PROCESS FOR MANUFACTURE OF MEAT MEAL AND FAT FROM AN ANIMAL RAW MATERIAL

In a process for continuous production of meat meal and fat from an animal raw material by indirect boiling (1) of the raw material and separation (1) of the boiled material partly into solid material, which is dried (2), and partly in stick water, which is partly evaporated (16) and is discharged from the plant or is dried, the novelty consists in the fact that a so called back pressure turbine (6) is operated, the back pressure steam (8) being utilized for boiling (1) and drying (2), whilst the turbine (6) is allowed to drive a mechanical compressor (7), which compresses steam (23), that is discharged from an expansion vessel (16) in which said stick water (4) is evaporated by stripping, the compressed steam (24) being utilized for heating of the stick water, circulating in a circuit, comprising said expansion vessel (16) and a heat exchanger (25).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	LI	Liechtenstein
AU	Australia	LR	Sri Lanka
BE	Belgium	LU	Luxembourg
BR	Brazil	MC	Monaco
CF	Central African Republic	MG	Madagascar
CG	Congo	MR	Mauritania
CH	Switzerland	MW	Malawi
CM	Cameroon	NL	Netherlands
DE	Germany, Federal Republic of	NO	Norway
DK	Denmark	RO	Romania
FI	Finland	SE	Sweden
FR	France	SN	Senegal
GA	Gabon	SU	Soviet Union
GB	United Kingdom	TD	Chad
HU	Hungary	TG	Togo
JP	Japan	US	United States of America
Process for manufacture of meat meal and fat from an animal raw material

This invention relates to a process for continuous manufacture of meat meal and fat from an animal raw material a stream of the latter being completely or partly boiled in a boiler, which is heated indirectly with steam, the boiled material being separated, partly in a stream of solid material, which is completely or partly dried in a dryer, which is heated indirectly by steam, partly a fat stream and partly of proteinous so called stick water, which is at least partly evaporated to a relatively concentrated state and is discharged from the system or is alternatively dried, preferably together with said solid material. Such processes are well known and are available in several variations. The raw material, for example fish, whole or desintegrated, is preheated in a preheater and is finally boiled in a boiler. The mass thus obtained is separated by a centrifugal separator or a press into said stream of solid material, which is dried, respectively a stream of proteinous water, mixed with solid substance and fat, which stream is separated in a series of centrifugal separators, into a fat stream, which is discharged from the system, and said stick water stream, which is evaporated to a concentrate in an evaporator plant. This usually comprises several steps, coupled in series in order that a reasonably good heat economy is achieved.

In later years the rising energy costs have enforced processes comprising means for heat recovery. Thus there are devices for heat recovery from the dryer steps and the evaporator plant. They are complicated, however, and
show some drawbacks. The separate process steps are
namely dependent upon each other so that balance pro-
blems may occur. Such systems are characterized by great
international feedback and demand a long period of start
up till equilibrium and stability is achieved. For this
reason the start up and recovery after operational dis-
turbances will demand a long period of time, so that the
capacity is decreased. In many cases a supporting heat-
ing system is installed for security reasons, which
system is often misused, so that the heat recovery de-
vices are not utilized.

The objective of the present invention is to provide a
process of the type mentioned introductorily, which is
simple and reliable, which can be heat balanced easily
and quickly and which shows a low energy consumption
(kgs oil per ton raw material).

According to the invention such an invention is charac-
terized in that there is generated in a steam generator
a steam stream, which is brought to drive a steam turbine
under expansion to a relatively high so called back
pressure, at which pressure the steam stream is led to
heat said boiler and said dryer, the condensate stream
resulting from the steam stream preferably being recirc-
tilated to said steam generator, the steam turbine being
brought to drive a mechanical compressor, like a centri-
fugal compressor, said stick water stream being brought
to yield a first stream of expansion steam in at least
a first expansion vessel by pressure reduction, which
expansion steam is led to the mechanical compressor for
compression, the flow of compressed steam being brought
to yield heat in a first heat exchanger to a stream of
concentrated stick water, circulating in a circuit, comprising the first expansion vessel and the first heat exchanger, a part of the concentrated stick water being discharged from said circuit and possibly being led to said dryer for drying. The conventional evaporator plant has been replaced by one or several circulation circuits, each of them comprising an expansion vessel and a heat exchanger, evaporator effect being fed by compressing of the liberated steam.

Two or a plurality of expansion vessels may be used, coupled in series, the amount of concentrated stick water, that is discharged from said circuit being fed to a second circulation circuit, comprising a second expansion vessel and a second heat exchanger, the stream in question being brought to yield a second stream of expansion steam, which is fed to the mechanical compressor for compression, the formed combined flow of compressed steam being brought to yield heat in a second heat exchanger to the circulating, further concentrated stick water, circulating in the second circulation circuit, a stream forming part of this further concentrated stick water possibly being led to a third circulation circuit comprising a third expansion vessel and a third heat exchanger, with similar function as said first and second circulation circuits, an amount of the so formed, many times concentrated stick water being discharged from the system or being possibly led to said dryer for drying.

