a2 United States Patent

US008191060B2

(10) Patent No.: US 8,191,060 B2

Malasky et al. (45) Date of Patent: May 29, 2012
(54) SOFTWARE INSTALLATION USING ;,2 é?,?;g g% : ‘3‘%8?8 (B}leVinS ~~~~~ e ;}Zgg
K s rasser etal. ...
TEMPLATE EXECUTABLES 7,703,073 B2* 4/2010 Illowsky etal. ... 7177121
7,797,678 B2* 9/2010 Moulcke t al. 7177121
(75) Inventors: Ethan Malasky, San Francisco, CA 7.900.202 B2* 3/2011 Blglcllfefzsl,e ,,,,,,,, TS
(US); Oliver Goldman, Redwood City, 2001/0052121 Al* 12/2001 Masuda et al. . VN
CA (US); Chris Brichford, Menlo Park. 2002/0010808 Al* 1/2002 Wiggins et al. 709/328
Us); . :
CA (US) 2003/0018964 Al* 1/2003 Foxetal. ... L T17177
2003/0037328 Al* 2/2003 Cicciarelli et al. 717/178
. 2003/0145317 Al 7/2003 Chamberlain
(73) Assignee: Adobe Systems Incorporated, San Jose, 2004/0088377 Al* 5/2004 Henriquez 709/219
CA (US) 2004/0139430 Al 7/2004 Eatough et al.
2004/0194082 Al 9/2004 Purkeypile et al.
(*) Notice: Subject to any disclaimer, the term of this 5882; 8(1)2(5)833 i} ggggg ?alr_ajas etal.
3 3 uli
%atseg 1lsslet)ertdeg 5°5r dadJuSted under 33 2005/0155027 AL 7/2005 Wei
S.C. 154(b) by 255 days. 20050188357 Al 82005 Derks et al.
2006/0005207 Al* 12006 Louchetal. 719/328
(21) Appl. No.: 11/512,763 2006/0026592 Al* 2/2006 Simonen etal. 718/1
. (Continued)
(22) Filed: Aug. 29, 2006
OTHER PUBLICATIONS
(65) Prior Publication Data
“Model-driven framework for dynamic deployment and reconfigura-
US 2008/0127169 Al May 29, 2008 tion of component-based software systems”, Ketfi et al., Nov. 2005,
(51) Int.CL <http://delivery.acm.org/10.1145/1240000/1234332/a8-ketfi.pdf>*
GO6F 9/445 (2006.01) (Continued)
GO6F 9/44 (2006.01)
GOG6F 9/146 (2006.01) Primary Examiner — Thuy Dao
GOG6F 3/048 (2006.01) (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(52) US.CL ... 717/175;717/121, 717/170; 719/328;
715/763 57 ABSTRACT
(58) Field of Classification Search None This specification describes technologies relating to software
See application file for complete search history. installation. In general, a method of installing software can
. include obtaining application information for a software
(56) References Cited application to be installed on a target platform, the application

U.S. PATENT DOCUMENTS

6,125,388 A 9/2000
6,182,285 B1* 1/2001
6,557,054 B2 4/2003
6,687,745 Bl 2/2004
6,687,902 Bl 2/2004
7,398,524 B2* 7/2008
7,458,062 B2* 11/2008

Reisman

Bleizeffer et al. 717/170
Reisman

Franco et al.

Curtis et al.

Shapirocccceevveeenn. 717/175
Coulthard et al. 717/121

30¢

Application Information

Application Name

308

Application lcon

!

information including an application name, an application
icon, version information, and application code; obtaining a
template executable including machine code native to the
target platform; and adding the application information to the
template executable to form an application executable for the
software application.

27 Claims, 6 Drawing Sheets

Template Executable

3061
31m
Version
Resource

324

Version Number

Code

!

(7]

30; -z
Application Executable

. Application Icon
32¢

"
s BTN

US 8,191,060 B2
Page 2

U.S. PATENT DOCUMENTS

2008/0028390 Al 7/2006 Fors et al.

