

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
10 July 2008 (10.07.2008)

PCT

(10) International Publication Number
WO 2008/083354 A1

(51) International Patent Classification:

C07D 405/12 (2006.01) **C07D 487/04** (2006.01)
C07D 405/14 (2006.01) **A61K 31/4196** (2006.01)
C07D 413/14 (2006.01) **A61P 19/00** (2006.01)
C07D 471/04 (2006.01) **C07D 401/14** (2006.01)
C07D 495/04 (2006.01) **C07D 403/14** (2006.01)
C07D 519/00 (2006.01)

California 94080 (US). **HECKRODT, Thilo** [US/US]; 1180 Veterans Boulevard, South San Francisco, California 94080 (US). **DING, Pingyu** [CN/US]; 1180 Veterans Boulevard, South San Francisco, California 94080 (US). **LITVAK, Joane** [US/US]; 1180 Veterans Boulevard, South San Francisco, California 94080 (US).

(21) International Application Number:

PCT/US2007/089153

(22) International Filing Date:

28 December 2007 (28.12.2007)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/882,875 29 December 2006 (29.12.2006) US
 60/975,443 26 September 2007 (26.09.2007) US

(74) Agents: **ROTH, Carol, J.** et al.; Seed Intellectual Property Law Group PLLC, Suite 5400, 701 Fifth Avenue, Seattle, Washington 98104-7064 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: N3-HETEROARYL SUBSTITUTED TRIAZOLES AND N5-HETEROARYL SUBSTITUTED TRIAZOLES USEFUL AS AXL INHIBITORS

(57) Abstract: N3-Heteroaryl substituted triazoles and N5-heteroaryl substituted triazoles and pharmaceutical compositions containing the compounds are disclosed as being useful in inhibiting the activity of the receptor protein tyrosine kinase Axl. Methods of using the compounds in treating diseases or conditions associated with Axl activity are also disclosed.

WO 2008/083354 A1

***N*³-HETEROARYL SUBSTITUTED TRIAZOLES AND *N*⁵-HETEROARYL SUBSTITUTED
TRIAZOLES USEFUL AS AXL INHIBITORS**

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional
5 Patent Application No. 60/975,443, filed September 26, 2007; and U.S. Provisional
Patent Application No. 60/882,875, filed December 29, 2006, where these two
provisional applications are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

This invention is directed to *N*³-heteroaryl substituted triazoles and *N*⁵-heteroaryl
10 substituted triazoles and pharmaceutical compositions thereof which are useful as
inhibitors of the receptor protein tyrosine kinase known as Axl. This invention is also
directed to methods of using the compounds and compositions in treating diseases and
conditions associated with Axl activity, particularly in treating diseases and conditions
associated with angiogenesis and/or cell proliferation.

15 **BACKGROUND OF THE INVENTION**

All of the protein kinases that have been identified to date in the human genome
share a highly conserved catalytic domain of around 300 aa. This domain folds into a bi-
lobed structure in which reside ATP-binding and catalytic sites. The complexity of
protein kinase regulation allows many potential mechanisms of inhibition including
20 competition with activating ligands, modulation of positive and negative regulators,
interference with protein dimerization, and allosteric or competitive inhibition at the
substrate or ATP binding sites.

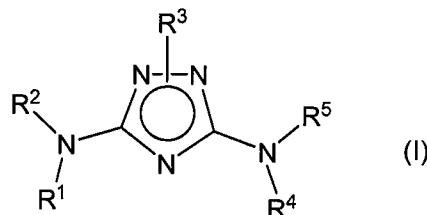
Axl (also known as UFO, ARK, and Tyro7; nucleotide accession numbers
NM_021913 and NM_001699; protein accession numbers NP_068713 and NP_001690)
25 is a receptor protein tyrosine kinase (RTK) that comprises a C-terminal extracellular
ligand-binding domain and N-terminal cytoplasmic region containing the catalytic
domain. The extracellular domain of Axl has a unique structure that juxtaposes
immunoglobulin and fibronectin Type III repeats and is reminiscent of the structure of
neural cell adhesion molecules. Axl and its two close relatives, Mer /Nyk and Sky (Tyro3
30 / Rse / Dtk), collectively known as the Tyro3 family of RTK's, all bind and are stimulated
to varying degrees by the same ligand, Gas6 (growth arrest specific-6), a ~76kDa

secreted protein with significant homology to the coagulation cascade regulator, Protein S. In addition to binding to ligands, the Axl extracellular domain has been shown to undergo homophilic interactions that mediate cell aggregation, suggesting that one important function of Axl may be to mediate cell-cell adhesion.

5 Axl is predominantly expressed in the vasculature in both endothelial cells (EC's) and vascular smooth muscle cells (VSMC's) and in cells of the myeloid lineage and is also detected in breast epithelial cells, chondrocytes, Sertoli cells and neurons. Several functions including protection from apoptosis induced by serum starvation, TNF- α or the viral protein E1A, as well as migration and cell differentiation have been ascribed to Axl 10 signaling in cell culture. However, Axl-/- mice exhibit no overt developmental phenotype and the physiological function of Axl *in vivo* is not clearly established in the literature.

15 Angiogenesis (the formation of new blood vessels) is limited to functions such as wound healing and the female reproductive cycle in healthy adults. This physiological process has been co-opted by tumors, thus securing an adequate blood supply that feeds tumor growth and facilitates metastasis. Deregulated angiogenesis also a feature of many other diseases (for example, psoriasis, rheumatoid arthritis, endometriosis and blindness due to age-related macular degeneration (AMD), retinopathy of prematurity and diabetes) and often contributes to the progression or pathology of the condition.

20 The overexpression of Axl and/or its ligand has also been reported in a wide variety of solid tumor types including, but not limited to, breast, renal, endometrial, ovarian, thyroid, non-small cell lung carcinoma, and uveal melanoma as well as in myeloid leukemia's. Furthermore, it possesses transforming activity in NIH3T3 and 32D cells. It has been demonstrated that loss of Axl expression in tumor cells blocks the 25 growth of solid human neoplasms in an *in vivo* MDA-MB-231 breast carcinoma xenograft model. Taken together, these data suggest Axl signaling can independently regulate EC angiogenesis and tumor growth and thus represents a novel target class for tumor therapeutic development.


30 The expression of Axl and Gas6 proteins is upregulated in a variety of other disease states including endometriosis, vascular injury and kidney disease and Axl signaling is functionally implicated in the latter two indications. Axl - Gas6 signaling amplifies platelet responses and is implicated in thrombus formation. Axl may thus potentially represent a therapeutic target for a number of diverse pathological conditions including solid tumors, including, but not limited to, breast, renal, endometrial, ovarian, thyroid, non-small cell lung carcinoma and uveal melanoma; liquid tumors, including but 35 not limited to, leukemias (particularly myeloid leukemias) and lymphomas;

5 endometriosis, vascular disease / injury (including but not limited to restenosis, atherosclerosis and thrombosis), psoriasis; visual impairment due to macular degeneration; diabetic retinopathy and retinopathy of prematurity; kidney disease (including but not limited to glomerulonephritis, diabetic nephropathy and renal transplant rejection), rheumatoid arthritis; osteoporosis, osteoarthritis and cataracts.

SUMMARY OF THE INVENTION

This invention is directed to certain N^3 -heteroaryl substituted triazoles and N^5 -heteroaryl substituted triazoles which are useful as Axl inhibitors, methods of using such compounds in treating diseases and conditions associated with Axl activity and 10 pharmaceutical compositions comprising such compounds.

Accordingly, in one aspect this invention is directed to a compound of formula (I):

wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen,

15 alkyl, aryl, aralkyl, $-C(O)R^8$, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$,

20 $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);

25 R^3 is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more

30

heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;

each R⁹ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

5 each R¹⁰ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

10 each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

15 each R¹³ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain;

20 25 as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof.

In another aspect, this invention is directed to pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound of formula (I), as described above, as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof.

In another aspect, this invention is directed to methods of treating a disease or condition associated with Axl activity in a mammal, wherein the methods comprise administering to the mammal a therapeutically effective amount of a compound of formula (I), as described above, as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof, or a therapeutically effective amount of a

pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound of formula (I), as described above, as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof.

In another aspect, this invention provides assays to determine a compound of the
5 invention effectiveness in inhibiting Axl activity in a cell-based assay.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

As used in the specification and appended claims, unless specified to the contrary, the following terms have the meaning indicated:

10 "Amino" refers to the $-\text{NH}_2$ radical.

"Carboxy" refers to the $-\text{C}(\text{O})\text{OH}$ radical.

"Cyano" refers to the $-\text{CN}$ radical.

"Nitro" refers to the $-\text{NO}_2$ radical.

"Oxa" refers to the $-\text{O}-$ radical.

15 "Oxo" refers to the $=\text{O}$ radical.

"Thioxo" refers to the $=\text{S}$ radical.

"Alkyl" refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to twelve carbon atoms, preferably one to eight carbon atoms or one to six carbon atoms, and

20 which is attached to the rest of the molecule by a single bond, for example, methyl, ethyl, *n*-propyl, 1-methylethyl (*iso*-propyl), *n*-butyl, *n*-pentyl, 1,1-dimethylethyl (*t*-butyl),

3-methylhexyl, 2-methylhexyl, and the like. Unless stated otherwise specifically in the specification, an alkyl radical may be optionally substituted by one or more of the

following substituents: halo, cyano, nitro, oxo, thioxo, trimethylsilyl, $-\text{OR}^{20}$,

25 $-\text{OC}(\text{O})\text{R}^{20}$, $-\text{N}(\text{R}^{20})_2$, $-\text{C}(\text{O})\text{R}^{20}$, $-\text{C}(\text{O})\text{OR}^{20}$, $-\text{C}(\text{O})\text{N}(\text{R}^{20})_2$, $-\text{N}(\text{R}^{20})\text{C}(\text{O})\text{OR}^{20}$,

$-\text{N}(\text{R}^{20})\text{C}(\text{O})\text{R}^{20}$, $-\text{N}(\text{R}^{20})\text{S}(\text{O})_t\text{R}^{20}$ (where *t* is 1 or 2), $-\text{S}(\text{O})\text{OR}^{20}$ (where *t* is 1 or 2),

$-\text{S}(\text{O})_p\text{R}^{20}$ (where *p* is 0, 1 or 2), and $-\text{S}(\text{O})_t\text{N}(\text{R}^{20})_2$ (where *t* is 1 or 2) where each R^{20} is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocycl, heterocylalkyl, heteroaryl or heteroarylalkyl.

30 "Alkenyl" refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing at least one double bond, having from two to twelve carbon atoms, preferably one to eight carbon atoms and which is attached to the rest of the molecule by a single bond, for example, ethenyl, prop-1-enyl,

but-1-enyl, pent-1-enyl, penta-1,4-dienyl, and the like. Unless stated otherwise specifically in the specification, an alkenyl radical may be optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, -OR²⁰, -OC(O)-R²⁰, -N(R²⁰)₂, -C(O)R²⁰, -C(O)OR²⁰, -C(O)N(R²⁰)₂, -N(R²⁰)C(O)OR²⁰, 5 -N(R²⁰)C(O)R²⁰, -N(R²⁰)S(O)_tR²⁰ (where t is 1 or 2), -S(O)_tOR²⁰ (where t is 1 or 2), -S(O)_pR²⁰ (where p is 0, 1 or 2), and -S(O)_tN(R²⁰)₂ (where t is 1 or 2) where each R²⁰ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocylalkyl, heteroaryl or heteroarylalkyl.

"Alkynyl" refers to a straight or branched hydrocarbon chain radical consisting 10 solely of carbon and hydrogen atoms, containing at least one triple bond, optionally containing at least one double bond, having from two to twelve carbon atoms, preferably one to eight carbon atoms and which is attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkynyl radical may be optionally 15 substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, -OR²⁰, -OC(O)-R²⁰, -N(R²⁰)₂, -C(O)R²⁰, -C(O)OR²⁰, -C(O)N(R²⁰)₂, -N(R²⁰)C(O)OR²⁰, -N(R²⁰)C(O)R²⁰, -N(R²⁰)S(O)_tR²⁰ (where t is 1 or 2), -S(O)_tOR²⁰ (where t is 1 or 2), -S(O)_pR²⁰ (where p is 0, 1 or 2), and -S(O)_tN(R²⁰)₂ (where t is 1 or 2) where 20 each R²⁰ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocylalkyl, heteroaryl or heteroarylalkyl.

"Alkylene" or "alkylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of 25 carbon and hydrogen, containing no unsaturation and having from one to twelve carbon atoms, for example, methylene, ethylene, propylene, *n*-butylene, and the like. The alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon in the alkylene chain or through any two carbons within the chain. Unless stated otherwise 30 specifically in the specification, an alkylene chain may be optionally substituted by one or more of the following substituents: halo, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, thioxo, trimethylsilanyl, -OR²⁰, -OC(O)-R²⁰, -N(R²⁰)₂, -C(O)R²⁰, -C(O)OR²⁰, -C(O)N(R²⁰)₂, -N(R²⁰)C(O)OR²⁰, -N(R²⁰)C(O)R²⁰, -N(R²⁰)S(O)_tR²⁰ (where t is 1 or 2), -S(O)_tOR²⁰ (where t is 1 or 2), -S(O)_pR²⁰ (where p is 0, 1 or 2), and -S(O)_tN(R²⁰)₂ (where t is 1 or 2) where each R²⁰ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, 35 cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocylalkyl, heteroaryl or heteroarylalkyl.

"Alkenylene" or "alkenylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one double bond and having from two to twelve carbon atoms, for example, ethenylene, propenylene, *n*-butenylene, and the like. The 5 alkenylene chain is attached to the rest of the molecule through a double bond or a single bond and to the radical group through a double bond or a single bond. The points of attachment of the alkenylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkenylene chain may be optionally substituted by one 10 or more of the following substituents: halo, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, thioxo, trimethylsilanyl, -OR²⁰, -OC(O)-R²⁰, -N(R²⁰)₂, -C(O)R²⁰, -C(O)OR²⁰, -C(O)N(R²⁰)₂, -N(R²⁰)C(O)OR²⁰, -N(R²⁰)C(O)R²⁰, -N(R²⁰)S(O)_tR²⁰ (where t is 1 or 2), -S(O)_tOR²⁰ (where t is 1 or 2), -S(O)_pR²⁰ (where p is 0, 1 or 2), and -S(O)_tN(R²⁰)₂ 15 (where t is 1 or 2) where each R²⁰ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocylalkyl, heteroaryl or heteroarylalkyl.

"Alkynylene" or "alkynylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one triple bond and having from two to twelve carbon atoms, for example, propynylene, *n*-butynylene, and the like. The alkynylene 20 chain is attached to the rest of the molecule through a single bond and to the radical group through a double bond or a single bond. The points of attachment of the alkynylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkynylene chain may be optionally substituted by one or more of the 25 following substituents: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, thioxo, trimethylsilanyl, -OR²⁰, -OC(O)-R²⁰, -N(R²⁰)₂, -C(O)R²⁰, -C(O)OR²⁰, -C(O)N(R²⁰)₂, -N(R²⁰)C(O)OR²⁰, -N(R²⁰)C(O)R²⁰, -N(R²⁰)S(O)_tR²⁰ (where t is 1 or 2), -S(O)_tOR²⁰ (where t is 1 or 2), -S(O)_pR²⁰ (where p is 0, 1 or 2), and -S(O)_tN(R²⁰)₂ (where t is 1 or 2) where each R²⁰ is independently hydrogen, alkyl, 30 haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocylalkyl, heteroaryl or heteroarylalkyl.

"Alkoxy" refers to a radical of the formula -OR_a where R_a is an alkyl radical as defined above containing one to twelve carbon atoms. The alkyl part of the alkoxy radical may be optionally substituted as defined above for an alkyl radical.

35 "Alkoxyalkyl" refers to a radical of the formula -R_b-O-R_a where R_a is an alkyl

radical as defined above and R_b is an alkylene chain as defined above. The oxygen atom may be bonded to any carbon in the alkyl radical or the alkylene chain. The alkyl part of the alkoxyalkyl radical may be optionally substituted as defined above for an alkyl radical and the alkylene chain part of the alkoxyalkyl radical may be optionally substituted as defined above for an alkylene chain.

5 "Aryl" refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 14 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, or tricyclic ring system, which may include spiro ring systems. An aryl radical is commonly, but not necessarily, attached to the parent 10 molecule via an aromatic ring of the aryl radical. For purposes of this invention, an "aryl" radical as defined herein can not contain rings having more than 7 members and cannot contain rings wherein two non-adjacent members thereof are connected by a direct bond or through an atom or a group of atoms (*i.e.*, a bridged ring system). Aryl radicals include, but are not limited to, aryl radicals derived from acenaphthylene, anthracene, 15 azulene, benzene, 6,7,8,9-tetrahydro-5H-benzo[7]annulene, fluorene, *az*-indacene, *s*-indacene, indane, indene, naphthalene, phenalene, and phenanthrene. Unless stated otherwise specifically in the specification, the term "optionally substituted aryl" is meant to include aryl radicals optionally substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, 20 haloalkynyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted 25 heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, - R^{21} -OR²⁰, - R^{21} -OC(O)-R²⁰, - R^{21} -N(R²⁰)₂, - R^{21} -C(O)R²⁰, - R^{21} -C(O)OR²⁰, - R^{21} -C(O)N(R²⁰)₂, - R^{21} -O-R²²-C(O)N(R²⁰)₂, - R^{21} -N(R²⁰)C(O)OR²⁰, - R^{21} -N(R²⁰)C(O)R²⁰, - R^{21} -N(R²⁰)S(O)_tR²⁰ (where t is 1 or 2), - R^{21} -S(O)_tOR²⁰ (where t is 1 or 2), - R^{21} -S(O)_pR²⁰ 30 (where p is 0, 1 or 2), and - R^{21} -S(O)_tN(R²⁰)₂ (where t is 1 or 2), where each R²⁰ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl and optionally substituted 35 heteroarylalkyl, or two R²⁰'s, together with the common nitrogen to which they are both

attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl, each R²¹ is independently a direct bond or a straight or branched alkylene or alkenylene chain, and R²² is a straight or branched alkylene or alkenylene chain.

5 "Aralkyl" refers to a radical of the formula -R_b-R_c where R_b is an alkylene chain as defined above and R_c is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. The alkylene chain part of the aralkyl radical may be optionally substituted as described above for an alkylene chain. The aryl part of the aralkyl radical may be optionally substituted as described above for an aryl.

10 "Aralkenyl" refers to a radical of the formula -R_d-R_c where R_d is an alkenylene chain as defined above and R_c is one or more aryl radicals as defined above. The aryl part of the aralkenyl radical may be optionally substituted as described above for an aryl. The alkenylene chain part of the aralkenyl radical may be optionally substituted as defined above for an alkenylene group.

15 "Aralkynyl" refers to a radical of the formula -R_eR_c where R_e is an alkynylene chain as defined above and R_c is one or more aryl radicals as defined above. The aryl part of the aralkynyl radical may be optionally substituted as described above for an aryl. The alkynylene chain part of the aralkynyl radical may be optionally substituted as defined above for an alkynylene chain.

20 "Aryloxy" refers to a radical of the formula -OR_c where R_c is an aryl as defined above. The aryl part of the aryloxy radical may be optionally substituted as defined above.

25 "Aralkyloxy" refers to a radical of the formula -OR_f where R_f is an aralkyl radical as defined above. The aralkyl part of the aralkyloxy radical may be optionally substituted as defined above.

30 "Cycloalkyl" refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, more preferably from five to seven carbons and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, C₁₀ radicals such as adamantanyl and decalinyl, and C₇ radicals such as norbornanyl, norbornenyl, as well as substituted polycyclic radicals for example substituted C₇ radicals such as 35 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in

the specification, the term "optionally substituted cycloalkyl" is meant to include cycloalkyl radicals which are optionally substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, 5 optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, 10 optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{21}-OR^{20}$, $-R^{21}-OC(O)-R^{20}$, $-R^{21}-N(R^{20})_2$, $-R^{21}-C(O)R^{20}$, $-R^{21}-C(O)OR^{20}$, $-R^{21}-C(O)N(R^{20})_2$, $-R^{21}-N(R^{20})C(O)OR^{20}$, $-R^{21}-N(R^{20})C(O)R^{20}$, $-R^{21}-N(R^{20})S(O)R^{20}$ (where t is 1 or 2), $-R^{21}-S(O)_tOR^{20}$ (where t is 1 or 2), $-R^{21}-S(O)_pR^{20}$ (where p is 0, 1 or 2), and $-R^{21}-S(O)_tN(R^{20})_2$ (where t is 1 or 2), 15 where each R^{20} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and 20 optionally substituted heteroarylalkyl, or two R^{20} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl, and each R^{21} is independently a direct bond or a straight or branched alkylene or alkenylene chain.

"Cycloalkylalkyl" refers to a radical of the formula $-R_bR_g$ where R_b is an alkylene chain as defined above and R_g is a cycloalkyl radical as defined above. The alkylene chain and the cycloalkyl radical may be optionally substituted as defined above. 25

"Cycloalkylalkenyl" refers to a radical of the formula $-R_dR_g$ where R_d is an alkenylene chain as defined above and R_g is a cycloalkyl radical as defined above. The alkenylene chain and the cycloalkyl radical may be optionally substituted as defined above.

30 "Cycloalkylalkynyl" refers to a radical of the formula $-R_eR_g$ where R_e is an alkynylene radical as defined above and R_g is a cycloalkyl radical as defined above. The alkynylene chain and the cycloalkyl radical may be optionally substituted as defined above.

35 "Halo" refers to bromo, chloro, fluoro or iodo.
"Haloalkyl" refers to an alkyl radical, as defined above, that is substituted by one

or more halo radicals, as defined above, for example, trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1-fluoromethyl-2-fluoroethyl, 3-bromo-2-fluoropropyl, 1-bromomethyl-2-bromoethyl, and the like. The alkyl part of the haloalkyl radical may be optionally substituted as defined above for an alkyl radical.

5 "Haloalkoxy" refers to an alkoxy radical, as defined above, that is substituted by one or more halo radicals, as defined above, for example, trifluoromethoxy, difluoromethoxy, trichloromethoxy, 2,2,2-trifluoroethoxy, and the like. The alkoxy part of the haloalkoxy radical may be optionally substituted as defined above for an alkoxy radical.

10 "Haloalkenyl" refers to an alkenyl radical, as defined above, that is substituted by one or more halo radicals, as defined above. The alkenyl part of the haloalkyl radical may be optionally substituted as defined above for an alkenyl radical.

15 "Haloalkynyl" refers to an alkynyl radical, as defined above, that is substituted by one or more halo radicals, as defined above. The alkynyl part of the haloalkyl radical may be optionally substituted as defined above for an alkynyl radical.

20 "Heterocyclyl" refers to a stable 3- to 18-membered non-aromatic ring radical which comprises one to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include spiro, fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, 1,4-diazepanyl, decahydroisoquinolyl, 25 imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, octahydro-1*H*-pyrrolo[3,2-*c*]pyridinyl, octahydro-1*H*-pyrrolo[2,3-*c*]pyridinyl, octahydro-1*H*-pyrrolo[2,3-*b*]pyridinyl, octahydro-1*H*-pyrrolo[3,4-*b*]pyridinyl, octahydropyrrolo[3,4-*c*]pyrrolyl, octahydro-1*H*-pyrido[1,2-*a*]pyrazinyl, 2-oxopiperazinyl, 30 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, thienyl[1,3]dithianyl, trithianyl, tetrahydropyrananyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, 1,1-dioxo-thiomorpholinyl, azetidinyl, octahydropyrrolo[3,4-*c*]pyrrolyl, octahydropyrrolo[3,4-*b*]pyrrolyl, decahydroprazino[1,2-*a*]azepinyl, azepanyl, azabicyclo[3.2.1]octyl, and 2,7-diazaspiro[4.4]nonanyl. Unless stated otherwise 35 specifically in the specification, the term "optionally substituted heterocyclyl" is meant to

include heterocycll radicals as defined above which are optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, 5 optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocycll, optionally substituted heterocycllalkyl, optionally substituted heterocycllalkenyl, optionally substituted heterocycllalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, 10 optionally substituted heteroarylalkynyl, $-R^{21}-OR^{20}$, $-R^{21}-OC(O)-R^{20}$, $-R^{21}-N(R^{20})_2$, $-R^{21}-C(O)R^{20}$, $-R^{21}-C(O)OR^{20}$, $-R^{21}-C(O)N(R^{20})_2$, $-R^{21}-N(R^{20})C(O)OR^{20}$, $-R^{21}-N(R^{20})C(O)R^{20}$, $-R^{21}-N(R^{20})S(O)_tR^{20}$ (where t is 1 or 2), $-R^{21}-S(O)_tOR^{20}$ (where t is 1 or 2), $-R^{21}-S(O)_pR^{20}$ (where p is 0, 1 or 2), and $-R^{21}-S(O)_tN(R^{20})_2$ (where t is 1 or 2), 15 where each R^{20} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycll, optionally substituted heterocycllalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{20} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*- 20 heterocycll or an optionally substituted *N*-heteroaryl, and each R^{21} is independently a direct bond or a straight or branched alkylene or alkenylene chain.

"*N*-heterocycll" refers to a heterocycll radical as defined above containing at least one nitrogen and where the point of attachment of the heterocycll radical to the rest of the molecule is through a nitrogen atom in the heterocycll radical. An 25 *N*-heterocycll radical may be optionally substituted as described above for heterocycll radicals.

"Heterocycllalkyl" refers to a radical of the formula $-R_bR_h$ where R_b is an alkylene chain as defined above and R_h is a heterocycll radical as defined above, and if the heterocycll is a nitrogen-containing heterocycll, the heterocycll may be attached to 30 the alkyl radical at the nitrogen atom. The alkylene chain of the heterocycllalkyl radical may be optionally substituted as defined above for an alkyene chain. The heterocycll part of the heterocycllalkyl radical may be optionally substituted as defined above for a heterocycll radical.

"Heterocycllalkenyl" refers to a radical of the formula $-R_dR_h$ where R_d is an 35 alkenylene chain as defined above and R_h is a heterocycll radical as defined above, and

if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkenylene chain at the nitrogen atom. The alkenylene chain of the heterocyclalkenyl radical may be optionally substituted as defined above for an alkenylene chain. The heterocyclyl part of the heterocyclalkenyl radical may be 5 optionally substituted as defined above for a heterocyclyl radical.

"Heterocyclalkynyl" refers to a radical of the formula $-R_eR_h$ where R_e is an alkynylene chain as defined above and R_h is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkynyl radical at the nitrogen atom. The alkynylene chain part of the 10 heterocyclalkynyl radical may be optionally substituted as defined above for an alkynylene chain. The heterocyclyl part of the heterocyclalkynyl radical may be optionally substituted as defined above for a heterocyclyl radical.

"Heteroaryl" refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the 15 group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. A heteroaryl radical is commonly, but not necessarily, attached to the parent molecule via an aromatic ring of the heteroaryl radical. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic or tricyclic ring system, which may include spiro ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be 20 optionally oxidized; the nitrogen atom may be optionally quaternized. For purposes of this invention, the aromatic ring of the heteroaryl radical need not contain a heteroatom, as long as one ring of the heteroaryl radical contains a heteroatom. For example, 1,2,3,4-tetrahydroisoquinolin-7-yl is considered a "heteroaryl" for the purposes of this invention. For purposes of this invention, a "heteroaryl" radical as defined herein can not 25 contain rings having more than 7 members or rings wherein two non-adjacent members thereof are connected by a direct bond or through an atom or a group of atoms (*i.e.*, a bridged ring system). Examples of heteroaryl radicals include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzindolyl, 1,3-benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[*b*][1,4]dioxepinyl, 30 benzo[*b*][1,4]oxazinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzothieno[3,2-*d*]pyrimidinyl, benzotriazolyl, benzo[4,6]imidazo[1,2-*a*]pyridinyl, carbazolyl, cinnolinyl, cyclopenta[*d*]pyrimidinyl, 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-*d*]pyrimidinyl, 35 5,6-dihydrobenzo[*h*]quinazolinyl, 5,6-dihydrobenzo[*h*]cinnolinyl,

7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl,
6,7-dihydro-5H-benzo[6,7]cyclohepta[1,2-c]pyridazinyl, dibenzofuranyl,
dibenzothiophenyl, furanyl, furanonyl, furo[3,2-c]pyridinyl, imidazolyl, indazolyl, indolyl,
indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl,
5 naphthyridinyl, 1,6-naphthyridinonyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl,
5,6,6a,7,8,9,10,10a-octahydrobenzo[h]quinazolinyl, 1-phenyl-1H-pyrrolyl, phenazinyl,
phenothiazinyl, phenoazinyl, phthalazinyl, phenanthridinyl, pteridinyl, purinyl, pyrrolyl,
pyrazolyl, pyrazolo[3,4-d]pyrimidinyl, pyridinyl, pyrido[3,2-d]pyrimidinyl,
pyrido[3,4-d]pyrimidinyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, quinazolinyl,
10 quinoxaliny, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl,
5,6,7,8-tetrahydroquinazolinyl, 2,3,4,5-tetrahydrobenzo[b]oxepinyl,
3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridinyl,
6,7,8,9-tetrahydro-5H-pyrido[3,2-c]azepinyl,
5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinyl,
15 6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidinyl,
5,6,7,8-tetrahydropyrido[4,5-c]pyridazinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl,
1,2,3,4-tetrahydroisoquinolin-7-yl, triazinyl, thieno[2,3-d]pyrimidinyl,
thieno[3,2-d]pyrimidinyl, thieno[2,3-c]pyridinyl, thieno[3,2-d]pyridazinyl and thiophenyl
(i.e., thienyl). Unless stated otherwise specifically in the specification, the term "
20 optionally substituted heteroaryl" is meant to include heteroaryl radicals as defined above
which are optionally substituted by one or more substituents selected from the group
consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo,
cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally
substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl,
25 optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally
substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted
heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted
heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted
heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted
heteroarylalkynyl, optionally substituted heteroarylalkyl, optionally substituted
30 heteroarylalkynyl, -R²¹-OR²⁰, -R²¹-OC(O)-R²⁰, -R²¹-N(R²⁰)₂, -R²¹-C(O)R²⁰, -R²¹-C(O)OR²⁰,
-R²¹-C(O)N(R²⁰)₂, -R²¹-N(R²⁰)C(O)OR²⁰, -R²¹-N(R²⁰)C(O)R²⁰, -R²¹-N(R²⁰)S(O)_tR²⁰ (where
t is 1 or 2), -R²¹-S(O)_tOR²⁰ (where t is 1 or 2), -R²¹-S(O)_pR²⁰ (where p is 0, 1 or 2), and
-R²¹-S(O)_tN(R²⁰)₂ (where t is 1 or 2), where each R²⁰ is independently selected from the
group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally
35 substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl,

optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R²⁰'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl, and each 5 R²¹ is independently a direct bond or a straight or branched alkylene or alkenylene chain.