Mechanical compressors of different kinds can be used for compressing the steam from the expansion vessel, for instance a centrifugal compressor.

It is suitable, considering the heat transfer in the
said heat exchangers, to bring the compressed steam stream, discharged from the mechanical compressor, which steam is superheated, to a state of saturation by feeding a corresponding water stream.

5 In one suitable embodiment of the process according to the invention the stream of compressed steam is brought to yield heat in a heat exchanger in the form of a plate heat exchanger.

According to the new process, the energy consumption is reduced to about 35 kgs oil/ton raw material, if the same consists of fish, compared to about 50 kgs oil/ton raw material in a plant, utilizing a conventional process.

A great advantage with the new process is, that every apparatus unit is heated individually independently of other units, why the system in a simple way can be brought into heat balance. Further advantages are, that low temperature heat in drying gases and boiler are not needed for use internally in the system. The process temperature can be kept at 95°C throughout, why bacteriae growth and the formation of easily volatile nitrogen compounds are completely depressed.

The process shall now be described more in detail, reference being made to the enclosed figures, of which figure 1 shows, schematically a plant for carrying out the process according to the invention and figure 2 shows materials and heat balances for the treatment of 800 tons/24 h fish raw material.

In figure 1 l is the unit of the plant, where the raw material is boiled and is separated, partly into a stream with relatively high concentration of solid substance, which
stream is led to a dryer 2, partly into a fat stream, which is discharged from the plant through a line 3, and partly a stick water stream, which is led through a line 4 to evaporation, which shall be described infra. Unit 1 can be formed in many ways and shall not be described further, as it consists of techniques, well known to a person, skilled in the art. A steam generator for generating superheated steam is marked 5. It feeds a back pressure turbine 6, which drives a mechanical compressor 7. The back pressure steam from the turbine 6 is superheated and is led through lines 8, 9, 10 and 11 to the dryer 2 and unit 1. As the steam is superheated water is fed to saturation through a line 12. Condensate from the dryer 2 and unit 1 are recirculated to the steam generator 5 through lines 13, 14 and 15.

In the plant shown the evaporation is carried out in three steps, with the aid of three expansion vessels 161, 162 and 163, coupled in series. Each of these forms, together with a corresponding heat exchanger 171, 172 and 173 a circulation circuit, provided by lines 181, 182, 183, 191, 192 and 193. Said circulation circuits are coupled in series by the lines 20 and 21. Steam discharged from the expansion vessels 161, 162 and 163 is led through lines 221, 222 and 223 to a common line 23, and further through this to the compressor 7, where it is compressed and is led to the heat exchangers 171, 172 and 173 through the lines 24, 251, 252 and 253. The condensate from said steam is led via lines 261, 262, 263 and 27 to a heat exchanger 28, where the condensate preheats the stick water stream, fed to the evaporator unit through the line 4. The cooled condensate from the heat exchanger 28 is discharged through a line 29. The heated stick water stream is led through a line 30 to the first expansion vessel 161.
As the plant has now been described, it is intended to be driven with the three expansion vessels 161, 162 and 163 coupled in series. Thereby the many times concentrated stick water, which is circulating in the third circulation circuit in the line 193, partly returns through a line 31 to unit 1. The plant can, however, operate using one single expansion vessel 161, in this case stick water, which has been concentrated in the first circulation circuit, partly returns through a line 32 and further through the line 31 to unit 1. The steam, that is discharged from the first expansion vessel 161 is compressed in the compressor 7 and the compressed steam is fed to the heat exchanger 171. The condensate is led, like in the first case, to the heat exchanger 28, where it heats the stick water stream, entering the first expansion vessel 161. The raw material is fed through a line 33, burning oil through a line 34, whilst dried meat meal is discharged through an outlet 35 and steam liberated in the dryer is discharged through a line 36.

In the described plant evaporation effect is fed solely by compression of the liberated steam, by a mechanical compressor driven by a back pressure turbine, the back pressure steam of which is utilized for boiling and drying. In this way a very good heat economy is achieved in the plant, which is also characterized by simple and reliable operation.