2006/0225072 Al* 10/2006 Larietal. ..o 717/175
2006/0294515 Al 12/2006 Gimpi et al.

2007/0038946 Al 2/2007 Grieshaber et al.

2007/0067179 Al 3/2007 Kerr et al.

2008/0109803 Al* 5/2008 Fisheretal. 717175
2008/0127169 Al 5/2008 Malasky et al.

2008/0127170 Al 5/2008 Goldman et al.

2008/0134169 Al* 6/2008 Williamsetal. 717175
2011/0225575 Al* 9/2011 Ningombametal. 717/170

OTHER PUBLICATIONS

“Delivering mobile enterprise applications on iMMS framework”,
Shen et al., May 2005, pp. 289-293, <http://delivery.acm.org/10.
1145/1080000/1071293/p289-shen.pdf>.*

“Adobe Creative Suite 4 Enterprise Manual Deployment Guide”,
Adobe Systems Incorporated, 2008, <http://www.adobe.com/
aboutadobe/openoptions/pdfs/manualenterprisedeployment_ cs4_
help.pdf>.*

T.H. Ng et al., Toward effective deployment of design patterns for
software extension: a case study, May 2006, pp. 51-56, <http://deliv-
ery.acm.org/10.1145/1140000/1137713/p51-ng.pdf>.*

N. Paterson, MULTT: multiple user interactive template installation,
Jun. 2007, p. 294, <http://delivery.acm.org/10.1145/1260000/
1255030/p294-paterson.pdf>.*

Apple Computer, Inc. “Universal Binary Programming Guidelines,
Second Edition”, Jul. 24, 2006, retrieved from the internet at http://
developer.apple.com/documentation/MacOSX/Conceptual /univer-
sal_ binary/universal_ binary.pdf, on Aug. 28, 2006, 96 pages.
Goldman, et al. “Software Installation and Support”, U.S. Appl. No.
11/512,764 filed Aug. 29, 2006.

LaMonica, “Flash to Jump Beyond the Browser”, May 11, 2006,
retrieved from the internet at http:/news.com.com/
Flash+to+jump+beyond-+the+browser/2100-1007__3-6071005.
html, on Jul. 12, 2006, 6 pages.

Macromedia, Inc. “Publishing Flash Documents—Version 8,
retrieved from the internet at http://livedocs.macromedia.com/flash/
8/main/00000805 html, on Aug. 16, 2006, 2 pages.

Macrovision “InstallShield MultiPlatform 5 (incl. SP3)”, Oct. 27,
2003, retrieved from the internet at http://www.installshield.com/
downloads/imp/imp__readme53.asp, on Aug. 28, 2006, 10 pages.
Macrovision “InstallAnywhere 7.1 Users Guide”, 2006, retrieved
from the internet at http://www.macrovision.com/downloads/prod-
ucts/flexnet__installshield/installanywhere/documentation/ia71__
user__guide.pdf, on Jul. 11, 2006, 121 pages.

Microsoft Corporation “Windows Installer XML (WiX) Toolset”,
2005 retrieved from the internet at http://wix.sourceforge.net/
manual-wix2/wix__index.htm, on Jul. 11, 2006, 392 pages.

Sun Microsystems, Inc. “Packaging Programs in JAR Files”,
retrieved from the internet at http://java.sun.com/docs/books/tuto-
rial/deployment/jar/, on Jul. 20, 2006, 2 pages.

Swftools, “Flash Projector/Switools.com”, retrieved from the
internet at http://www.swftools.com/tools-category.php?cat=290, on
Aug. 16, 2006, 3 pages.

Sun Microsystems, Inc. “JAR File Specification”, retrieved from the
intemet at http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html, on
Jan. 10, 2008, 14 pages.

