

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2015/164220 A1

(43) International Publication Date

29 October 2015 (29.10.2015)

(51) International Patent Classification:

H01L 21/304 (2006.01) H01L 21/683 (2006.01)

(21) International Application Number:

PCT/US2015/026552

(22) International Filing Date:

17 April 2015 (17.04.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

14/260,210 23 April 2014 (23.04.2014) US

(71) Applicant: APPLIED MATERIALS, INC [US/US];
3050 Bowers Avenue, Santa Clara, CA 95054 (US).

(72) Inventors: ZUNIGA, Steven, M.; 351 Los Robles Road, Soquel, CA 95073 (US). BROWN, Brian, J.; 1360 S. California Avenue, Palo Alto, CA 94306 (US).

(74) Agents: DUGAN, Brian, M. et al.; Dugan & Dugan, PC, 245 Saw Mill River Road, Suite 309, Hawthorne, NY 10532 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: SYSTEMS, METHODS AND APPARATUS FOR POST-CHEMICAL MECHANICAL PLANARIZATION SUBSTRATE CLEANING

(57) Abstract: Embodiments of the invention include systems, methods and apparatus for pre-cleaning a substrate after chemical mechanical planarization processing. Embodiments provide a housing; a chuck assembly configured to securely hold a substrate within the housing; and a buffering pad assembly configured to rotate against the substrate while supported within the housing. The buffering pad assembly includes a buff pad, a compressible sub-pad coupled to the buff pad, and a pad holder coupled to the compressible sub-pad and a buffering motor configured to rotate the buffering pad assembly. Numerous additional aspects are disclosed.

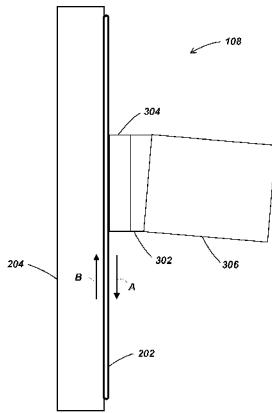


FIG. 3

**SYSTEMS, METHODS AND APPARATUS FOR POST-CHEMICAL MECHANICAL
PLANARIZATION SUBSTRATE CLEANING**

RELATED APPLICATION

[0001] The present application claims priority to US Patent Application No. 14/260,210, filed April 23, 2014 and entitled "SYSTEMS, METHODS AND APPARATUS FOR POST-CHEMICAL MECHANICAL PLANARIZATION SUBSTRATE CLEANING," which is hereby incorporated herein by reference for all purposes.

FIELD

[0002] Embodiments of the invention relate generally to electronic device manufacturing including chemical mechanical planarization (CMP), and more particularly to methods and apparatus for substrate buff pre-cleaning after CMP.

BACKGROUND

[0003] After a chemical mechanical polish or planarization (CMP) process, substrates typically are cleaned to remove debris and particles applied or generated during the CMP process that can cling to the substrate including the edge bevel of the substrate. Following CMP, substrates are typically rinsed and transferred to a cleaning module such as a scrubber brush box, a megasonic tank, or the like. However, some particles and residues that remain following CMP may be difficult to remove using conventional cleaning methods such as brush box scrubbing or

megasonic tank immersion. Therefore, methods and apparatus are desired for the improved removal of particles during a post-CMP cleaning process without scratching the substrates.

SUMMARY

[0004] In some aspects of embodiments of the invention, a post-CMP substrate pre-clean system is provided. The substrate pre-clean system includes a housing; a chuck assembly configured to securely hold a substrate within the housing; and a buffering pad assembly configured to rotate against the substrate while supported within the housing. The buffering pad assembly includes a buff pad, a compressible sub-pad coupled to the buff pad, and a pad holder coupled to the compressible sub-pad. A buffering motor configured to rotate the buffering pad assembly is also provided.

[0005] In other aspects, a post-CMP substrate pre-clean buffering pad assembly is provided. The post-CMP substrate pre-clean buffering pad assembly includes a buff pad, a compressible sub-pad coupled to the buff pad, and a pad holder coupled to the compressible sub-pad. A buffering motor configured to rotate the buffering pad assembly is also provided.

[0006] In yet other aspects, a method of pre-cleaning substrates after CMP in a post-CMP substrate pre-clean module is provided. The method includes loading a substrate into a pre-clean system after chemical mechanical planarization processing; securing the substrate to a chuck assembly; rotating the substrate as a rotating buffering pad assembly is pressed against, rotated, and swept across the front side of the substrate; and maintaining a buff pad of the buffering pad assembly flat against the substrate despite tilting of a pad holder of the buffering pad assembly.

[0007] Other features and aspects of embodiments of the invention will become more fully apparent from the following detailed description of example embodiments, the appended claims, and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Various embodiments of the invention are disclosed in the following detailed description and accompanying drawings.

[0009] FIG. 1 is a cross-sectional side-view schematic diagram illustrating an example substrate pre-clean system according to embodiments of the present invention.

[0010] FIG. 2 is a schematic diagram illustrating an example substrate pre-clean pad in use without a compressible sub-pad.

[0011] FIG. 3 is a schematic diagram illustrating an example substrate pre-clean buff pad in use with a compressible sub-pad according to embodiments of the present invention.

[0012] FIG. 4 is a schematic diagram illustrating details of an example substrate pre-clean buffering pad assembly according to embodiments of the present invention.

[0013] FIG. 5 is a flowchart depicting an example method according to embodiments of the present invention.

DETAILED DESCRIPTION

[0014] The following is a detailed description of example embodiments to illustrate the principles of the invention. The embodiments are provided to illustrate aspects of the invention, but the invention is not limited to any embodiment. The scope of the invention encompasses numerous

alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. However, the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the embodiments of the invention are not unnecessarily obscured.

[0015] As used herein unless otherwise specified, the term "polish" is intended to mean the removal of material from a substrate that results in planarizing and/or thinning of the substrate. Polishing may be performed during a CMP process using a polish pad to planarize and/or thin a substrate down to an endpoint (e.g., a surface smoothness).

[0016] As used herein unless otherwise specified, the term "buff" is intended to mean the removal of residue and/or particles that have inadvertently become adhered to a substrate. Buffing may be performed during a post-CMP "pre-clean" process using a buff pad. The pre-clean process may be performed until a lower and/or desired threshold level of surface particles has been reached. Compared to polishing, buffing is a less aggressive process using a softer buff pad not intended to thin and/or planarize a substrate but rather to merely remove debris and/or residue that has adhered to or otherwise become attached to the substrate. For example, buffing may be performed with a sponge-like material such as polyvinyl acetate (PVA), or another similar and/or suitable material.

[0017] As used herein unless otherwise specified, the term "scrub" is intended to mean the removal of residue and/or particles that have merely accumulated on a substrate but do not require substantial force to remove. Scrubbing

may be performed during a cleaning process (typically after a pre-cleaning process). Compared to buffing, scrubbing is a less aggressive process using a softer brush (e.g., in a scrubber brush box) not intended to apply significant pressure to the substrate (in comparison to buffing).

