste gate has also to be taken into account for the determination of the turbine mass flow dm_{Turb} .

The calculation of the turbine mass flow dm_{Turb} can be
5 made applying well known expressions, for example derived
from a turbine model determined by using a known expression
similar to a throttle equation, as described for example
in: Guzzella, Onder: "Introduction to Modeling and Control
of Internal Combustion Engine Systems", ISBN3-540-22274-x,
10 Springer-Verlag, Berlin, 2004.

The EGR mass flow dm_{EGR} can now be obtained as the
difference between the total exhaust gas mass flow dm_{Tot} and
the turbine mass flow dm_{Turb} .

$$dm_{EGR} = dm_{Tot} - dm_{Turb}$$

15 There are several advantages by applying the method of
the invention as compared with other methods:

- The turbine hardly changes its flow resistance
characteristic over the lifetime, at least much less than
the EGR line.
- 20 - The distance between the cylinder and the turbine is very
small as compared to the one between the engine inlet and
the cylinder. Therefore, no significant transport delays
are to be expected, as for example in an air mass flow
measurement concept.
- 25 - A p3 sensor is potentially cheaper than mass flow

measurement devices.

Optionally, the accuracy of the EGR mass flow dm_{EGR} determination is improved using an adaptation algorithm.

When the EGR valve is closed, the EGR mass flow is approximately zero. Approximately zero means that there is always an irrelevant small value, because the valve never entirely closes.

Hence, the turbine mass flow dm_{Turb} equals the total mass flow dm_{Tot} . Either the EGR valve is closed deliberately in order to allow an adaptation procedure, or conditions are utilised, where the valve is closed anyway, for example during acceleration. Since the turbine and the cylinder outlet are very close, the adaptation algorithm can even be applied during transient operation.

Figure 2 shows a block diagram of a non limiting example of the adaptation algorithm. It should be any adaptation algorithm, where the turbine mass flow dm_{Turb} or total exhaust gas mass flow dm_{Tot} are adjusted such that they are equal when the EGR valve is closed.

The value of dm_{Turb} is added with a feedback correction offset value coming from an integrator. The result $R1$ is subtracted from the value of dm_{Tot} and is fed to the input of a block of gain correction, which can be a factor, which is multiplied with the difference between the total mass flow and the corrected turbine mass flow $R1$.

10

The output of the gain correction is fed to the integrator only if the EGR valve is closed. If the EGR valve is not closed, the input of the integrator is zero.

In possible variants of the adaptation algorithm, 5 instead of a correction offset, which is added to the turbine mass flow dm_{Turb} , also any other correction mechanism can be applied.

A correction factor can be multiplied with the turbine mass flow dm_{Turb} or any other mathematical/algebraic 10 calculation can be used such as correction curves or correction maps.

Instead of the turbine mass flow dm_{Turb} , the total mass flow dm_{Tot} can be corrected in the same manner.

Instead of an integrator, also a correction curve or map 15 can be used to calculate the correction offset, factor, or function.

The main principle, however, remains, where any correction is applied such that the the integrator or similar mechanism eventually forces the turbine and the 20 total exhaust gas mass flow to be equal, when the EGR valve is closed.

More generally, in case of presence of more than one turbine in the engine system, or with more complicated engine structures, the general principle of the method 25 remains the same.

For example, with more complicated structures including at least two turbines, it is important that the turbine mass flow dm_{Turb} of a turbine downstream of the EGR connection is determined.

5 For high pressure EGR, the turbine mass flow dm_{Turb} of the first or second turbine has to be determined, for mid pressure EGR, the turbine mass flow dm_{Turb} of the second turbine.

The method of the present invention can be advantageously implemented through a program for computer comprising program coding means for the implementation of one or more steps of the method, when this program is running on a computer. Therefore, it is understood that the scope of protection is extended to such a program for 15 computer and in addition to a computer readable means having a recorded message therein, said computer readable means comprising program coding means for the implementation of one or more steps of the method, when this program is run on a computer.

20 Many changes, modifications, variations and other uses and applications of the subject invention will become apparent to those skilled in the art after considering the specification and the accompanying drawings which disclose preferred embodiments thereof. All such changes, 25 modifications, variations and other uses and applications

12

which do not depart from the spirit and scope of the invention are deemed to be covered by this invention.

Further implementation details will not be described,

as the man skilled in the art is able to carry out the

5 invention starting from the teaching of the above

description.

CLAIMS

1. Method for measuring and controlling the EGR rate in a combustion engine system, the system comprising at least an EGR cooler, an EGR valve and a turbine, the method comprising determining an EGR mass flow (dm_{EGR}) from the difference between a total exhaust gas mass flow (dm_{Tot}) across the engine cylinders, and a turbine mass flow (dm_{Turb}) across the turbine.

2. Method according to claim 1, wherein said total exhaust gas mass flow (dm_{Tot}) is obtained by:

- a total gas charge in a cylinder per stroke, calculated using boost air pressure (p_2), boost air temperature (T_2) at the engine inlet, and possibly turbine inlet pressure (p_3) and turbine inlet temperature (T_3);
- together with the engine speed, calculating an actual gas mass flow from a gas charge;
- obtaining said total exhaust gas mass flow (dm_{Tot}) as the sum of the total gas mass flow and the fuel mass flow.