In figure 2 some material and energy data are given for a plant, sized for 800 tons/24 h fish raw material, in which only one expansion vessel is used for evaporation of the stick water. The steam, that is liberated from the expansion vessel is compressed from 1 bar 100\textdegree C to 1,5 bars 112\textdegree C and transfers evaporation effect to the single circulation circuit, in which 44000 m3/24 h
are circulating. The back pressure turbine is driven by 20 bars steam, superheated 100°C, and leaves steam of 5 bars, superheated 50°C, to which is fed water to a saturation state, before it is utilized in the dryer and boiler unit. The steam generator is presumed to have an efficiency of 90% and the specific oil consumption is only 35 kgs oil/1000 kgs raw material which shall be compared to a corresponding consumption of the order 50 kgs oil/1000 kgs raw material in a conventional plant.
Claims

1. A process for continuous manufacture of meat meal and fat from an animal raw material, a stream of the latter being completely or partly boiled in a boiler, which is heated indirectly with steam, the boiled material being separated, partly in a stream of solid material, which is completely or partly dried in a dryer, which is heated indirectly by steam, partly a fat stream and partly of proteinuous so called stick water, which is at least partly evaporated to a relatively concentrated state and is discharged from the system together with said solid material, characterized in that there is generated in a steam generator a steam stream, which is brought to drive a steam turbine under expansion to a relatively high so called back pressure, at which pressure the steam stream is led to heat said boiler and said dryer, the condensate stream resulting from the steam stream preferably being recirculated to said steam generator, the steam turbine being brought to drive a mechanical compressor, like a centrifugal compressor, said stick water stream being brought to yield a first stream of expansion steam in at least a first expansion vessel by pressure reduction, which expansion steam is led to the mechanical compressor for compression, the flow of compressed steam being brought to yield heat in a first heat exchanger to a stream of concentrated stick water, circulating in a circuit, comprising the first expansion vessel and the first heat exchanger, a part of the concentrated stick water being discharged from said circuit and possibly being led to said dryer for drying.

2. A process according to claim 1, characterized in that a stream, forming the amount of concentrated stick water, that has been removed from said
circuit, is fed to a second circulation circuit, comprising a second expansion vessel and a second heat exchanger, the stream in question being brought to yield a second stream of expansion steam, which is fed to the mechanical compressor for compression, the formed combined flow of compressed steam being brought to yield heat in a second heat exchanger to the circulating, further concentrated stick water, circulating in the second circulation circuit, a stream forming part of this further concentrated stick water possibly being led to a third circulation circuit comprising a third expansion vessel and a third heat exchanger, with similar function as said first and second circulation circuits, an amount of the so formed, many times concentrated stick water being discharged from the system or being possibly led to said dryer for drying.

3. A process according to claim 1 or 2, characterized in that the compressed, superheated steam stream emerging from the mechanical compressor is brought to a saturation state by feeding of a water stream.

4. A process according to any of the preceding claims, characterized in that the stream of compressed steam is brought to yield heat in a heat exchanger in the form of a plate heat exchanger.
meat meal
180 t/24 h 210 t/24 h
90 % d.s.
and fat

raw material
800 t/24 h 1
19 % d.s.
4.5 % fat

stick water
500 t/24 h 8 % d.s.
and fat 75 ° C

concentrate
107 t/24 h
35 % d.s. and fat

int. pr.
383 t
42 %
+ fat

2

277 t/24 h
136 t/24 h

fat

steam 1 bar 100 ° C

steam 1,5 bar 112 ° C

100 ° C

4.4 m³

106 ° C

112 ° C

16 °

17 °

17 °

10 °

50 ° C sup. heated

steam 408 t/24 h 20 bar

318 ° C superheated

fuel oil
27.7 t/24 h
comb. value
4.0 · 10⁴ kJ/kg

water
7 t/24 h 100 ° C

condensate
408 t/24 h
5 bar 150 °
i 627 kJ/kg

water
7 t/24 h
100 ° C

condensate
408 t/24 h
5 bar 150 °
i 627 kJ/kg

steam 408 t/24 h
50 ° C sup. heated

η = 0.9
INTERNATIONAL SEARCH REPORT

International Application No PCT/SE82/00287

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3

According to International Patent Classification (IPC) or to both National Classification and IPC 3

F 01 K 17/04

II. FIELDS SEARCHED

Minimum Documentation Searched 4

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 3</td>
<td>F 01 K 17/00-17/06</td>
</tr>
<tr>
<td>US Cl</td>
<td>60:685-689, 694-697</td>
</tr>
<tr>
<td>National Cl</td>
<td>14h;2, 3/12</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched 6

SE, NO, DK, FI classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT 14

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 14 with indication, where appropriate, of the relevant passages 17</th>
<th>Relevant to Claim No. 18</th>
</tr>
</thead>
</table>

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 3
1982-12-14

Date of Mailing of this International Search Report 3
1982-12-16

International Searching Authority 1
Swedish Patent Office

Signature of Authorized Officer 22
Sune Söderling

Form PCT/ISA/210/second sheet) (October 1981)