[0018] As described above, following CMP, substrates are typically rinsed and transferred directly to a cleaning module such as a scrubber brush box, a megasonic tank, or the like. However, some adhered particles and/or residues that remain following CMP may be difficult to remove within a conventional brush box or megasonic tank. Thus, embodiments of the present invention provide buffing pre-clean systems, apparatus and processes that "pre-clean" substrates after CMP, but prior to (and/or in place of) conventional scrubbing substrate cleaning.

[0019] Compared to conventional cleaning processes, the pre-clean process may employ a harder buff pad and/or a chemically assisted cleaning process to clean difficult to remove particles and/or residues from a substrate prior to conventional substrate cleaning. For example, the pre-clean process can employ direct front side buffing of a substrate surface with a polyurethane, silicone, polyvinyl acetate or similar buff pad or brush with a suitable cleaning chemistry (e.g., slurry, an H_2O_2 solution, etc.). Embodiments of the present invention employ an improved self-leveling buffing pad assembly that includes a sub-pad which serves to maintain the contact surface of a buff pad substantially parallel to the surface of the substrate being pre-cleaned. The sub-pad is adapted to compress and/or absorb any angular moments exerted on the buffing pad assembly due to lateral motion and friction or correct for any non-parallelism between the buff pad and the substrate. By absorbing the angular moments or misalignment, the sub-pad allows the buff

pad to remain flat or flush against the substrate even as the substrate and the buff pad move relative to each other.

[0020] More generally, embodiments of the present invention provide a compact arrangement to pre-clean substrates after CMP by using a chuck (e.g., a vacuum chuck) to support a substrate so that the front side is accessible for direct buffing using a relatively small buffering pad assembly (e.g., a stacked buff pad and sub-pad having a contact area with a diameter smaller than the diameter of the substrate, for example, a buffering pad assembly with a diameter that is less than half the diameter of the substrate) applied to a specific area of the front side of the substrate. Thus, because a small buffering pad assembly is used, direct front side metrology can be used concurrently during cleaning without having to image through a window, buff pad or the like. Chemistry, such as slurry, may be dispensed directly on the front side of the substrate, easing dispensing distribution as well as chemical consumption. In some embodiments, chemistry, such as slurry, may be delivered directly to the substrate by an embedded spray dispenser mounted on a swing arm supporting the buffering pad assembly. This can reduce chemistry consumption by improving and/or optimizing control of the dispensing. In one or more embodiments, cleaning chemistry, such as slurry, may be delivered directly through the buffering pad assembly.

[0021] Embodiments of the system enable cleaning of a substrate by applying different loads on and/or rotation rates to the buffering pad assembly. The pre-cleaning profile is controllable by the buffering pad assembly position and buffering pad assembly sweeping profile (e.g., including sweep range, frequency, shape, time for each sweeping zone, etc.). Various embodiments can target specific regions of the

substrate, so that the system can be used to improve the edge defectivity of the substrate (e.g., reduce defect levels near the edge of the substrate), which is difficult to achieve using conventional cleaning methods. In addition, embodiments of the present invention can provide a buff pre-cleaning function similar to processes developed using conventional CMP methods for the purpose of replacing, or re-configuring, an additional platen in the CMP system.

[0022] In some embodiments, the buffering pad assembly can be supported using a swing arm. Chemistry, such as slurry, can be applied to the substrate through the buffering pad assembly. Alternatively, a buffering pad assembly can be used and chemistry can be applied to a substrate through a spray nozzle embedded in and/or coupled to the swing arm body. In some embodiments, a nylon bristle brush can be used with the chemistry applied through the center of the brush for *in-situ* or *ex-situ* conditioning of the buffering pad assembly. In other embodiments, a diamond dressing disk can be used for *in-situ* or *ex-situ* conditioning the buffering pad assembly. In some embodiments, a surface hatch for changing the buffering pad assembly (and/or for changing the nylon bristle brush or diamond disk used for buffering pad assembly conditioning) can be included in the housing of the pre-clean module. During buffering, the distance between the buffering pad assembly and the substrate and/or the pressure of the buffering pad assembly on the substrate can be controlled.

[0023] In some embodiments, the buffering pad assembly can include a relatively soft buff pad (though which is harder than a typical PVA brush) to clean off difficult to remove particles. Embodiments of the present invention provide the ability to apply a chemical buff process to the front side of a substrate, for example, after conventional CMP is

performed. Thus, embodiments of the present invention can be used to prepare the front side surface of a substrate after a CMP process for a cleaning process (e.g., using a conventional brush box or megasonic cleaner).

[0024] Turning now to FIG. 1, a side cross-sectional view of an example embodiment of a post-CMP pre-clean system 100 is depicted. The particular example pre-clean system 100 includes a housing 102 that encloses a chuck assembly 104 (e.g., a vacuum chuck assembly) for holding a substrate (not shown) to be pre-cleaned. The chuck assembly 104 includes a platen 106 (e.g., a vertical platen) against which the back side of the substrate is held flat for support during the pre-clean process. In some embodiments, a soft and/or tacky film is used to chuck the substrate to the platen without adding damage to the substrate backside. In some embodiments, the platen 106 can be adapted to rotate while supporting the substrate.

[0025] The front side of the substrate is contacted by the buffering pad assembly 108 which is driven to rotate by the buffering motor 110 which is supported by the swing arm assembly 112. In some embodiments, the swing arm assembly 112 can also support a chemical spray assembly 114, for example, aimed at the substrate just above the contact area of the buffering pad assembly 108. Alternatively, the chemical spray assembly 114 can be supported by the housing 102. In some embodiments, the buffering pad assembly 108 can include one or more channels to deliver the cleaning chemistry to the substrate surface through the buffering pad assembly 108.

[0026] While cleaning chemistry is applied to the substrate, the swing arm assembly 112 is adapted to sweep or oscillate the rotating buffering pad assembly 108 across the front side surface of the substrate to affect the pre-

cleaning of the substrate. The swing arm assembly 112 is oscillated by the drive assembly 116 (e.g., a gear drive assembly). The drive assembly 116 can also be adapted to move the swing arm assembly 112 and consequently the buffering pad assembly 108, both away from and toward the substrate held by the chuck assembly 104. In some embodiments, instead of a swing arm, a linear gantry can be used to support and move the buffering pad assembly 108, the buffering motor 110, and optionally, the chemical spray assembly 114.

[0027] A substrate lift assembly 118 including a substrate support 120 can be used to hold and position the substrate on the platen 106 of the chuck assembly 104 until the substrate has been secured to the platen 106, e.g., via vacuum pressure applied by the chuck assembly 104. In some embodiments, the post-CMP pre-clean system 100 can include a front side spray bar assembly 122 and a back side spray bar assembly 124, both mounted in the upper portion of the housing 102 and positioned to allow application of a rinse (e.g., deionized (DI) water) as a substrate, e.g., rotating on the chuck, is lowered into and/or lifted out of the system 100.