"*N*-heteroaryl" refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. An *N*-heteroaryl radical may be optionally substituted as described above for heteroaryl radicals.

10 "Heteroarylalkyl" refers to a radical of the formula -R_bR_i where R_b is an alkylene chain as defined above and R_i is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkyl radical may be optionally substituted as defined above for a heteroaryl. The alkylene chain part of the heteroarylalkyl radical may be optionally substituted as defined above for an alkylene chain.

15 "Heteroarylalkenyl" refers to a radical of the formula -R_dR_i where R_d is an alkenylene chain as defined above and R_i is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkenyl radical may be optionally substituted as defined above for a heteroaryl. The alkenylene chain part of the heteroarylalkenyl radical may be optionally substituted as defined above for an alkenylene chain.

20 "Heteroarylalkynyl" refers to a radical of the formula -R_eR_i where R_e is an alkynylene chain as defined above and R_i is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkynyl radical may be optionally substituted as defined above for a heteroaryl. The alkynylene chain part of the heteroarylalkynyl radical may be optionally substituted as defined above for an alkynylene chain.

25 "Hydroxyalkyl" refers to an alkyl radical as defined above which is substituted by one or more hydroxy radicals (-OH).

"Hydroxyalkenyl" refers to an alkenyl radical as defined above which is substituted by one or more hydroxy radicals (-OH).

30 "Hydroxyalkynyl" refers to an alkynyl radical as defined above which is substituted by one or more hydroxy radicals (-OH).

Certain chemical groups named herein may be preceded by a shorthand notation indicating the total number of carbon atoms that are to be found in the indicated chemical group. For example; C₇-C₁₂alkyl describes an alkyl group, as defined below, having a total of 7 to 12 carbon atoms, and C₄-C₁₂cycloalkylalkyl describes a cycloalkylalkyl group, 35 as defined below, having a total of 4 to 12 carbon atoms. The total number of carbons in

the shorthand notation does not include carbons that may exist in substituents of the group described.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

"Mammal" includes humans and domestic animals, such as cats, dogs, swine, cattle, sheep, goats, horses, rabbits, and the like. Preferably, for purposes of this invention, the mammal is a human.

"Optional" or "optionally" means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, "optionally substituted aryl" means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. When a functional group is described as "optionally substituted," and in turn, substituents on the functional group are also "optionally substituted" and so on, for the purposes of this invention, such iterations are limited to five, preferably such iterations are limited to two.

"Pharmaceutically acceptable excipient" includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals.

"Pharmaceutically acceptable salt" includes both acid and base addition salts.

"Pharmaceutically acceptable acid addition salt" refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfonic acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-

5 glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, *p*-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like.

10 "Pharmaceutically acceptable base addition salt" refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from 15 organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, 20 lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, *N*-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are 25 isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.

 A "pharmaceutical composition" refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, for example, humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor.

30 "Therapeutically effective amount" refers to that amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to effect treatment, as defined below, of a disease or condition of interest in the mammal, preferably a human. The amount of a compound of the invention which constitutes a 35 "therapeutically effective amount" will vary depending on the compound, the disease or condition and its severity, and the age of the mammal to be treated, but can be

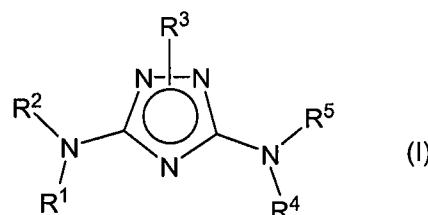
determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure.

"Treating" or "treatment" as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes:

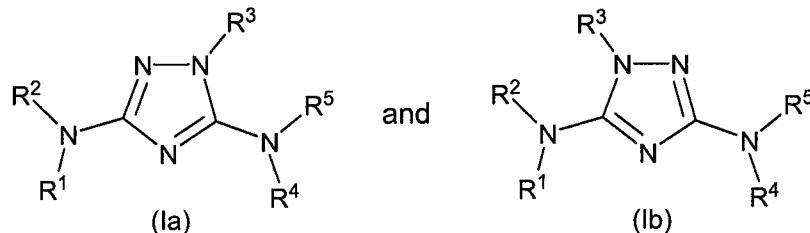
- (i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it;
- (ii) inhibiting the disease or condition, *i.e.*, arresting its development;
- (iii) relieving the disease or condition, *i.e.*, causing regression of the disease or condition; or
- (iv) stabilizing the disease or condition.

As used herein, the terms "disease" and "condition" may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians.

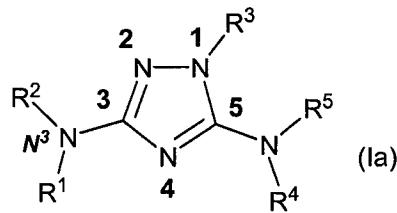
The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centres and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (-), (R)- and (S)-, or (D)- and (L)- isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, such as HPLC using a chiral column. When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.

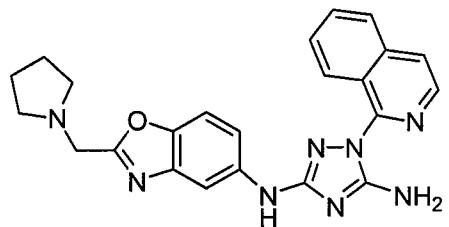

A "stereoisomer" refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes "enantiomers", which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another.

A "tautomer" refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds.

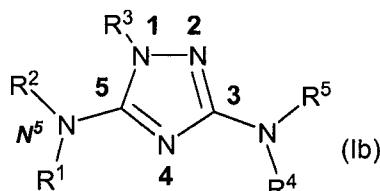

"Atropisomers" are stereoisomers resulting from hindered rotation about single bonds where the barrier to rotation is high enough to allow for the isolation of the conformers (Eliel, E. L.; Wilen, S. H. *Stereochemistry of Organic Compounds*; Wiley & Sons: New York, 1994; Chapter 14). Atropisomerism is significant because it introduces 5 an element of chirality in the absence of stereogenic atoms. The invention is meant to encompass atropisomers, for example in cases of limited rotation around the single bonds emanating from the core triazole structure, atropisomers are also possible and are also specifically included in the compounds and/or prodrugs of the invention.

The chemical naming protocol and structure diagrams used herein are a modified 10 form of the I.U.P.A.C. nomenclature system wherein the compounds of the invention are named herein as derivatives of the central core structure, *i.e.*, the triazole structure. For complex chemical names employed herein, a substituent group is named before the group to which it attaches. For example, cyclopropylethyl comprises an ethyl backbone with cyclopropyl substituent. In chemical structure diagrams, all bonds are identified, 15 except for some carbon atoms, which are assumed to be bonded to sufficient hydrogen atoms to complete the valency.

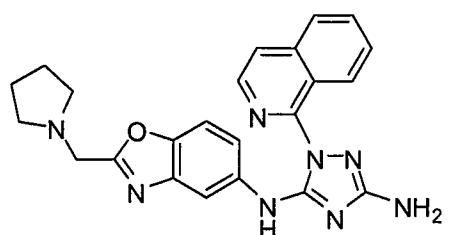

For purposes of this invention, the depiction of the bond attaching the R³ substituent to the parent triazole moiety in formula (I), as shown below:


20 is intended to include only the two regioisomers shown below (compounds of formula (Ia) and (Ib)):

The numbering system of the ring atoms in compounds of formula (Ia) is shown below:


For example, a compound of formula (Ia) wherein R¹, R⁴ and R⁵ are each hydrogen, R² is 2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl and R³ is isoquinolin-1-yl; *i.e.*, a compound of formula (Ia) having the following formula:

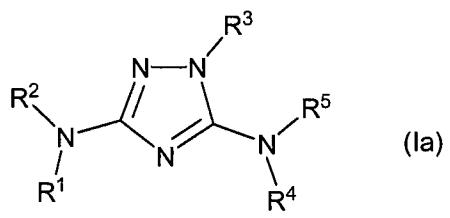
5


is named herein as 1-(isoquinolin-1-yl)-N³-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

The numbering system of the ring atoms in compounds of formula (Ib) is shown below:

10

For example, a compound of formula (Ib) wherein R¹, R⁴ and R⁵ are each hydrogen, R² is 2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl and R³ is isoquinolin-1-yl, *i.e.*, a compound of formula (Ib) having the following formula:



15 is named herein as 1-(isoquinolin-1-yl)-N⁵-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

EMBODIMENTS OF THE INVENTION

Of the various aspects of the invention, as set forth above in the Summary of the Invention, certain embodiments are preferred.

Accordingly, one embodiment is wherein the compound of formula (I) is a 5 compound of formula (Ia):

wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, -C(O)R⁸, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

10 R² is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-C(O)OR⁸, -R⁹-N(R⁶)-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)-C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

15 R³ is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo,

20 haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted

25 cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted

heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂,
5 -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³,
-R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹²,
-R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2),
-R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);
each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl,
10 alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂,
15 -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;
each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;
20 each R⁹ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R^{10} is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

5 each R^{11} is hydrogen, alkyl, cyano, nitro or $-OR^8$;

each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted

10 heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl;

each R^{13} is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally

15 substituted straight or branched alkenylene chain; and

each R^{14} is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the 20 compound of formula (Ia) wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2),

25 $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)R^8$ (where t is 1 or 2), $-R^9-S(O)OR^8$ (where t is 1

30 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)N(R^6)R^7$ (where t is 1 or 2);

R³ is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³, -R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)R¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the

common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; and

5 each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

10 R² is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-onyl, 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*d*]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, benzo[b]thiophenyl,

15 7',8'-dihydro-5'*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahdropentaleno[2,1-*b*]pyridinyl, and 6,7,8,9-tetrahydro-5*H*-cyclohepta[b]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

25 R³ is aryl optionally substituted by one or more substitutents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹²,

30 R⁴ is aryl optionally substituted by one or more substitutents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹²,

35 R⁵ is aryl optionally substituted by one or more substitutents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹²,

$-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$,
 $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$,
 $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)R^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$
 $($ where t is 1 or 2 $)$, $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$
5 $($ where t is 1 or 2 $)$;
each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl,
haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl,
optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally
10 substituted heterocycl, optionally substituted heterocyclalkyl, optionally
substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$,
 $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 ,
together with the common nitrogen to which they are both attached, form an
15 optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocycl;
each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl,
haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally
20 substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
heterocycl, optionally substituted heterocyclalkyl, optionally substituted
heteroaryl, and optionally substituted heteroarylalkyl;
each R^9 is independently selected from the group consisting of a direct bond and an
25 optionally substituted straight or branched alkylene chain;
each R^{10} is independently an optionally substituted straight or branched alkylene chain;
each R^{11} is hydrogen, alkyl, cyano, nitro or $-OR^8$;
each R^{12} is independently selected from the group consisting of hydrogen, alkyl,
haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
30 optionally substituted aryl, optionally substituted aralkyl, optionally substituted
heterocycl, optionally substituted heterocyclalkyl, optionally substituted
heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the
common nitrogen to which they are both attached, may optionally form an
optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl;
each R^{13} is independently selected from the group consisting of a direct bond and an
35 optionally substituted straight or branched alkylene chain; and
each R^{14} is independently an optionally substituted straight or branched alkylene chain.
Another embodiment of a compound of formula (Ia), as set forth above, is the
compound of formula (Ia) wherein:
 R^1 , R^4 and R^5 are each hydrogen;

R² is 2,3-dihydrobenzo[b][1,4]dioxinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, 10 optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2),

15 -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, 20 -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, 25 haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an 30 optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, 35 optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted

heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; and each R^{13} is independently selected from the group consisting of a direct bond and an 5 optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is N^3 -(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)-1-phenyl-1*H*-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the 10 compound of formula (Ia) wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, -C(O)N(R^6) R^7 , and -C(=NR⁶)N(R^6) R^7 ;

R^2 is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, 15 isoquinoliny, pyrimidinyl, 2,3-dihydrobenzo[*b*][1,4]dioxinyl, 4,5-dihydro-1*H*-benzo[*b*]azepin-2(3*H*)-onyl, 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*d*]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, benzo[*b*]thiophenyl, 7',8'-dihydro-5'*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahydropentaleno[2,1-*b*]pyridinyl, and

20 6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted 25 heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN,

-R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R^6) R^7 , -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R^6) R^7 , -R⁹-O-R¹⁰-C(NR¹¹)N(R^11)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R^6) R^7 , -R⁹-C(O)-R¹⁰-N(R^6) R^7 , -R⁹-N(R^6)R⁷, -R⁹-N(R^6)-R¹⁰-N(R^6) R^7 , -R⁹-N(R^6)C(O)OR⁸, -R⁹-N(R^6)C(O)-R¹⁰-N(R^6) R^7 , -R⁹-N(R^6)C(O)R⁸, -R⁹-N(R^6)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)N(R^6) R^7 (where t is 1 or 2);

30 R^3 is heteroaryl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally

substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹²,
5 -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂,
-R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³, -R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹²,
-R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)R¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹²
(where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂
(where t is 1 or 2);
each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl,
10 haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl,
optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally
substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally
substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN,
-R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷,
15 together with the common nitrogen to which they are both attached, form an
optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;
each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl,
haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally
substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
20 heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
heteroaryl, and optionally substituted heteroarylalkyl;
each R⁹ is independently selected from the group consisting of a direct bond and an
optionally substituted straight or branched alkylene chain;
each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;
25 each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;
each R¹² is independently selected from the group consisting of hydrogen, alkyl,
haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
optionally substituted aryl, optionally substituted aralkyl, optionally substituted
heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
30 heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the
common nitrogen to which they are both attached, may optionally form an
optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;
each R¹³ is independently selected from the group consisting of a direct bond and an
optionally substituted straight or branched alkylene chain; and
35 each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

5 R² is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1H-pyrrolo[2,3-b]pyridinyl, benzo[b]thiophenyl, 10 7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridinyl, and 6,7,8,9-tetrahydrocyclohepta[b]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

20 25 R³ is selected from the group consisting of pyridinyl, pyrimidinyl, isoquinolinyl, quinazolinyl, phenanthridinyl, thieno[3,2-d]pyrimidinyl, thieno[3,2-d]pyridazinyl, 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl, and furo[3,2-c]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, 30 optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³, -R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², 35

-R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, 5 haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷,

10 together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocycl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

20 each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted

25 heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl;

each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; and

30 each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

R¹, R⁴ and R⁵ are each hydrogen;

R² is selected from the group consisting of benzo[b]thiophenyl,

35 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 2,3-dihydrobenzo[b][1,4]dioxinyl and

benzoxazolyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

5 R³ is selected from the group consisting of isoquinolinyl, quinazolinyl and thieno[3,2-d]pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

10 each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

15 each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

20 each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

25 each R¹⁰ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

30 each R¹¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

35 each R¹² is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R^{10} is independently an optionally substituted straight or branched alkylene chain;
 each R^{12} is independently selected from the group consisting of hydrogen, alkyl,
 5 haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
 optionally substituted aryl, optionally substituted aralkyl, optionally substituted
 heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
 heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the
 common nitrogen to which they are both attached, may optionally form an
 optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and
 each R^{13} is independently selected from the group consisting of a direct bond and an
 10 optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is selected from the group consisting of:

N^3 -(isoquinolin-1-yl)- N^3 -(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

15 1-(6-chloroquinazolin-4-yl)- N^3 -(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

N^3 -(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(isoquinolin-1-yl)-1*H*-1,2,4-triazole-3,5-diamine;

N^3 -(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-1,2,4-triazole-3,5-diamine;

20 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-on-8-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(2-(1-(4-(2-(dimethylamino)ethyl)piperazin-1-yl)oxomethyl)benzo[b]thiophen-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

25 Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

R^1 , R^4 and R^5 are each hydrogen;

R^2 is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl,

30 optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$,
 $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$,
 35 $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$,

-R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of pyridinyl and pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, 5 optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, 10 optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an 15 optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; 20

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl,

haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, 25 optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and 30 35

each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) selected from the group consisting of:

5 1-(5-trifluoromethylpyridin-2-yl)-N³-(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
1-(6-phenylpyrimidine-4-yl)-N³-(3-methyl-2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the
10 compound of formula (Ia) wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl,

15 optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is quinazolinyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro,

25 optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally

substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an 5 optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; 10 each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R^{10} is independently an optionally substituted straight or branched alkylene chain; each R^{12} is independently selected from the group consisting of hydrogen, alkyl, 15 haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an 20 optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the 25 compound of formula (Ia) which is selected from the group consisting of:

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-cyclopentyl-1,4-diazepan-1-yl)pyridin-3-yl)-30 1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-pyrrolidin-1-ylpiperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-piperidin-1-ylpiperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(diethylaminoethylmethylamino)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

5 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(2-diethylaminomethylpyrrolidin-1-yl)piperidin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

10 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

15 1-(2-methylquinazolin-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6-fluoroquinazolin-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

20 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-bromopyridin-3-yl)-5-(3-(6-bromopyridin-3-yl)-2-cyanoguanadino)-1*H*-1,2,4-triazole-3-amine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-bromopyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

25 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(4-piperidin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

30 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(4-dimethylaminopiperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(3-(diethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

35 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(3-(dimethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-piperidin-1-ylpropenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(4-pyrrolidin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(3-(4-cyclopentylpiperazin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridine-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(*S*)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

*R*¹, *R*⁴ and *R*⁵ are each hydrogen;

*R*² is pyridinyl optionally substituted by one or more substituents selected from the group

10 consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -*R*⁹-OR⁸, -*R*⁹-OC(O)-R⁸, -*R*⁹-C(O)R⁸, -*R*⁹-C(O)OR⁸, -*R*⁹-C(O)N(R⁶)R⁷, -*R*⁹-C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)R⁷, -*R*⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)OR⁸, -*R*⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)R⁸, -*R*⁹-N(R⁶)S(O)_tR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_tOR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_pR⁸ (where *p* is 0, 1 or 2), and -*R*⁹-S(O)_tN(R⁶)R⁷ (where *t* is 1 or 2);

*R*³ is selected from the group consisting of isoquinolinyl and phenanthridinyl, each

20 optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹³-OR¹², -*R*¹³-OC(O)-R¹², -*R*¹³-N(R¹²)₂, -*R*¹³-C(O)R¹², -*R*¹³-C(O)OR¹², -*R*¹³-C(O)N(R¹²)₂, -*R*¹³-N(R¹²)C(O)OR¹², -*R*¹³-N(R¹²)C(O)R¹², -*R*¹³-N(R¹²)S(O)_tR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_tOR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_pR¹² (where *p* is 0, 1 or 2), and -*R*¹³-S(O)_tN(R¹²)₂ (where *t* is 1 or 2);

each *R*⁶ and *R*⁷ is independently selected from the group consisting of hydrogen, alkyl,

30 haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹⁰-OR⁸, -*R*¹⁰-CN, -*R*¹⁰-NO₂, -*R*¹⁰-N(R⁸)₂, -*R*¹⁰-C(O)OR⁸ and -*R*¹⁰-C(O)N(R⁸)₂, or any *R*⁶ and *R*⁷, together with the common nitrogen to which they are both attached, form an

optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

5 each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

10 each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the

15 common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the
20 compound of formula (Ia) which is selected from the group consisting of:

1-(isoquinolin-1-yl)-N³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-
1,2,4-triazole-3,5-diamine;

1-(isoquinolin-1-yl)-N³-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-
diamine; and

25 1-(phenanthridin-6-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-
1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

R¹, R⁴ and R⁵ are each hydrogen;

30 R² is selected from the group consisting of pyridinyl and 1*H*-pyrrolo[2,3-*b*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted

heteroarylalkenyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$,
 $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$,
 $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$,
 $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$
 5 (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);
 R^3 is selected from the group consisting of thieno[3,2-*d*]pyrimidinyl and
 thieno[3,2-*d*]pyridazinyl, each optionally substituted by one or more substituents
 selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl,
 10 cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally
 substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
 heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
 heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$,
 $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$,
 $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2),
 15 $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and
 $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);
 each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl,
 haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl,
 20 optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally
 substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally
 substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$,
 $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 ,
 together with the common nitrogen to which they are both attached, form an
 25 optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;
 each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl,
 haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally
 substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
 heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
 heteroaryl, and optionally substituted heteroarylalkyl;
 30 each R^9 is independently selected from the group consisting of a direct bond and an
 optionally substituted straight or branched alkylene chain;
 each R^{10} is independently an optionally substituted straight or branched alkylene chain;
 each R^{12} is independently selected from the group consisting of hydrogen, alkyl,
 35 haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
 optionally substituted aryl, optionally substituted aralkyl, optionally substituted

heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and

5 each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-cyclopentyl-1,4-diazepan-1-

10 yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine;

15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-piperidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine;

20 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(1H-pyrrolo[2,3-b]pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(1H-pyrrolo[2,3-b]pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

25 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(4-(azepan-1-yl)piperidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(diethylaminoethylmethylamino)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

30 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(2-diethylaminomethylpyrrolidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(4-cyclopropylmethyl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

5 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(5-bicyclo[2.2.1]heptan-2-yl)octahydropyrrol[3,4-c]pyrrolyl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(4-cyclopropyl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

15 1-(7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(4-((1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(1-bicyclo[2.2.1]heptan-2-yl)piperidin-4-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

20 1-(7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(1-bicyclo[2.2.1]heptan-2-yl)-5-methylpiperidin-4-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(4-(cyclopropylmethyl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

25 1-(7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

30 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(3-(*S*)-methyl-4-(1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(thieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(3-(*S*)-methyl-4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

35 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(4-(2*S*)-bicyclo[2.2.1]heptan-2-

ylpiperazin-1-yl)-3-chloropyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-5-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(4-methylthieno[3,2-d]pyridazine-7-yl)-*N*³-(2-(4-(1*S,2S,4R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
10 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-bromopyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
15 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(pyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(3-dimethylaminopyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
20 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(3-diethylaminopyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-pyrrolidin-1-yl-piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
25 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
30 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-cyclopentylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(morpholin-4-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
35 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-piperidin-1-yl)piperidin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

5 R¹, R⁴ and R⁵ are each hydrogen;

10 R² is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

15 R³ is selected from the group consisting of furo[3,2-c]pyridinyl and 6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

20 each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

25 each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl,

haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

5 each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,

10 optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and

15 each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is selected from the group consisting of:

1-(furo[3,2-c]pyridine-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-
20 1H-1,2,4-triazole-3,5-diamine; and

1-(6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

25 R¹, R⁴ and R⁵ are each hydrogen;

R² is 6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl,

30 optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and

$-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of thieno[3,2-*d*]pyrimidinyl and quinazolinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2); each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R^{10} is independently an optionally substituted straight or branched alkylene chain;

each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and

each R^{13} is independently selected from the group consisting of a direct bond and an

optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(7-cyclopentyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepin-3-yl)-1H-1,2,4-triazole-3,5-diamine; and
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(7-cyclopentyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepin-3-yl)-1H-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

10 R¹, R⁴ and R⁵ are each hydrogen;
R² is 5,6,7,8-tetrahydro-1,6-naphthyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, 15 optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 20 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of isoquinolinyl and thieno[3,2-d]pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, 25 optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), 30 -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, 35 optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally

substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

5 each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

10 each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R^{10} is independently an optionally substituted straight or branched alkylene chain; each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,

15 optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and

20 each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-methyl-5,6,7,8-tetrahydro-1,6-25 naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(isoquinolin-1-yl)- N^3 -(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-benzyl-5,6,7,8-tetrahydro-1,6-30 naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(ethylcarboxy)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(dimethylaminomethylcarbonyl)-35 5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(dimethylaminomethylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(2-dimethylaminoethyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

5 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(1-methylpiperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(1-methylpiperidin-4-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(piperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

15 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(1-methylpiperidin-4-yl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

20 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-cyclopropylmethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(6-(dimethylaminomethyl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

25 R^1 , R^4 and R^5 are each hydrogen;

R^2 is selected from the group consisting of 6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridinyl, 4*b*,5,6,7,7*a*,8-hexahydropentaleno[2,1-*b*]pyridinyl, 5,6,7,8-tetrahydroquinolinyl, and 7',8'-dihydro-5'*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, each optionally substituted by one or more substituents selected from the group consisting of

30 cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, - R^9 -OR⁸, - R^9 -OC(O)-R⁸, - R^9 -C(O)R⁸, - R^9 -C(O)OR⁸,

35 - R^9 -C(O)N(R⁶)R⁷, - R^9 -C(O)-R¹⁰-N(R⁶)R⁷, - R^9 -N(R⁶)R⁷, - R^9 -N(R⁶)-R¹⁰-N(R⁶)R⁷,

$\text{-R}^9\text{-N(R}^6\text{)C(O)OR}^8$, $\text{-R}^9\text{-N(R}^6\text{)C(O)-R}^{10}\text{-N(R}^6\text{)R}^7$, $\text{-R}^9\text{-N(R}^6\text{)C(O)R}^8$,
 $\text{-R}^9\text{-N(R}^6\text{)S(O)}_t\text{R}^8$ (where t is 1 or 2), $\text{-R}^9\text{-S(O)}_t\text{OR}^8$ (where t is 1 or 2), $\text{-R}^9\text{-S(O)}_p\text{R}^8$
 (where p is 0, 1 or 2), and $\text{-R}^9\text{-S(O)}_t\text{N(R}^6\text{)R}^7$ (where t is 1 or 2);

R^3 is thieno[3,2-*d*]pyrimidinyl optionally substituted by one or more substituents selected
 5 from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano,
 nitro, optionally substituted aryl, optionally substituted aralkyl, optionally
 substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
 heterocycl, optionally substituted heterocyclalkyl, optionally substituted
 heteroaryl, optionally substituted heteroarylalkyl, $\text{-R}^{13}\text{-OR}^{12}$, $\text{-R}^{13}\text{-OC(O)-R}^{12}$,
 10 $\text{-R}^{13}\text{-N(R}^{12}\text{)}_2$, $\text{-R}^{13}\text{-C(O)R}^{12}$, $\text{-R}^{13}\text{-C(O)OR}^{12}$, $\text{-R}^{13}\text{-C(O)N(R}^{12}\text{)}_2$,
 $\text{-R}^{13}\text{-N(R}^{12}\text{)C(O)OR}^{12}$, $\text{-R}^{13}\text{-N(R}^{12}\text{)C(O)R}^{12}$, $\text{-R}^{13}\text{-N(R}^{12}\text{)S(O)}_t\text{R}^{12}$ (where t is 1 or 2),
 $\text{-R}^{13}\text{-S(O)}_t\text{OR}^{12}$ (where t is 1 or 2), $\text{-R}^{13}\text{-S(O)}_p\text{R}^{12}$ (where p is 0, 1 or 2), and
 $\text{-R}^{13}\text{-S(O)}_t\text{N(R}^{12}\text{)}_2$ (where t is 1 or 2);
 each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl,
 15 haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl,
 optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally
 substituted heterocycl, optionally substituted heterocyclalkyl, optionally
 substituted heteroaryl, optionally substituted heteroarylalkyl, $\text{-R}^{10}\text{-OR}^8$, $\text{-R}^{10}\text{-CN}$,
 $\text{-R}^{10}\text{-NO}_2$, $\text{-R}^{10}\text{-N(R}^8\text{)}_2$, $\text{-R}^{10}\text{-C(O)OR}^8$ and $\text{-R}^{10}\text{-C(O)N(R}^8\text{)}_2$, or any R^6 and R^7 ,
 20 together with the common nitrogen to which they are both attached, form an
 optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocycl;
 each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl,
 haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally
 substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
 25 heterocycl, optionally substituted heterocyclalkyl, optionally substituted
 heteroaryl, and optionally substituted heteroarylalkyl;
 each R^9 is independently selected from the group consisting of a direct bond and an
 optionally substituted straight or branched alkylene chain;
 each R^{10} is independently an optionally substituted straight or branched alkylene chain;
 30 each R^{12} is independently selected from the group consisting of hydrogen, alkyl,
 haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
 optionally substituted aryl, optionally substituted aralkyl, optionally substituted
 heterocycl, optionally substituted heterocyclalkyl, optionally substituted
 heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the
 35 common nitrogen to which they are both attached, may optionally form an

optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ia), as set forth above, is the 5 compound of formula (Ia) which is selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(pyrrolidin-1ylcarbonyl)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(2-(dimethylamino)-1-oxyethylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-amino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(pyrrolidin-1-yl)-4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

20 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(4-methylpiperazin-1-yl)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

25 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

30 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

35 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(1-methylpiperidin-4-yl)carbonylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-cyclohexylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-bicyclo[2.2.1]heptan-2-yl-amino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-bis-(cyclopropylmethyl)amino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and

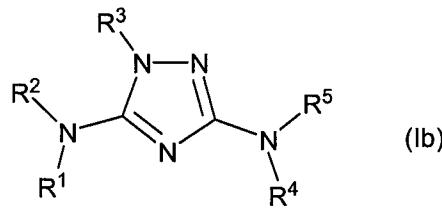
5 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5*H*-cyclohepta[b]pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) wherein:

*R*¹, *R*⁴ and *R*⁵ are each hydrogen;

10 *R*² is pyrimidinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -*R*⁹-OR⁸, -*R*⁹-OC(O)-R⁸,

15 -*R*⁹-C(O)R⁸, -*R*⁹-C(O)OR⁸, -*R*⁹-C(O)N(R⁶)R⁷, -*R*⁹-C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)R⁷, -*R*⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)OR⁸, -*R*⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)R⁸, -*R*⁹-N(R⁶)S(O)_tR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_tOR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_pR⁸ (where *p* is 0, 1 or 2), and -*R*⁹-S(O)_tN(R⁶)R⁷ (where *t* is 1 or 2);


20 *R*³ is selected from the group consisting of quinazolinyl and thieno[3,2-d]pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹³-OR¹², -*R*¹³-OC(O)-R¹², -*R*¹³-N(R¹²)₂, -*R*¹³-C(O)R¹², -*R*¹³-C(O)OR¹², -*R*¹³-C(O)N(R¹²)₂, -*R*¹³-N(R¹²)C(O)OR¹², -*R*¹³-N(R¹²)C(O)R¹², -*R*¹³-N(R¹²)S(O)_tR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_tOR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_pR¹² (where *p* is 0, 1 or 2), and -*R*¹³-S(O)_tN(R¹²)₂ (where *t* is 1 or 2);

25 30 each *R*⁶ and *R*⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹⁰-OR⁸, -*R*¹⁰-CN, -*R*¹⁰-NO₂, -*R*¹⁰-N(R⁸)₂, -*R*¹⁰-C(O)OR⁸ and -*R*¹⁰-C(O)N(R⁸)₂, or any *R*⁶ and *R*⁷,

together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, 5 haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; 10 each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the 15 common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

20 Another embodiment of a compound of formula (Ia), as set forth above, is the compound of formula (Ia) which is selected from the group consisting of: 1-(6,7-dimethoxyquinazoline-4-yl)-N³-(2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; 1-(6,7-dimethoxyquinazoline-4-yl)-N³-(2-(4-piperidin-1-ylmethylpiperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; 25 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-N³-(2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-N³-(2-(4-(piperidin-1-ylmethyl)piperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

30 Another embodiment of the invention, as set forth above in the Summary of the Invention, is where the compound of formula (I) is a compound of formula (Ib):

wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, $-C(O)R^8$, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

5 R^2 is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);

10 R^3 is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$,

-R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2),
-R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);
each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl,
alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, optionally
5 substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl,
optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally
substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally
substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally
substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally
substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally
10 substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally
substituted heteroarylalkynyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂,
-R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common
nitrogen to which they are both attached, form an optionally substituted N-
15 heteroaryl or an optionally substituted N-heterocyclyl;
each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl,
alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally
substituted aralkyl, optionally substituted aralkenyl, optionally substituted
aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
20 optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl,
optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl,
optionally substituted heterocyclylalkenyl, optionally substituted
heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted
heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted
heteroarylalkynyl;
25 each R⁹ is independently selected from the group consisting of a direct bond, an
optionally substituted straight or branched alkylene chain, an optionally
substituted straight or branched alkenylene chain and an optionally substituted
straight or branched alkynylene chain;
each R¹⁰ is independently selected from the group consisting of an optionally substituted
30 straight or branched alkylene chain, an optionally substituted straight or branched
alkenylene chain and an optionally substituted straight or branched alkynylene
chain;
each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;
35 each R¹² is independently selected from the group consisting of hydrogen, alkyl,

haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

5 each R¹³ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

10 each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain.