Tuan Q. Dam, Authorized Officer, PCT/US07/77035, International
Search Report and Written Opinion, mailed Jul. 24, 2008, 11 pages.
PCT Application PCT/US07/77029, International Search Report and
Written Opinion, mailed on Sep. 22, 2008.

Cussac, Yolaine, Authorized Officer, PCT Application No. PCT/
US2007/077029, International Preliminary Report on Patentability,
mailed Mar. 12, 2009, 11 pages.

* cited by examiner

U.S. Patent May 29, 2012 Sheet 1 of 6 US 8,191,060 B2

104

/ 126 5 "
IQIQ

128

Sourcez\)

¥ Package

Source3

Source1
102

130

S 106

102

Package .‘_i:

114

Install4

FIG. 1

US 8,191,060 B2

Sheet 2 of 6

May 29, 2012

U.S. Patent

uonealddy oiioads
-wiofe|d pajleisu|

o1z S i

Ja|eIsy)
SO eAlleN

1 474 h 1T

abeyoed

¢ 9ld

—
[leisu| Jobie} o
flewsu jin4 g

IN llesu|

&.Nh

uonejelsu] f

aneN

NNNlA

Aeiq \

awnuny

P

Japoaosuer)] |

auUIyoB [enpIA

irs
M
v ovae| [z
Juao)
weibold
nb
A\)
L orz oju| abexoed
abeyoed 4o

80¢ .W

R¥:

202

90c .ﬂ

U.S. Patent May 29, 2012 Sheet 3 of 6 US 8,191,060 B2

Template Executable
3061
Generic
Icon
316—(
5304 v X o
Application Information ReesroSlIJorce
Application Name 324

1 308

Application Icon

)‘ 310 4>

Version Number

2 312 3OZZ < L
Code Application Executable

~N—"]

318
314 [Application Icon

320
L\ Version Number

JZZL\ Code

FIG. 3

U.S. Patent

May 29, 2012

(Start)

A

y

5410

Obtain application
information for a software
application to be installed

on a target platform

A

4

5 420

Check whether a current
version of the software
application is installed on
the target platform

A

4

5 430

Obtain a

template

executable including
machine code native to the
target platform

A

y

Add the application
information to the template

executable
application e

to form an
xecutable for

the software application

5 440

L

Sheet 4 of 6

US 8,191,060 B2

/

FIG. 4

4501

Determine if a runtime
library is installed on the
target platform

A 4

460‘(

Install the runtime library
on the target platform if
not already installed

A 4

4701

Place the application
executable into an install
directory using a file name
corresponding to the
application name

End

U.S. Patent May 29, 2012 Sheet 5 of 6 US 8,191,060 B2

5 510

Obtain a first
instaliation package
distributed for
installation on multiple
different platforms

l 5 520

Convert the first installation
package into a second
installation package stored
in a format native to a
target platform

l 5 530

Initiate installation on
the target platform with
the second, native
installation package

FIG. 5

U.S. Patent

May 29, 2012 Sheet 6 of 6 US 8,191,060 B2

5 610

Select one or more templates
based on a determined operating
system type for the target
platform

l 5 620

Copy the one or more
selected templates

l 5 630

Transfer at least a portion of
the package information to
the one or more templates

l 5 640
Copy at least a portion of the program
content from the first installation

package to the second installation
package without modification

l 5 650
Transform at least a portion of the
package information or the program
content from a first format to a
second format before inclusion in
the second installation package

FIG. 6

US 8,191,060 B2

1
SOFTWARE INSTALLATION USING
TEMPLATE EXECUTABLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 11/512,764, entitled SOFTWARE INSTALLATION
AND SUPPORT, to O. Goldman et al., filed on the same day
as the present application.