[0028] The post-CMP pre-clean system 100 also includes a controller 126 operable to activate, monitor, and control the various assemblies of the system 100. In some embodiments, the controller 126 includes a processor and a memory operative to store instructions (e.g., a software program) executable by the processor. The processor can include an input/output (I/O) interface adapted to send control signaling to the various assemblies of the system (e.g., the chuck assembly 104, the buffering pad assembly 108, the buffering motor 110, the swing arm assembly 112, the chemical spray assembly 114, drive assembly 116, the substrate lift assembly 118, the spray bar assemblies 122,

124, etc.) as well as status signaling to external systems monitoring and controlling the system 100. Likewise, the I/O interface can be further adapted to receive control signaling from external systems and status signaling from sensors (e.g., pressure feedback transducers, rotation speed sensors, metrology sensors, etc.) or other components of the various assemblies of the system 100. Communication between the I/O interface, the external systems, and the various assemblies of the system 100 can be via wiring (not shown) or via wireless signaling.

[0029] Turning now to FIG. 2, a top edge view 200 of a substrate 202 supported by a platen 204 being cleaned using a pad 206 and a pad holder 208 without a sub-pad as provided herein (described below) is depicted. With pressure being applied via the pad 206 and pad holder 208 as the pad 206 is pushed across the surface of the substrate 202 in the direction indicated by arrow A, friction creates an equal and opposite shear force between the pad 206 and the substrate 202 in the direction indicated by arrow B. The shear force leads to an angular moment on the pad 206 and pad holder 208 and tilting of the pad holder 208 of approximately 0.1 degrees to approximately 1 degree can occur. Alternately, the pad and pad holder can become tilted relative to the substrate due to machining and/or assembly tolerances of similar magnitude. Either of these factors can result in an angled gap 210 and only partial contact of the pad 206 against the substrate 202. Such an angled gap 210 means longer process times and local high pressure areas during buffering. This high pressure can lead to scratching on metal surfaces and uneven buffering pad wear. The relatively high aspect ratio and small size of the buffering pad 206 and pad holder 208 make design of a gimbal

to support the pad holder 208 with a rotation point near the substrate surface difficult.

[0030] Turning to FIG. 3, the buffing pad assembly 108 of embodiments of the present invention solves the problems described above using a sub-pad 302, a buffing pad 304, and a pad holder 306 in a post-CMP pre-clean module 100. By adding a relatively compressible sub-pad 302 between the buff pad 304 and the pad holder 306, the buff pad 304 maintains full contact with the substrate 202.

[0031] More specifically, the relatively soft sub-pad 302 will yield when an angular moment is generated by shear force between the buff pad 304 and the substrate 202 so that the buff pad 304 remains in contact with the substrate 202, distributing the load when the pad holder 306 tilts. This leads to a more uniform pressure under a fixed load, a larger contact area, and more uniform pad wear.

[0032] Further, the more uniform pressure helps to prevent scratching, extends the buff pad 304 life, and improves particle removal efficiency. When the pad holder 306 tilts without a sub-pad 302, the contact area of the buff pad 304 decreases. Thus, for a given applied force, the buff pad pressure at the smaller contact area increases. Thus, in order to stay above the scratch pressure threshold, the applied force should be reduced. However, the amount of applied force to both avoid the scratch pressure threshold and to effectively remove particles can be below the practical capabilities of the buffing system.

[0033] The buff pad's life is determined by the thinnest part of buff pad 304. If the buff pad 304 does not maintain uniform contact with the substrate 202 when the pad holder 306 tilts, the outer edge of the buff pad 304 wears faster than the rest of the buff pad 304 and thus, the buff pad's life is consumed more rapidly even though the center portion

of the buff pad 304 is barely used. By using a relatively compressible sub-pad 302 disposed between the buff pad 304 and the pad holder 306 according to embodiments of the present invention, more even pressure distribution results, more even wear is experienced, and therefore, longer buff pad life is achieved.

[0034] Improved particle removal efficiency is also gained by using a relatively compressible sub-pad 302 between the buff pad 304 and the pad holder 306 according to embodiments of the present invention. With a larger effective buff pad contact area on the substrate, substrate coverage is improved. Thus, the time to clean the entire substrate is reduced which results in improved processing efficiency.

[0035] FIG. 4 is a magnified schematic cross-sectional side view, rotated 90 degrees counter-clockwise relative to the prior views and depicting details of an example of a buffing pad assembly 400 according to embodiments of the present invention. As with other drawings herein, FIG. 4 is not drawn to scale so that features of embodiments of the invention can be more clearly represented. The particular example buffing pad assembly 400 shown in FIG. 4 is generally cylindrical in overall shape with an overall profile height of 0.5 mm to approximately 5 mm and a diameter of approximately 25 mm to approximately 150 mm. Other shapes and dimensions are possible. The depicted example includes a compressible sub-pad 402 disposed between a buff pad 404 and a pad holder 406.

[0036] In addition, the pictured embodiment includes an optional stiffener layer 408 disposed between the compressible sub-pad 402 and the buff pad 404. In some embodiments, a stiffener layer 408 provides improved bonding between the buff pad 404 and the sub-pad 402. In other

words, the stiffener layer 408 provides a more stable and rigid base to bond the softer buff pad 404 and the sub-pad 402 to ensure a reliable bond that will endure the shear forces applied during use. In some embodiments, the stiffener layer 408 can be approximately less than 0.5 mm. Other thicknesses can be used. The stiffener layer 408 can be formed from polyethylene terephthalate (PET) or other relatively stiff polymer such as polyethylene or polypropylene.

[0037] The pad holder 406 is coupled to the buffering motor 410. Adhesive (e.g., pressure sensitive adhesive (PSA)), thermal bonding, or mechanical fasteners can be used to secure the pad holder 406 to the buffering motor 410.

Likewise, adhesive 412, 414, 416 (e.g., PSA), thermal bonding, or mechanical fasteners can be used to secure the buff pad 404 to the stiffener layer 408, the stiffener layer 408 to the compressible sub-pad 402, and the compressible sub-pad 402 to the pad holder 406. In some embodiments, the stiffener layer 408 can be integrally formed with the buff pad 404 and/or the compressible sub-pad 402. Likewise, the compressible sub-pad 402 can be integrally formed with the buff pad 404 in embodiments where the optional stiffener layer 408 is not used. In other embodiments, the compressible sub-pad 402 can be integrally formed with both the buff pad 404 and the stiffener layer 408.

[0038] In some embodiments, the buff pad 404 can be approximately 0.5 mm to approximately 2 mm thick. Other thicknesses can be used. The buff pad 404 can have a flat or textured contact surface where the texture can be grooved, embossed, or otherwise textured. The volume porosity of the buff pad 404 can be approximately 10% to approximately 40%. Pads with other volume porosities can be used. In some embodiments, the buff pad 404 can have a

Shore D hardness number from approximately 10 to approximately 40, and in other embodiments, a Shore A hardness number from approximately 5 to approximately 30. Pads with other hardnesses can be used. In some embodiments, conventional polish pads can be used as buff pads.