Another embodiment of a compound of formula (Ib), as set forth above, is the compound of formula (Ib) wherein:

15 R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2),

20 -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

25 R³ is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally

30

35

substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³, -R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)R¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, 10 optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an 15 optionally substituted N-heteroaryl or an optionally substituted N-heterocycl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; 20 each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸; 25 each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the 30 common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl; each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; and each R¹⁴ is independently an optionally substituted straight or branched alkylene chain. 35 Another embodiment of a compound of formula (Ib), as set forth above, is the

compound of formula (Ib) wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl,

5 isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[*b*][1,4]dioxinyl, 4,5-dihydro-1*H*-benzo[*b*]azepin-2(3*H*)-onyl, 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*d*]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, benzo[*b*]thiophenyl, 7',8'-dihydro-5'*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 10 4b,5,6,7,7a,8-hexahydropentaleno[2,1-*b*]pyridinyl, and 6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, 20 $-R^9-N(R^6)S(O)_tR^8$ (where *t* is 1 or 2), $-R^9-S(O)_tOR^8$ (where *t* is 1 or 2), $-R^9-S(O)_pR^8$ (where *p* is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where *t* is 1 or 2);

R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)R^{12}$ (where *t* is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where *t* is 1 or 2), 30 $-R^{13}-S(O)_pR^{12}$ (where *p* is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where *t* is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$,

-R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, 5 haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an 10 optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, 15 optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an 20 optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ib), as set forth above, is the compound of formula (Ib) wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

25 R² is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1H-pyrrolo[2,3-b]pyridinyl, benzo[b]thiophenyl, 30 7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridinyl, and 6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, 35 haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted

heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸,
5 -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷,
-R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸,
-R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸
(where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);
R³ is a heteroaryl selected from the group consisting of pyridinyl, isoquinolinyl,
10 quinazolinyl, phenanthridinyl, thieno[3,2-*d*]pyrimidinyl, thieno[3,2-*d*]pyridazinyl,
6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidinyl, and furo[3,2-*c*]pyridinyl,
each optionally substituted by one or more substituents selected from the group
15 consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally
substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl,
optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally
substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally
substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹²,
-R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹²,
-R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2),
-R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);
20 each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl,
haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl,
optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally
substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally
substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN,
25 -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷,
together with the common nitrogen to which they are both attached, form an
optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;
each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl,
30 haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally
substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
heteroaryl, and optionally substituted heteroarylalkyl;
each R⁹ is independently selected from the group consisting of a direct bond and an
optionally substituted straight or branched alkylene chain;
35 each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

Another embodiment of a compound of formula (Ib), as set forth above, is the compound of formula (Ib) selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N⁵-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(4-methylthieno[2,3-d]pyridazin-7-yl)-N⁵-(2-(4-(1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N⁵-(2-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

Other preferred embodiments of R¹, R², R³, R⁴ and R⁵ of the compounds of formula (Ib) are the same as set forth above for R¹, R², R³, R⁴ and R⁵ of the compounds of formula (Ia).

In any of the embodiments disclosed above, a particular embodiment is directed to compounds of the invention wherein the optionally substituted heteroaryls for R² are selected from the group consisting of optionally substituted benzoxazolyl, optionally substituted pyridinyl, optionally substituted isoquinolinyl, optionally substituted pyrimidinyl, optionally substituted 2,3-dihydrobenzo[b][1,4]dioxinyl, optionally substituted 4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-onyl, optionally substituted 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-d]azepinyl, optionally substituted 5,6,7,8-tetrahydro-1,6-naphthyridinyl, optionally substituted 5,6,7,8-tetrahydroquinolinyl, optionally substituted 1*H*-pyrrolo[2,3-b]pyridinyl, benzo[b]thiophenyl, optionally substituted 7',8'-dihydro-5'*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, and optionally substituted 4*b*,5,6,7,7*a*,8-hexahydropentaleno[2,1-*b*]pyridinyl. Of this embodiment, a particular embodiment is where the optional substituents for these heteroaryls are optionally substituted heterocycl, optionally substituted heterocyclalkyl and optionally substituted heterocyclalkenyl. Of this embodiment, a particular embodiment is where the optional substituents on the optionally substituted heterocycl, optionally substituted

heterocyclalkyl and optionally substituted heterocyclalkenyl are optionally substituted heterocycl, C₃-C₆ monocyclic cycloalkyl radicals, C₃-C₆ monocyclic cycloalkylalkyl radicals, C₇-C₁₅ polycyclic cycloalkyl radicals, such as norbornanyl, norbornenyl, as well as substituted C₇-C₁₅ polycyclic cycloalkyl radicals, such as

5 7,7-dimethyl-bicyclo[2.2.1]heptanyl.

In any of the embodiments disclosed above, a particular embodiment is directed to compounds of the invention wherein the optionally substituted aryls and heteroaryls for R³ are selected from the group consisting of optionally substituted phenyl, optionally substituted pyridinyl, optionally substituted pyrimidinyl, optionally substituted isoquinolinyl, optionally substituted quinazolinyl, optionally substituted phenanthridinyl, optionally substituted thieno[3,2-d]pyrimidinyl, optionally substituted thieno[3,2-d]pyridazinyl, optionally substituted 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl, and optionally substituted furo[3,2-c]pyridinyl.

In any of the embodiments disclosed above, a particular embodiment is directed to compounds of the invention wherein the optionally substituted heteroaryls for R³ are selected from the group consisting of optionally substituted isoquinolinyl, optionally substituted pyridinyl, optionally substituted pyrimidinyl, optionally substituted quinazolinyl, optionally substituted phenanthridinyl, optionally substituted thieno[3,2-d]pyrimidinyl, optionally substituted thieno[3,2-d]pyridazinyl, optionally substituted 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl, and optionally substituted furo[3,2-c]pyridinyl and wherein the optionally substituted heteroaryls for R² are selected from the group consisting of optionally substituted benzoxazolyl, optionally substituted pyridinyl, optionally substituted isoquinolinyl, optionally substituted pyrimidinyl, optionally substituted 2,3-dihydrobenzo[b][1,4]dioxinyl, optionally substituted 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, optionally substituted 6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepinyl, optionally substituted 5,6,7,8-tetrahydro-1,6-naphthyridinyl, optionally substituted 5,6,7,8-tetrahydroquinolinyl, optionally substituted 1H-pyrrolo[2,3-b]pyridinyl, benzo[b]thiophenyl, optionally substituted 7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, and optionally substituted 4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridinyl. Of this embodiment, a particular embodiment is where the optional substituents for these heteroaryls are optionally substituted heterocycl, optionally substituted heterocyclalkyl and optionally substituted heterocyclalkenyl, particularly optionally substituted piperidinylalkenyl, optionally substituted pyrrolidinylalkenyl, optionally substituted piperazinylalkenyl and optionally substituted morpholinoalkenyl. Of this embodiment, a particular embodiment

is where the optional substituents on the optionally substituted heterocyclyl, optionally substituted heterocyclalkyl and optionally substituted heterocyclalkenyl are optionally substituted heterocyclyl, C₃-C₆ monocyclic cycloalkyl radicals, C₃-C₆ monocyclic cycloalkylalkyl radicals, C₇-C₁₅ polycyclic cycloalkyl radicals, such as norbornanyl, 5 norbornenyl, as well as substituted C₇-C₁₅ polycyclic cycloalkyl radicals, such as 7,7-dimethyl-bicyclo[2.2.1]heptanyl.

Of the various aspects of the pharmaceutical compositions of the invention comprising a pharmaceutically acceptable excipient and a compound of formula (I), as set forth above in the Summary of the Invention, certain embodiments are preferred.

10 One embodiment of these pharmaceutical compositions is wherein the compound of formula (I) therein is selected from any one embodiment of the compound of formula (Ia), as set forth above, or from any combination of embodiments of the compound of formula (Ia), as set forth above, or the compound of formula (I) therein is selected from any one embodiment of the compound of formula (Ib), as set forth above, or from any 15 combination of embodiments of the compound of formula (Ib), as set forth above.

Of the various aspects of methods of treating a disease or condition associated with Axl activity in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of formula (I), certain embodiments are preferred.

20 One embodiment of these methods is the method wherein the disease or condition is selected from the group consisting of rheumatoid arthritis, vascular disease, vascular injury, psoriasis, visual impairment due to macular degeneration, diabetic retinopathy, retinopathy of prematurity, kidney disease, osteoporosis, osteoarthritis and cataracts.

25 One embodiment of these methods is the method wherein a manifestation of the disease or condition is solid tumor formation in said mammal.

One embodiment of these methods is the method wherein the disease or condition is selected from the group consisting of breast carcinoma, renal carcinoma, endometrial carcinoma, ovarian carcinoma, thyroid carcinoma, non-small cell lung 30 carcinoma, and uveal melanoma.

One embodiment of these methods is the method wherein a manifestation of the disease or condition is liquid tumor formation in said mammal.

One embodiment of these methods is the method wherein the disease or condition is myeloid leukemia or lymphoma.

35 One embodiment of these methods is the method wherein the disease or

condition is endometriosis.

One embodiment of these methods is the method wherein the compounds of formula (I) utilized therein is selected from any one embodiment of the compound of formula (Ia), as set forth above, or from any combination of embodiments of the compound of formula (Ia), as set forth above, or the compound of formula (I) therein is selected from any one embodiment of the compound of formula (Ib), as set forth above, or from any combination of embodiments of the compound of formula (Ib), as set forth above.

Another embodiment of the invention are those methods of treating a disease or condition associated with Axl activity by administering to the mammal a therapeutically effective amount of a pharmaceutical composition of the invention, as set forth above in the Summary of the Invention, wherein the disease or condition is selected from the group consisting of rheumatoid arthritis, vascular disease / injury (including but not limited to restenosis, atherosclerosis and thrombosis), psoriasis, visual impairment due to macular degeneration, diabetic retinopathy or retinopathy of prematurity, kidney disease (including but not limited to glomerulonephritis, diabetic nephropathy and renal transplant rejection), osteoporosis, osteoarthritis and cataracts.

Another embodiment of the invention are those methods of treating a disease or condition associated with Axl activity by administering to the mammal a therapeutically effective amount of a pharmaceutical composition of the invention, as set forth above in the Summary of the Invention, wherein the disease or condition is selected from the group consisting of breast carcinoma, renal carcinoma, endometrial carcinoma, ovarian carcinoma, thyroid carcinoma, non-small cell lung carcinoma, melanoma, prostate carcinoma, sarcoma, gastric cancer, uveal melanoma, myeloid leukemia and lymphoma.

Another embodiment of the invention are those methods of treating a disease or condition associated with Axl activity by administering to the mammal of therapeutically effective amount of a pharmaceutical composition of the invention, as set forth above in the Summary of the Invention, wherein the disease or condition is endometriosis.

It is understood that any embodiment of the compounds of formula (Ia) and compounds of formula (Ib), as set forth above, and any specific substituent set forth herein for a R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{14} and R^{15} group in the compounds of formula (Ia) and the compounds of formula (Ib), as set forth above, may be independently combined with other embodiments and/or substituents of compounds of formula (Ia) and compounds of formula (Ib) to form embodiments of the inventions not specifically set forth above. In addition, in the event that a list of substitutents is listed for

any particular R group in a particular embodiment and/or claim, it is understood that each individual substituent may be deleted from the particular embodiment and/or claim and that the remaining list of substituents will be considered to be within the scope of the invention.

5 Specific embodiments of the invention are described in more detail in the following sections.

UTILITY AND TESTING OF THE COMPOUNDS OF THE INVENTION

The oncogenic RTK, Axl, was recently identified, using a retroviral-based functional genetic screening protocol, as a regulator of haptotactic migration, which is a 10 key event in angiogenesis. Axl inhibition by RNAi-mediated silencing blocked endothelial cell migration, proliferation and *in vitro* tube formation. These observations, which were disclosed at the American Association Cancer Research General Meeting, April 16-20, 2005, Anaheim, California, and The 7th Annual Symposium on Anti-Angiogenic Agents, February 10-13, 2005, San Diego, California; (*Requirement for The Receptor Tyrosine 15 Kinase Axl in Angiogenesis and Tumor Growth*, Holland, S.J. Powell, M.J., Franci, C., Chan, E., Friera, A.M., Atchison, R., Xu, W., McLaughlin, J., Swift, S.E., Pali, E., Yam, G., Wong, S., Xu, X., Hu, Y., Lasaga, J., Shen, M., Yu, S., Daniel, R., Hitoshi, Y., Bogenberger, J., Nor, J.E., Payan, D.G and Lorens, J.B), were substantiated by an *in vivo* study which demonstrated that stable, shRNAi-mediated Axl knockdown impaired 20 formation of functional human blood vessels in a mouse model of human angiogenesis. These observations were published in a peer reviewed journal (Holland SJ, Powell MJ, Franci C, Chan EW, Friera AM, Atchison RE, McLaughlin J, Swift SE, Pali ES, Yam G, Wong S, Lasaga J, Shen MR, Yu S, Xu W, Hitoshi Y, Bogenberger J, Nor JE, Payan DG, Lorens JB. "Multiple roles for the receptor tyrosine kinase axl in tumor formation." *Cancer Res.* (2005) Vol 65 pp 9294-303. These observations are also disclosed in U.S. 25 Published Patent Application 2005/0118604 and European Patent Application 1 563 094, the disclosures of which are incorporated in full by reference. Axl signaling, therefore, impacts multiple functions required for neovascularization *in vitro*, and regulates angiogenesis *in vivo*. Regulation of these pro-angiogenic processes required the 30 catalytic activity of Axl. Thus, Axl-mediated angiogenic stimulation would be amenable to modulation by a small molecule inhibitor of Axl catalytic activity.

Accordingly, the compounds of the invention are small molecule inhibitors of Axl catalytic activity, and are therefore useful in treating diseases and conditions which are associated with Axl catalytic activity including those diseases and conditions which are

characterized by angiogenesis and/or cell proliferation. In particular, the compounds of the invention and pharmaceutical compositions of the invention are useful in treating diseases and conditions which are alleviated by the modulation of Axl activity. For purposes of this invention, diseases and conditions which are alleviated by the

5 "modulation of Axl activity" includes diseases and conditions which are alleviated by a decrease in Axl activity and diseases and conditions which are alleviated by an increase in Axl activity. Preferably such diseases and conditions are alleviated by a decrease in Axl activity. Diseases and conditions which are alleviated by the modulation of Axl activity include, but are not limited to, solid tumors, including, but not limited to, breast,

10 renal, endometrial, ovarian, thyroid, and non-small cell lung carcinoma, melanoma, prostate carcinoma, sarcoma, gastric cancer and uveal melanoma; liquid tumors, including but not limited to, leukemias (particularly myeloid leukemias) and lymphomas; endometriosis, vascular disease / injury (including but not limited to restenosis, atherosclerosis and thrombosis), psoriasis; visual impairment due to macular

15 degeneration; diabetic retinopathy and retinopathy of prematurity; kidney disease (including but not limited to glomerulonephritis, diabetic nephropathy and renal transplant rejection), rheumatoid arthritis; osteoarthritis, osteoporosis and cataracts.

In addition to the foregoing, the compounds of the invention are useful in treating diseases and conditions which are affected by the following biological processes:

20 Invasion, migration, metastasis, or drug resistance as manifested in cancer; stem cell biology as manifested in cancer; invasion, migration, adhesion, or angiogenesis as manifested in endometriosis; vascular remodeling as manifested in cardiovascular disease, hypertension or vascular injury; bone homeostasis as manifested in osteoporosis or osteoarthritis; viral infection as manifested, for example, in ebola virus

25 infection; or differentiation as manifested in obesity. The compounds of the invention may also be used to modulate inflammatory processes by treating sepsis, acting as vaccine adjuvants, and/or potentiating the immune response in immuno-compromised patients.

The following animal models provide guidance to one of ordinary skill in the art in

30 testing the compounds of the invention for their use in treating the disease or condition indicated.

The compounds of the invention may be tested for their use in treating leukemias and lymphomas by testing the compounds in the xenograft in SCID mouse model using human Axl-expressing cancer cell lines including, but not limited to, HeLa, MDA-MB-231,

35 SK-OV-3, OVCAR-8, DU145, H1299, ACHN, A498 and Caki-1.

The compounds of the invention may be tested for their use in treating leukemias in the xenograft in SCID or nu/nu mouse model using human Axl-expressing AML and CML leukemia cell lines.

The compounds of the invention may be tested for their use in treating 5 endometriosis by using the syngenic mouse model of endometriosis (see Somigliana, E. et al., "Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis", *Hum. Reprod.* (1999), Vol. 14, NO. 12, pp. 2944-50). The compounds may also be tested for their use in treating endometriosis by using the 10 rat model of endometriosis (see Lebovic, D.I. et al., "Peroxisome proliferator-activated receptor-gamma induces regression of endometrial explants in a rat model of endometriosis", *Fertil. Steril.* (2004), 82 Suppl 3, pp. 1008-13).

The compounds of the invention may be tested for their use in treating restenosis by using the balloon-injured rat carotid artery model (see Kim, D.W. et al., "Novel oral formulation of paclitaxel inhibits neointimal hyperplasia in a rat carotid artery injury 15 model", *Circulation* (2004), Vol. 109, No. 12, pp. 1558-63, Epub 2004 Mar 8).

The compounds of the invention may also be tested for their use in treating restenosis by using the percutaneous transluminal coronary angioplasty in apoE 20 deficient mouse model (see von der Thesen, J.H. et al., "Adenoviral transfer of endothelial nitric oxide synthase attenuates lesion formation in a novel murine model of postangioplasty restenosis", *Arterioscler. Thromb. Vasc. Biol.* (2004), Vol. 24, No. 2, pp. 357-62).

The compounds of the invention may be tested for their use in treating 25 atherosclerosis/thrombosis in the ApoE deficient mouse model (see Nakashima, Y. et al., "ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree", *Arterioscler. Thromb.* (1994), Vol. 14, No. 1, pp. 133-40).

The compounds of the invention may also be tested for their use in treating 30 thrombosis using the collagen-epinephrin-induced pulmonary thromboembolism model and the stasis induced venous thrombosis model (see Angelillo-Scherrer A. et al., "Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy", *J Clin Invest.* (2005) Vol 115 pp237-46).

The compounds of the invention may be tested for their use in treating psoriasis 35 by using the SCID mouse model or the human skin model of psoriasis (see Nickoloff, B.J. et al., "Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a new animal model", *Am. J. Pathol.* (1995), Vol. 146, No. 3, pp. 580-8).

The compounds of the invention may be tested for their use in treating age-related macular degeneration or diabetic retinopathy by using the rat corneal angiogenesis model (see Sarayba MA, Li L, Tungsiripat T, Liu NH, Sweet PM, Patel AJ, Osann KE, Chittiboyina A, Benson SC, Pershadsingh HA, Chuck RS. Inhibition of 5 corneal neovascularization by a peroxisome proliferator-activated receptor-gamma ligand. *Exp Eye Res.* 2005 Mar;80(3):435-42) or the laser-induced mouse choroidal neovascularization model (see Bora, P.S., et al., "Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration", *Proc. Natl. Acad. Sci. U. S. A.* (2003), Vol. 100, No. 5, pp. 2679-84, Epub 10 2003 Feb 14).

The compounds of the invention may be tested for their use in treating retinopathy of prematurity in the mouse retinopathy of prematurity model (see Smith, L.E. et al., "Oxygen-induced retinopathy in the mouse", *Invest. Ophthalmol. Vis. Sci.* (1994), Vol. 35, No. 1, pp. 101-11).

15 The compounds of the invention may be tested for their use in treating glomerulonephritis or diabetic nephropathy in the rat anti-Thy1.1-induced experimental mesengial proliferative glomerulonephritis model (see Smith, L.E. et al. cited above).

The compounds of the invention may be tested for their use in treating renal 20 transplant rejection by using a rat model of chronic renal transplant rejection (see Yin, J.L. et al., "Expression of growth arrest-specific gene 6 and its receptors in a rat model of chronic renal transplant rejection", *Transplantation* (2002), Vol. 73, No. 4, pp. 657-60).

The compounds of the invention may be tested for their use in treating 25 rheumatoid arthritis by using the CAIA mouse model (see Phadke, K. et al., "Evaluation of the effects of various anti-arthritic drugs on type II collagen-induced mouse arthritis model", *Immunopharmacology* (1985), Vol. 10, No. 1, pp. 51-60).

The compounds of the invention may be tested for their use in treating 30 osteoarthritis by using the STR/ORT mouse model (see Brewster, M. et al., "Ro 32-3555, an orally active collagenase selective inhibitor, prevents structural damage in the STR/ORT mouse model of osteoarthritis", *Arthritis. Rheum.* (1998), Vol. 41, No. 9, pp. 1639-44).

The compounds of the invention may be tested for their use in treating 35 osteoporosis by using the ovariectomized rat model (see Wronski, T.J. et al., "Endocrine and pharmacological suppressors of bone turnover protect against osteopenia in ovariectomized rats", *Endocrinology* (1989), Vol. 125, no. 2, pp 810-6) or the ovariectomized mouse model (see Alexander, J.M. et al., "Human parathyroid hormone

1-34 reverses bone loss in ovariectomized mice", *J Bone Miner Res.* (2001), Vol. 16, no. 9, pp 1665-73; Fujioka, M. et al., "Equol, a metabolite of daidzein, inhibits bone loss in ovariectomized mice", *J Nutr.* (2004), Vol. 134, no. 10, pp 2623-7).

The compounds of the invention may be tested for their use in treating cataracts
5 by using the H₂O₂-induced model (see Kadoya, K. et al., "Role of calpain in hydrogen peroxide induced cataract", *Curr. Eye Res.* (1993), Vol. 12, No. 4, pp. 341-6) or the Emory mouse model (see Sheets, N.L. et al., "Cataract- and lens-specific upregulation of ARK receptor tyrosine kinase in Emory mouse cataract", *Invest. Ophthalmol. Vis. Sci.* (2002), Vol. 43, No. 6, pp. 1870-5).

10 **PHARMACEUTICAL COMPOSITIONS OF THE INVENTION AND ADMINISTRATION**

Administration of the compounds of the invention, or their pharmaceutically acceptable salts, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration of agents for serving similar utilities. The pharmaceutical compositions of the invention can be prepared by
15 combining a compound of the invention with an appropriate pharmaceutically acceptable carrier, diluent or excipient, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. Typical routes of administering such pharmaceutical compositions include, without limitation, oral, topical, transdermal, inhalation, parenteral, sublingual, buccal, rectal, vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. Pharmaceutical compositions of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient.
20
25 Compositions that will be administered to a subject or patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of a compound of the invention in aerosol form may hold a plurality of dosage units. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see *Remington: The Science and Practice of Pharmacy*, 20th Edition (Philadelphia College of Pharmacy and Science, 2000). The composition to be administered will, in any event, contain a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof, for treatment of a disease or condition of interest in accordance with the teachings of this invention.

A pharmaceutical composition of the invention may be in the form of a solid or liquid. In one aspect, the carrier(s) are particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral oil, injectable liquid or an aerosol, which is useful in, for 5 example, inhalatory administration.

When intended for oral administration, the pharmaceutical composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid.

As a solid composition for oral administration, the pharmaceutical composition 10 may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition will typically contain one or more inert diluents or edible carriers. In addition, one or more of the following may be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents 15 such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin; a flavoring agent such as peppermint, methyl salicylate or orange flavoring; and a coloring agent.

When the pharmaceutical composition is in the form of a capsule, for example, a 20 gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or oil.

The pharmaceutical composition may be in the form of a liquid, for example, an elixir, syrup, solution, emulsion or suspension. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, 25 preferred composition contain, in addition to the present compounds, one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer. In a composition intended to be administered by injection, one or more of a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and isotonic agent may be included.

30 The liquid pharmaceutical compositions of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, 35 polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents

such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, 5 disposable syringes or multiple dose vials made of glass or plastic. Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition is preferably sterile.

A liquid pharmaceutical composition of the invention intended for either parenteral or oral administration should contain an amount of a compound of the invention such that a suitable dosage will be obtained. Typically, this amount is at least 10 0.01% of a compound of the invention in the composition. When intended for oral administration, this amount may be varied to be between 0.1 and about 70% of the weight of the composition. Preferred oral pharmaceutical compositions contain between about 4% and about 75% of the compound of the invention. Preferred pharmaceutical compositions and preparations according to the present invention are prepared so that a 15 parenteral dosage unit contains between 0.01 to 10% by weight of the compound prior to dilution of the invention.

The pharmaceutical composition of the invention may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base. The base, for example, may comprise one or more of the 20 following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device. Topical formulations may contain a concentration of the compound of the invention from 25 about 0.1 to about 10% w/v (weight per unit volume).

The pharmaceutical composition of the invention may be intended for rectal administration, in the form, for example, of a suppository, which will melt in the rectum and release the drug. The composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without 30 limitation, lanolin, cocoa butter and polyethylene glycol.

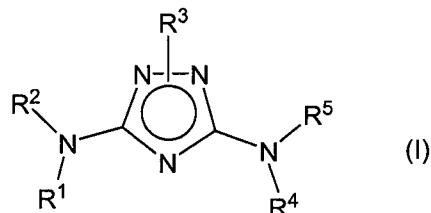
The pharmaceutical composition of the invention may include various materials, which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials that form the coating shell are typically inert, and may be 35 selected from, for example, sugar, shellac, and other enteric coating agents.

Alternatively, the active ingredients may be encased in a gelatin capsule.

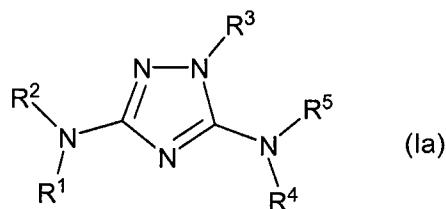
The pharmaceutical composition of the invention in solid or liquid form may include an agent that binds to the compound of the invention and thereby assists in the delivery of the compound. Suitable agents that may act in this capacity include a 5 monoclonal or polyclonal antibody, a protein or a liposome.

The pharmaceutical composition of the invention may consist of dosage units that can be administered as an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump 10 system that dispenses the active ingredients. Aerosols of compounds of the invention may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit. One of ordinary skill in the art, without undue experimentation may determine preferred aerosols.

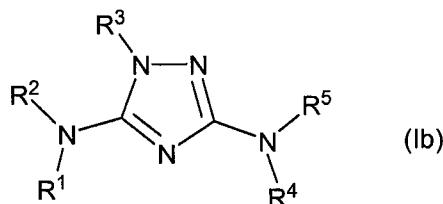
15 The pharmaceutical compositions of the invention may be prepared by methodology well known in the pharmaceutical art. For example, a pharmaceutical composition intended to be administered by injection can be prepared by combining a compound of the invention with sterile, distilled water so as to form a solution. A surfactant may be added to facilitate the formation of a homogeneous solution or 20 suspension. Surfactants are compounds that non-covalently interact with the compound of the invention so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system.


The compounds of the invention, or their pharmaceutically acceptable salts, are administered in a therapeutically effective amount, which will vary depending upon a 25 variety of factors including the activity of the specific compound employed; the metabolic stability and length of action of the compound; the age, body weight, general health, sex, and diet of the patient; the mode and time of administration; the rate of excretion; the drug combination; the severity of the particular disorder or condition; and the subject undergoing therapy. Generally, a therapeutically effective daily dose is (for a 70 kg 30 mammal) from about 0.001 mg/kg (*i.e.*, 0.07 mg) to about 100 mg/kg (*i.e.*, 7.0 gm); preferably a therapeutically effective dose is (for a 70 kg mammal) from about 0.01 mg/kg (*i.e.*, 0.7 mg) to about 50 mg/kg (*i.e.*, 3.5 gm); more preferably a therapeutically effective dose is (for a 70 kg mammal) from about 1 mg/kg (*i.e.*, 70 mg) to about 25 mg/kg (*i.e.*, 1.75 gm).