3. Method according to claim 1 or 2, wherein, in a further step of adaptation, the turbine mass flow (dm_{Turb}) or total exhaust gas mass flow (dm_{Tot}) are adjusted such that they are equal when the EGR valve is closed.

4. Method according to claim 3, comprising the following steps:

- adding or multiplying said turbine mass flow (dm_{Turb})

value with a feedback correction value or respectively with a feedback correction factor coming from an integrator or from a correction curve or map;

- adding the result of the previous step to the value of

5 said exhaust gas mass flow (dm_{Tot});

- applying a gain correction to the result of the previous step;

- feeding said integrator with the result of the previous step, only if the EGR valve is closed; if the EGR valve is

10 not closed, the input of the integrator is zero.

5. Method according to claim 4, wherein said turbine mass flow (dm_{Turb}) and said exhaust gas mass flow (dm_{Tot}) are reciprocally exchanged.

6. Method according to claim 1, wherein, in case of

15 fixed geometry turbine, said turbine mass flow (dm_{Turb}) is obtained from an upstream and a downstream pressures (p_3 , p_4) of the turbine, respectively, and from an upstream temperature (T_3) of the turbine, the downstream pressure (p_3) being obtained from a sensor, the downstream pressure (p_4) from a model or from a sensor, the upstream temperature (T_3) from a sensor or a model.

7. Method according to claim 6, wherein, in case of

a variable geometry turbine (VGT), the VGT position has also to be taken into account for the determination of said

25 turbine mass flow (dm_{Turb}).

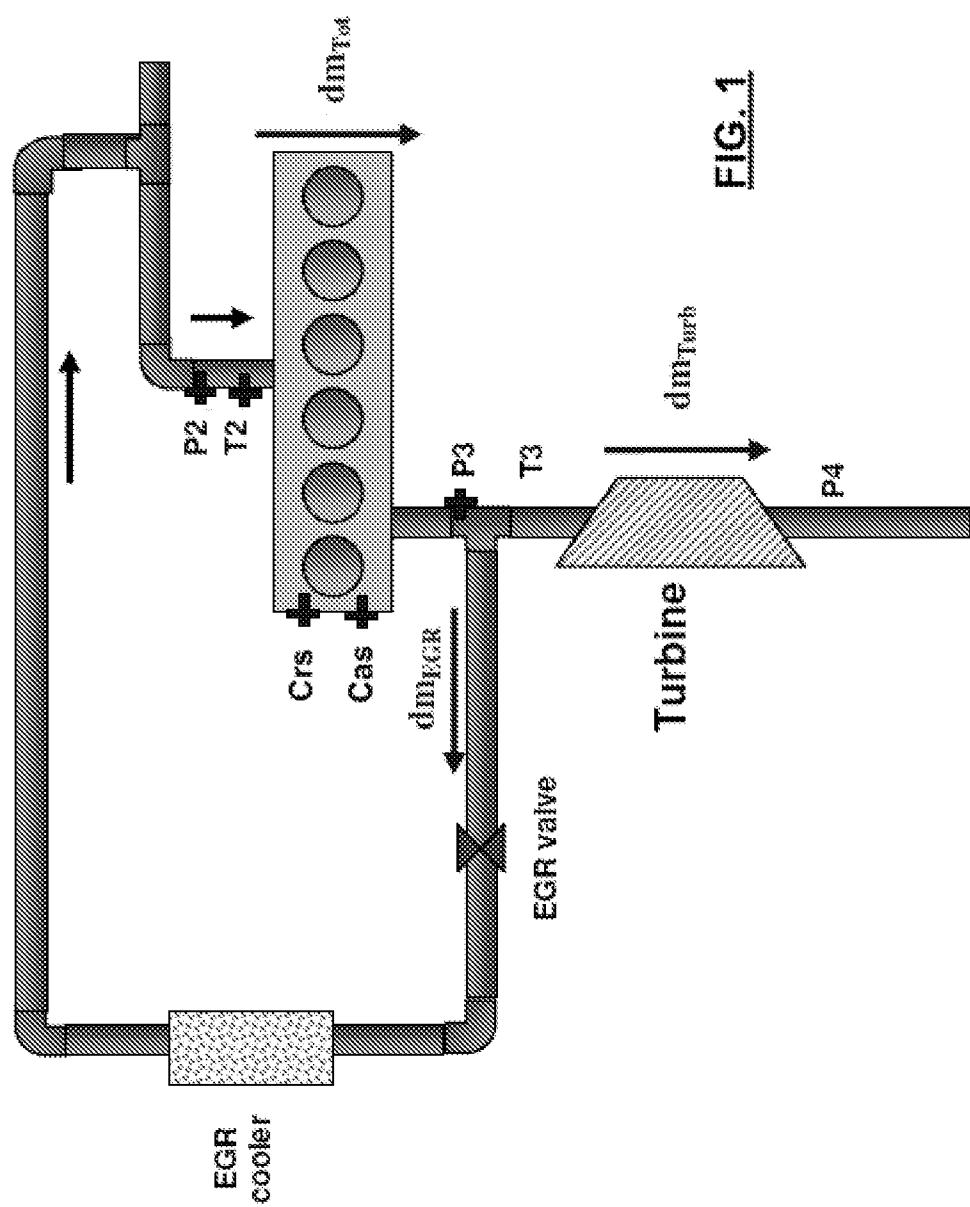
8. Method according to claims 6 or 7, wherein, in case of a waste gate turbine, the opening of the waste gate has also to be taken into account for the determination of said turbine mass flow (dm_{Turb}).