[0039] The compressible sub-pad 402 can be approximately 0.5 mm to approximately 2 mm thick. Other thicknesses can be used. The sub-pad 402 can have a compressive modulus of elasticity of approximately 1 psi to approximately 20 psi. Pads with other compressive moduli can be used. In some embodiments, the compressible sub-pad 402 can be dimensioned and compressible enough to accommodate up to approximately 1 degree of pad holder tilt angle. In other embodiments, larger tilt angles can be accommodated.

[0040] To insure that the buff pad 404 remains flat on the substrate during tilting of the pad holder 406, the compressive sub-pad 402 and the buff pad 404 can be selected so that the compressible sub-pad 402 is greater than two times more compressible than the buff pad 404. Thus, the buff pad 404 can have compressive modulus of elasticity of approximately more than 2 psi to approximately more than 40 psi when the sub-pad 402 has a compressive modulus of elasticity of approximately 1 psi to approximately 20 psi. The sub-pad 402 of embodiments of the present invention is softer than polish pads used in pad stacks.

[0041] Turning now to FIG. 5, an example method 500 of embodiments of the present invention is presented in the form of a flow chart. In operation, a substrate 202 is loaded vertically into the pre-clean system 100 after being processed in a CMP module (502). In some alternative embodiments, the pre-clean system can be configured so that the substrate is loaded and pre-cleaned in a horizontal

orientation. As the substrate 202 is lowered to the substrate support 120, both sides of the substrate 202 can be optionally and concurrently sprayed with DI water or other rinse solution via the spray bar assemblies 122, 124 (504). The substrate 202 is then secured to the platen 106 by the chuck assembly 104 (506). In some embodiments, the substrate 202 is rotated (508) as the rotating buffering pad assembly 108 is pressed against, rotated, and swept across the front side of the substrate (510). As the buffering pad assembly 108 sweeps against the substrate 202, an angular moment is created that tilts the pad holder 306 (FIG. 3) of the buffering pad assembly 108 and the compressible sub-pad 302 yields to maintain the buff pad 304 flat against the substrate 202 (512). Once the end of the pre-clean process is reached, the buffering pad assembly 108 is removed from the substrate 202, the substrate 202 is released from the chuck assembly 104, and the substrate 202 is lifted out of the pre-clean system (514). As the substrate 202 is lifted out of the system 100, both sides of the substrate 202 can be optionally and concurrently sprayed with DI water or other rinse solution via the spray bar assemblies 122, 124 (516).

[0042] It will be readily apparent that the various methods described herein may be implemented by or under the control of, e.g., an appropriately programmed general purpose computer or other computing device. Typically a processor (e.g., one or more microprocessors) will receive instructions from a memory or like device, and execute those instructions, thereby performing one or more processes defined by those instructions. Further, programs that implement such methods may be stored and transmitted using a variety of media (e.g., computer readable media) in a number of manners. In some embodiments, hard-wired circuitry or custom hardware may be used in place of, or in combination

with, software instructions for implementation of the processes of various embodiments. Thus, embodiments are not limited to any specific combination of hardware and software. Accordingly, a description of a process likewise describes at least one apparatus for performing the process, and likewise describes at least one computer-readable medium and/or memory for performing the process. The apparatus that performs the process can include components and devices (e.g., a processor, input and output devices) appropriate to perform the process. A computer-readable medium can store program elements appropriate to perform the method.

[0043] The present disclosure provides, to one of ordinary skill in the art, an enabling description of several embodiments and/or inventions. Some of these embodiments and/or inventions may not be claimed in the present application, but may nevertheless be claimed in one or more continuing applications that claim the benefit of priority of the present application. Applicant intends to file additional applications to pursue patents for subject matter that has been disclosed and enabled but not claimed in the present application. For example, in some embodiments, a compressible sub-pad can be used during CMP processing to insure the pad used for planarization is held flat against (e.g., parallel to) the major surface of the substrate during processing.

[0044] Accordingly, while the invention has been disclosed in connection with example embodiments thereof, it should be understood that other embodiments may fall within the scope of the invention, as defined by the following claims.

CLAIMS**THE INVENTION CLAIMED IS:**

1. A substrate pre-clean system comprising:
 - a housing;
 - a chuck assembly configured to securely hold a substrate within the housing; and
 - a polishing pad assembly configured to rotate against the substrate and supported within the housing, wherein the polishing pad assembly includes:
 - a polish pad,
 - a compressible sub-pad coupled to the polish pad, and
 - a pad holder coupled to the compressible sub-pad and a polish motor configured to rotate the polishing pad assembly.
2. The substrate pre-clean system of claim 1 wherein the compressible sub-pad is greater than two times more compressible than the polish pad.
3. The substrate pre-clean system of claim 1 wherein the compressible sub-pad is adapted to yield when the pad holder tilts during pre-cleaning so that the polish pad remains flat against the substrate.
4. The substrate pre-clean system of claim 1 wherein the system is adapted to pre-clean substrates after chemical mechanical planarization processing and before application of a cleaning module.

5. The substrate pre-clean system of claim 1 wherein the polishing pad assembly further includes a stiffener layer between the polish pad and the compressible sub-pad.

6. The substrate pre-clean system of claim 1 wherein at least one of adhesive, thermal bonding, and mechanical fasteners is used to couple the polish pad and the compressible sub-pad together within the polishing pad assembly.

7. The substrate pre-clean system of claim 1 wherein the polishing pad assembly has a diameter that is smaller than the diameter of the substrate.

8. A pre-clean polishing pad assembly comprising:
a polish pad;
a compressible sub-pad coupled to the polish pad;
and
a pad holder coupled to the compressible sub-pad
and a polish motor configured to rotate the polishing pad assembly against a substrate.

9. The pre-clean polishing pad assembly of claim 8 wherein the compressible sub-pad is greater than two times more compressible than the polish pad, and
wherein the compressible sub-pad is adapted to yield when the pad holder tilts during pre-cleaning so that the polish pad remains flat against the substrate.

10. The pre-clean polishing pad assembly of claim 8 wherein the polishing pad assembly is adapted to be used to pre-clean substrates after chemical mechanical planarization processing and before application of a cleaning module.

11. The pre-clean polishing pad assembly of claim 8 wherein the polishing pad assembly further includes a stiffener layer between the polish pad and the compressible sub-pad.

12. The pre-clean polishing pad assembly of claim 8 wherein at least one of adhesive, thermal bonding, and mechanical fasteners is used to couple the polish pad and the compressible sub-pad together within the polishing pad assembly.

13. The pre-clean polishing pad assembly of claim 8 wherein the polishing pad assembly has a diameter that is smaller than the diameter of the substrate.

14. A method of pre-cleaning substrates in a substrate pre-clean module, comprising:

loading a substrate into a pre-clean system after chemical mechanical planarization processing;

securing the substrate to a chuck assembly;

rotating the substrate as a rotating polishing pad assembly is pressed against, rotated, and swept across the front side of the substrate;

maintaining a polish pad of the polishing pad assembly flat against the substrate despite tilting of a pad holder of the polishing pad assembly.