BACKGROUND

The present disclosure relates to installing software on a
computer platform. A computer platform is a computer
including a particular operating system (OS) for that com-
puter (e.g., Wmnows® OS, Mac® OS, or Livux® OS). Soft-
ware developers often create source code that can be appro-
priately compiled for respective computer platforms, and
then independently generate native installation packages for
each target platform. Each native installation package is asso-
ciated with a specific computer platform, and these native
installation packages can then be distributed for installation
on appropriate machines. For a particular target platform, the
appropriate native installation package is obtained from the
software developer, and an OS installer can be used to process
the native installation package in order to install the applica-
tion. For example, INsTALLSHIELD® software can be used to
produce an .msi file for installation on Wmnpows® machines,
and a different software tool can be used to produce .pkg files
for installation on Mac® machines.

In order to facilitate this process of generating native instal-
lation packages for distribution, some software developers
have used a common specification of the installer package for
different platforms. This common specification can then be
used to create each respective platform-specific installation
package, where the common specification indicates informa-
tion such as which source files and which compiler to use for
different target platforms. In any event, the distributor of the
desktop application distributes different installation packages
for different target platforms, and the customer generally
must ensure, when acquiring a software application, that they
are purchasing the correct installation package for their sys-
tem.

Other software developers have created cross-platform
installation packages, such as the Java® Archive (JAR) file
format, that get deployed to the end-user system. The cross-
platform package can then be expanded (e.g., decrypted and
uncompressed) and written directly to disk using code pro-
vided by the software developer and/or the developer of the
cross-platform package format. Typically, such cross-plat-
form software relies on a virtual machine, such as the Java®
Virtual Machine (JVM) (available from Sun Microsystems,
Inc.), to run on the target platform.

The JVM provides a runtime environment and Java inter-
preter for most operating systems, including Winnows® OS,
Mac® OS, AND Linux® OS. Java source code files (files with
a java extension) are compiled into a format called bytecode
(files with a class extension), which can then be executed by
a Java interpreter. Bytecode can be converted directly into
machine language instructions by a just-in-time compiler
JID).

Flash® Player (available from Adobe Systems Incorpo-
rated) is another virtual machine, which is used to run, or
parse, Flash® files including ActionScript or Shockwave
Flash (SWF). The Flash® Player and Flash® Authoring soft-
ware allow development of projectors (self-running SWF

20

25

30

35

40

45

50

55

60

65

2

movies) that run on a specific target platform, by embedding
the SWF data in the Flash® Player executable to create a new
.exe file, and manipulating a byte pattern in the .exe file to
indicate the presence of the SWF data. Such projectors can
then be distributed for use on the target platform.

SUMMARY

This specification describes technologies relating to soft-
ware installation. In general, one aspect of the subject matter
described in this specification can be embodied in a method of
installing software that includes obtaining application infor-
mation for a software application to be installed on a target
platform, the application information including an applica-
tion name, an application icon, version information, and
application code; obtaining a template executable including
machine code native to the target platform; and adding the
application information to the template executable to form an
application executable for the software application. Other
embodiments of this aspect include corresponding systems,
apparatus, and computer program products.

Obtaining the application information can include opening
an installation package received from a software distributor,
the installation package including package information
stored in a platform independent format. Obtaining the appli-
cation information can include receiving a data file used by
the software application, the method further including check-
ing whether a current version of the software application is
installed on the target platform before obtaining the template
executable and adding the application information to the tem-
plate executable. Moreover, obtaining the template execut-
able can include selecting the template executable from
among multiple, previously obtained template executables
for different platforms.

The adding can include using an application programming
interface provided by an operating system of the target plat-
form to update an icon resource in the template executable
with the application icon and to update a version resource in
the template executable with the version information. The
adding can include transforming the application icon from a
first format to a second format before updating the icon
resource in the template executable with the application icon.

The method can further include placing the application
executable into an install directory using a file name corre-
sponding to the application name. The adding can include
embedding the application code as a resource in the applica-
tion executable, the application code including interpreted
code that relies on a runtime library on the target platform to
operate. The interpreted code can include bytecode that is
compiled by the runtime library. Moreover, obtaining the
application information can include opening an installation
package received from a software distributor, the installation
package including the runtime library, and the method further
including determining if the runtime library is installed on the
target platform; and installing the runtime library on the target
platform if not already installed.