35 Compounds of the invention, or pharmaceutically acceptable salts thereof, may


also be administered simultaneously with, prior to, or after administration of one or more other therapeutic agents. Such combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound of the invention and one or more additional active agents, as well as administration of the compound of the 5 invention and each active agent in its own separate pharmaceutical dosage formulation. For example, a compound of the invention and the other active agent can be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations. Where separate dosage formulations are used, the compounds of the invention and one or 10 more additional active agents can be administered at essentially the same time, *i.e.*, concurrently, or at separately staggered times, *i.e.*, sequentially; combination therapy is understood to include all these regimens.

PREPARATION OF THE COMPOUNDS OF THE INVENTION


15 The following Reaction Scheme illustrates methods to make compounds of this invention, *i.e.*, compounds of formula (I):

where R^1 , R^2 , R^3 , R^4 and R^5 are described above in the Summary of the Invention for compounds of formula (I), as isolated stereoisomers or mixtures thereof, as tautomers or mixtures thereof, or as pharmaceutically acceptable salts or N -oxides. In particular, the 20 following Reaction Scheme illustrates methods to make compounds of formula (Ia):

where R^1 , R^2 , R^3 , R^4 and R^5 are as described above in the Summary of the Invention for compounds of formula (Ia), as isolated stereoisomers or mixtures thereof, as tautomers or mixtures thereof, or as pharmaceutically acceptable salts or N -oxides, and methods to 25 make compounds of formula (Ib);

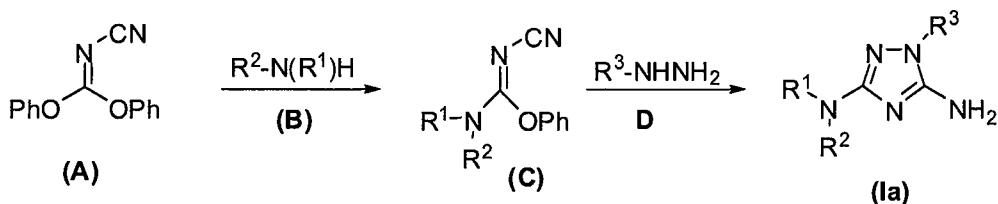
where R¹, R², R³, R⁴ and R⁵ are as described above in the Summary of the Invention for compounds of formula (Ib), as isolated stereoisomers or mixtures thereof, as tautomers or mixtures thereof, or as pharmaceutically acceptable salts or N-oxides. It is

5 understood that in the following Reaction Schemes, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.

It will also be appreciated by those skilled in the art that in the processes described below the functional groups of intermediate compounds may need to be 10 protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, *t*-butyldimethylsilyl, *t*-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include benzyl, *t*-butoxycarbonyl, benzyloxycarbonyl, and the like. 15 Suitable protecting groups for mercapto include -C(O)-R" (where R" is alkyl, aryl or arylalkyl), *p*-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acids include alkyl, aryl or arylalkyl esters.

Protecting groups may be added or removed in accordance with standard techniques, which are known to one of ordinary skill in the art and as described herein.

20 The use of protecting groups is described in detail in Green, T.W. and P.G.M. Wuts, *Protective Groups in Organic Synthesis* (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotritityl-chloride resin.


It will also be appreciated by those skilled in the art, although such protected 25 derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as "prodrugs". All prodrugs of compounds of this invention are included within the scope of the invention.

30 It is understood that one of ordinary skill in the art would be able to make the compounds of the invention by methods similar to the methods described herein or by

methods known to one of ordinary skill in the art. It is also understood that one of ordinary skill in the art would be able to make in a similar manner as described below other compounds of formula (I) not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In 5 general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, for example, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) or prepared as described in this invention. ^1H NMR spectra were 10 recorded in CDCl_3 , DMSO-d_6 , CD_3OD , Acetone- d_6 with trimethylsilane (TMS) as internal reference using Gemini 300 MHz instrument. Reagents and solvents were purchased from commercial sources and used without further purification. Flash column chromatography was conducted using silica gel (230-400 mesh) under a positive pressure of nitrogen. LCMS spectra for purity and mass were recorded using Waters 15 LCMS instruments. Deionized water was used to dilute the reactions and wash the products. Brine used was prepared by dissolving sodium chloride into deionized water to saturation point.

Compounds of formula (Ia), as set forth below in Reaction Scheme 1 below, where R^1 , R^2 and R^3 are as defined above in the Summary of the Invention for 20 compounds of formula (I) and R^4 and R^5 are hydrogen, are generally prepared as illustrated below in Reaction Scheme 1 where R^1 , R^2 and R^3 are as defined above in the Summary of the Invention for compounds of formula (I):

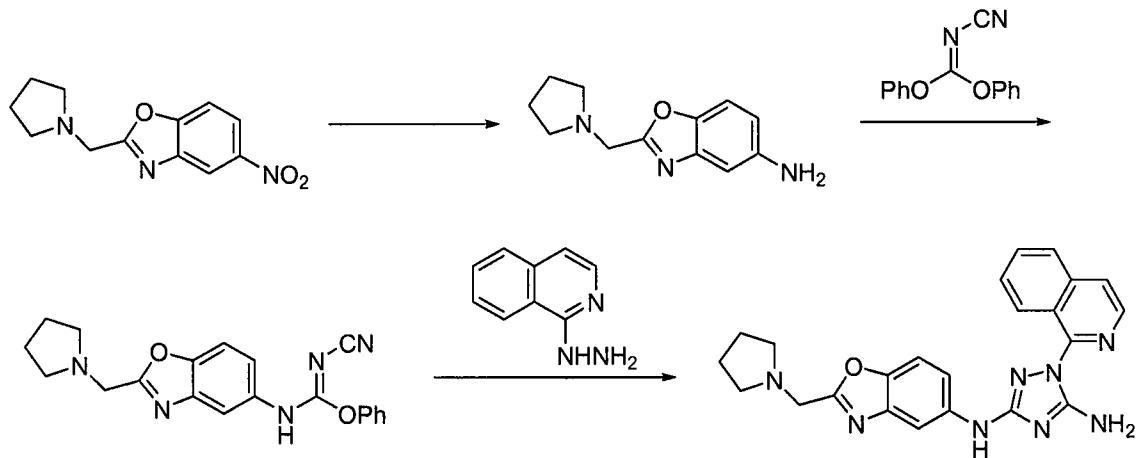
REACTION SCHEME 1

25 Compounds of formula (A), formula (B) and formula (D) are commercially available or can be prepared by methods known to one skilled in the art or by methods disclosed herein.

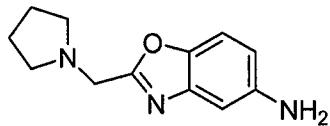
In general, compounds of formula (Ia) are prepared, as set forth by Reaction Scheme 1, by first treating a compound of formula (A) (1.1 equiv) with an equivalent 30 amount of an aniline of formula (B) in a polar solvent, including, but not limited to, isopropyl alcohol, at ambient temperatures overnight. The diarylisourea product of

formula (C) generally precipitates and isolation can be accomplished via filtration, washing with an appropriate solvent, and drying. Hydrazine hydrate of formula (D) (2 equivalents) is added to a slurry of the compound of formula (C) in an alcohol or other appropriate solvent. Generally, the ring formation reaction occurs at ambient

5 temperature and the product triazole of formula (Ia) can be isolated by standard isolation techniques. Compounds of formula (Ia) can be subsequently treated with an appropriately substituted alkylating or acylating agent under standard conditions to form compounds of formula (Ia) where R⁴ and R⁵ are as described above in the Summary of the Invention for compounds of formula (I).


10 Compounds of formula (Ib) can be prepared using the synthetic route outlined in Reaction Scheme 1 in varying amounts depending on the steric and electronic nature of R¹, R² and R³ as well as the particular reaction conditions employed. In some instances, compounds of formula (Ib) are isolated as minor isomers along with compounds of formula (Ia) as major isomers, e.g., during column chromatography as described herein.

15 All compounds of the invention which exist in free base or acid form can be converted to their pharmaceutically acceptable salts by treatment with the appropriate inorganic or organic base or acid by methods known to one of ordinary skill in the art. Salts of the compounds of the invention can be converted to their free base or acid form by standard techniques known to one skilled in the art.


20 The following specific Synthetic Examples are provided as a guide to assist in the practice of the invention, and are not intended as a limitation on the scope of the invention. The number following each compound below refers to its number in Table 1 and Table 2, as discussed in more detail below.

SYNTHETIC EXAMPLE 1

Synthesis of 1-(isoquinolin-1-yl)-*N*³-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine

5 A. Synthesis of 5-amino-2-[(pyrrolidin-1-yl)methyl]benzoxazole

To a solution of 5-nitro-2-[(pyrrolidin-1-yl)methyl]benzoxazole (300 mg, 1.21 mmol) in a mixed solvent of EtOAc-MeOH (1:1, 70 mL) was added 10% Pd-C (40 mg), the flask was purged with argon, then the argon was replaced with H₂, the reaction 10 mixture was stirred under H₂ atmosphere for 30 min. After filtration through Celite, washed with ethyl acetate. The solvents were evaporated to provide 263 mg (100%) of 5-amino-2-[(pyrrolidin-1-yl)methyl]benzoxazole as a yellow solid.

B. Synthesis of (Z)-phenyl *N*-cyano-*N*-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)carbamimidate

15 A solution of 5-amino-2-[(pyrrolidin-1-yl)methyl]benzoxazole (200 mg, 0.92 mmol) and diphenylcyanocarbonimidate (263 mg, 1.10 mmol) in isopropyl alcohol (3.5 mL) was stirred overnight at ambient temperature, the resulting white solid product, (Z)-phenyl *N*-cyano-*N*-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)carbamimidate, was filtered and used directly for the next step (290 mg, 87%).

C. Synthesis of 1-(isoquinolin-1-yl)-N³-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1H-1,2,4-triazole-3,5-diamine

A solution of (Z)-phenyl *N*-cyano-*N*-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)carbamimidate (36 mg, 0.1 mmol) and 1-hydrazinoisoquinoline in *N*-methyl-2-pyrrolidone (0.5 mL) was shaken at 100 °C for 3 hours. After cooling to ambient temperature, the volatiles were evaporated under reduced pressure. The residue was purified by HPLC eluting with acetonitrile - water to provide 1-(isoquinolin-1-yl)-*N*³-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #1; ¹H NMR (CD₃OD, 300 MHz) 8.98 (d, *J* = 8.4 Hz, 1H), 8.36 (d, *J* = 5.7 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.84-7.58 (m, 4H), 7.26 (dd, *J* = 2.4, 8.7 Hz, 1H), 6.99 (d, *J* = 9.0 Hz, 1H), 5.05 (s, 2H), 3.76 (m, 2H), 3.65 (m, 2H), 3.30 (m, 3H), 2.11 (m, 4H) ppm; MS (ES) 427.16 (M+H).

SYNTHETIC EXAMPLE 2

In a similar manner as described above utilizing the appropriately substituted starting materials and reagents, the following compounds of formula (la) were prepared: 15 1-(6-chloroquinazolin-4-yl)-*N*³-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #2, MS (ES) 462.08 (M+H); *N*³-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-phenyl-1*H*-1,2,4-triazole-3,5-diamine, compound #3, tan solid; ¹H NMR (DMSO-*d*₆, 300 MHz) 8.65 (s, 1H), 7.57 (d, 2H), 7.55 (t, 2H), 7.30-7.22 (m, 2H), 6.93 (d, 1H), 6.68 (s, 2H), 4.19-4.14 (m, 4H) ppm; 20 MS (ES) 310.2 (M+H); *N*³-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(isoquinolin-1-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #4, yellow solid; MS (ES) 361.64 (M+H); *N*³-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #5, yellow solid; MS (ES) 422.05 (M+H). 25 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #6, ¹H NMR (DMSO-*d*₆, 300 MHz) 9.13 (d, 2H), 9.10-9.00 (m, 1H), 8.80 (s, 1H), 8.71 (s, 1H), 8.20 (s, 1H), 7.79 (d, 1H), 7.39 (s, 1H), 6.98 (d, 1H), 4.21-4.18 (m, 2H), 4.01-3.95 (m, 4H), 30 3.59-3.42 (m, 3H), 3.20-3.03 (m, 4H), 2.62-2.37 (m, 4H), 2.30 (s, 1H), 2.04-1.98 (m, 1H), 1.63-1.57 (m, 3H), 1.40 (s, 2H), 1.21 (d, 1H) ppm; MS (ES) 543.44 (M+H);

1-(isoquinolin-1-yl)- N^3 -(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-
1,2,4-triazole-3,5-diamine, compound #7, 1 H NMR (DMSO-d₆, 300 MHz) 9.23 (d,
1H), 8.80 (s, 1H), 8.39 (s, 1H), 8.31 (d, 1H), 8.10 (s, 1H), 8.00 (d, 1H), 7.83-7.66
(m, 4H), 7.40 (s, 1H), 6.79 (d, 2H), 2.53-2.41 (m, 8H), 2.31 (s, 2H), 2.16 (s, 1H),
5 1.80-1.63 (m, 2H), 1.50-1.17 (m, 5H), 0.89 (d, 1H) ppm; MS (ES) 482.23 (M+H);
1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridin-
3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #8, 1 H NMR (DMSO-d₆, 300 MHz)
9.21 (s, 1H), 8.98 (s, 1H), 8.78 (s, 1H), 8.60 (d, 1H), 8.21 (s, 1H), 8.14 (s, 1H),
7.68 (d, 1H), 7.33 (s, 1H), 6.79 (d, 1H), 4.17 (d, 2H), 3.97 (d, 4H), 2.78-2.63 (m,
10 2H), 2.58-2.23 (m, 10H), 2.20 (s, 2H), 1.80 (d, 2H), 1.41-1.37 (m, 2H) ppm; MS
(ES) 546.26 (M+H);
1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-on-8-yl)-1*H*-
1,2,4-triazole-3,5-diamine, compound #9, 1 H NMR (DMSO-d₆, 300 MHz) 9.47 (s,
1H), 9.34 (s, 1H), 9.04 (s, 1H), 8.80 (s, 1H), 8.14 (br s, 2H), 7.43 (m, 1H), 7.36 (s,
15 1H), 7.20 (s, 1H), 7.08 (m, 1H), 3.98 (s, 3H), 3.90 (s, 3H), 2.59 (m, 2H), 2.13 (m,
2H), 2.05 (m, 2H) ppm; MS (ES) 447.1 (M+H);
1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(4-cyclopentyl-1,4-diazepan-1-
yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #10, 1 H NMR (DMSO-d₆,
300 MHz) 9.48 (s, 1H), 8.45 (m, 1H), 8.21 (m, 1H), 8.04 (m, 1H), 7.98 (br s, 2H),
20 7.05 (m, 1H), 4.21 (m, 1H), 3.65 (m, 6H), 3.20 (m, 2H), 2.37 (s, 3H), 2.18 (m, 2H),
1.98 (m, 2H), 1.60 (m, 6H) ppm; MS (ES) 525.1 (M+H);
1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(6-(4-cyclopentyl-1,4-diazepan-1-yl)pyridin-3-yl)-
1*H*-1,2,4-triazole-3,5-diamine; compound #11, 1 H NMR (DMSO-d₆, 300 MHz)
9.22 (s, 1H), 9.00 (m, 1H), 8.81 (s, 1H), 8.59 (m, 1H), 8.17 (br s, 2H), 7.82 (m,
25 1H), 7.37 (s, 1H), 6.90 (m, 1H), 4.12 (m, 1H), 3.99 (s, 3H), 3.96 (s, 3H), 3.58 (m,
6H), 3.17 (m, 2H), 2.17 (m, 2H), 1.99 (m, 2H), 1.60 (m, 6H) ppm; MS (ES) 531.2
(M+H);
1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(7-cyclopentyl-6,7,8,9-tetrahydro-
5*H*-pyrido[3,2-d]azepin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #12, 1 H
30 NMR (DMSO-d₆, 300 MHz) 9.58 (s, 1H), 8.55 (s, 1H), 8.26 (s, 1H), 8.14 (m, 1H),
7.97 (br s, 2H), 3.10 (m, 3H), 3.00 (m, 3H), 2.68 (m, 1H), 2.36 (s, 3H), 1.85 (m,
2H), 1.60 (m, 4H), 1.38 (m, 4H) ppm; MS (ES) 496.2 (M+H);
1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(7-cyclopentyl-6,7,8,9-tetrahydro-5*H*-pyrido[3,2-
d]azepin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #13, 1 H NMR (DMSO-d₆,
35 300 MHz) 9.73 (s, 1H), 9.13 (s, 1H), 8.97 (s, 1H), 8.84 (m, 1H), 8.20 (br s, 2H),

7.77 (s, 1H), 7.38 (s, 1H), 4.52 (m, 2H), 3.99 (s, 3H), 3.95 (s, 3H), 3.52 (m, 3H), 3.16 (m, 2H), 1.97 (m, 4H), 1.60 (m, 6H) ppm; MS (ES) 502.2 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #14, ¹H NMR (DMSO-d₆, 300 MHz) 9.57 (s, 1H), 8.62 (s, 1H), 8.29 (s, 1H), 7.95 (br s, 2H), 7.80 (s, 1H), 3.55 (s, 2H), 2.82 (s, 2H), 2.69 (d, 2H), 2.37 (d, 6H) ppm; MS (ES) 428.05 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #15, ¹H NMR (DMSO-d₆, 300 MHz) 9.24 (d, 1H), 8.47 (m, 1H), 8.23 (d, 1H), 7.92 (m, 3H), 6.88 (m, 1H), 3.39 (m, 4H), 2.43-2.36 (m, 7H), 2.23 (m, 3H) ppm; MS (ES) 457.04 (M+);

1-(isoquinolin-1-yl)-N³-(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #16, ¹H NMR (DMSO-d₆, 300 MHz) 9.26 (m, 2H), 8.48 (s, 1H), 8.31 (d, 1H), 8.01 (d, 1H), 7.82 (t, 1H), 7.70 (m, 3H), 7.48 (s, 2H), 3.47 (s, 2H), 2.79 (d, 2H), 2.67 (d, 2H), 2.34 (s, 3H) ppm; MS (ES) 373.45 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #17, ¹H NMR (DMSO-d₆, 300 MHz) 9.20 (s, 1H), 8.44 (s, 1H), 8.23 (s, 1H), 7.92 (m, 3H), 6.87 (d, 1H), 4.05 (s, 2H), 2.92-2.78 (m, 4H), 2.42 (s, 3H), 2.15 (m, 1H), 1.88 (s, 4H), 1.66 (s, 4H), 1.40 (m, 2H) ppm; MS (ES) 511.01 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-benzyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #18, ¹H NMR (DMSO-d₆, 300 MHz) 9.59 (s, 1H), 8.60 (s, 1H), 8.08 (s, 1H), 7.95 (br s, 2H), 7.81 (s, 1H), 7.35 (m, 5H), 3.70 (s, 2H), 2.60 (s, 2H), 2.79 (m, 4H), 2.37 (s, 3H) ppm; MS (ES) 503.90 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(ethylcarboxy)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #19, ¹H NMR (DMSO-d₆, 300 MHz) 9.58 (s, 1H), 8.65 (d, 1H), 8.26 (s, 1H), 7.97 (s, 2H), 7.82 (d, 1H), 4.11 (m, 2H), 2.98 (d, 2H), 2.81 (m, 3H), 2.37 (m, 3H), 2.13 (m, 1H), 1.89 (m, 1H), 1.21 (m, 3H) ppm; MS (ES) 485.36 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(pyrrolidin-1-ylcarbonyl)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #20, ¹H NMR (DMSO-d₆, 300 MHz) 9.52 (s, 1H), 8.66 (d, 1H), 8.26 (s, 1H), 7.96 (s, 2H), 7.77

(d, 1H), 3.52 (m, 2H), 2.84 (m, 4H), 2.36 (m, 3H), 1.91 (m, 1H), 1.88 (m, 2H), 1.78 (m, 4H), 1.22 (s, 2H) ppm; MS (ES) 510.39 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(dimethylaminomethylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine,
5 compound # 21, ¹H NMR (DMSO-d₆, 300 MHz) 9.68 (d, 1H), 8.70 (d, 1H), 8.26 (s, 1H), 7.98 (br s, 2H), 7.90 (d, 1H), 4.83 (s, 1H), 4.69 (s, 1H), 3.80 (m, 2H), 2.90 (t, 2H), 2.79 (t, 2H), 2.37 (s, 3H), 2.26 (d, 6H) ppm; MS (ES) 499.13 (M+H);

10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(dimethylaminomethylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine formic acid salt (formic acid salt of compound #21);

15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #22, ¹H NMR (DMSO-d₆, 300 MHz) 9.20 (s, 1H), 8.44 (d, 1H), 8.23 (s, 1H), 8.17 (s, 1H), 7.92 (s, 2H), 7.88 (d, 1H), 6.86 (d, 1H), 4.18 (d, 2H), 2.70 (t, 2H), 2.37 (s, 3H), 2.30 (m, 9H), 2.12 (s, 3H), 1.82 (d, 2H), 1.38 (m, 2H) ppm; MS (ES) 540.15 (M+);

20 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(4-pyrrololidin-1-ylpiperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #23, ¹H NMR (DMSO-d₆, 300 MHz) 9.11 (s, 1H), 8.96 (s, 1H), 8.74 (s, 1H), 8.59 (d, 1H), 8.18 (s, 2H), 7.65 (d, 1H), 7.31 (s, 1H), 6.78 (d, 1H), 4.02 (d, 2H), 3.95 (d, 6H), 2.77 (m, 2H), 2.13 (m, 2H), 1.86 (m, 3H), 1.64 (s, 5H), 1.37 (m, 3H) ppm; MS (ES) 516.75 (M+);

25 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #24, ¹H NMR (DMSO-d₆, 300 MHz) 9.23 (s, 1H), 8.44 (d, 1H), 8.22 (s, 1H), 7.92 (m, 3H), 6.64 (d, 1H), 4.23 (m, 2H), 3.15 (m, 4H), 2.59 (m, 1H), 2.37 (s, 3H), 2.29 (s, 1H), 1.98 (m, 1H), 1.58 (m, 4H), 1.39 (s, 4H), 1.22 (d, 2H) ppm; MS (ES) 537.13 (M+);

30 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #25, ¹H NMR (DMSO-d₆, 300 MHz) 9.84 (s, 1H), 9.06 (s, 2H), 8.82 (s, 1H), 8.23 (s, 1H), 8.00 (s, 2H), 7.89 (s, 1H), 4.40 (s, 2H), 3.49 (s, 2H), 3.04 (t, 2H), 2.38 (s, 3H), ppm; MS (ES) 413.77 (M+);

35 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(4-piperidin-1-ylpiperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #27, ¹H NMR (DMSO-d₆, 300 MHz) 9.12 (s, 1H), 8.97 (s, 1H), 8.75 (s, 1H), 8.60 (s, 1H), 8.19 (s, 2H), 7.65 (d, 1H), 7.32 (s, 1H), 6.78 (d, 1H), 4.17 (d, 2H), 3.97 (d, 6H), 2.66 (t, 3H), 2.42 (d, 4H), 2.75 (d, 2H), 1.46 (s, 6H), 1.38 (d, 2H) ppm; MS (ES) 531.50 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-piperidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound # 28, ¹H NMR (DMSO-d₆, 300 MHz) 9.20 (s, 1H), 8.43 (s, 1H), 8.23 (s, 1H), 7.91 (s, 2H), 7.88 (d, 1H), 6.85 (d, 1H), 4.20 (d, 2H), 2.67 (t, 3H), 2.43 (s, 4H), 2.37 (s, 3H), 1.76 (d, 2H), 5 1.45-1.37 (m, 8H) ppm; MS (ES) 525.11 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(2-(dimethylamino)-1-oxyethylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #29, ¹H NMR (DMSO-d₆, 300 MHz) 10.33 (s, 1H), 9.63 (s, 1H), 8.84 (s, 1H), 8.65 (d, 1H), 8.25 (s, 1H), 8.10 (d, 2H), 4.20 (s, 2H), 3.87 (m, 2H), 3.22 (d, 10 1H), 3.07 (t, 2H), 2.80 (s, 6H), 2.40 (s, 3H), 2.04 (m, 1H), 1.92 (m, 1H) ppm; MS (ES) 513.17 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-amino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #30, ¹H NMR (DMSO-d₆, 300 15 MHz) 9.98 (s, 1H), 8.82 (s, 1H), 8.23 (s, 1H), 8.06 (d, 5H), 3.60 (s, 2H), 3.25 (d, 1H), 2.99 (d, 2H), 2.38 (s, 3H), 2.10 (m, 1H), 1.95 (m, 1H) ppm; MS (ES) 428.09 (M+);

1-(isoquinolin-1-yl)-*N*³-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #31, ¹H NMR (DMSO-d₆, 300 MHz) 9.24 (d, 1H), 8.86 (br s, 1H), 8.37 (d, 1H), 8.29 (d, 1H), 8.01 (d, 1H), 7.83-7.79 (m, 2H), 7.74-7.67 (m, 2H), 7.40 (br s, 2H), 6.80 (d, 1H), 3.30 (m, 4H), 2.45 (m, 4H), 2.25 (s, 3H) ppm; 20 MS (ES) 402.28 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(1*H*-pyrrolo[2,3-b]pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #32, ¹H NMR (CD₃OD-CDCl₃, 300 MHz) 8.50 (m, 1H), 8.29 (m, 1H), 7.91 (m, 1H), 7.68 (s, 1H), 7.31 (m, 1H), 6.44 (m, 1H), 25 2.65 (m, 2H), 2.43 (s, 3H); MS (ES) 397.95 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #33, ¹H NMR (CD₃OD, 300 MHz) 8.67 (s, 1H), 7.98 (m, 2H), 7.42 (m, 1H), 4.23 (d, 2H), 3.73 (br s, 2H), 3.18 (m, 4H), 2.43 (s, 3H), 2.19 (m, 6H), 1.50 (m, 2H); MS (ES) 525.09 (M+H);

30 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #34, ¹H NMR (CD₃OD, 300 MHz) 8.98 (s, 1H), 8.84 (s, 1H), 8.50 (m, 1H), 8.12 (m, 1H), 7.38 (m, 2H), 4.16 (m, 2H), 4.07 (s, 3H), 3.97 (s, 3H), 3.73 (m, 2H), 3.17 (m, 4H), 2.65 (m, 1H), 2.19 (m, 4H), 2.04 (m, 4H), 1.46 (m, 2H); MS (ES) 531.19 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(azepan-1-yl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #35, ¹H NMR (CD₃OD, 300 MHz) 8.57 (s, 1H), 8.39 (s, 1H), 7.98 (m, 1H), 6.94 (m, 1H), 4.38 (m, 1H), 3.53 (m, 2H), 2.93 (t, 2H), 2.43 (s, 3H), 2.20-1.60 (m, 16H); MS (ES) 539.07

5 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(diethylaminoethylmethylamino)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #36, ¹H NMR (CD₃OD, 300 MHz) 8.75 (s, 1H), 8.47 (s, 1H), 8.00 (m, 1H), 6.92 (m, 1H), 3.93 (m, 4H), 3.42 (m, 4H), 3.08 (s, 3H), 2.41 (s, 3H), 1.36 (m, 6H); MS (ES) 487.07 (M+H);

10 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(diethylaminoethylmethylamino)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #37, ¹H NMR (CD₃OD, 300 MHz) 9.10 (s, 1H), 8.75 (s, 1H), 8.46 (s, 1H), 8.40 (s, 1H), 7.28 (m, 1H), 6.79 (m, 1H), 4.04 (s, 3H), 3.97 (s, 3H), 3.85 (m, 4H), 3.40 (m, 4H), 3.08 (s, 3H), 1.31 (m, 6H); MS (ES) 493.37 (M+H);

15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(2-diethylaminomethylpyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #38; ¹H NMR (CD₃OD-CDCl₃, 300 MHz) 8.42 (m, 3H), 7.96 (m, 2H), 7.82 (m, 2H), 7.17 (m, 1H), 6.78 (m, 2H), 4.38 (m, 2H), 3.62 (m, 2H), 2.68-1.21 (m, 13H); MS (ES) 515.08 (M+H);

20 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(2-diethylaminomethylpyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #39; ¹H NMR (CD₃OD, 300 MHz) 9.03 (s, 1H), 8.74 (s, 1H), 8.35 (s, 2H), 8.06 (m, 2H), 7.27 (s, 1H), 6.82 (m, 2H), 4.38 (m, 2H), 4.03 (s, 3H), 3.90 (s, 3H), 3.60 (m, 2H), 2.40-1.80 (m, 4H), 1.30 (m, 6H); MS (ES) 519.18 (M+H);

25 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(2-(1-(4-(2-(dimethylamino)ethyl)piperazin-1-yl)oxomethyl)benzo[b]thiophen-5-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #40; ¹H NMR (CD₃OD, 300 MHz) 9.09 (m, 1H), 8.72 (m, 1H), 8.39 (s, 2H), 8.11 (s, 1H), 7.73 (m, 1H), 7.61 (m, 1H), 7.47 (m, 1H), 7.21 (s, 1H), 4.00-3.84 (m, 6H), 3.54 (m, 1H), 3.30 (s, 3H), 2.91 (s, 3H), 2.77 (m, 1H), 2.65 (m, 4H), 1.33 (m, 1H); MS (ES) 603.14 (M+H);

30 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #41; ¹H-NMR (DMSO-d₆, 300 MHz) 9.50 (s, 1H), 8.40 (s, 1H), 8.27 (s, 1H), 7.97 (br. s, 3H), 3.55 (m, 2H), 3.41-3.37 (m, 2H), 3.26 (m, 1H), 3.13-3.09 (m, 2H), 2.75 (t, 2H),

2.38 (s, 3H), 2.30 (s, 3H), 2.15-2.11 (m, 2H), 2.02 (m, 2H), 1.86-1.73 (m, 4H) ppm; MS (ES) 525.20 (M);

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #42; ¹H-NMR (DMSO-d₆, 300 MHz) 9.29 (br. s, 1H), 9.07 (s, 1H), 8.79 (s, 1H), 8.73 (s, 1H), 8.19 (br. s, 2H), 7.52 (s, 1H), 7.36 (s, 1H), 3.99 (s, 3H), 3.96 (s, 3H), 3.55 (m, 2H), 3.39-3.35 (m, 2H), 3.26 (m, 1H), 3.13-3.09 (m, 2H), 2.72 (t, 2H), 2.22 (s, 3H), 2.14-2.11 (m, 2H), 2.02 (m, 2H), 1.86-1.72 (m, 4H) ppm; MS (ES) 531.20 (M+H);