15. The method of claim 14 further comprising providing a polishing pad assembly including a compressible sub-pad wherein the compressible sub-pad is greater than two times more compressible than the polish pad,

wherein the compressible sub-pad is adapted to yield when the pad holder tilts during pre-cleaning so that the polish pad remains flat against the substrate, and

wherein the polishing pad assembly is adapted to pre-clean substrates after chemical mechanical planarization processing and before application of a cleaning module.

1/5

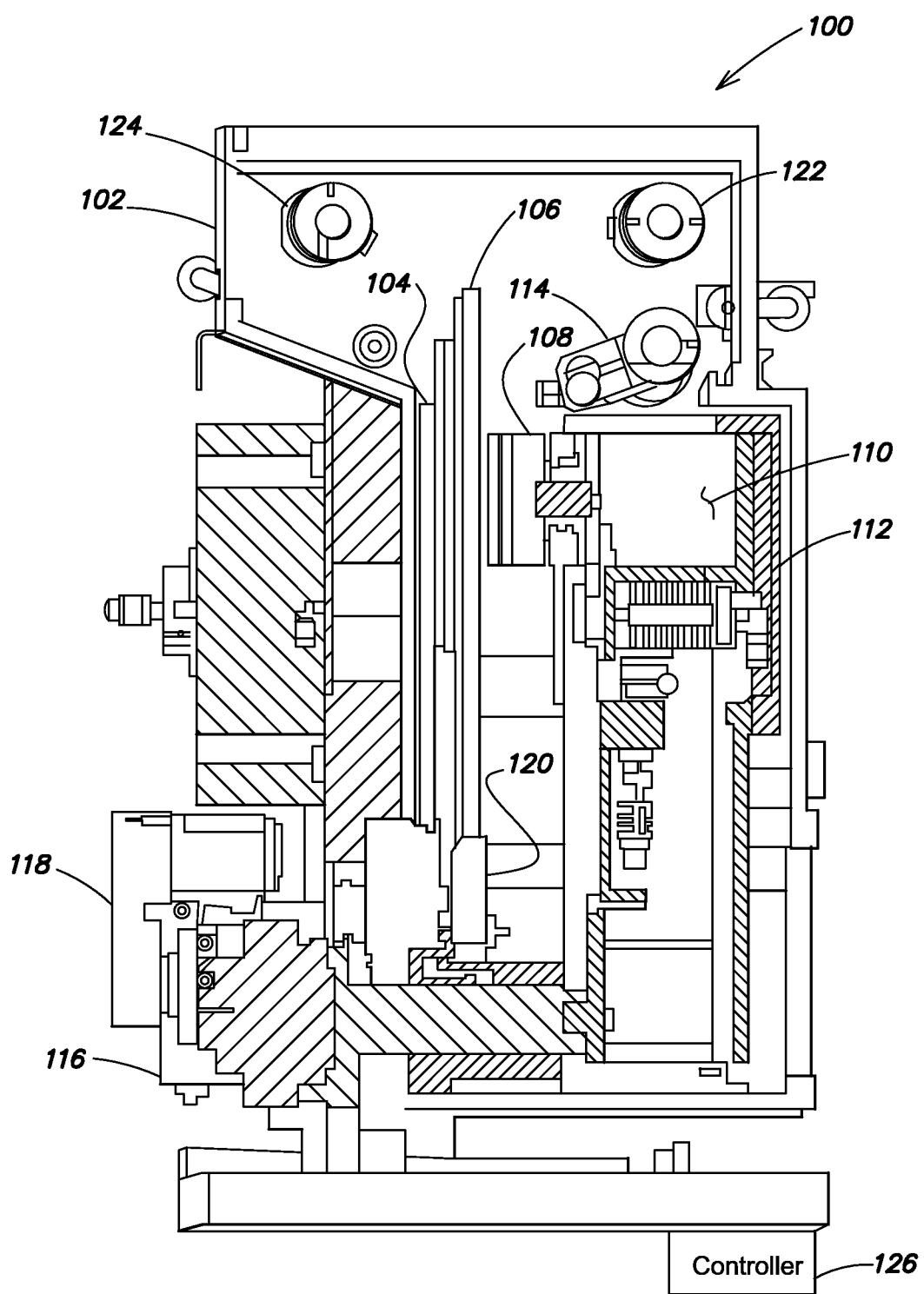
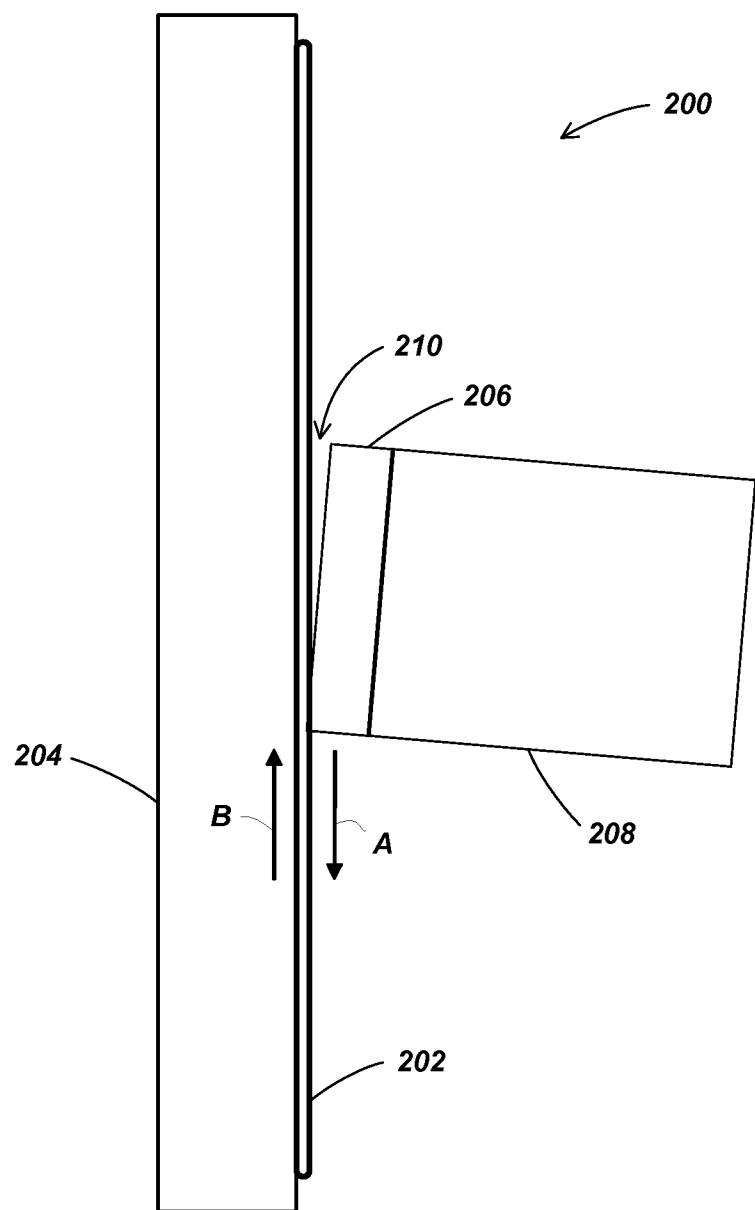
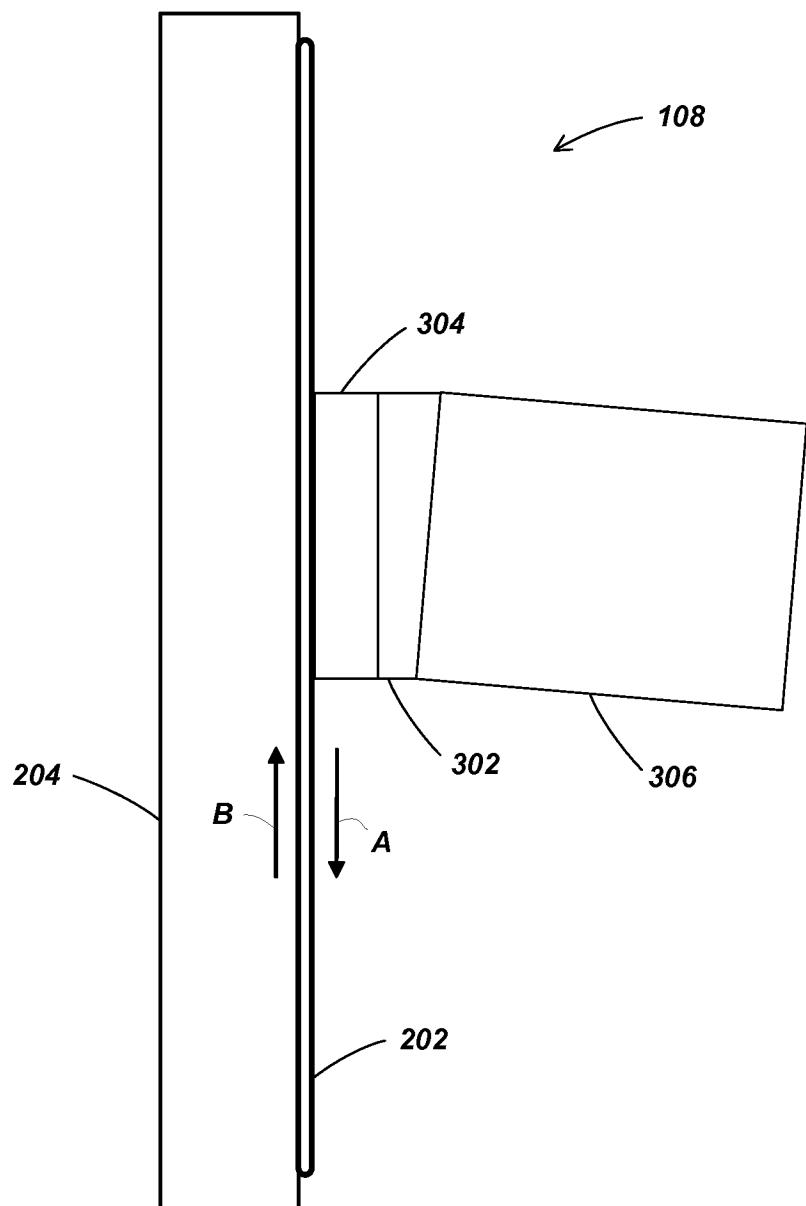