According to another aspect, the subject matter described
in this specification can be embodied in a system including a
user interface device; a computer platform including an oper-
ating system and a virtual machine, the virtual machine con-
figured to create a virtualized environment between the com-
puter platform and a software application programmed to
operate on the virtual machine; and one or more computers
operable to obtain application information for the software
application to be installed on the computer platform, obtain a
template executable including machine code native to the
computer platform, and add the application information to the

US 8,191,060 B2

3

template executable to form an application executable on the
computer platform; wherein the application information
includes an application name, an application icon, version
information, and application code.

The one or more computers can be operable to open an
installation package received from a software distributor, the
installation package including package information stored in
a platform independent format. The one or more computers
can be operable to receive a data file used by the software
application and to check whether a current version of the
software application is installed on the target platform before
obtaining the template executable and adding the application
information to the template executable. The one or more
computers can be operable to select the template executable
from among multiple, previously obtained template
executables for different platforms.

The one or more computers can be operable to use an
application programming interface provided by an operating
system of the target platform to update an icon resource in the
template executable with the application icon and to update a
version resource in the template executable with the version
information. The one or more computers can be operable to
transform the application icon from a first format to a second
format before updating the icon resource in the template
executable with the application icon. The one or more com-
puters can be operable to place the application executable into
an install directory using a file name corresponding to the
application name.

The one or more computers can be operable to embed the
application code as a resource in the application executable,
the application code including interpreted code that relies on
a runtime library on the target platform to operate. The inter-
preted code can include bytecode that is compiled by the
runtime library. The one or more computers can be operable
to open an installation package received from a software
distributor; the installation package including the runtime
library; and the one or more computers can be operable to
determine if the runtime library is installed on the target
platform, and install the runtime library on the target platform
if not already installed.

Particular embodiments of the subject matter described in
this specification can be implemented to realize one or more
of the following advantages. Software applications can be
developed using a cross-platform code format, such as SWF,
and such applications can then be installed on a computer
platform and function within the OS user interface as a nor-
mal desktop application (e.g., with a separate, non-generic
icon for program launch and a presence in OS utilities inter-
faces). The application can thus operate as a native applica-
tion, allowing a developer to customize the application name
and icon, such that when a task list is observed, an instance of
the customized application executable is observed, rather
than a generic instance of the runtime on which the applica-
tions depends.

The application executable can be built from template(s)
included with the runtime. The runtime can include template
executable files for multiple different computer platforms,
and can include directions to install new applications by
reading relevant data for an application to populate an appro-
priate template executable for a platform to make the execut-
able operate as desired, and to place the new application
executable into the appropriate install directory (with appro-
priate renaming based on the application’s metadata) on the
target platform. Thus, an application developer can program
the application entirely in the cross-platform code format

20

25

30

35

40

45

50

55

60

65

4

(e.g., SWF) and need not create multiple versions of the
application’s installation package for different computer plat-
forms.

A software publisher need only create a single installation
package that is suitable for all target platforms. The customer
need only obtain a single installation package, and need not
check whether the installation package matches their plat-
form. By converting a cross-platform installation package
into a native installation package, which can be installed
using the native installer, the installation sequence can lever-
age all available native installation features. A cross-platform
installation package can be converted into a platform-specific
package on the fly in an installation engine. Thus, a single
installation package can be used to distribute and install an
application on multiple different computer platforms (e.g.,
both Windows® and Mac OS® systems), and a cross-plat-
form application can be installed and function as a normal
desktop application, even though dependent on a non-OS
runtime environment.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, aspects, and advantages of the
invention will become apparent from the description, the
drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an example system for
software distribution and installation.

FIG. 2 is a block diagram showing an example cross-
platform installation package being converted to a native
installation package and installed on a target platform.