1-(phenanthridin-6-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; compound #43; ¹H-NMR (DMSO-d₆, 300 MHz) 9.26 (s, 1H), 9.23 (br. s, 1H), 8.92 (d, *J* = 8.1 Hz, 1H), 8.79 (d, *J* = 7.2 Hz, 1H), 8.35 (s, 1H), 8.09 (d, *J* = 7.2 Hz, 1H), 8.00 (t, *J* = 7.2 Hz 1H), 7.87 (s, 1H), 7.83-7.71 (m, 3H), 7.46 (br. s, 2H), 3.55 (m, 2H), 3.39-3.35 (m, 2H), 3.25 (m, 1H), 3.11-3.08 (m, 2H), 2.78-2.70 (m, 2H), 2.24 (s, 3H), 2.12-2.10 (m, 2H), 2.01 (m, 2H), 1.85-1.71 (m, 4H) ppm; MS (ES) 520.27 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #44;

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #45;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #46; ¹H NMR (DMSO-d₆, 300 MHz) 9.54 (s, 1H), 8.45 (m, 1H), 8.18 (m, 1H), 8.02 (m, 3H), 7.08 (m, 1H), 3.55 (m, 6H), 3.14 (m, 2H), 2.55 (m, 2H), 2.35 (s, 3H), 2.24 (m, 3H), 1.98 (m, 1H), 1.54 (m, 3H), 1.37 (m, 3H), 1.22 (m, 1H) ppm; MS (ES) 551.1 (M+H);

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #47; ¹H NMR (DMSO-d₆, 300 MHz) 9.08 (s, 1H), 8.79 (m, 1H), 8.64 (m, 2H), 8.20 (m, 2H), 8.02 (m, 1H), 7.76 (m, 1H), 7.37 (m, 1H), 3.97 (s, 3H), 3.86 (s, 3H), 3.53 (m, 1H), 3.09 (m, 2H), 2.24 (m, 4H), 1.94 (m, 4H), 1.58-1.28 (m, 12H) ppm; MS (ES) 557.2 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #48; ¹H NMR (DMSO-d₆, 300 MHz) 9.40 (s, 1H), 8.52 (m, 1H), 8.22 (m, 1H), 7.99 (m, 3H), 7.04 (m, 1H), 4.29 (m, 2H), 3.63 (m, 2H), 3.09 (m, 6H), 2.35 (s, 3H), 1.08 (m, 1H), 0.65 (m, 2H), 0.37 (m, 2H) ppm; MS (ES) 497.1 (M+H);

1-(5-trifluoromethylpyridin-2-yl)- N^3 -(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #49; 1 H NMR (DMSO-d₆, 300 MHz) 9.32 (s, 1H), 8.74 (s, 1H), 8.59 (m, 1H), 8.27 (m, 1H), 7.87 (m, 4H), 7.12 (m, 1H), 4.24 (m, 2H), 3.62 (m, 2H), 3.16 (m, 6H), 1.06 (m, 1H), 0.64 (m, 2H), 0.36 (m, 2H) ppm; 5 MS (ES) 460.6 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(2-dimethylaminoethyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #50; 10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound # 51; 15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- N^3 -(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #52; 1-(furo[3,2-c]pyridine-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-20 1*H*-1,2,4-triazole-3,5-diamine, compound #53; 1 H-NMR (DMSO-d₆, 300 MHz) 9.04 (br. s, 1H), 8.36 (d, J = 2.1 Hz, 1H), 8.25 (d, J = 5.7 Hz, 1H), 8.19 (d, J = 1.8 Hz, 1H), 7.89 (br. s, 2H), 7.78-7.76 (m, 1H), 7.53-7.50 (m, 2H), 3.26 (m, 4H), 3.22 (m, 4H), 2.67 (m, 4H), 2.42 (m, 1H), 2.25 (s, 3H), 1.73 (m, 4H) ppm; MS (ES) 460.20 (M+H);

1-(6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-25 1*H*-1,2,4-triazole-3,5-diamine, compound #54; 1 H-NMR (DMSO-d₆, 300 MHz) 8.85 (br. s, 1H), 8.69 (s, 1H), 8.18 (s, 1H), 7.79 (br. s, 2H), 7.73 (s, 1H), 3.05-3.01 (m, 4H), 2.71 (m, 1H), 2.65 (m, 4H), 2.42 (m, 4H), 2.28-2.25 (m, 2H), 2.20 (s, 3H), 1.96-1.92 (m, 2H), 1.72 (m, 4H), 1.58-1.54 (m, 4H) ppm; MS (ES) 517.15 (M+H);

1-(2-methylquinazolin-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-30 1*H*-1,2,4-triazole-3,5-diamine, compound #55; 1 H-NMR (DMSO-d₆, 300 MHz) 9.63 (d, J = 8.4 Hz, 1H), 9.25 (br. s, 1H), 8.26 (s, 1H), 8.20 (s, 1H), 7.94-7.84 (m, 2H), 7.66-7.61 (m, 1H), 3.28 (m, 4H), 3.24 (m, 4H), 2.72 (s, 3H), 2.70 (m, 4H), 2.43 (m, 1H), 2.27 (s, 3H), 1.73 (m, 4H) ppm; MS (ES) 485.18 (M+H), 483.30 (M-H);

35 1-(6-fluoroquinazolin-4-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #56; 1 H-NMR (DMSO-d₆, 300 MHz) 9.52 (d, J = 9.9 Hz, 1H), 9.33 (br. s, 1H), 8.93 (s, 1H), 8.37 (br. s, 2H), 8.21 (s, 1H), 8.04-8.01 (m, 1H), 7.94 (s, 1H), 3.28 (m, 4H), 3.24 (m, 4H), 2.68 (m, 4H), 2.56 (m, 1H), 2.28 (m, 4H), 2.28 (s, 3H), 1.73 (m, 4H) ppm; MS (ES) 489.15 (M+H), 487.14 (M-H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(5-bicyclo[2.2.1]heptan-2-yl)octahydropyrrol[3,4-c]pyrrolyl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #57;

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-bromopyridin-3-yl)-5-(3-(6-bromopyridin-3-yl)-2-cyanoguanadino)-1H-1,2,4-triazole-3-amine, compound #58; MS (ES) 666.96 (M+H), 664.99 (M-H);

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-bromopyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #59; ¹H NMR (CDCl₃, 300 MHz) 9.58 (s, 1H), 9.07 (s, 1H), 8.81 (s, 1H), 8.78 (s, 1H), 8.32-8.11 (m, 2H), 7.91 (m, 1H), 7.32 (m, 2H), 3.91 (s, 6H) ppm; MS (ES) 444.96 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl)-1H-1,2,4-triazole-3,5-diamine, compound #60;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(1-methylpiperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #61;

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyrimidin-5-yl)-1H-1,2,4-triazole-3,5-diamine, compound #62; ¹H NMR (CD₃OD, 300 MHz) 9.25 (m, 1H), 8.42 (m, 1H), 8.29 (m, 2H), 7.85 (m, 1H), 7.66 (m, 2H), 7.49 (s, 1H), 4.06 (s, 3H), 4.03 (s, 3H), 3.83 (m, 4H), 3.30-2.80 (m, 7H), 2.06 (m, 4H), 1.85 (m, 2H); MS (ES) 518.20 (M+H);

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(2-(4-piperidin-1-ylmethylpiperidin-1-yl)pyrimidin-5-yl)-1H-1,2,4-triazole-3,5-diamine, compound #63; ¹H NMR (CD₃OD, 300 MHz) 8.73 (s, 1H), 8.65 (s, 1H), 7.96 (s, 1H), 7.65 (s, 1H), 7.67 (m, 2H), 7.52 (m, 2H), 4.76 (m, 2H), 3.94 (m, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.20-2.58 (m, 8H), 2.43-1.88 (m, 5H), 1.43-1.28 (m, 4H); MS (ES) 546.23 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(pyrrolidin-1-yl)-4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #64;

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #65; ¹H NMR (DMSO-d₆, 300 MHz) 9.65 (s, 1H), 9.04 (s, 1H), 8.88-8.75 (m, 2H), 8.31-8.14 (m, 3H), 7.94 (d, 1H), 7.36 (m, 2H), 6.51 (m, 2H), 3.98 (s, 6H), 2.91 (s, 3H), 2.55-2.10 (m, 12H), 1.73 (m, 2H), 1.41 (m, 3H), 1.23-1.08 (m, 2H) ppm; MS (ES) 586.27 (M+H), 584.39 (M-H);

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(4-methylpiperazin-1-yl)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #66;

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-piperidin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #67; ¹H NMR (DMSO-d₆, 300 MHz) 9.66 (s, 1H), 9.04 (s, 1H), 8.86 (s, 1H), 8.80 (s, 1H), 8.35-8.13 (m, 2H), 7.94 (m, 1H), 7.36 (m, 2H), 6.50 (m, 2H), 3.98 (s, 6H), 3.13 (m, 2H), 2.98 (m, 2H), 2.78 (m, 4H), 2.44 (m, 3H), 1.99 (m, 2H), 1.82 (m, 2H), 1.66-1.21 (m, 6H) ppm; MS (ES) 571.25 (M+H), 569.43 (M-H);

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(4-cyclopropylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #68; ¹H NMR (DMSO-d₆, 300 MHz) 9.423 (s, 1H), 8.79 (br s, 2H), 8.52 (m, 1H), 8.23 (m, 1H), 7.98 (m, 1H), 7.04 (m, 1H), 3.62 (m, 4H), 3.02 (m, 4H), 2.36 (s, 3H), 2.04 (m, 1H), 0.99 (m, 2H), 0.84 (m, 2H) ppm; MS (ES) 483.1 (M+H);

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-dimethylaminopiperidin-1-yl)(propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #69; ¹H NMR (DMSO-d₆, 300 MHz) 9.65 (s, 1H), 9.04 (s, 1H), 8.86 (s, 1H), 8.81 (s, 1H), 8.24 (s, 2H), 8.18 (s, 1H), 7.96 (d, 1H), 7.36 (m, 1H), 6.50 (m, 2H), 3.98 (s, 6H), 3.11 (m, 2H), 2.92 (m, 2H), 2.51-2.25 (m, 3H), 1.96 (m, 2H), 1.77 (m, 2H), 1.47 (m, 2H), 1.21-1.05 (m, 2H) ppm; MS (ES) 531.26 (M+H), 529.44 (M-H);

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #70;

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine trifluoroacetic acid salt, compound #71;

1-(7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #72;

1-(7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(6-(4-((1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine trifluoroacetic acid salt, compound #73; ¹H-NMR (DMSO-d₆, 300 MHz) 9.29 (br. s, 1H), 8.87 (s, 1H), 8.54 (s, 1H), 8.14 (br. s, 2H), 8.03 (d, *J* = 9.3 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 1H), 3.58-3.48 (m, 4H), 3.20-3.08 (m, 4H), 2.43 (s, 3H), 2.29-2.27 (m, 2H), 2.02-1.98 (m, 1H), 1.61-1.57 (m, 4H), 1.39 (m, 6H), 1.25-1.15 (m, 1H) ppm; MS (ES) 503.32 (M+H);

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(5,7,8,9-tetrahydrospiro[cyclohepta[b]pyridine-6,2'-[1,3]dioxolane]-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #74; ¹H-NMR

(DMSO-d₆, 300 MHz) 9.28 (br. s, 1H), 9.06 (s, 1H), 8.81 (d, *J* = 12.9 Hz, 1H), 8.18 (br. s, 2H), 7.53 (d, *J* = 17.4 Hz, 1H), 7.37 (d, *J* = 12.9 Hz, 1H), 3.99 (s, 3H), 3.94 (s, 3H), 3.88-3.86 (m, 4H), 2.93 (m, 2H), 2.89 (m, 2H), 1.89 (m, 2H), 1.62 (m, 2H) ppm; MS (ES) 491.19 (M+H);

5 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(5,7,8,9-tetrahydrospiro[cyclohepta[b]pyridine-6,2'-[1,3]dioxolane]-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #75; ¹H-NMR (DMSO-d₆, 300 MHz) 10.37 (br. s, 1H), 8.77 (s, 1H), 8.27 (s, 1H), 8.24 (s, 1H), 8.09 (br. s, 2H), 3.95-3.88 (m, 4H), 3.23 (s, 2H), 3.12-3.10 (m, 2H), 2.39 (s, 3H), 1.98-1.96 (m, 2H), 1.74 (m, 2H) ppm; MS (ES) 485.66 (M+H);

10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(5,6,8,9-tetrahydrospiro[cyclohepta[b]pyridine-7,2'-[1,3]dioxolane]-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #76; ¹H-NMR (DMSO-d₆, 300 MHz) 10.35 (br. s, 1H), 8.83 (s, 1H), 8.27 (s, 1H), 8.18 (s, 1H), 8.08 (br. s, 2H), 3.95-3.94 (m, 4H), 3.04 (m, 2H), 3.90 (m, 2H), 2.39 (s, 3H), 1.84 (m, 4H) ppm; MS (ES) 485.05 (M+H), 483.15 (M-H);

15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #77; ¹H-NMR (DMSO-d₆, 300 MHz) 10.13 (br. s, 1H), 8.82 (s, 1H), 8.25 (s, 1H), 8.06 (br. s, 2H), 3.49 (m, 4H), 3.26 (m, 1H), 3.14-3.07 (m, 4H), 2.39 (s, 3H), 1.98 (m, 4H), 1.85 (m, 2H), 1.62-1.50 (m, 2H) ppm; MS (ES) 485.05 (M+H), 496.09 (M), 494.32 (M-H);

20 1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-(diethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #78; ¹H NMR (DMSO-d₆, 300 MHz) 9.64 (s, 1H), 9.05 (s, 1H), 8.86 (s, 1H), 8.77 (s, 1H), 8.24 (m, 2H), 7.94 (d, 1H), 7.35 (s, 2H), 6.52 (s, 2H), 3.98 (s, 6H), 3.32-3.01 (m, 7H), 2.53 (m, 8H), 1.87 (m, 2H), 1.61 (m, 2H) ppm; MS (ES) 545.25 (M+H), 543.26 (M-H);

25 1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-(dimethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #79; ¹H NMR (DMSO-d₆, 300 MHz) 9.61 (s, 1H), 9.01 (s, 1H), 8.86 (s, 1H), 8.79 (s, 1H), 8.23 (s, 2H), 8.17 (s, 1H), 7.92 (d, 1H), 7.36 (m, 1H), 6.51 (m, 2H), 3.98 (s, 6H), 3.12 (m, 2H), 2.92 (m, 2H), 2.51-2.25 (m, 3H), 1.75 (m, 2H), 1.42 (m, 2H), 1.21-1.01 (m, 2H) ppm; MS (ES) 517.19 (M+H), 515.02 (M-H);

30 1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-piperidin-1-ylpropenyl)pyridin-3-yl)-1H-1,2,4-

35

triazole-3,5-diamine, compound #80; ^1H NMR (DMSO-d₆, 300 MHz) 9.65 (s, 1H), 9.05 (s, 1H), 8.84 (s, 1H), 8.81 (s, 1H), 8.24 (s, 2H), 8.19 (s, 1H), 7.96 (d, 1H), 7.32 (m, 1H), 6.50 (m, 2H), 3.91 (s, 6H), 3.13 (m, 2H), 2.23 (m, 4H), 1.63-1.47 (m, 6H) ppm; MS (ES) 488.56 (M+H), 486.57 (M-H);

5 1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-(4-pyrrolidin-1-ylpiperidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #81; ^1H NMR (DMSO-d₆, 300 MHz) 9.60 (s, 1H), 9.06 (s, 1H), 8.82 (s, 1H), 8.81 (s, 1H), 8.32-8.13 (m, 4H), 7.91 (m, 1H), 7.36 (m, 2H), 6.53 (m, 2H), 3.95 (s, 6H), 3.15 (m, 2H), 2.91 (m, 2H), 2.73 (m, 4H), 2.44 (m, 3H), 1.92 (m, 2H), 1.85 (m, 2H), 1.67-1.18 (m, 4H) ppm; MS (ES) 557.27 (M+H), 555.52 (M-H);

10 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #82;

15 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(1-bicyclo[2.2.1]heptan-2-ylpiperidin-4-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #83; ^1H NMR (DMSO-d₆, 300 MHz) 9.81 (m, 1H), 8.92 (m, 1H), 8.26 (m, 1H), 8.05 (m, 3H), 7.33 (m, 1H), 3.53 (m, 1H), 3.02 (m, 4H), 2.37 (s, 3H), 2.26 (m, 2H), 2.05 (m, 6H), 1.56 (m, 4H), 1.39 (m, 3H) ppm; MS (ES) 536.2 (M+H);

20 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #84;

25 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #85;

30 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(1-methylpiperidin-4-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #86;

35 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(piperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #87;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(1-bicyclo[2.2.1]heptan-2-ylpiperidin-4-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #88; ^1H NMR (DMSO-d₆, 300 MHz) 9.57 (m, 1H), 8.89 (m, 2H), 8.18 (m, 3H), 8.03 (m, 1H), 7.25 (m, 1H), 2.98 (m, 3H), 2.42 (s, 3H), 2.22-1.22 (m, 17H) ppm; MS (ES) 502.2 (M+H);

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(4-(cyclopropylmethyl)piperazin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #89; ^1H NMR (DMSO-d₆, 300 MHz) 9.15 (m, 1H), 8.86 (m, 1H), 8.49 (m, 1H), 8.12 (m, 3H), 7.95 (m, 1H), 6.86 (m, 1H), 3.38 (m, 4H), 2.52 (m, 4H), 2.41 (s, 3H), 2.19 (m, 2H), 0.84 (m, 1H), 0.46 (m, 2H), 0.07 (m, 2H) ppm; MS (ES) 463.1 (M+H);

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-(4-cyclopentylpiperazin-1-yl)propenyl)pyridin-

3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #90; ^1H NMR (DMSO-d₆, 300 MHz) 9.65 (s, 1H), 8.94 (s, 1H), 8.67 (s, 1H), 8.65 (s, 1H), 8.23-8.11 (m, 4H), 7.89 (m, 1H), 7.31 (m, 2H), 6.59 (m, 2H), 3.88 (s, 6H), 3.18 (m, 2H), 2.91-2.73 (m, 6H), 2.39 (m, 3H), 1.88 (m, 2H), 1.89 (m, 2H), 1.69-1.09 (m, 4H) ppm; MS (ES) 557.21 (M+H), 555.47 (M-H);

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(2-(4-pyrrolidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #91; ^1H -NMR (DMSO-d₆, 300 MHz) 9.35 (br. s, 1H), 8.75 (s, 2H), 8.28 (s, 1H), 7.99 (br. s, 2H), 4.69-4.64 (m, 2H), 3.42-3.32 (m, 2H), 3.11-3.09 (m, 2H), 2.87 (t, *J* = 12.6 Hz, 2H), 2.42 (m, 1H), 2.37 (s, 3H), 2.13-2.09 (m, 2H), 2.00 (m, 2H), 1.84-1.80 (m, 2H), 1.52-1.50 (m, 2H) ppm; MS (ES) 512.16 (M+H);

1-(7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(6-(1-(bicyclo[2.2.1]heptan-2-yl)-5-methylpiperidin-4-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #93, ^1H NMR (DMSO-d₆, 300 MHz): 9.42 (s, 1H, exch. With D₂O), 9.00 (broad s, 1H, exch. with D₂O), 8.88 (s, 1H), 8.43 (s, 1H), 8.18 (s, 1H), 8.11 (broad s, exch. with D₂O), 8.05 (s, 1H), 3.30-3.60 (m, 4H), 3.10-3.30 (m, 3H), 2.59 (m, 1H), 2.49 (s, 3H), 2.39 (s, 2H), 2.30 (m, 4H), 1.99 (m, 1H), 1.54 (m, 3H), 1.38 (m, 3H), 1.20 (m, 1H). MS(ES) 517.26 (M+H);

1-(7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #94, ^1H NMR (DMSO-d₆, 300 MHz) 9.44 (s, 1H), 9.89 (s, 1H), 8.44 (s, 1H), 8.19 (s, 1H), 8.14 (br s, 2H), 8.05 (s, 1H), 3.60 (m, 2H), 3.42 (m, 2H), 3.16 (m, 4H), 2.42 (s, 3H), 2.32 (s, 3H), 1.08 (m, 1H), 0.66 (m, 2H), 0.38 (m, 2H) ppm; MS (ES) 477.2 (M+H);

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #95; ^1H NMR (DMSO-d₆, 300 MHz) 9.55 (s, 1H), 8.42 (s, 1H), 8.29 (s, 1H), 7.99 (m, 3H), 3.60 (m, 2H), 3.42 (m, 2H), 3.19 (m, 6H), 2.37 (s, 3H), 2.32 (s, 3H), 1.09 (m, 1H), 0.66 (m, 2H), 0.39 (m, 2H) ppm; MS (ES) 511.2 (M+H);

1-(7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(1-methylpiperidin-4-yl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #96; ^1H NMR (DMSO-d₆, 300 MHz) 9.56 (s, 1H), 8.88 (s, 1H), 8.67 (s, 1H), 8.15 (m, 3H), 7.92 (d, 1H), 4.72 (d, 2H), 3.82 (m, 2H), 2.89 (m, 1H), 2.79 (m, 4H), 2.42 (s, 3H), 2.18 (s, 3H), 1.97 (m, 2H), 1.62 (m, 4H) ppm; MS (ES) 505.15 (M+H);

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #97; ¹H NMR (DMSO-d₆, 300 MHz) 9.47 (s, 1H), 8.87 (s, 1H), 8.64 (s, 1H), 8.22 (s, 1H), 8.17 (s, 1H), 8.12 (s, 2H), 7.85 (s, 2H), 3.66 (s, 2H), 2.79 (s, 4H), 2.71 (t, 1H), 2.42 (s, 3H), 1.91 (s, 2H), 1.66 (s, 2H), 1.50 (m, 4H) ppm; MS (ES) 448.21 (M+H);

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(1-methylpiperidin-4-yl)carbonylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #98; ¹H NMR (DMSO-d₆, 300 MHz) 9.43 (s, 1H), 8.87 (s, 1H), 8.64 (s, 1H), 8.14 (m, 3H), 7.85 (m, 2H), 2.82 (m, 6H), 2.42 (s, 3H), 2.27 (t, 3H), 2.08 (m, 4H), 1.93 (m, 1H), 1.95 (m, 1H), 1.66 (m, 4H) ppm; MS (ES) 519.35 (M+H);

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #99; ¹H NMR (DMSO-d₆, 300 MHz) 9.46 (s, 1H), 8.88 (s, 1H), 8.66 (d, 1H), 8.14 (m, 4H), 7.84 (d, 1H), 3.12 (m, 2H), 2.85 (m, 4H), 2.43 (s, 3H), 2.15 (m, 1H), 1.92 (m, 2H), 1.67 (m, 3H), 1.50 (m, 4H) ppm; MS (ES) 462.30 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclohexylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #100; ¹H NMR (CDCl₃, 300 MHz) 9.53 (s, 1H), 8.63 (s, 1H), 8.26 (s, 2H), 7.96 (s, 2H), 7.77 (s, 1H), 6.60 (s, 1H), 3.00 (m, 2H), 2.75 (m, 4H), 2.37 (s, 3H), 2.05 (m, 2H), 1.90 (m, 2H), 1.65 (m, 2H), 1.58 (m, 2H), 1.26 (m, 2H), 1.08 (m, 2H) ppm; MS (ES) 510.14 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclopropylmethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #101; ¹H NMR (DMSO-d₆, 300 MHz) 9.61 (s, 1H), 8.60 (s, 1H), 8.24 (s, 1H), 7.96 (s, 2H), 7.88 (s, 1H), 3.76 (s, 2H), 2.85 (s, 4H), 2.37 (s, 3H), 0.96 (m, 1H), 0.54 (d, 2H), 0.19 (d, 2H) ppm; MS (ES) 468.09 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-bicyclo[2.2.1]heptan-2-yl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #102; ¹H NMR (DMSO-d₆, 300 MHz) 9.58 (s, 1H), 8.63 (s, 1H), 8.22 (s, 1H), 7.11 (s, 1H), 7.96 (s, 2H), 7.80 (s, 1H), 3.54 (s, 1H), 2.81 (m, 3H), 2.41 (s, 1H), 2.34 (s, 3H), 2.27 (t, 1H), 2.16 (s, 1H), 1.74 (m, 2H), 1.50-1.17 (m, 5H), 0.96 (d, 2H) ppm; MS (ES) 508.13 (M+);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-bicyclo[2.2.1]heptan-2-yl-amino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt),

compound #103; ^1H NMR (DMSO-d₆, 300 MHz) 9.53 (d, 1H), 8.63 (m, 1H), 8.24 (d, 1H), 8.15 (s, 1H), 7.97 (s, 2H), 7.79 (s, 1H), 2.97 (m, 2H), 2.82 (m, 2H), 2.71 (m, 2H), 2.38 (s, 3H), 2.28 (s, 1H), 2.10 (m, 2H), 1.87 (t, 1H), 1.71 (m, 2H), 1.48 (m, 1H), 1.33 (s, 1H), 1.26 (m, 3H), 0.74 (t, 1H) ppm; MS (ES) 522.17 (M+);

5 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-bis-(cyclopropylmethyl)amino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine (formic acid salt), compound #104; ^1H NMR (DMSO-d₆, 300 MHz) 9.59 (s, 1H), 8.68 (s, 1H), 8.22 (s, 1H), 7.97 (s, 2H), 7.80 (s, 1H), 6.51 (s, 1H), 2.90(m, 8H), 2.38 (s, 3H), 2.14 (m, 1H), 1.82 (s, 2H), 1.05 (s, 2H), 0.58 (s, 4H), 0.28 (s, 4H) ppm; MS (ES) 10 536.27 (M+);

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #105; ^1H -NMR (CDCl₃/MeOD-4, 300 MHz) 8.66 (s, 1H), 8.50 (s, 1H), 8.03 (s, 1H), 7.78 (s, 1H), 7.64 (s, 1H), 3.24 (m, 1H), 3.19 (m, 4H), 3.01 (m, 1H), 15 2.72-2.87 (m, 3H), 2.34 (s, 3H), 2.50 (m, 1H), 1.91 (m, 4H), 1.50 (m, 2H); MS (ES) 462.14 (M+H);

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(S)-methyl-4-(1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylpiperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #106; ^1H -NMR (DMSO-d₆, 300 MHz) 9.43 (s, 1H), 8.88 (s, 1H), 8.45 (m, 1H), 8.18 (m, 1H), 8.13 (broad s, 1H), 20 8.04 (m, 1H), 3.66 (m, 2H), 3.28 (m, 4H), 2.56 (m, 1H), 2.49 (m, 4H), 2.42 (s, 3H), 2.34 (s, 3H), 2.30 (m, 1H), 2.00 (m, 1H), 1.52 (d, 3H), 1.35-1.60 (m, 4H), 1.26 (m, 1H); MS (ES) 531.17 (M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(S)-methyl-4-(2S)-bicyclo[2.2.1]heptan-2-ylpiperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #107; ^1H -NMR (DMSO-d₆, 300 MHz) 9.34 (s, 1H), 8.43 9s, 1H), 8.23 (s, 1H), 8.01 (s, 1H), 7.86 (s, 1H), 2.58 (m, 1H), 2.52 (s, 3H), 2.49 (m, 4H), 2.40 (s, 3H), 2.35 (m, 4H), 2.03 (m, 1H), 1.53 (d, 3H), 1.40-1.65 (m, 7H), 1.26 (m, 1H); MS (ES) 565.12/566.55 (M+H);

30 1-(thieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(S)-methyl-4-(2S)-bicyclo[2.2.1]heptan-2-ylpiperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #108; ^1H -NMR (DMSO-d₆, 300 MHz) 9.25 (s, 1H), 8.86 (s, 1H), 8.49 (d, 1H), 8.44 (s, 1H), 8.03 (m, 1H), 7.59 (m, 1H), 3.31 (m, 3H), 2.58 (m, 1H), 2.49 (m, 4H), 2.36 (s, 3H), 2.32 (m, 1H), 2.00 (m, 1H), 1.54 (d, 3H), 1.42-1.61 (m, 7H), 1.25 (m, 1H); MS (ES) 517.17(M+H);

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(4-(2S)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid), compound #109; 1 H-NMR (CDCl₃/MeOD-4, 300 MHz) 8.24 (m, 1H), 8.20 (m, 1H), 7.68 (s, 1H), 3.53 (m, 1H), 3.13 (m, 1H), 2.51 (m, 1H), 2.34 (s, 3H), 2.27 (m, 1H), 1.76-1.90 (m, 4H), 1.38-1.56 (m, 11H); MS (ES) 571.09 (M+H);

5 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(4-(2S)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #110; 1 H-NMR (CDCl₃/MeOD-4, 300 MHz) 8.73 (s, 1H), 8.29 (s, 1H), 8.21 (s, 1H), 7.65 (s, 1H), 3.23 (m, 1H), 3.15 (m, 1H), 2.50 (m, 1H), 2.40 (s, 3H), 10 2.27 (m, 1H), 1.75-1.91 (m, 4H), 1.38-1.53 (m, 11H); MS (ES) 537.15 (M+H);

10 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(4-(2S)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine, compound #111; 1 H-NMR (DMSO-d₆, 300 MHz) 9.27 (s, 1H), 8.86 (s, 1H), 8.38 (s, 1H), 8.17 (s, 1H), 8.10 (s, 2H), 7.97 (s, 1H), 2.97 (m, 4H), 2.48 (m, 7H), 2.28 (s, 3H), 2.14 (m, 1H), 15 1.71 (m, 2H), 1.15-1.36 (m, 6H), 0.87 (m, 2H); MS (ES) 517.21 (M+H);

15 1-(4-methylthieno[3,2-d]pyridazine-7-yl)- N^3 -(2-(4-(1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #112; 1 H-NMR (DMSO-d₆, 300 MHz) 10.91 (s, 1H, exchanges with D₂O), 9.20 (broad s, 1H, exchanges with D₂O), 8.54 (s, 20 1H), 8.41 (d, 1H), 8.00 (s, 1H), 7.79 (d, 1H), 3.51 (m, 6H), 3.24 (m, 4H), 2.87 (s, 3H), 2.60 (m, 1H), 2.49 (m, 2H), 2.29 (s, 3H), 1.98 (m, 1H), 1.60 (m, 2H), 1.40 (m, 2H), 1.23 (m, 1H); MS (ES) 517.13 (M+H);