FIG. 1

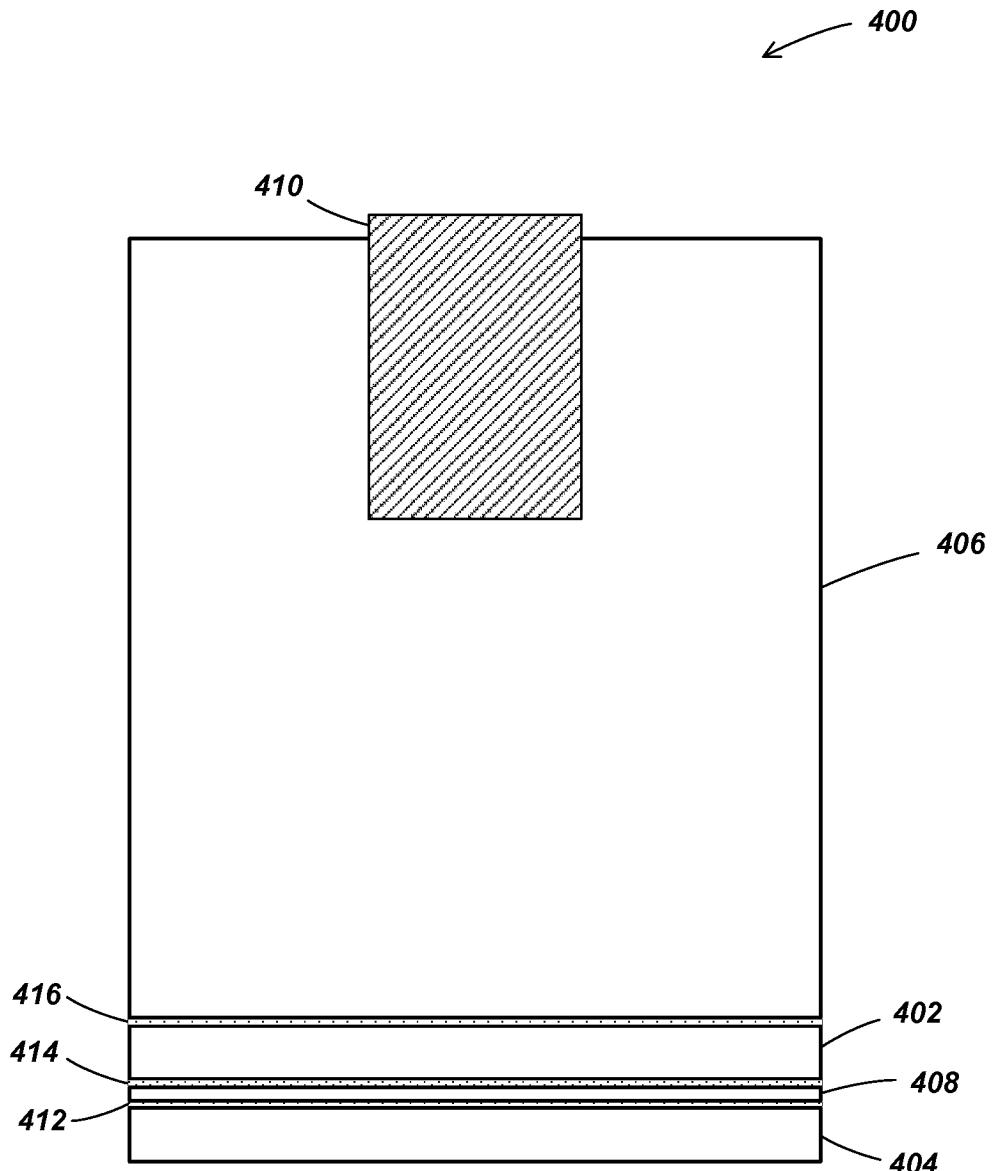

2/5

FIG. 2

3/5

FIG. 3

4/5

FIG. 4

5/5

500

LOAD A SUBSTRATE VERTICALLY INTO THE PRE-CLEAN SYSTEM AFTER CMP PROCESSING

502

RINSE BOTH SIDES OF THE SUBSTRATE AS THE SUBSTRATE IS LOWERED INTO THE SYSTEM

504

SECURE THE SUBSTRATE WITH THE CHUCK ASSEMBLY

506

ROTATE THE SUBSTRATE

508

PRESS THE ROTATING BUFFING PAD ASSEMBLY AGAINST THE SUBSTRATE AND SWEEP THE ASSEMBLY ACROSS THE FRONT SIDE OF THE SUBSTRATE