FIG. 3 is a block diagram showing an example template
executable (e.g., for a Winnows® OS) being converted to an
application specific executable.

FIG. 4 is a flow chart showing an example method of
installing software.

FIG. 5 is a flow chart showing another example method of
installing software.

FIG. 6 is a flow chart showing an example method of
converting a cross-platform installation package into a native
installation package.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1is ablock diagram showing an example system 100
for software distribution and installation. The system 100 can
be used to install applications on various different platforms
from a single source package. Such a system can simplify
distribution by reducing the number of installation packages
that need to be available for installing on various different
computer platforms. Creation of application archives can also
be made simpler by reducing the total amount of space and
number of packages that need to be tracked and put into
storage. Use of a cross-platform installation package can help
mitigate the amount of work required to install an application
to a new computer platform by reducing the portion of code
that needs to be ported. As used herein, an “application” refers
to a computer program that the user perceives as a distinct
computer tool used for a defined purpose. An application may
rely on a runtime library to operate; for example, an applica-
tion can be a Flash® application that uses SWF and runs on a
computer using a client-based runtime library that runs
Flash® applications separately from a web browser, whether
online or offline.

US 8,191,060 B2

5

In the example system 100, a single cross-platform instal-
lation package 102 can be used to install an application on
multiple, different platforms. A user, such as an end user or
administrator, can obtain the cross-platform installation
package 102 from a distributor 104 to create a native instal-
lation package 106 corresponding to a target computer 108.
The native installation package 106 can be used to install the
application on the target computer. In some cases, native
installation packages 110, 112, 114 can be generated using
the cross-platform installation package 102 for computers
other than the generating computer 108; the native installa-
tion packages 110, 112, 114 can be created for computers
116,118,120, 124, some of which can have the same platform
as the generating computer 108, and some of which can have
different platform(s) than the generating computer 108.

The distributor 104 makes a cross-platform installation
package 102 available. The distributor 104 can be a software
developer, publisher, reseller, or other entity which distributes
software. The distributor makes available a cross-platform
installation package which includes source materials 126,
128, 130 that are used for installing the application. The
source materials can be source code, machine code, libraries,
data, documentation, configuration information, icons, or any
other resource that can be used by an application or installa-
tion procedure. Portions of the source materials can be plat-
form dependent or independent; for example, in a web brows-
ing application, code for handling bookmarks may be the
same across all computer platforms while code for handling
copying and pasting may be platform-dependent. In another
example, configuration files for different platforms can be
included. Although the source materials can be targeted to
multiple platforms, a single cross-platform package can be
created which can be used to install the application on any of
the supported platforms.

The user can obtain the cross-platform installation package
102 from the distributor 104. The cross-platform installation
package 102 can be distributed on physical media, such as
Compact Discs (CDs), Digital Versatile Discs (DVDs), floppy
disks, etc., via networks, such as Local Area Networks
(LANSs), the Internet, peer to peer links, wireless networks,
etc., by being preinstalled on computer equipment, such as
hard drives, flash drives, portable music players, etc., or any
other technique that can be used to deliver digital content. In
addition, the cross-platform installation package 102 can be
included in a data file for the application. Thus, the data file
for an application can include an installable copy of the appli-
cation itself.

When such a data file is to be opened, the data file can first
be handled by enabling software separate from the applica-
tion, such as the virtual machine, transcoder, and/or runtime
library described further below. This enabling software
checks whether the application has already been installed,
and if not, installs the application using the techniques
described herein. In either event (installation or confirmation
of previous install), the application is then provided with
access to the original data/installation file for further process-
ing in accordance with the functions provided by the appli-
cation.