20 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridine-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #113; 1 H NMR (DMSO-d₆, 300 MHz) 9.55 (s, 1H), 8.91 (s, 1H), 8.61 (s, 1H), 8.61 (s, 1H), 8.21-8.01 (m, 4H), 7.78 (m, 1H), 7.19 (m, 2H), 6.45 (m, 2H), 3.71 (s, 6H), 3.12 (m, 2H), 2.72-2.58 (m, 6H), 2.21 (m, 3H), 1.92 (m, 2H), 1.79 (m, 2H), 1.58-1.05 (m, 2H) ppm; MS (ES) 531.20 (M+H), 529.41 (M-H);

25 1-(6,7-dimethoxyquinazoline-4-yl)- N^3 -(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (bis trifluoroacetic acid salt), compound #114; 1 H NMR (DMSO-d₆, 300 MHz) 9.22 (s, 1H), 9.10 (s, 1H), 8.80 (s, 1H), 8.69 (s, 1H), 8.26 (s, 2H), 7.76 (d, 1H), 7.35 (s, 1H), 7.00 (d, 1H), 3.97 (s, 6H), 3.75 (m, 1H), 3.46-2.82 (m, 5H), 2.48 (s, 3H), 1.39-1.18 (m, 3H), 1.06 (m, 1H), 0.65 (m, 2H), 0.40 (m, 2H) ppm; MS (ES) 517.23 (M+H), 515.49 (M-H);

30 35 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)- N^3 -(2-(4-cyclopropylmethyl-3-(S)-

methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine, compound #115; ¹H NMR (DMSO-d₆, 300 MHz) 9.26 (s, 1H), 8.44 (s, 1H), 8.24 (s, 1H) 8.13 (s, 1H), 7.94 (m, 2H), 6.88 (d, 1H), 3.86 (m, 2H), 3.71 (m, 1H), 3.52-2.86 (m, 4H), 2.48 (s, 3H), 2.36 (s, 3H), 2.11 (m, 1H), 1.03 (d, 2H), 0.84 (m, 1H), 0.45 (m, 2H) ppm; MS (ES) 511.16 (M+H);
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #116; ¹H NMR (DMSO-d₆, 300 MHz) 9.63 (s br, 1H), 9.36 (s, 1H), 8.88 (s, 1H), 8.54 (s, 1H), 8.14 (s, 2H), 8.04 (d, 1H), 7.10 (d, 1H), 4.31 (m, 2H), 3.76 (m, 1H), 3.52-2.86 (m, 4H), 2.48 (s, 3H), 2.41 (s, 3H), 1.33 (m, 2H), 1.07 (s, 1H), 0.65 (m, 2H), 0.35 (d, 2H) ppm; MS (ES) 477.19 (M+H), 475.30 (M-H);
 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine formic acid salt, compound #117 (formic acid salt of compound #115); ¹H NMR (DMSO-d₆, 300 MHz) 9.26 (s, 1H), 8.44 (s, 1H), 8.24 (s, 1H) 8.13 (s, 1H), 7.94 (m, 2H), 6.88 (d, 1H), 3.86 (m, 2H), 3.71 (m, 1H), 3.52-2.86 (m, 4H), 2.48 (s, 3H), 2.36 (s, 3H), 2.11 (m, 1H), 1.03 (d, 2H), 0.84 (m, 1H), 0.45 (m, 2H) ppm; MS (ES) 511.12 (M+H), 509.34 (M-H);
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-bromopyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #118; ¹H NMR (DMSO-d₆, 300 MHz) 9.84 (s, 1H), 8.89 (s, 1H), 8.80 (s, 1H), 8.20 (s, 2H), 8.16 (s, 1H), 8.00 (d, 1H), 7.58 (d, 1H), 2.48 (s, 3H) ppm; MS (ES) 404.86 (M+H);
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(pyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #119; ¹H NMR (DMSO-d₆, 300 MHz) 9.87 (s, 1H), 8.41 (s br, 1H), 8.89 (s, 2H), 8.23-8.12 (m, 4H), 7.59 (d, 1H), 6.81 (d, 1H), 6.58 (m, 1H), 3.92 (m, 2H), 3.43 (m, 2H), 2.89 (m, 2H), 2.54-2.41 (m, 6H), 1.85-1.23 (m, 5H) ppm; MS (ES) 434.15 (M+H), 432.22 (M-H);
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(3-dimethylaminopyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (formic acid salt), compound #120; ¹H NMR (DMSO-d₆, 300 MHz) 9.72 (s, 1H), 8.98 (m, 2H), 8.17 (m, 2H), 8.17-8.05 (m, 4H), 7.45 (d, 1H), 6.65 (d, 2H), 3.18 (m, 2H), 2.72 (m, 1H), 2.44 (m, 2H), 2.30 (m, 2H), 2.25 (s, 6H), 2.19 (m, 5H), 1.77 (m, 1H), 1.52 (m, 1H) ppm; MS (ES) 477.19 (M+H), 475.25 (M-H);
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(3-diethylaminopyrrolidin-1-yl)propen-1-

yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (bis formic acid salt), compound #121; ^1H NMR (DMSO-d₆, 300 MHz) 9.81 (s, 1H), 8.98 (m, 2H), 8.22 (m, 2H), 8.15-8.02 (m, 4H), 7.39 (d, 1H), 6.59 (d, 2H), 3.22 (m, 2H), 2.71 (m, 1H), 2.46-2.38 (m, 5H), 2.30 (m, 1H), 2.23-2.17 (m, 5H), 1.76 (m, 1H), 1.52 (m, 1H), 1.03 (t, 6H) ppm; MS (ES) 505.21 (M+H), 503.39 (M-H);

5 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-pyrrolidin-1-yl-piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (bis formic acid salt), compound #122; ^1H NMR (DMSO-d₆, 300 MHz) 9.68 (s, 1H), 8.87 (s, 2H), 8.45 (m, 1H), 8.31-8.08 (m, 3H), 7.58 (d, 1H), 6.79 (d, 1H), 6.59 (m, 1H), 3.74 (m, 2H), 3.50 (m, 2H), 3.04 (m, 2H), 2.53-2.31 (m, 6H), 1.95 (m, 2H), 1.57 (m, 6H) ppm; MS (ES) 517.23 (M+H), 515.38 (M-H);

10 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #123; ^1H NMR (DMSO-d₆, 300 MHz) 10.00 (s, 1H), 8.91 (s, 2H), 8.36-8.03 (m, 4H), 7.68 (d, 1H), 6.81 (m, 1H), 6.59 (m, 1H), 3.73 (m, 2H), 2.82 (m, 4H), 2.56-2.33 (m, 10H) ppm; MS (ES) 463.21 (M+H), 461.35 (M-H);

15 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #124; ^1H NMR (DMSO-d₆, 300 MHz) 9.86 (s, 1H), 8.781 (s, 2H), 8.39-8.12 (m, 4H), 7.62 (d, 1H), 6.79 (m, 1H), 6.55 (m, 1H), 3.70 (m, 2H), 2.81 (m, 2H), 2.56-2.39 (m, 10H), 1.05 (d, 6H) ppm; MS (ES) 491.23 (M+H);

20 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-cyclopentylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #125; ^1H NMR (DMSO-d₆, 300 MHz) 10.43 (s, 1H), 8.91 (s, 2H), 8.43 (m, 1H), 8.35-8.10 (m, 3H), 7.64 (d, 1H), 6.82 (d, 1H), 6.61 (m, 1H), 3.76 (m, 2H), 3.51 (m, 2H), 3.06 (m, 2H), 2.55-2.33 (m, 6H), 1.99 (m, 2H), 1.59 (m, 6H) ppm; MS (ES) 517.29 (M+H), 515.53 (M-H);

25 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(morpholin-4-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #126; ^1H NMR (DMSO-d₆, 300 MHz) 9.89 (s, 1H), 8.88 (s, 2H), 8.35-8.11 (m, 4H), 7.78 (d, 1H), 6.79 (m, 1H), 6.57 (m, 1H), 3.74 (m, 2H), 3.62 (m, 4H), 2.56-2.29 (m, 7H) ppm; MS (ES) 450.17 (M+H), 448.26 (M-H);

30 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #127; ^1H NMR (DMSO-d₆, 300 MHz) 9.94 (s, 1H), 8.45 (s br, 1H), 8.91 (s, 2H), 8.25-8.15 (m,

4H), 7.63 (d, 1H), 6.84 (d, 1H), 6.60 (m, 1H), 3.90 (m, 2H), 3.42 (m, 2H), 2.92 (m, 2H), 2.52-2.43 (m, 6H), 1.81-1.25 (m, 3H) ppm; MS (ES) 446.30 (M+H); 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (formic acid salt), compound #128; ¹H NMR (DMSO-d₆, 300 MHz) 9.72 (s, 1H), 8.98 (m, 2H), 8.17 (m, 2H), 8.17-8.05 (m, 4H), 7.45 (d, 1H), 6.65 (d, 2H), 3.21 (m, 3H), 2.98 (s, 3H), 2.60-2.07 (m, 12H), 1.79 (m, 2H), 1.46 (m, 3H), 1.13-1.04 (m, 2H) ppm; MS (ES) 546.26 (M+H), 544.37 (M-H); 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(3-(4-piperidin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (formic acid salt), compound #129; ¹H NMR (DMSO-d₆, 300 MHz) 9.68 (s, 1H), 8.85 (m, 2H), 8.23 (m, 2H), 8.11-8.01 (m, 4H), 7.39 (d, 1H), 6.65 (d, 2H), 3.26 (m, 3H), 2.64-2.05 (m, 12H), 1.81 (m, 2H), 1.43 (m, 3H), 1.15-1.07 (m, 4H) ppm; MS (ES) 531.27 (M+H), 529.24 (M-H); 1-(6-phenylpyrimidine-4-yl)-N³-(3-methyl-2-(4-pyrrolidin-1-yl)piperidin-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #130; ¹H-NMR (DMSO-d₆, 300 MHz) 9.30 (br. s, 1H), 9.00 (s, 1H), 8.46 (s, 1H), 8.16-8.14 (m, 2H), 7.96 (s, 1H), 7.93 (br. s, 2H), 7.79 (s, 1H), 7.60-7.57 (m, 3H), 3.37 (m, 4H), 3.12-3.08 (m, 4H), 2.75 (t, 1H), 2.15-2.02 (m, 4H), 1.86-1.73 (m, 4H) ppm; MS (ES) 497.22 (M+H); 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(2-(4-(piperidin-1-ylmethyl)piperidin-1-yl)pyrimidin-5-yl)-1H-1,2,4-triazole-3,5-diamine (bis trifluoroacetic acid salt), compound #131; ¹H NMR (CDCl₃+CD₃OD, 300 MHz) 7.86 (s, 1H), 7.44 (m, 4H), 4.70 (m, 2H), 3.60 (m, 2H), 2.96 (m, 4H), 2.80 (m, 2H), 2.48 (s, 3H), 2.14 (m, 1H), 1.93 (m, 6H), 1.33 (m, 4H); MS (ES) 540.14 (M+H); and 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N³-(6-(dimethylaminomethyl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #134.

SYNTHETIC EXAMPLE 3

In a similar manner as described above utilizing the appropriately substituted starting materials and reagents, the following compounds of formula (Ib) were prepared: 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N⁵-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine, compound #92; ¹H-NMR (DMSO-d₆, 300 MHz) 10.32 (s, 1H), 8.37 (s, 1H), 8.22 (s, 1H), 7.89 (s, 1H), 6.27

(br. s, 2H), 3.55 (m, 2H), 3.41-3.37 (m, 2H), 3.26 (m, 1H), 3.11-3.08 (m, 2H), 2.76-2.71 (m, 2H), 2.36 (s, 3H), 2.28 (s, 3H), 2.15-2.11 (m, 2H), 2.02 (m, 2H), 1.86-1.73 (m, 4H) ppm; MS (ES) 525.20 (M);

5 1-(4-methylthieno[2,3-d]pyridazin-7-yl)-N⁵-(2-(4-(1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (trifluoroacetic acid salt), compound #132; ¹H-NMR (DMSO-d₆, 300 MHz) 10.94 (s, 1H, exchanges with D₂O), 9.00 (broad s, 1H, exchanges with D₂O), 8.55 (s, 1H), 8.40 (d, 1H), 8.00 (s, 1H), 7.79 (d, 1H), 3.51 (m, 6H), 3.20 (m, 4H), 2.86 (s, 3H), 2.61 (m, 1H), 2.52 (m, 2H), 2.29 (s, 3H), 1.99 (m, 1H), 1.59 (m, 2H), 1.41 (m, 10 2H), 1.22 (m, 1H); MS (ES) 517.13 (M+H); and

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N⁵-(2-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine (formic acid salt), compound #133; MS (ES) 546.29 (M+H), 544.52 (M-H).

15 TESTING OF THE COMPOUNDS OF THE INVENTION

The compounds of the invention were tested in the following assay for their ability to inhibit Axl activity.

PHOSPHO-AKT IN-CELL WESTERN ASSAY

REAGENTS AND BUFFERS:

20 Cell culture plate: 96 well assay plate (Corning 3610), white, clear bottom, tissue-culture treated.

Cells: Hela cells.

Starvation medium: For Axl stimulation: 0.5% FCS (fetal calf serum) in DMEM, plus Axl/Fc (extracellular domain of AXL fused to immunoglobulin Fc region) (R&D, 154-AL) 500ng/mL.

For EGF (epidermal growth factor) stimulation: 0.5% FCS in DMEM (Dulbecco's modified Eagles medium).

Poly-L-Lysine 0.01% solution (the working solution): 10µg/ml, dilute in PBS (phosphate buffered saline).

30 Axl antibody cross-linking:

1st: Mouse anti-Axl (R&D, MAB154).

2nd: Biotin-SP-conjugated AffiniPure goat anti-mouse IgG (H+L) (Jackson

ImmunoResearch #115-065-003).

Fixing buffer: 4% formaldehyde in PBS.

Wash buffer: 0.1% TritonX-100 in PBS.

Quenching buffer: 3% H₂O₂, 0.1% Azide in wash buffer, Azide and hydrogen peroxide (H₂O₂) are added fresh.

Blocking buffer: 5% BSA in TBST (tris buffered saline plus 0.1% Tween 20).

Primary antibody: Rabbit anti-human Phospho-Akt antibody (Cell Signaling 9271): 1x250 diluted in blocking buffer.

Secondary antibody: HRP (horse radish peroxidase)-conjugated Goat anti-Rabbit secondary, stock solution: Jackson ImmunoResearch (Goat anti-Rabbit HRP, #111-035-144) 1:1 diluted in glycerol, store at -20° C. The working solution: 1x 2000 dilution of stock in blocking buffer.

Chemiluminescent working solution (Pierce, 37030): SuperSignal ELISA (enzyme linked immunosorbant assay) Pico Chemiluminescent substrate.

15 Crystal Violet solution: Stock : 2.5% Crystal violet in methanol, filtered and kept at ambient temperature. The working solution: dilute the stock 1:20 with PBS immediately before use.

10% SDS: working solution: 5% SDS (sodium dodecylsulfate), diluted in PBS

METHODS:

20 Day 1:

A 96 well TC (tissue culture treated) plate was coated with 10µg/mL poly-L-Lysine at 37°C for 30 min, washed twice with PBS, and air-dried for 5 minutes before cells were added. Hela cells were seeded at 10,000 cells/well and the cells were starved in 100 µL starvation medium containing Axl/Fc for 24 hrs.

25 Day 2:

The cells were pre-treated with test compounds by adding 100 µL of 2X test compound to the starvation medium on the cells. The cells were incubated at 37°C for 1 hr before stimulation.

30 The cells were stimulated by Axl-antibody cross-linking as follows: A 5X 1st/2nd Axl antibody mixture was made (37.5µg/mL 1st/ 100µg/mL 2nd) in starvation medium and nutated at 4°C with thorough mixing for 1-2 hours for clustering. The resulting mix was warmed to 37°C. 50µL of 5X Axl 1st /2nd of antibody cluster was added to the cells and the cells were incubated at 37°C for 5 min.

After 5 minutes stimulation, the plate was flicked to remove medium and the plate was tapped onto paper towels. Formaldehyde (4.0% in PBS, 100 μ L) was added to fix the cells and the cells were incubated at ambient temperature for 20 min without shaking.

5 The cells were washed with a plate washer buffer to remove the formaldehyde solution. The plate was flicked to removed excess wash buffer and tapped onto paper towels. Quenching buffer (100 μ L) was added to each well and the cells were incubated at ambient temperature for 20 minutes without shaking.

10 The cells were washed with a plate washer buffer to remove the quenching buffer. Blocking buffer (100 μ L) was added and the cells were incubated at ambient temperature for at least an hour with gentle shaking.

The cells were washed with a plate washer buffer and diluted primary antibody (50 μ L) was added to each well (blocking buffer was added to the negative control wells instead). The plates were incubated overnight at 4° C with gentle shaking.

15 **Day 3:**

The wash buffer was removed, diluted secondary antibody (100 μ L) was added, and the cells were incubated at ambient temperature for 1 hour with gentle shaking. During the incubation, the chemiluminescent reagent was brought to ambient temperature.

20 The secondary antibody was removed by washing the cells 1X with wash buffer, 1X with PBS by plate washer. The PBS was removed from the plate and the chemiluminescent reagent (80 μ L: 40 μ L A and 40 μ L B) was added to each well at ambient temperature.

25 The resulting chemiluminescence was read with a Luminomitor within 10 minutes to minimize changes in signal intensity. After reading the chemiluminescence, the cells were washed 1X with wash buffer and 1X with PBS by plate washer. The plate was tapped onto paper towels to remove excess liquid from wells and air-dried at ambient temperature for 5 minutes.

30 Crystal Violet working solution (60 μ L) was added to each well and the cells were incubated at ambient temperature for 30 min. The crystal violet solution was removed, and the wells were rinsed with PBS, then washed 3X with PBS (200 μ L) for 5 minutes each.

5% SDS solution (70 μ L) was added to each well and the cells were incubated on a shaker for 30 min at ambient temperature.

35 The absorbance was read at 590 nM on a Wallac photospec. The 590nM

readings indicated the relative cell number in each well. This relative cell number was then used to normalize each luminescence reading.

The results of the ability of the compounds of the invention to inhibit Axl activity, when tested in the above assay, are shown in the following Tables 1-2 wherein the level 5 of activity (*i.e.*, the IC₅₀) for each compound is indicated in each Table. The compound numbers in the Tables referred to the compounds disclosed herein as being prepared by the methods disclosed herein:

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
(la)							
1	1-(isquinolin-1-yl)-N ³ -(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	B
2	1-(6-chloroquinazolin-4-yl)-N ³ -(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	B
3	N ³ -(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-phenyl-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	D
4	N ³ -(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(isquinolinol-1-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	B
5	N ³ -(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(6,7-dimethoxyquinazolin-4-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1

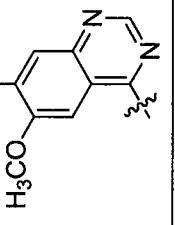
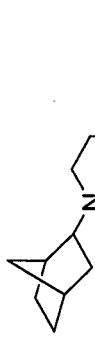
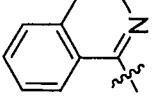
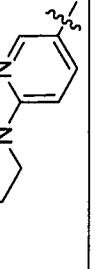
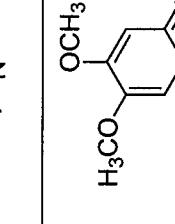
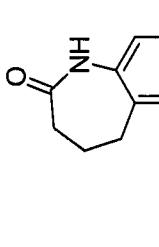
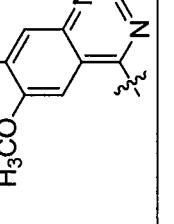







Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(Ia)
6	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
7	1-(isoquinolin-1-yl)-N ³ -(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
8	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(4-(4-methylpiperazin-1-yl)piperidin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
9	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(4,5-dihydro-1 <i>H</i> -benzo[b]azepin-2(3 <i>H</i>)-on-8-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H B

Table 1

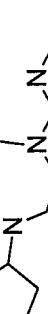
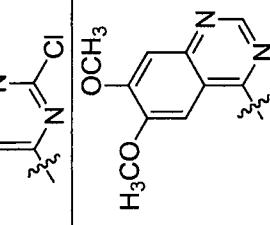
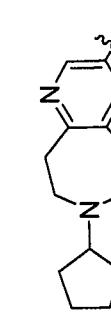
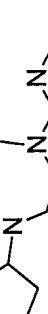
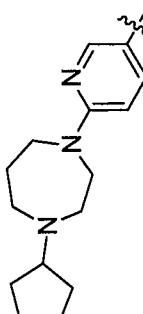
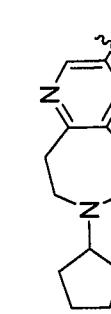
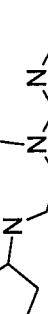
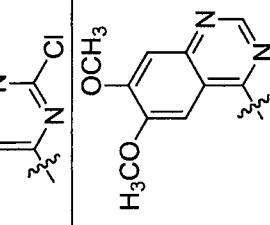
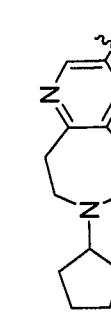
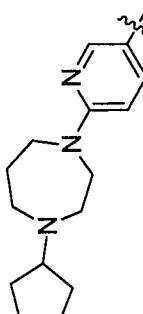
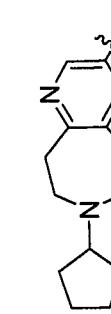
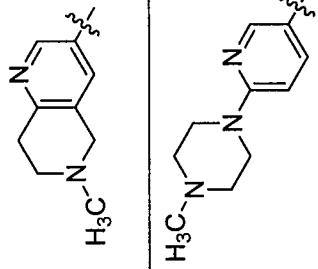
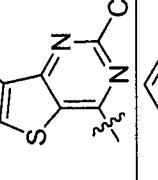
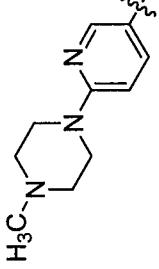
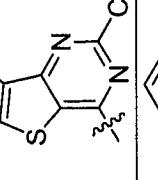
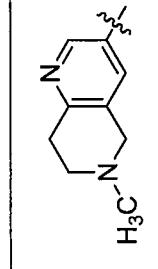
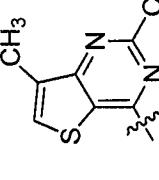
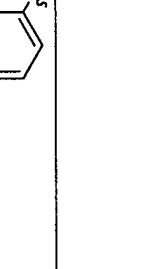
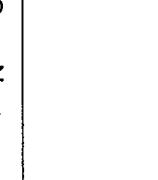
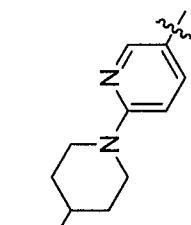
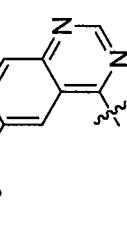
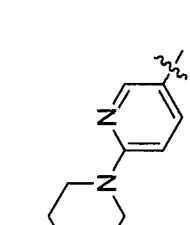
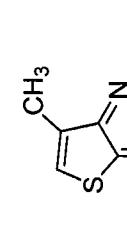
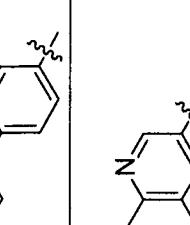
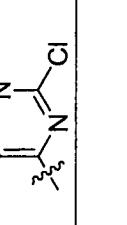
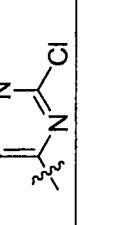
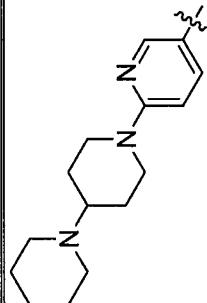
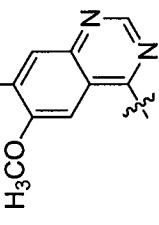
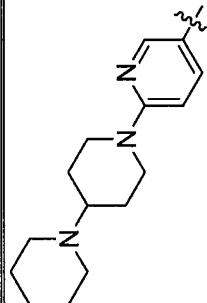
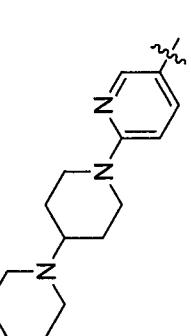
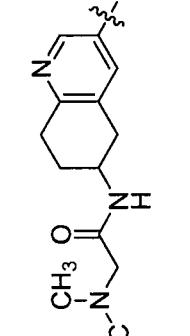
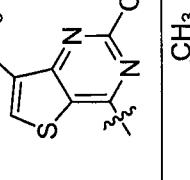
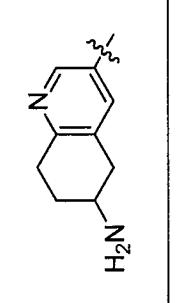
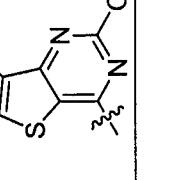



















Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴		R ⁵	IC ₅₀
10	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-cyclopentyl-1,4-diazepan-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H					H	A
11	1-(6,7-dimethoxyquiazoline-4-yl)-N ³ -(6-(4-cyclopentyl-1,4-diazepan-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	A
12	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(7-cyclopentyl-6,7,8,9-tetrahydro-5 <i>H</i> -pyrido[3,2-d]azepin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H					H	B
13	1-(6,7-dimethoxyquiazoline-4-yl)-N ³ -(7-cyclopentyl-6,7,8,9-tetrahydro-5 <i>H</i> -pyrido[3,2-d]azepin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H					H	A

Table 1








Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(a)
14	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H D
15	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
16	1-(isoquinolin-1-yl)-N ³ -(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
17	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-(pyrrolidin-1-yl)pyridine-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A

IC₅₀ activity:
 A = <1 μ M
 B = 1 to 10 μ M
 C = >10 to 20 μ M
 D = >20 μ M









Table 1

		IC ₅₀ activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M					
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
18	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-benzylo-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	C
19	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(ethylcarboxy)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	D
20	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(pyrrolidin-1-ylcarbonyl)-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A
21	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(dimethylaminomethylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀ activity:
							(la) A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M
22	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A
23	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(4-pyrrolidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A
24	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A
25	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A

Table 1

		IC ₅₀ activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M					
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
27	1-(6,7-dimethoxyquinoxoline-4-yl)-N ² -(6-(4-piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A
28	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-piperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A
29	1-(2-chloro-7-methylthieno[3,2-d]pyrimdin-4-yl)-N ³ -(6-(2-(dimethylamino)-1-oxyethylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A
30	1-(2-chloro-7-methylthieno[3,2-d]pyrimdin-4-yl)-N ³ -(6-amino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H A

Table 1

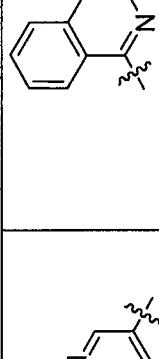
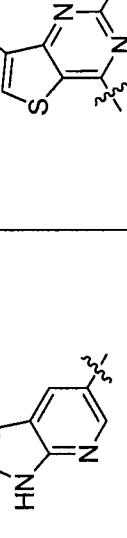


Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(Ia)
31	1-(isocouolin-1-yl)-N ³ -(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H	H ₃ C-N(C ₂ H ₅) ₂			H	A
32	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(1 <i>H</i> -pyrrol[2,3-b]pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
33	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A
34	1-(6,7-dimethoxyquiazoline-4-yl)-N ³ -(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀ activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M	(la)	
								Chemical Structure	Chemical Structure
35	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-(azepan-1-yl)piperidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	A	
36	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(diethylaminoethyl)methylamino)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	A	
37	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(diethylaminoethyl)methylamino)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	A	
38	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(diethylaminomethyl)pyrrolidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	A	

Table 1

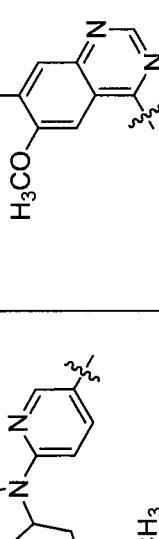
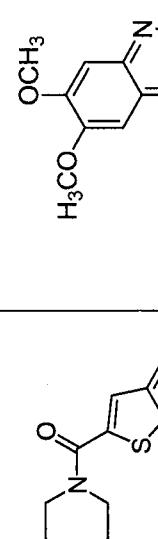
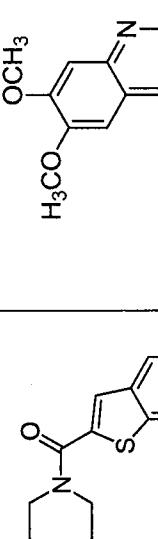
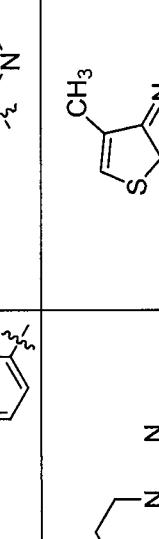
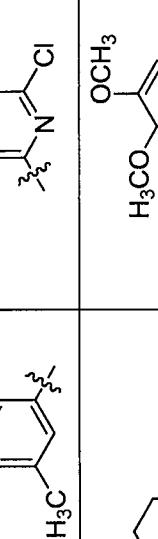
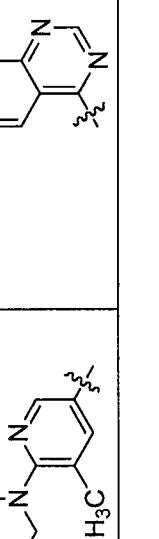
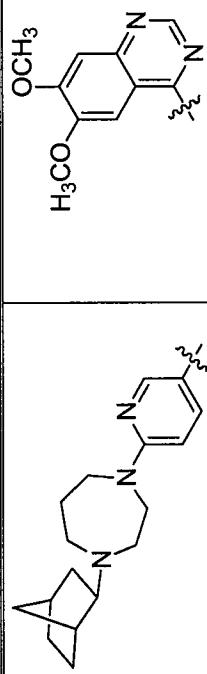
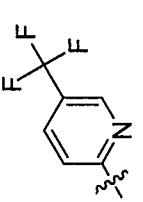
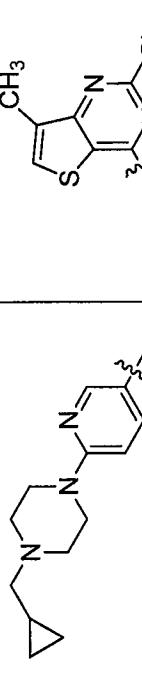






Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(Ia)
39	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(2-diethylaminomethyl)pyrrolidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
40	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(2-(1-(4-(2-(dimethylamino)ethyl)piperazin-1-yl)oxomethyl)benzol[b]thiophen-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	B
41	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
42	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(la)
43	1-(phenanthridin-6-yl)-N ³ -(6-(4-(pyrrolidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
44	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			CH ₃	H	A
45	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H ₃ CO	H	A
46	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			CH ₃	H	A

Table 1

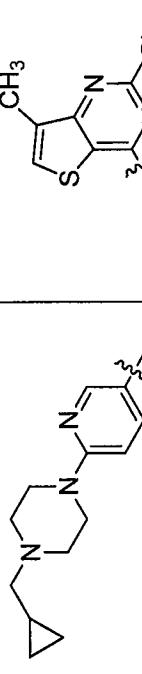
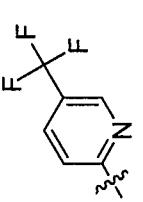
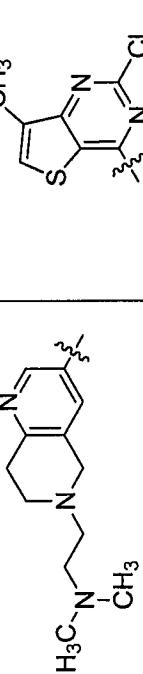
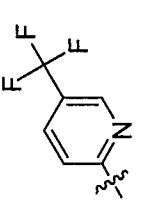




		IC ₅₀ activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M					
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
47	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A
48	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A
49	1-(5-trifluoromethylpyridin-2-yl)-N ³ -(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A
50	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(2-dimethylaminoethyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A

Table 1

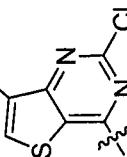
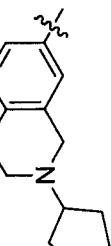
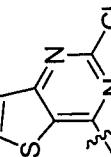
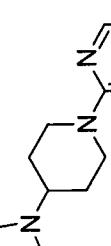
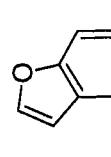
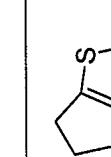
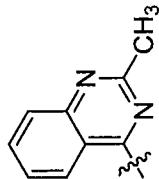
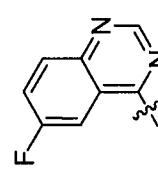
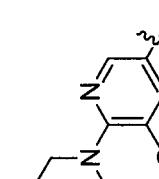
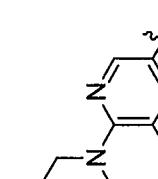
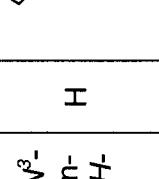
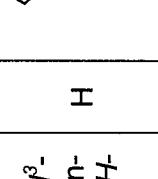
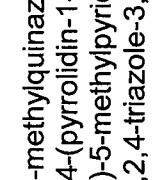
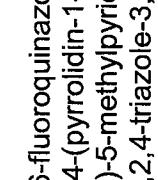
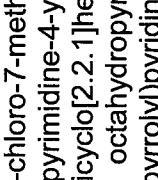
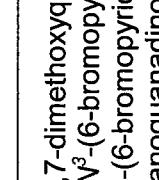
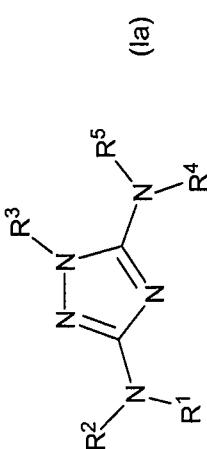
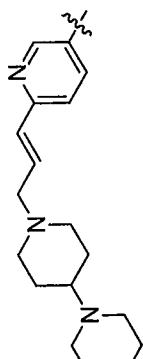
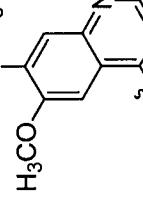
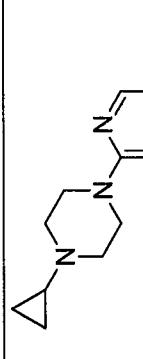
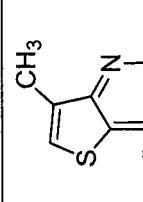
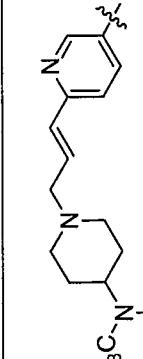
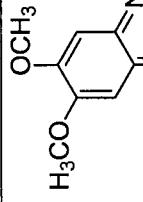
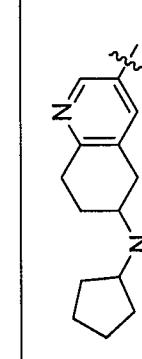
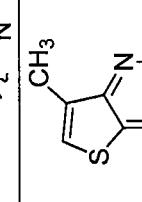






Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(la)
51	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H	H ₃ C-N(piperidin-4-yl)methyl		CH ₃	H	A
52	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			CH ₃	H	A
53	1-(furo[3,2-c]pyridine-4-yl)-N ³ -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
54	1-(6,7-dihydro-5 <i>H</i> -cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)-N ³ -(6-(4-methylpyridin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1











Cpd #	Compound Name	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^3	\mathbf{R}^4	\mathbf{R}^5	\mathbf{IC}_{50}	\mathbf{IC}_{50} activity: A = <1 μM B = 1 to 10 μM C = >10 to 20 μM D = >20 μM			
								\mathbf{R}^2	\mathbf{R}^3	\mathbf{R}^4	\mathbf{R}^5
55	1-(2-methylquinazolin-4-yl)- \mathbf{N}^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A				
56	1-(6-fluoroquinazolin-4-yl)- \mathbf{N}^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A				
57	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)- \mathbf{N}^3 -(6-(5-bicyclo[2.2.1]heptan-2-yl-octahydropyrrrol[3,4-cl]pyrrol)pyridine-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			CH ₃	Cl	H	H	A		
58	1-(6,7-dimethoxyquinazoline-4-yl)- \mathbf{N}^3 -(6-bromopyridin-3-yl)-5-(3-(6-bromopyridin-3-yl)-2-cyanoquinadino)-1 <i>H</i> -1,2,4-triazole-3-amine	H			H ₃ CO	OCH ₃			H	B	










Table 1

		IC ₅₀ activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M					
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
59	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-bromopyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H	Br- C ₆ H ₄ - N	H ₃ CO- C ₆ H ₄ - N	H	H	D
60	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(7',8'-dihydro-5 <i>H</i> -spiro[1,3]dioxolane-2,6-quinoline]-3'-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H	O- C ₆ H ₄ - N	CH ₃ - C ₆ H ₄ - N	H	H	A
61	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(1-methylpiperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H	O- C ₆ H ₄ - N	CH ₃ - C ₆ H ₄ - N	H	H	A
62	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(2-(4-pyrrolidin-1-yl)pyrimidin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H	C ₆ H ₄ - N	H ₃ CO- C ₆ H ₄ - N	H	H	D

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
(Ia)							
63	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(2-(4-piperidin-1-ylmethyl)piperidin-1-yl)pyrimidin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	B
64	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(pyrrolidin-1-yl)-4b,5,6,7,a,8-hexahydropentaleno[2,1-b]pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
65	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
66	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-methylpiperazin-1-yl)-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1

 (la)		IC ₅₀ activity: A = <1 μM B = 1 to 10 μM C = >10 to 20 μM D = >20 μM				
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵
67	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(3-(4-piperidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H
68	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(4-cyclopropylpiperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H
69	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(3-(4-dimethylaminopiperidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H
70	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H

Table 1

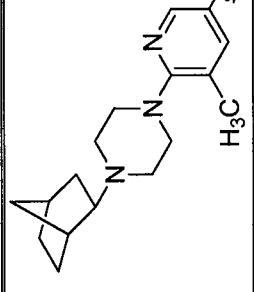
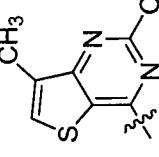
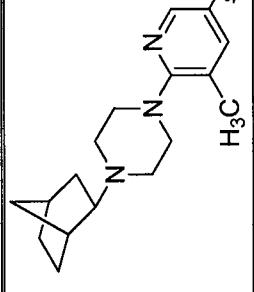
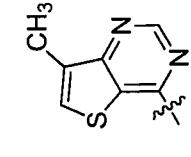
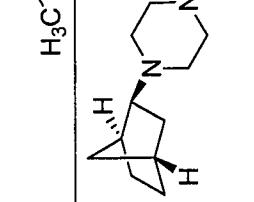
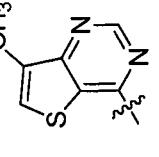
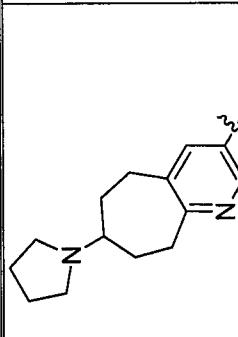
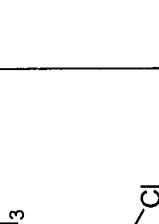
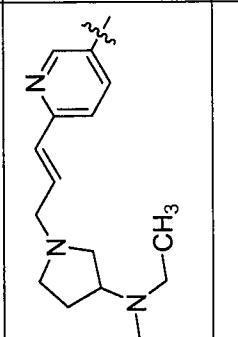
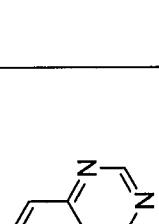
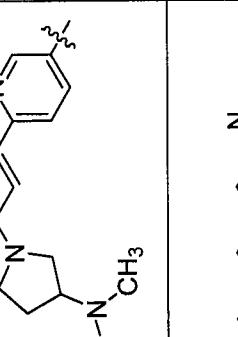
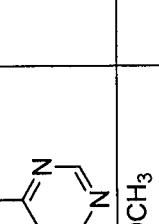
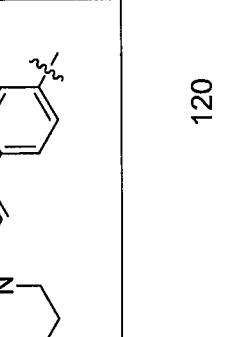
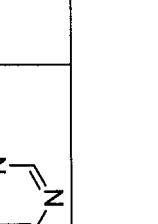
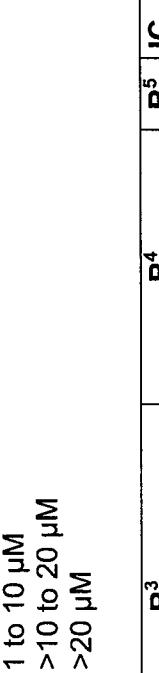
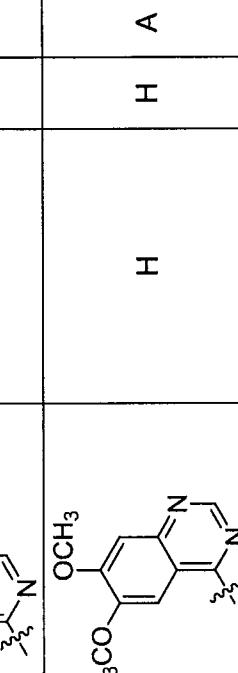














Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀ activity:	
							A = <1 μ M	B = 1 to 10 μ M
71	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3,5-diamine	H			H	H	H	A
72	1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3,5-diamine	H			H	H	H	A
73	1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(4-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H	H	A

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(la)
77	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A
78	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(3-(3-(diethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A
79	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(3-(3-(dimethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A
80	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(6-(3-(3-piperidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	A



Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	IC ₅₀ activity:		IC ₅₀
					R ⁴	R ⁵	
81	1-(6,7-dimethoxyquinazoline-4-yl)-N ³ -(6-(3-(4-pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H					A
82	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H					A
83	1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N ³ -(6-(1-bicyclo[2.2.1]heptan-2-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H					A
84	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H					A

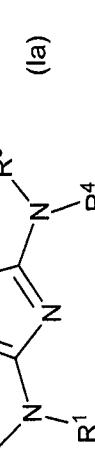
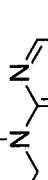
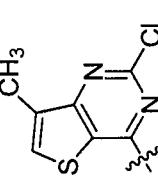
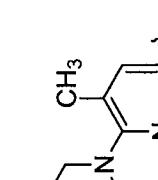
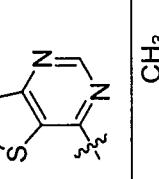
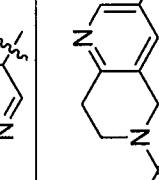
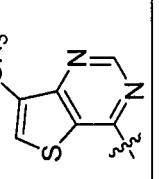
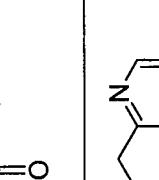
Table 1

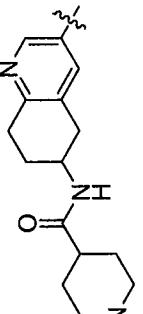
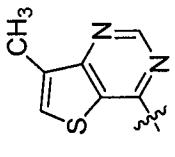
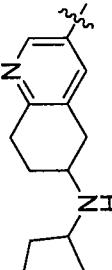
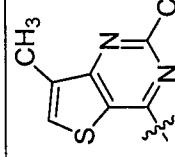
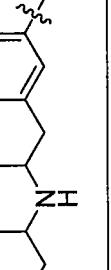
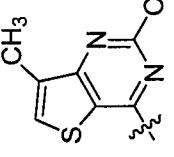
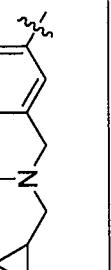
		IC ₅₀ activity: A = <1 μM B = 1 to 10 μM C = >10 to 20 μM D = >20 μM					
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
85	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
86	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(1-methylpiperidin-4-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
87	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(piperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	D
88	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(1-bicyclo[2.2.1]heptan-2-ylpiperidin-4-yl)pyridine-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1

 (la)		IC_{50} activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M					
Cpd #	Compound Name	R^1	R^2	R^3	R^4	R^5	IC_{50}
89	1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-N^3-(6-(4-(cyclopropylmethyl)pyrazin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			CH ₃	H	A
90	1-(6,7-dimethoxyquinoxoline-4-yl)-N^3-(6-(3-(4-cyclopentylpyrazin-1-yl)propenyl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			OCH ₃	H	A
91	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(2-(4-pyrrolidin-1-yl)pyrimidin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			CH ₃	H	A
93	1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-N^3-(6-(1-(bicyclo[2.2.1]heptan-2-yl)-5-methylpyridin-4-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			CH ₃	H	A

Table 1

 (la)		IC ₅₀ activity:				
		R ¹	R ²	R ³	R ⁴	R ⁵
94	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H
95	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H
96	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(6-(1-methylpiperidin-4-yl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H
97	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(la)
98	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-(1-methylpiperidin-4-yl)carbonylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
99	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
100	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-cyclohexylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
101	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-cyclopropylmethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A

Table 1

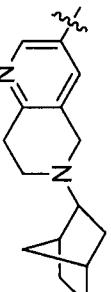
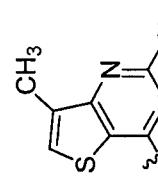
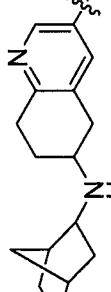
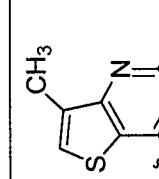
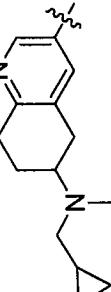
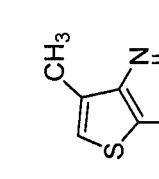
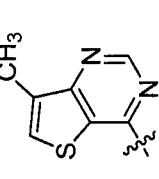







Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀	IC ₅₀ activity:
								A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M
102	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-bicyclo[2.2.1]heptan-2-yl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H	A
103	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-bicyclo[2.2.1]heptan-2-yl-amino-5,6,7,8-tetrahydroquinoxolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H	A
104	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(6-bis(cyclopropylmethyl)amino-5,6,7,8-tetrahydroquinoxolin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H				H	H	A
105	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine					H	H	A

Table 1

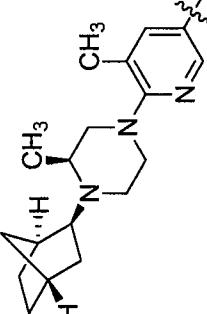
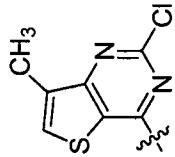
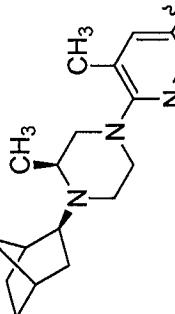
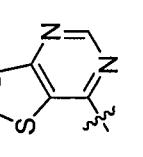
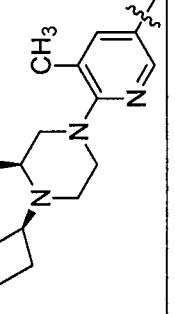
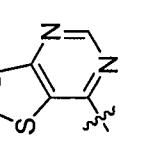
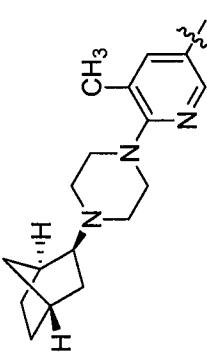
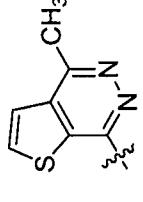






Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀ activity:
							A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M
106	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(S)-methyl-4-(1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)pyrazin-1-yl)-3-methylpyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
107	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(S)-methyl-4-(2S)-bicyclo[2.2.1]heptan-2-yl)pyrazin-1-yl)-3-methylpyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A
108	1-(thieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(S)-methyl-4-(2S)-bicyclo[2.2.1]heptan-2-yl)pyrazin-1-yl)-3-methylpyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1

Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							IC ₅₀ activity:
109	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(4-(2S)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H	B
110	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(4-(2S)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H	C
111	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(4-(2S)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H	H	A

Table 1

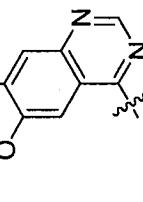
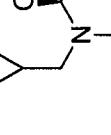
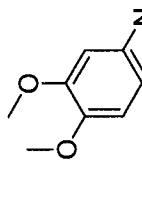



Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
				(la)			
112	1-(4-methylthieno[3,2-d]pyridazine-7-yl)-N ³ -(2-(4-(1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H D
113	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(2-(3-(4-(1-yl)pyridine-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
114	1-(6,7-dimethoxyquinoxoline-4-yl)-N ³ -(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A

Table 1

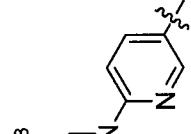
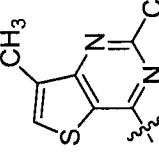
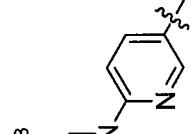
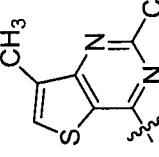
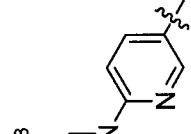
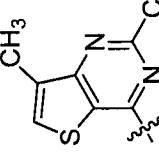
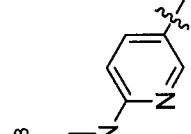
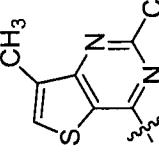








Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							IC ₅₀
(la)							
115	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H B
116	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
117	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
118	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-bromopyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H D

Table 1

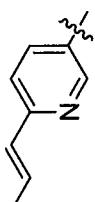
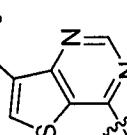
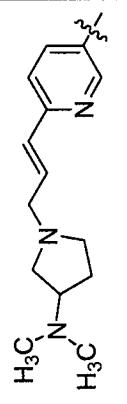
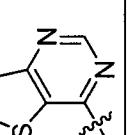
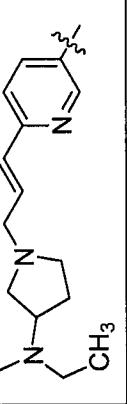
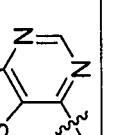
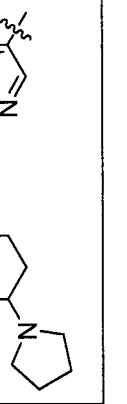







Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
							(la)
119	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(pyrrolidin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A
120	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(3-dimethylaminopyrrolidin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A
121	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(3-diethylaminopyrrolidin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A
122	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-pyrrolidin-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	A

Table 1

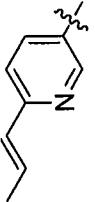
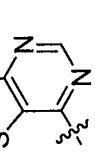
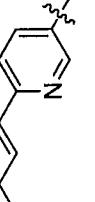
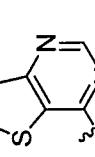
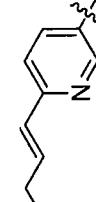
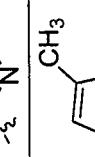
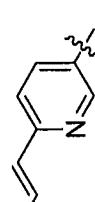
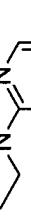
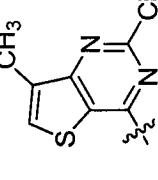
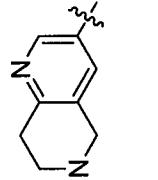
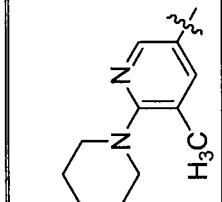







Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴	R ⁵	IC ₅₀
123	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
124	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
125	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-cyclopentylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A
126	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(morpholin-4-yl)propen-1-yl)pyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H A

Table 1

 (la)		IC_{50} activity: A = <1 μ M B = 1 to 10 μ M C = >10 to 20 μ M D = >20 μ M			
Cpd #	Compound Name	R ¹	R ²	R ³	R ⁴
127	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H
128	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H
129	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ³ -(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H
130	1-(6-phenylpyrimidine-4-yl)-N ³ -(3-methyl-2-(4-pyrrolidin-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H			H

Table 1



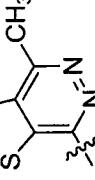
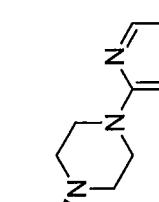
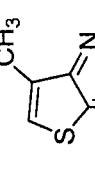
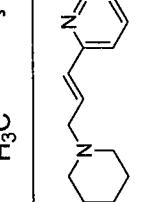
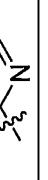
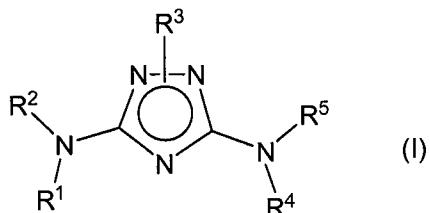





IC_{50} activity: A = <1 μM B = 1 to 10 μM C = >10 to 20 μM D = >20 μM						
 (1a)		Cpd #	Compound Name	R¹	R²	R³
131	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(2-(4-(piperidin-1-ylmethyl)pyridin-1-yl)pyrimidin-5-yl)-1H-1,2,4-triazole-3,5-diamine	H				R⁴
134	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N^3-(6-(dimethylaminomethyl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine	H			R⁴	R⁵

Table 2

Cpd #	Compound Name	R ¹	R ²	R ³	IC ₅₀ activity:			
					R ⁴	R ⁵	IC ₅₀	
92	1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N ⁵ -(6-(4-(pyrrolidin-1-yl)-5-methylpyridin-3-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	B
132	1-(4-methylthieno[2,3-d]pyridazin-7-yl)-N ⁵ -(2-(4-(1 <i>S</i> ,2 <i>S</i> ,4 <i>R</i>)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	D
133	1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N ⁵ -(2-(3-(4-(4-methylpiperazin-1-yl)piperidin-5-yl)-1-yl)propen-1-yl)piperidin-1 <i>H</i> -1,2,4-triazole-3,5-diamine	H				H	H	A


* * * * *

All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are
5 incorporated herein by reference, in their entireties.

Although the foregoing invention has been described in some detail to facilitate understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the described embodiments are to be considered as illustrative and not restrictive, and the invention is
10 not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

WHAT IS CLAIMED IS:

1. A compound of formula (I):

wherein;

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, $-C(O)R^8$, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_N(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substitutents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted

heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2); each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted N -heteroaryl or an optionally substituted N -heterocyclyl;

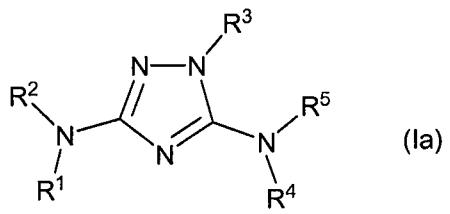
each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;

each R^9 is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R^{10} is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched

alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;


each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R¹³ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain;

as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof.

2. The compound of Claim 1, which is a compound of formula (Ia):

wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, -C(O)R⁸, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸,

$-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$,
 $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2),
 $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$,
 $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$,
 $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$,
 $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2),
 $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_N(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$,
 $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$,
 $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$,
 $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2),
 $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_N(R^{12})_2$ (where t is 1 or 2);
each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$,
 $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted N -

heteroaryl or an optionally substituted *N*-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;

each R⁹ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R¹⁰ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R¹³ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain.

3. The compound of Claim 2, wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)N(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 ,

together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; and each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

4. The compound of Claim 3, wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-onyl, 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*d*]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, benzo[b]thiophenyl, 7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahydropentaleno[2,1-*b*]pyridinyl, and 6,7,8,9-tetrahydro-5*H*-cyclohepta[b]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano,

nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);
 R^3 is aryl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);
 each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;
 each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R^{10} is independently an optionally substituted straight or branched alkylene chain;

each R^{11} is hydrogen, alkyl, cyano, nitro or $-OR^8$;

each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; and

each R^{14} is independently an optionally substituted straight or branched alkylene chain.

5. The compound of Claim 4, wherein:

R^1 , R^4 and R^5 are each hydrogen;

R^2 is 2,3-dihydrobenzo[*b*][1,4]dioxinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)tR^8$ (where *t* is 1 or 2), $-R^9-S(O)tOR^8$ (where *t* is 1 or 2), $-R^9-S(O)pR^8$ (where *p* is 0, 1 or 2), and $-R^9-S(O)tN(R^6)R^7$ (where *t* is 1 or 2);

R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)tR^{12}$ (where *t* is 1 or 2), $-R^{13}-S(O)tOR^{12}$ (where *t* is 1 or 2), $-R^{13}-S(O)pR^{12}$ (where *p* is 0, 1 or 2), and $-R^{13}-S(O)tN(R^{12})_2$ (where *t* is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl,

optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R^{10} is independently an optionally substituted straight or branched alkylene chain; each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

6. The compound of Claim 5, which is N^3 -(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)-1-phenyl-1*H*-1,2,4-triazole-3,5-diamine.

7. The compound of Claim 3, wherein:

R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[*b*][1,4]dioxinyl, 4,5-dihydro-1*H*-benzo[*b*]azepin-2(3*H*)-onyl, 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*d*]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl,

5,6,7,8-tetrahydroquinolinyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, benzo[*b*]thiophenyl, 7',8'-dihydro-5'*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahdropentaleno[2,1-*b*]pyridinyl, and 6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is heteroaryl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³, -R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocycl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; and

each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

8. The compound of Claim 7, wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1H-pyrrolo[2,3-b]pyridinyl, benzo[b]thiophenyl, 7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahydronentaleno[2,1-b]pyridinyl, and 6,7,8,9-tetrahydrocyclohepta[b]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted

heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2); R^3 is selected from the group consisting of pyridinyl, pyrimidinyl, isoquinolinyl, quinazolinyl, phenanthridinyl, thieno[3,2-*d*]pyrimidinyl, thieno[3,2-*d*]pyridazinyl, 6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidinyl, and furo[3,2-*c*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2); each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted

heteroaryl, and optionally substituted heteroarylalkyl;
each R⁹ is independently selected from the group consisting of a direct bond and an
optionally substituted straight or branched alkylene chain;
each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;
each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;
each R¹² is independently selected from the group consisting of hydrogen, alkyl,
haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl,
optionally substituted aryl, optionally substituted aralkyl, optionally substituted
heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the
common nitrogen to which they are both attached, may optionally form an
optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;
each R¹³ is independently selected from the group consisting of a direct bond and an
optionally substituted straight or branched alkylene chain; and
each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

9. The compound of Claim 8, wherein:

R¹, R⁴ and R⁵ are each hydrogen;

R² is selected from the group consisting of benzo[b]thiophenyl,

4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-onyl, 2,3-dihydrobenzo[b][1,4]dioxinyl and
benzoxazolyl optionally substituted by one or more substituents selected from the
group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted
cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted
heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted
heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted
heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸,
-R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸,
-R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1
or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of isoquinolinyl, quinazolinyl and thieno[3,2-
d]pyrimidinyl, each optionally substituted by one or more substituents selected
from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano,
nitro, optionally substituted aryl, optionally substituted aralkyl, optionally
substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted

heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);
 each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;
 each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;
 each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;
 each R^{10} is independently an optionally substituted straight or branched alkylene chain;
 each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and
 each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

10. The compound of Claim 9 selected from the group consisting of:
 1-(isoquinolin-1-yl)- N^3 -(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-

3,5-diamine;
 1-(6-chloroquinazolin-4-yl)-*N*³-(2-(pyrrolidin-1-ylmethyl)benzo[d]oxazol-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
*N*³-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(isoquinolin-1-yl)-1*H*-1,2,4-triazole-3,5-diamine;
*N*³-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(4,5-dihydro-1*H*-benzo[b]azepin-2(3*H*)-on-8-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(2-(1-(4-(2-(dimethylamino)ethyl)piperazin-1-yl)oxomethyl)benzo[b]thiophen-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

11. The compound of Claim 8, wherein:

*R*¹, *R*⁴ and *R*⁵ are each hydrogen;

*R*² is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -*R*⁹-OR⁸, -*R*⁹-OC(O)-R⁸, -*R*⁹-C(O)R⁸, -*R*⁹-C(O)OR⁸, -*R*⁹-C(O)N(R⁶)R⁷, -*R*⁹-C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)R⁷, -*R*⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)OR⁸, -*R*⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)R⁸, -*R*⁹-N(R⁶)S(O)_tR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_tOR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_pR⁸ (where *p* is 0, 1 or 2), and -*R*⁹-S(O)_tN(R⁶)R⁷ (where *t* is 1 or 2);

*R*³ is selected from the group consisting of pyridinyl and pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹³-OR¹², -*R*¹³-OC(O)-R¹², -*R*¹³-N(R¹²)₂, -*R*¹³-C(O)R¹², -*R*¹³-C(O)OR¹², -*R*¹³-C(O)N(R¹²)₂, -*R*¹³-N(R¹²)C(O)OR¹², -*R*¹³-N(R¹²)C(O)R¹², -*R*¹³-N(R¹²)S(O)_tR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_tOR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_pR¹² (where *p* is 0, 1 or 2), and -*R*¹³-S(O)_tN(R¹²)₂ (where *t* is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

12. The compound of Claim 11 selected from the group consisting of:
1-(5-trifluoromethylpyridin-2-yl)-N³-(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine; and
1-(6-phenylpyrimidine -4-yl)-N³-(3-methyl-2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyridin-5-yl)-1H-1,2,4-triazole-3,5-diamine.