510

MAINTAIN THE BUFF PAD FLAT AGAINST THE SUBSTRATE

512

RELEASE THE SUBSTRATE FROM THE CHUCK ASSEMBLY AND LIFT THE SUBSTRATE OUT OF THE SYSTEM

514

RINSE BOTH SIDES OF THE SUBSTRATE AS THE SUBSTRATE IS LIFTED OUT OF THE SYSTEM

516

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2015/026552

A. CLASSIFICATION OF SUBJECT MATTER

H01L 21/304(2006.01)i, H01L 21/683(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01L 21/304; H01L 21/302; B08B 13/00; B08B 1/04; C23F 1/00; C25D 17/00; C03C 15/00; B44C 1/22; H01L 21/461; H01L 21/683Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords:post-CMP, clean, polishing pad, buffer pad, elastic pad

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2002-0005212 A1 (GARY J. BEARDSLEY et al.) 17 January 2002 See abstract, paragraphs [0017], [0023]–[0025], [0047], claims 1, 18, and figure 1.	1–7, 13–15
X	US 2005-0167048 A1 (ALEXANDER S. POLYAK et al.) 04 August 2005 See abstract, paragraphs [0006], [0012], [0022], [0025], claim 1, and figures 1–2.	8–10, 12
Y	US 2002-0130034 A1 (CYPRIAN UZOH et al.) 19 September 2002 See abstract, paragraph [0068], claim 52, and figure 3a.	1–7, 11, 13–15
A	US 2007-0039927 A1 (BRADLEY S. WITHERS et al.) 22 February 2007 See abstract, paragraph [0009], claim 1, and figure 4.	5, 11
A	US 2004-0033696 A1 (SHAO-CHUNG HU et al.) 19 February 2004 See abstract, paragraphs [0022]–[0037], claim 8, and figures 1A–1D.	1–15

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
28 July 2015 (28.07.2015)

Date of mailing of the international search report

28 July 2015 (28.07.2015)Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

CHOI, Sang Won

Telephone No. +82-42-481-8291

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/US2015/026552

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2002-0005212 A1	17/01/2002	US 6269510 B1 US 6352596 B2	07/08/2001 05/03/2002
US 2005-0167048 A1	04/08/2005	US 2008-0057836 A1 US 7288165 B2 US 7459056 B2	06/03/2008 30/10/2007 02/12/2008
US 2002-0130034 A1	19/09/2002	AU 2000-14617 A1 AU 2000-16299 A1 AU 2000-39292 A1 AU 2000-41833 A1 AU 2000-77588 A1 AU 2001-13568 A1 AU 2001-27296 A1 AU 2001-38607 A1 AU 2001-47171 A1 AU 2001-53635 A1 AU 2001-81196 A1 AU 2002-11521 A1 AU 2003-224233 A1 AU 2003-233676 A1 AU 2003-248673 A1 AU 2003-285491 A1 CN 100346004 C CN 101193728 A CN 1131765 C CN 1214133 C CN 1220798 C CN 1268470 C CN 1329533 A CN 1329681 A CN 1351531 A CN 1418264 A CN 1433487 A CN 1433487 C CN 1434882 A CN 1454266 A CN 1529769 A CN 1529769 C CN 1559081 A CN 1559081 C CN 1625611 A CN 1638919 A CN 1653600 C EP 1129237 A2 EP 1135236 A1 EP 1135236 B1 EP 1169162 A1 EP 1169162 B1	22/05/2000 19/06/2000 23/10/2000 16/10/2000 13/03/2001 03/09/2001 20/11/2001 03/10/2001 03/09/2001 26/11/2001 25/02/2002 15/04/2002 29/09/2003 12/12/2003 16/09/2003 03/06/2004 31/10/2007 04/06/2008 24/12/2003 10/08/2005 28/09/2005 09/08/2006 02/01/2002 02/01/2002 29/05/2002 14/05/2003 30/07/2003 26/04/2006 06/08/2003 05/11/2003 15/09/2004 13/12/2006 29/12/2004 11/04/2007 08/06/2005 13/07/2005 10/08/2005 05/09/2001 26/09/2001 20/10/2004 09/01/2002 03/11/2004

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.	
PCT/US2015/026552	

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		EP 1259661 A1	27/11/2002
		EP 1259661 A4	04/06/2003
		EP 1268881 A1	02/01/2003
		EP 1287185 A1	05/03/2003
		EP 1287185 A4	30/07/2003
		EP 1307905 A2	07/05/2003
		EP 1332243 A2	06/08/2003
		EP 1392889 A1	03/03/2004
		EP 1392889 A4	04/10/2006
		EP 1395392 A1	10/03/2004
		EP 1472047 A1	03/11/2004
		EP 1483785 A1	08/12/2004
		EP 1499759 A2	26/01/2005
		JP 2002-528649 A	03/09/2002
		JP 2002-531933 A	24/09/2002
		JP 2002-541655 A	03/12/2002
		JP 2003-150630 A	23/05/2003
		JP 2003-524079 A	12/08/2003
		JP 2003-528219 A	24/09/2003
		JP 2003-532798 A	05/11/2003
		JP 2004-521186 A	15/07/2004
		JP 2004-528998 A	24/09/2004
		JP 2004-530791 A	07/10/2004
		JP 2005-187943 A	14/07/2005
		JP 2005-260224 A	22/09/2005
		JP 2005-501963 A	20/01/2005
		JP 2005-508445 A	31/03/2005
		JP 2005-525244 A	25/08/2005
		JP 2006-505697 A	16/02/2006
		JP 2006-519503 A	24/08/2006
		JP 4034655 B2	16/01/2008
		KR 10-0638798 B1	25/10/2006
		KR 10-0665748 B1	09/01/2007
		KR 10-0741197 B1	19/07/2007
		KR 10-0755098 B1	04/09/2007
		KR 10-0778131 B1	21/11/2007
		KR 10-0780071 B1	29/11/2007
		KR 10-0801270 B1	04/02/2008
		KR 10-0834174 B1	30/05/2008
		KR 10-1167610 B1	20/07/2012
		KR 10-2003-0040394 A	22/05/2003
		KR 10-2004-0081136 A	20/09/2004
		KR 10-2005-0092364 A	21/09/2005
		KR 10-2006-0003859 A	11/01/2006
		KR 10-2010-0029249 A	16/03/2010
		TW 200418101 A	16/09/2004
		TW 496811 B	01/08/2002
		TW 504796 B	01/10/2002
		TW 506022 B	11/10/2002
		TW 511167 B	21/11/2002