A native installation package 106 can be created from the
cross-platform installation package 102. In some implemen-
tations, the user can create the native installation package by
double clicking on an icon representing the cross-platform
installation package 102 to open it for transcoding. As used
herein, the term “transcoding” refers to a process of convert-
ing a cross-platform installation package into a native instal-
lation package. A transcoding program can run on the user’s
computer and use the included source materials 126,128,130

20

25

30

35

40

45

50

55

60

65

6

to generate the native installation package 106 specific to the
platform of the target computer 108. In some cases, a native
installation package 110 can be generated for a different
target computer 116 with a platform different than the plat-
form of the generating computer 108. In such cases, the
transcoder can be designed to generate native installation
packages for multiple platforms. In some implementations,
several, different transcoders can be used, where each
transcoder generates a native installation package for a given
platform. In some implementations, a transcoder can be run
on multiple platforms by being written in a cross-platform
language such as Java or Shockwave Flash (SWF).

The user can install the application using the native instal-
lation package 106 generated from the cross-platform instal-
lation package 102. The native installation package 106 uses
the native operating system installer to install the application;
this enables use of the installation procedures that are native
to the platform. Maintenance performed on the target com-
puter, e.g. setup, reinstallation, removal, etc., can be done
using the utilities native to the OS. In some implementations,
execution of the native installation package can be initiated
automatically after generation of the native installation pack-
age. In other words, the same action that initiates creation of
the native installation package, such as a double click on an
icon, can also initiate the execution of the native installation
package when generation is complete.

Users can create native installation packages for other
computers. Native installation packages can be generated for
computer platforms that are different than the platform used
to create the native installation package. For example, a com-
puter running a Windows® operating system (available from
Microsoft Corporation) could generate a native installation
package for a Mac OS® operating system (available from
Apple Computer Inc.), or vice versa. The same cross-plat-
form installation package can be used to create native instal-
lation packages for multiple, different computers. For
example, an administrator can create native installation pack-
ages on a single computer running a Windows® operating
system to install an application on a laptop running a Mac
OS® operating system, multiple desktop PCs running a Win-
dows® operating system, and a cluster of servers running a
Linux® operating system (an open source operating system
developed by Linus Torvalds et. al.). In some instances, a user
can create multiple, different native installation packages to
install an application on a single computer that is capable of
running multiple operating systems, such as a Windows®
operating system or Linux® operating system, by booting off
different disk partitions or running virtualization software.

As an example, an administrator who uses a computer
running a Windows® operating system can obtain from a
software distributor a CD-ROM, which includes a cross-plat-
form installation package for an image editing tool. If not
already present, the administrator can install an appropriate
transcoder from the CD-ROM to generate a native installation
package corresponding to his or her computer. The adminis-
trator can choose to have the transcoder initiate installation
using the native installation package once this package is
finished generating, causing the image editing tool to be
installed on the computer using the installer native to the
Window® OS. As an alternative, the administrator can
choose to have the transcoder only generate the native instal-
lation package, which can then be processed by the native
installer at a later time, such as when a user clicks on a single
icon representing the generated native installation package
(i.e., the install file generated by the transcoder).

Continuing the above example, the administrator can
evaluate the image editing application and can choose to

US 8,191,060 B2

7

deploy the application throughout the company. If needed, the
administrator can install transcoders onto his or her computer
via the Internet or from the CD-ROM as needed to generate
native installation packages for a Mac OS® operating system
and a Linux® operating system. In some implementations, a
single transcoder can support generating native installation
packages for multiple, different target computers. The admin-
istrator can use the transcoder(s) to generate native installa-
tion packages for a Mac OS® operating system and Linux®
from the cross-platform installation package. Generation of a
package for a Windows® operating system may not be
needed since this was generated for the installation on the
administrator’s computer prior to evaluation, in this example.
The administrator can then make the Mac OS® installation
package and Windows® installation package available on a
LAN for users in his or her organization. User A downloads
the Mac OS® native installation package and installs on his or
her laptop. Users B and C download the Windows® native
installation package and install the application on their desk-
tops. The administrator can also transfer the Linux® native
installation package to the server cluster and install the appli-
cation on each server.