13. The compound of Claim 8, wherein:
R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen,

$-\text{C}(\text{O})\text{N}(\text{R}^6)\text{R}^7$, and $-\text{C}(=\text{N}\text{R}^6)\text{N}(\text{R}^6)\text{R}^7$;

R^2 is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-\text{R}^9\text{-OR}^8$, $-\text{R}^9\text{-OC(O)-R}^8$, $-\text{R}^9\text{-C(O)R}^8$, $-\text{R}^9\text{-C(O)OR}^8$, $-\text{R}^9\text{-C(O)N(R}^6\text{)R}^7$, $-\text{R}^9\text{-C(O)-R}^{10}\text{-N(R}^6\text{)R}^7$, $-\text{R}^9\text{-N(R}^6\text{)R}^7$, $-\text{R}^9\text{-N(R}^6\text{)R}^{10}\text{-N(R}^6\text{)R}^7$, $-\text{R}^9\text{-N(R}^6\text{)C(O)OR}^8$, $-\text{R}^9\text{-N(R}^6\text{)C(O)-R}^{10}\text{-N(R}^6\text{)R}^7$, $-\text{R}^9\text{-N(R}^6\text{)C(O)R}^8$, $-\text{R}^9\text{-N(R}^6\text{)S(O)_tR}^8$ (where t is 1 or 2), $-\text{R}^9\text{-S(O)_tOR}^8$ (where t is 1 or 2), $-\text{R}^9\text{-S(O)_pR}^8$ (where p is 0, 1 or 2), and $-\text{R}^9\text{-S(O)_tN(R}^6\text{)R}^7$ (where t is 1 or 2);

R^3 is quinazolinyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-\text{R}^{13}\text{-OR}^{12}$, $-\text{R}^{13}\text{-OC(O)-R}^{12}$, $-\text{R}^{13}\text{-N(R}^{12}\text{)₂}$, $-\text{R}^{13}\text{-C(O)R}^{12}$, $-\text{R}^{13}\text{-C(O)OR}^{12}$, $-\text{R}^{13}\text{-C(O)N(R}^{12}\text{)₂}$, $-\text{R}^{13}\text{-N(R}^{12}\text{)C(O)OR}^{12}$, $-\text{R}^{13}\text{-N(R}^{12}\text{)C(O)R}^{12}$, $-\text{R}^{13}\text{-N(R}^{12}\text{)S(O)_tR}^{12}$ (where t is 1 or 2), $-\text{R}^{13}\text{-S(O)_tOR}^{12}$ (where t is 1 or 2), $-\text{R}^{13}\text{-S(O)_pR}^{12}$ (where p is 0, 1 or 2), and $-\text{R}^{13}\text{-S(O)_tN(R}^{12}\text{)₂}$ (where t is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-\text{R}^{10}\text{-OR}^8$, $-\text{R}^{10}\text{-CN}$, $-\text{R}^{10}\text{-NO}_2$, $-\text{R}^{10}\text{-N(R}^8\text{)₂}$, $-\text{R}^{10}\text{-C(O)OR}^8$ and $-\text{R}^{10}\text{-C(O)N(R}^8\text{)₂}$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R^9 is independently selected from the group consisting of a direct bond and an

optionally substituted straight or branched alkylene chain;
each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;
each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

14. The compound of Claim 13 selected from the group consisting of:

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-cyclopentyl-1,4-diazepan-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-pyrrolidin-1-ylpiperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-piperidin-1-ylpiperidin-1-yl)pyridine-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(diethylaminoethyl)methylamino)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(2-diethylaminomethylpyrrolidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1H-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-N³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-

yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(2-methylquinazolin-4-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6-fluoroquinazolin-4-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-bromopyridin-3-yl)-5-(3-(6-bromopyridin-3-yl)-2-cyanoguanadino)-1*H*-1,2,4-triazole-3-amine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-bromopyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-methylpiperazin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-piperidin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-dimethylaminopiperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(3-(diethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(3-(dimethylamino)pyrrolidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-piperidin-1-ylpropenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-pyrrolidin-1-yl)piperidin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(6-(3-(4-cyclopentylpiperazin-1-yl)propenyl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridine-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

15. The compound of Claim 8, wherein:

R¹, R⁴ and R⁵ are each hydrogen;

R² is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl,

optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of isoquinolinyl and phenanthridinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl,

haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12s} , together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

16. The compound of Claim 15 selected from the group consisting of:

1-(isoquinolin-1-yl)- N^3 -(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(isoquinolin-1-yl)- N^3 -(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
 1-(phenanthridin-6-yl)- N^3 -(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

17. The compound of Claim 8, wherein:

R^1 , R^4 and R^5 are each hydrogen;

R^2 is selected from the group consisting of pyridinyl and 1*H*-pyrrolo[2,3-*b*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)tR^8$ (where t is 1 or 2), $-R^9-S(O)tOR^8$ (where t is 1 or 2), $-R^9-S(O)pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)tN(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of thieno[3,2-*d*]pyrimidinyl and thieno[3,2-*d*]pyridazinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally

substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and

each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

18. The compound of Claim 17 selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-cyclopentyl-1,4-diazepan-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-piperidin-1-yl)piperidin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(1*H*-pyrrolo[2,3-b]pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(pyrrolidin-1-ylmethyl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(azepan-1-yl)piperidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(diethylaminoethylmethylamino)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(2-diethylaminomethylpyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(3-diethylaminopyrrolidin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(bicyclo[2.2.1]heptan-2-yl)-1,4-diazepan-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-cyclopropylmethylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(5-bicyclo[2.2.1]heptan-2-yl)octahydropyrrol[3,4-c]pyrrolyl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-cyclopropylpiperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(5-methyl-6-(4-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-((1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(1-bicyclo[2.2.1]heptan-2-yl)piperidin-4-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(1-bicyclo[2.2.1]heptan-2-yl)piperidin-4-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(cyclopropylmethyl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(4-(cyclopropylmethyl)piperazin-1-yl)pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-(cyclopropylmethyl)piperazin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(*S*)-methyl-4-(1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(*S*)-methyl-4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(thieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(*S*)-methyl-4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-chloropyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-(2*S*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(4-methylthieno[3,2-d]pyridazine-7-yl)-*N*³-(2-(4-(1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-yl)piperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(*S*)-

methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(4-cyclopropylmethyl-3-(S)-methylpiperazin-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-bromopyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(pyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(3-dimethylaminopyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(3-diethylaminopyrrolidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-pyrrolidin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-methylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-isopropylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-cyclopentylpiperazin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(morpholin-4-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-methylpiperazin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(2-(3-(4-piperidin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

19. The compound of Claim 8, wherein:

R^1 , R^4 and R^5 are each hydrogen;

R^2 is pyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl,

optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)R^8$ (where t is 1 or 2), $-R^9-S(O)OR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of furo[3,2-*c*]pyridinyl and 6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidinyl, each optionally substituted by one or more substitutents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)OR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R^{10} is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

20. The compound of Claim 19 selected from the group consisting of:

1-(furo[3,2-c]pyridine-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
1-(6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidin-4-yl)-N³-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

21. The compound of Claim 8, wherein:

R¹, R⁴ and R⁵ are each hydrogen;

R² is 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*d*]azepinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)N(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of thieno[3,2-*d*]pyrimidinyl and quinazolinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally

substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2); each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

22. The compound of Claim 21 selected from the group consisting of: 1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(7-cyclopentyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepin-3-yl)-1H-1,2,4-triazole-3,5-diamine; and

1-(6,7-dimethoxyquinazoline-4-yl)-*N*³-(7-cyclopentyl-6,7,8,9-tetrahydro-5*H*-pyrido[3,2-d]azepin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

23. The compound of Claim 8, wherein:

*R*¹, *R*⁴ and *R*⁵ are each hydrogen;

*R*² is 5,6,7,8-tetrahydro-1,6-naphthyridinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -*R*⁹-OR⁸, -*R*⁹-OC(O)-R⁸, -*R*⁹-C(O)R⁸, -*R*⁹-C(O)OR⁸, -*R*⁹-C(O)N(R⁶)R⁷, -*R*⁹-C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)R⁷, -*R*⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)OR⁸, -*R*⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)R⁸, -*R*⁹-N(R⁶)S(O)_tR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_tOR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_pR⁸ (where *p* is 0, 1 or 2), and -*R*⁹-S(O)N(R⁶)R⁷ (where *t* is 1 or 2);

*R*³ is selected from the group consisting of isoquinolinyl and thieno[3,2-*d*]pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹³-OR¹², -*R*¹³-OC(O)-R¹², -*R*¹³-N(R¹²)₂, -*R*¹³-C(O)R¹², -*R*¹³-C(O)OR¹², -*R*¹³-C(O)N(R¹²)₂, -*R*¹³-N(R¹²)C(O)OR¹², -*R*¹³-N(R¹²)C(O)R¹², -*R*¹³-N(R¹²)S(O)_tR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_tOR¹² (where *t* is 1 or 2), -*R*¹³-S(O)_pR¹² (where *p* is 0, 1 or 2), and -*R*¹³-S(O)_tN(R¹²)₂ (where *t* is 1 or 2);

each *R*⁶ and *R*⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -*R*¹⁰-OR⁸, -*R*¹⁰-CN, -*R*¹⁰-NO₂, -*R*¹⁰-N(R⁸)₂, -*R*¹⁰-C(O)OR⁸ and -*R*¹⁰-C(O)N(R⁸)₂, or any *R*⁶ and *R*⁷, together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R¹⁰ is independently an optionally substituted straight or branched alkylene chain;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl; and

each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

24. The compound of Claim 23 selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(isoquinolin-1-yl)-N³-(6-methyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-benzyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(ethylcarboxy)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(dimethylaminomethylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(dimethylaminomethylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-N³-(6-(2-dimethylaminoethyl)-5,6,7,8-

tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(1-methylpiperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidine-4-yl)-*N*³-(6-(1-methylpiperidin-4-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(piperidin-4-ylcarbonyl)-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(1-methylpiperidin-4-yl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-cyclopentyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-cyclopropylmethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-bicyclo[2.2.1]heptan-2-yl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
 1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-*N*³-(6-(dimethylaminomethyl)carbonyl-5,6,7,8-tetrahydro-1,6-naphthyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

25. The compound of Claim 8, wherein:

*R*¹, *R*⁴ and *R*⁵ are each hydrogen;

*R*² is selected from the group consisting of 6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridinyl, 4*b*,5,6,7,7*a*,8-hexahydropentaleno[2,1-*b*]pyridinyl, 5,6,7,8-tetrahydroquinolinyl, and 7',8'-dihydro-5*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -*R*⁹-OR⁸, -*R*⁹-OC(O)-R⁸, -*R*⁹-C(O)R⁸, -*R*⁹-C(O)OR⁸, -*R*⁹-C(O)N(R⁶)R⁷, -*R*⁹-C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)R⁷, -*R*⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)OR⁸, -*R*⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -*R*⁹-N(R⁶)C(O)R⁸, -*R*⁹-N(R⁶)S(O)_tR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_tOR⁸ (where *t* is 1 or 2), -*R*⁹-S(O)_pR⁸

(where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);
 R^3 is thieno[3,2-*d*]pyrimidinyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);
each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocycl; each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R^{10} is independently an optionally substituted straight or branched alkylene chain; each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; and each R^{13} is independently selected from the group consisting of a direct bond and an

optionally substituted straight or branched alkylene chain.

26. The compound of Claim 25 selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(pyrrolidin-1ylcarbonyl)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(2-(dimethylamino)-1-oxyethylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-amino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(pyrrolidin-1-yl)-4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(4-methylpiperazin-1-yl)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidine-4-yl)-*N*³-(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(1-methylpiperidin-4-ylamino)-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-pyrrolidin-1-yl-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-(1-methylpiperidin-4-yl)carbonylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclopentylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-cyclohexylamino-5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-bicyclo[2.2.1]heptan-2-yl-amino-

5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine;
 1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(6-bis-(cyclopropylmethyl)amino-
 5,6,7,8-tetrahydroquinolin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; and
 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-*N*³-(7-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5*H*-
 cyclohepta[b]pyridine-3-yl)-1*H*-1,2,4-triazole-3,5-diamine.

27. The compound of Claim 8, wherein:

R^1 , R^4 and R^5 are each hydrogen;

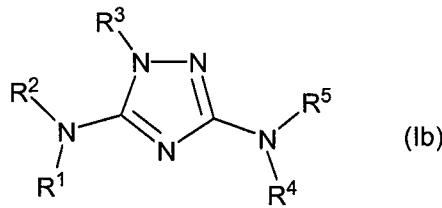
R^2 is pyrimidinyl optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)R^8$ (where t is 1 or 2), $-R^9-S(O)OR^8$ (where t is 1 or 2), $-R^9-S(O)pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)N(R^6)R^7$ (where t is 1 or 2);

R^3 is selected from the group consisting of quinazolinyl and thieno[3,2-d]pyrimidinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})C(O)R^{12}$, $-R^{13}-N(R^{12})S(O)R^{12}$ (where t is 1 or 2), $-R^{13}-S(O)OR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)N(R^{12})_2$ (where t is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 ,

together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocycl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

28. The compound of Claim 27 selected from the group consisting of:


1-(6,7-dimethoxyquinazoline-4-yl)-N³-(2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(6,7-dimethoxyquinazoline-4-yl)-N³-(2-(4-piperidin-1-ylmethylpiperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine;

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-N³-(2-(4-pyrrolidin-1-ylpiperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and

1-(2-chloro-7-methylthieno[3,2-*d*]pyrimidin-4-yl)-N³-(2-(4-(piperidin-1-ylmethyl)piperidin-1-yl)pyrimidin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

29. The compound of Claim 1, which is a compound of formula (Ib):

wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, -C(O)R⁸, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂,

-R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³,
-R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹²,
-R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2),
-R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);
each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl;
each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;
each R⁹ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;
each R¹⁰ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R¹³ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain.

30. The compound of Claim 29, wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo,

haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{13}-OR^{12}$, $-R^{13}-OC(O)-R^{12}$, $-R^{13}-O-R^{14}-N(R^{12})_2$, $-R^{13}-N(R^{12})_2$, $-R^{13}-C(O)R^{12}$, $-R^{13}-C(O)OR^{12}$, $-R^{13}-C(O)N(R^{12})_2$, $-R^{13}-C(O)N(R^{12})-R^{14}-N(R^{12})R^{13}$, $-R^{13}-C(O)N(R^{12})-R^{14}-OR^{12}$, $-R^{13}-N(R^{12})C(O)OR^{12}$, $-R^{13}-N(R^{12})S(O)_tR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_tOR^{12}$ (where t is 1 or 2), $-R^{13}-S(O)_pR^{12}$ (where p is 0, 1 or 2), and $-R^{13}-S(O)_tN(R^{12})_2$ (where t is 1 or 2);

each R^6 and R^7 is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl;

each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain;

each R^{10} is independently an optionally substituted straight or branched alkylene chain;

each R^{11} is hydrogen, alkyl, cyano, nitro or $-OR^8$;

each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R^{13} is independently selected from the group consisting of a direct bond and an

optionally substituted straight or branched alkylene chain; and each R¹⁴ is independently an optionally substituted straight or branched alkylene chain.

31. The compound of Claim 30, wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 6,7,8,9-tetrahydro-5H-pyrido[3,2-d]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1H-pyrrolo[2,3-b]pyridinyl, benzo[b]thiophenyl, 7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl, 4b,5,6,7,7a,8-hexahydropentaleno[2,1-b]pyridinyl, and 6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2); each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl,

haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl; each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R^9 is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R^{10} is independently an optionally substituted straight or branched alkylene chain; each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and each R^{13} is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

32. The compound of Claim 30, wherein:

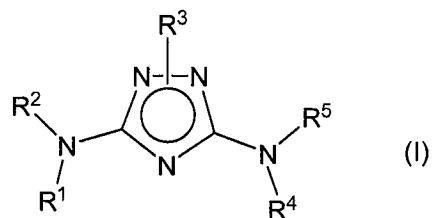
R^1 , R^4 and R^5 are each independently selected from the group consisting of hydrogen, $-C(O)N(R^6)R^7$, and $-C(=NR^6)N(R^6)R^7$;

R^2 is a heteroaryl selected from the group consisting of benzoxazolyl, pyridinyl, isoquinolinyl, pyrimidinyl, 2,3-dihydrobenzo[*b*][1,4]dioxinyl, 4,5-dihydro-1*H*-benzo[*b*]azepin-2(3*H*)-onyl, 6,7,8,9-tetrahydro-5*H*-pyrido[3,2-*c*]azepinyl, 5,6,7,8-tetrahydro-1,6-naphthyridinyl, 5,6,7,8-tetrahydroquinolinyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, benzo[*b*]thiophenyl, 7',8'-dihydro-5'(*H*-spiro[[1,3]dioxolane-2,6'-quinoline]-3'-yl,

4b,5,6,7,7a,8-hexahdropentaleno[2,1-*b*]pyridinyl, and 6,7,8,9-tetrahydro-5H-cyclohepta[*b*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)_tR⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is a heteroaryl selected from the group consisting of pyridinyl, isoquinolinyl, quinazolinyl, phenanthridinyl, thieno[3,2-*d*]pyrimidinyl, thieno[3,2-*d*]pyridazinyl, 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-*d*]pyrimidinyl, and furo[3,2-*c*]pyridinyl, each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2);

each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;


each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted

heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; each R⁹ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain; each R¹⁰ is independently an optionally substituted straight or branched alkylene chain; each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, may optionally form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and each R¹³ is independently selected from the group consisting of a direct bond and an optionally substituted straight or branched alkylene chain.

33. The compound of Claim 32 selected from the group consisting of:

1-(2-chloro-7-methylthieno[3,2-d]pyrimidin-4-yl)-N⁵-(6-(4-(pyrrolidin-1-yl)piperidin-1-yl)-5-methylpyridin-3-yl)-1*H*-1,2,4-triazole-3,5-diamine; 1-(4-methylthieno[2,3-d]pyridazin-7-yl)-N⁵-(2-(4-(1*S*,2*S*,4*R*)-bicyclo[2.2.1]heptan-2-ylpiperazin-1-yl)-3-methylpyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine; and 1-(7-methylthieno[3,2-d]pyrimidin-4-yl)-N⁵-(2-(3-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)propen-1-yl)pyridin-5-yl)-1*H*-1,2,4-triazole-3,5-diamine.

34. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound of formula (I):

wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, -C(O)R⁸, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl optionally substituted by one or more substituents selected from the

group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, $-R^9-OR^8$, $-R^9-O-R^{10}-OR^8$, $-R^9-O-R^{10}-O-R^{10}-OR^8$, $-R^9-O-R^{10}-CN$, $-R^9-O-R^{10}-C(O)OR^8$, $-R^9-O-R^{10}-C(O)N(R^6)R^7$, $-R^9-O-R^{10}-S(O)_pR^8$ (where p is 0, 1 or 2), $-R^9-O-R^{10}-N(R^6)R^7$, $-R^9-O-R^{10}-C(NR^{11})N(R^{11})H$, $-R^9-OC(O)-R^8$, $-R^9-C(O)R^8$, $-R^9-C(O)OR^8$, $-R^9-C(O)N(R^6)R^7$, $-R^9-C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)R^7$, $-R^9-N(R^6)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)OR^8$, $-R^9-N(R^6)C(O)-R^{10}-N(R^6)R^7$, $-R^9-N(R^6)C(O)R^8$, $-R^9-N(R^6)S(O)_tR^8$ (where t is 1 or 2), $-R^9-S(O)_tOR^8$ (where t is 1 or 2), $-R^9-S(O)_pR^8$ (where p is 0, 1 or 2), and $-R^9-S(O)_tN(R^6)R^7$ (where t is 1 or 2);

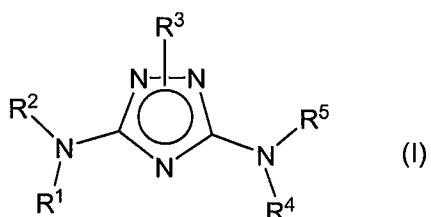
substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^{10}-OR^8$, $-R^{10}-CN$, $-R^{10}-NO_2$, $-R^{10}-N(R^8)_2$, $-R^{10}-C(O)OR^8$ and $-R^{10}-C(O)N(R^8)_2$, or any R^6 and R^7 , together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heteroaryl or an optionally substituted *N*-heterocyclyl;

each R^8 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;

each R^9 is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R^{10} is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R^{11} is hydrogen, alkyl, cyano, nitro or $-OR^8$;


each R^{12} is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R^{12} 's, together with the common nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R^{13} is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain;

as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof.

35. A method of treating a disease or condition associated with Axl activity in a mammal, wherein the method comprises administering to the mammal a therapeutically effective amount of a compound of formula (I):

wherein:

R¹, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, -C(O)R⁸, -C(O)N(R⁶)R⁷, and -C(=NR⁶)N(R⁶)R⁷;

R² is a heteroaryl optionally substituted by one or more substituents selected from the group consisting of oxo, thioxo, cyano, nitro, halo, haloalkyl, alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, -R⁹-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-OR⁸, -R⁹-O-R¹⁰-CN, -R⁹-O-R¹⁰-C(O)OR⁸, -R⁹-O-R¹⁰-C(O)N(R⁶)R⁷, -R⁹-O-R¹⁰-S(O)_pR⁸ (where p is 0, 1 or 2), -R⁹-O-R¹⁰-N(R⁶)R⁷, -R⁹-O-R¹⁰-C(NR¹¹)N(R¹¹)H, -R⁹-OC(O)-R⁸, -R⁹-C(O)R⁸, -R⁹-C(O)OR⁸, -R⁹-C(O)N(R⁶)R⁷, -R⁹-C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)R⁷, -R⁹-N(R⁶)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)OR⁸, -R⁹-N(R⁶)C(O)-R¹⁰-N(R⁶)R⁷, -R⁹-N(R⁶)C(O)R⁸, -R⁹-N(R⁶)S(O)R⁸ (where t is 1 or 2), -R⁹-S(O)_tOR⁸ (where t is 1 or 2), -R⁹-S(O)_pR⁸ (where p is 0, 1 or 2), and -R⁹-S(O)_tN(R⁶)R⁷ (where t is 1 or 2);

R³ is selected from the group consisting of aryl and heteroaryl, where the aryl and the heteroaryl are each independently optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted

aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R¹³-OR¹², -R¹³-OC(O)-R¹², -R¹³-O-R¹⁴-N(R¹²)₂, -R¹³-N(R¹²)₂, -R¹³-C(O)R¹², -R¹³-C(O)OR¹², -R¹³-C(O)N(R¹²)₂, -R¹³-C(O)N(R¹²)-R¹⁴-N(R¹²)R¹³, -R¹³-C(O)N(R¹²)-R¹⁴-OR¹², -R¹³-N(R¹²)C(O)OR¹², -R¹³-N(R¹²)C(O)R¹², -R¹³-N(R¹²)S(O)_tR¹² (where t is 1 or 2), -R¹³-S(O)_tOR¹² (where t is 1 or 2), -R¹³-S(O)_pR¹² (where p is 0, 1 or 2), and -R¹³-S(O)_tN(R¹²)₂ (where t is 1 or 2); each R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R¹⁰-OR⁸, -R¹⁰-CN, -R¹⁰-NO₂, -R¹⁰-N(R⁸)₂, -R¹⁰-C(O)OR⁸ and -R¹⁰-C(O)N(R⁸)₂, or any R⁶ and R⁷, together with the common nitrogen to which they are both attached, form an optionally substituted N-heteroaryl or an optionally substituted N-heterocyclyl; each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl;

each R⁹ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R¹⁰ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain and an optionally substituted straight or branched alkynylene chain;

each R¹¹ is hydrogen, alkyl, cyano, nitro or -OR⁸;

each R¹² is independently selected from the group consisting of hydrogen, alkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl, or two R¹²'s, together with the common nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R¹³ is independently selected from the group consisting of a direct bond, an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain; and

each R¹⁴ is independently selected from the group consisting of an optionally substituted straight or branched alkylene chain and an optionally substituted straight or branched alkenylene chain;

as an isolated stereoisomer or mixture thereof, or a pharmaceutically acceptable salt thereof.

36. The method of Claim 35 wherein the disease or condition is alleviated by the modulation of Axl activity.

37. The method of Claim 35 wherein the disease or condition is alleviated by a increase in Axl activity.

38. The method of Claim 35 wherein the disease of condition is alleviated by a decrease in Axl activity.

39. The method of Claim 38 wherein the disease or condition is selected from the group consisting of rheumatoid arthritis, vascular disease, vascular injury, psoriasis, visual impairment due to macular degeneration, diabetic retinopathy, retinopathy of prematurity, kidney disease, osteoporosis, osteoarthritis and cataracts.

40. The method of claim 38, wherein a manifestation of the disease or condition is solid tumor formation in said mammal.

41. The method of Claim 40, wherein the disease or condition is selected from the group consisting of breast carcinoma, renal carcinoma, endometrial carcinoma, ovarian carcinoma, thyroid carcinoma, non-small cell lung carcinoma, melanoma, prostate carcinoma, sarcoma, gastric cancer and uveal melanoma.

42. The method of claim 38, wherein a manifestation of the disease or condition is liquid tumor formation in said mammal.

43. The method of claim 42, wherein the disease or condition is myeloid leukemia or lymphoma.

44. The method of Claim 38 wherein the disease or condition is endometriosis.

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2007/089153

A. CLASSIFICATION OF SUBJECT MATTER				
INV. C07D405/12 C07D405/14 C07D413/14 C07D471/04 C07D495/04 C07D519/00 C07D487/04 A61K31/4196 A61P19/00 C07D401/14 C07D403/14				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) C07D A61K A61P				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data, WPI Data				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages			Relevant to claim No.
X	WO 2004/046120 A (VERTEX PHARMA [US]; PIERCE ALBERT C [US]; ARNST MICHAEL [US]; DAVIES) 3 June 2004 (2004-06-03) claims; examples I-58, I-64, I-69, I-70, I-572, I-696, I-752, I-78 7			1-28, 34-44
X	WO 02/094814 A (SCHERING AG [DE]; KRUEGER MARTIN [DE]; PETROV ORLIN [DE]; THIERAUCH KA) 28 November 2002 (2002-11-28) claim 1; examples			1-28, 34-44
				-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C.		<input checked="" type="checkbox"/> See patent family annex.		
* Special categories of cited documents : *A* document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed				
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family				
Date of the actual completion of the international search		Date of mailing of the international search report		
3 June 2008		11/06/2008		
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Authorized officer De Jong, Bart		

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2007/089153

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; FAHMY, SHERIEF MAHMOUD ET AL: "Reactions with heterocyclic amidines. X: Synthesis of some new azolylthioureas derivatives" XP002474695 retrieved from STN Database accession no. 1984:68229 compound with RN=83584-33-2 & IRAQI JOURNAL OF SCIENCE, 23(1), 28-41 CODEN: IRJSD5; ISSN: 0067-2904, 1982, -----</p>	1
A	<p>WO 02/057240 A (ORTHO MC NEIL PHARMACEUTICAL I [US]) 25 July 2002 (2002-07-25) claim 1 -----</p>	1-28, 34-44
A	<p>WO 01/09106 A (SMITHKLINE BEECHAM PLC [GB]; SMITH DAVID GLYNN [GB]; WARD ROBERT WILLI) 8 February 2001 (2001-02-08) claim 1 -----</p>	1-28, 34-44

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2007/089153

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 35-44 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

1 (in part), 2-28, 34-44 (in part)
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-3 (in part), 4-6, 34-44 (in part)

Compounds of formula (Ia) in which R3 is optionally substituted aryl

2. claims: 1-3, 7-28, 34-44

Compounds of formula (Ia) in which R3 is optionally substituted heteroaryl

3. claims: 1, 29-31, 34-44

Compounds of formula (Ib) in which R3 is optionally substituted aryl

4. claims: 1, 29, 30, 32-44

Compounds of formula (Ib) in which R3 is optionally substituted heteroaryl

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2007/089153

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2004046120	A 03-06-2004	AU 2003294329 A1		15-06-2004
		BR 0316350 A		27-09-2005
		CA 2505789 A1		03-06-2004
		EP 1562589 A2		17-08-2005
		JP 2006515313 T		25-05-2006
		KR 20060013480 A		10-02-2006
		NZ 540662 A		30-04-2008
WO 02094814	A 28-11-2002	AT 284881 T		15-01-2005
		DE 10123586 A1		28-11-2002
		EP 1387840 A1		11-02-2004
		ES 2231725 T3		16-05-2005
		JP 2004532248 T		21-10-2004
		PT 1387840 T		31-03-2005
		US 2004186288 A1		23-09-2004
WO 02057240	A 25-07-2002	AT 328874 T		15-06-2006
		BG 107959 A		30-12-2004
		BG 107985 A		30-11-2004
		BR 0116792 A		17-02-2004
		CA 2432870 A1		25-07-2002
		CN 1575284 A		02-02-2005
		CZ 20031941 A3		18-08-2004
		DE 60120494 T2		21-12-2006
		DK 1355889 T3		09-10-2006
		EP 1355889 A1		29-10-2003
		ES 2266313 T3		01-03-2007
		HK 1057373 A1		24-11-2006
		HU 0303868 A2		01-03-2004
		MX PA03005777 A		14-02-2005
		NO 20032848 A		20-08-2003
		NZ 526624 A		29-07-2005
		PL 363316 A1		15-11-2004
		PT 1355889 T		29-09-2006
		RU 2274639 C2		20-04-2006
		SK 9062003 A3		06-04-2004
		YU 51803 A		25-05-2006
		ZA 200305619 A		21-10-2004
WO 0109106	A 08-02-2001	AU 6989800 A		19-02-2001
		EP 1200415 A1		02-05-2002
		JP 2003506362 T		18-02-2003