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.	
PCT/US2015/026552	

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		TW 520407 B	11/02/2003
		TW 523558 B	11/03/2003
		TW 523783 B	11/03/2003
		TW 543104 B	21/07/2003
		TW 552177 B	11/09/2003
		TW 575691 B	11/02/2004
		TW 593780 B	21/06/2004
		TW I329893 B	01/09/2010
		US 2001-0035354 A1	01/11/2001
		US 2001-0042690 A1	22/11/2001
		US 2002-0009959 A1	24/01/2002
		US 2002-0011417 A1	31/01/2002
		US 2002-0020628 A1	21/02/2002
		US 2002-0029978 A1	14/03/2002
		US 2002-0053516 A1	09/05/2002
		US 2002-0074230 A1	20/06/2002
		US 2002-0088715 A1	11/07/2002
		US 2002-0153256 A1	24/10/2002
		US 2002-0162750 A1	07/11/2002
		US 2002-0173225 A1	21/11/2002
		US 2003-0006147 A1	09/01/2003
		US 2003-0015435 A1	23/01/2003
		US 2003-0022599 A1	30/01/2003
		US 2003-0022605 A1	30/01/2003
		US 2003-0022607 A1	30/01/2003
		US 2003-0029731 A1	13/02/2003
		US 2003-0038038 A1	27/02/2003
		US 2003-0070930 A1	17/04/2003
		US 2003-0089598 A1	15/05/2003
		US 2003-0089612 A1	15/05/2003
		US 2003-0089615 A1	15/05/2003
		US 2003-0094364 A1	22/05/2003
		US 2003-0096561 A1	22/05/2003
		US 2003-0097441 A1	22/05/2003
		US 2003-0106807 A1	12/06/2003
		US 2003-0119311 A1	26/06/2003
		US 2003-0121774 A1	03/07/2003
		US 2003-0146089 A1	07/08/2003
		US 2003-0153245 A1	14/08/2003
		US 2003-0153246 A1	14/08/2003
		US 2003-0178319 A1	25/09/2003
		US 2003-0181143 A1	25/09/2003
		US 2003-0209425 A1	13/11/2003
		US 2003-0209429 A1	13/11/2003
		US 2003-0209445 A1	13/11/2003
		US 2003-0217932 A1	27/11/2003
		US 2003-0230491 A1	18/12/2003
		US 2004-0007478 A1	15/01/2004
		US 2004-0012090 A1	22/01/2004
		US 2004-0014399 A1	22/01/2004

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/US2015/026552

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 2004-0023606 A1	05/02/2004
		US 2004-0023607 A1	05/02/2004
		US 2004-0087259 A1	06/05/2004
		US 2004-0097177 A1	20/05/2004
		US 2004-0124089 A1	01/07/2004
		US 2004-0163963 A1	26/08/2004
		US 2004-0168926 A1	02/09/2004
		US 2004-0170753 A1	02/09/2004
		US 2004-0195111 A1	07/10/2004
		US 2004-0266193 A1	30/12/2004
		US 2005-0006244 A1	13/01/2005
		US 2005-0016868 A1	27/01/2005
		US 2005-0034976 A1	17/02/2005
		US 2005-0034994 A1	17/02/2005
		US 2005-0040049 A1	24/02/2005
		US 2005-0133379 A1	23/06/2005
		US 2005-0133380 A1	23/06/2005
		US 2005-0173260 A1	11/08/2005
		US 2005-0227483 A1	13/10/2005
		US 2005-0258046 A1	24/11/2005
		US 2005-0269212 A1	08/12/2005
		US 2005-0279641 A1	22/12/2005
		US 6103628 A	15/08/2000
		US 6176992 B1	23/01/2001
		US 6207572 B1	27/03/2001
		US 6251235 B1	26/06/2001
		US 6328872 B1	11/12/2001
		US 6402925 B2	11/06/2002
		US 6409904 B1	25/06/2002
		US 6413388 B1	02/07/2002
		US 6413403 B1	02/07/2002
		US 6464571 B2	15/10/2002
		US 6468139 B1	22/10/2002
		US 6471847 B2	29/10/2002
		US 6478936 B1	12/11/2002
		US 6482307 B2	19/11/2002
		US 6497800 B1	24/12/2002
		US 6534116 B2	18/03/2003
		US 6589105 B2	08/07/2003
		US 6604988 B2	12/08/2003
		US 6610190 B2	26/08/2003
		US 6634935 B2	21/10/2003
		US 6676822 B1	13/01/2004
		US 6695962 B2	24/02/2004
		US 6722946 B2	20/04/2004
		US 6773576 B2	10/08/2004
		US 6797132 B2	28/09/2004
		US 6821409 B2	23/11/2004
		US 6837979 B2	04/01/2005
		US 6852208 B2	08/02/2005

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/US2015/026552

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 6857947 B2	22/02/2005
		US 6858121 B2	22/02/2005
		US 6866763 B2	15/03/2005
		US 6867136 B2	15/03/2005
		US 6902659 B2	07/06/2005
		US 6908368 B2	21/06/2005
		US 6908374 B2	21/06/2005
		US 6921551 B2	26/07/2005
		US 6926589 B2	09/08/2005
		US 6932679 B2	23/08/2005
		US 6939203 B2	06/09/2005
		US 6942546 B2	13/09/2005
		US 6942780 B2	13/09/2005
		US 6943112 B2	13/09/2005
		US 6946066 B2	20/09/2005
		US 6958114 B2	25/10/2005
		US 7097538 B2	29/08/2006
		US 7097755 B2	29/08/2006
		US 7115510 B2	03/10/2006
		US 7141146 B2	28/11/2006
		US 7195696 B2	27/03/2007
		US 7204917 B2	17/04/2007
		US 7204924 B2	17/04/2007
		US 7211174 B2	01/05/2007
		US 7211186 B2	01/05/2007
		US 7244347 B2	17/07/2007
		US 7282124 B2	16/10/2007
		US 7309406 B2	18/12/2007
		US 7309407 B2	18/12/2007
		US 7309413 B2	18/12/2007
		US 7311811 B2	25/12/2007
		US 7329335 B2	12/02/2008
		US 7341649 B2	11/03/2008
		US 7378004 B2	27/05/2008
		US 7404886 B2	29/07/2008
		US 7425250 B2	16/09/2008
		US 7427337 B2	23/09/2008
		US 7476304 B2	13/01/2009
		US 7491308 B2	17/02/2009
		US 7517444 B2	14/04/2009
		US 7578923 B2	25/08/2009
		US 7648622 B2	19/01/2010
		US 7670473 B1	02/03/2010
		US 7731833 B2	08/06/2010
		US 7754061 B2	13/07/2010
		US 8236160 B2	07/08/2012
US 2007-0039927 A1	22/02/2007	US 7344989 B2	18/03/2008
US 2004-0033696 A1	19/02/2004	US 2002-0155681 A1	24/10/2002

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/US2015/026552

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 6696361 B2 US 7232752 B2	24/02/2004 19/06/2007