5 9. Method according to claim 6, wherein, in case of more than one turbine, the turbine mass flow (dm_{Turb}) of a turbine downstream of an EGR connection is determined.

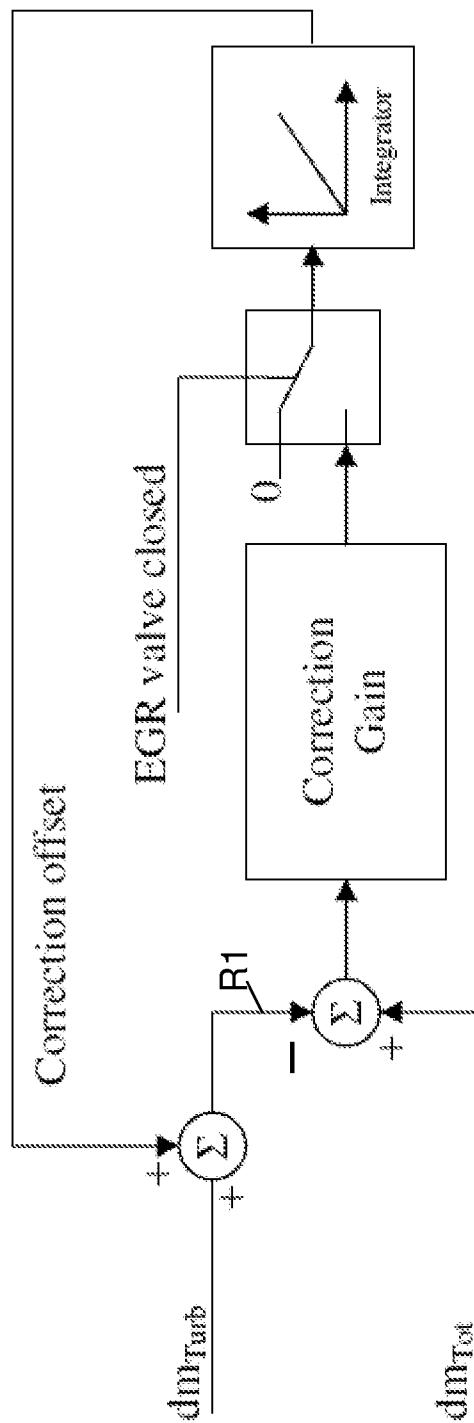
10. Method according to claim 9, wherein, for high pressure EGR, the turbine mass flow (dm_{Turb}) of the first or second turbine has to be determined, for mid pressure EGR, the turbine mass flow (dm_{Turb}) of the second turbine has to be determined.

11. Apparatus for measuring and controlling the EGR rate in a combustion engine system, the engine system comprising at least an EGR cooler, an EGR valve and a turbine, the apparatus comprising means for implementing the method of any of the preceding claims, said means comprising pressure and temperature sensors, upstream and downstream the engine and the turbine.

20 12. Vehicle comprising an apparatus for measuring and controlling the EGR rate in a combustion engine system, as in claim 11.


13. Computer program comprising computer program code means adapted to perform all the steps of claims 1 to 10, 25 when said program is run on a computer.

16


14. A computer readable medium having a program recorded thereon, said computer readable medium comprising computer program code means adapted to perform all the steps of claims 1 to 10, when said program is run on a computer.

5

1/2

2/2

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/070470

A. CLASSIFICATION OF SUBJECT MATTER
 INV. F02D41/00 F02D41/24
 ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2005/111401 A1 (DAIMLER CHRYSLER AG [DE]; FIEBER MICHAEL [DE]; KUENZEL STEFAN [DE]) 24 November 2005 (2005-11-24) page 7, line 17 - page 8, line 31 -----	1,13,14
Y	WO 01/48363 A1 (BOSCH GMBH ROBERT [DE]; ENGEL GERHARD [DE]; BIRK MANFRED [DE]; BLEILE) 5 July 2001 (2001-07-05) pages 21-25 -----	2,11,12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
30 May 2011	07/06/2011
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Röttger, Klaus

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2010/070470

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2005111401	A1 24-11-2005	DE 102004024270	A1	01-12-2005
		US 2006116472	A1	01-06-2006

WO 0148363	A1 05-07-2001	DE 19963358	A1	12-07-2001
		EP 1247016	A1	09-10-2002
		ES 2240169	T3	16-10-2005
		JP 4646178	B2	09-03-2011
		JP 2003518581	T	10-06-2003
		US 6715287	B1	06-04-2004