FIG. 2 is a block diagram showing an example cross-
platform package being converted to a native installation
package and installed on a target platform. A transcoder 210
can create a native installation package (e.g., a single install
file on the target computer), which a native OS installer can
use to install the application on a target computer.

A cross-platform package 206 can include package infor-
mation 202 and program content 204. A virtual machine 208
(which can be located on the target computer or another
computer) can include the transcoder 210, which creates a
native installation package 212 using the package informa-
tion 202 and the program content 204 from the cross-platform
package 206. A native operating system installer 214 can use
the native installation package 212 to install a platform spe-
cific application 216 on a target computer.

The package information 202 describes the content of the
cross-platform package 206. The cross-platform package can
include instructions related to generating native operating
system installers. The package information 202 can include
information useable in an installation sequence, which can be
stored in eXtensible Markup Language (XML) or other plat-
form independent format. For example, the cross-platform
installation package 206 can be stored as a compressed and/or
encrypted file (e.g., a Zip file), and the package information
202 can be stored in an XML file included within the com-
pressed and encrypted file. This XML file can contain infor-
mation used by the transcoder 210, such as the application
name, the application version, publisher name, an icon for the
application (e.g., in .png format), a default installation direc-
tory, file extensions registered by the application, and Multi-
purpose Internet Mail Extensions (MIME) content types reg-
istered by the application. Moreover, this XML file can
contain one or more references to the information used by the
transcoder 210, rather than the actual data itself, in which case
these reference(s) also constitute information useable in an
installation sequence. In general, the package information
202 can include a description of all the items an installation
sequence uses, but abstracted away from platform-specific
notions.

The program content 204 in the cross-platform package
206 can include source code, object code, configuration files,
icons, libraries, documentation, etc. In some implementa-
tions, some source material for creating the native installation
package 212 can be pulled from a remote source over a
network connection. In some implementations, some source

20

25

30

35

40

45

50

55

60

8

material for creating the native installation package 212 can
already be present on the target computer or in the transcoder
210. In some implementations, the cross-platform package
206 can include transcoders for multiple, different platforms
so that the user can find all the required elements to begin
installation already present, regardless of which type of plat-
form is used for a target.

In general, the program content 204 can include first, sec-
ond and third sets 204 A, 204B, 204C of information. The first
set 204A includes the information that is copied by the
transcoder 210 directly from the cross-platform package 206
to the native package 212 without any modifications. For
example, this program content can be interpreted code that
relies on a runtime library 218 to operate, such as SWF. The
second set 204B includes the information that is modified by
the transcoder 210 during conversion from the cross-platform
package 206 to the native package 212. For example, this
program content can include an application icon stored in
Portable Network Graphics (PNG) format, which can be
translated into the Windows® Icon format (ICO) for a Win-
dows® platform. The third set 204C includes any information
that is specific to a first platform and thus need not be added
to the native package 212 when generated for a second, dif-
ferent platform (although such information may be included
in the package 212, and just not used on the second platform).

The transcoder 210 can be included with a virtual machine
208. The virtual machine 208 is a runtime environment that
provides software services for processes or programs while a
computer is running. The virtual machine 208 includes the
runtime library 218, which is a collection of utility functions
that support a program while it is running, often working with
the OS to provide facilities. It should be appreciated that the
runtime library 218 and the virtual machine 208 can be con-
sidered one and the same in some implementations. The vir-
tual machine 208 can be client-based software that runs
Flash® applications, supports vector and raster graphics,
bidirectional streaming of audio and video and one or more
scripting languages (e.g., ActionScript). Moreover, the vir-
tual machine 208 can deeply integrate Flash® applications
with the OS, providing services such as file system access,
multiple windows, running in the background, etc. Inclusion
of the transcoder 210 with the virtual machine 208 can be
implemented by building the transcoder’s functionality
directly into the virtual machine 208 or by simply associating
the transcoder 210 with the virtual machine 208, such that
they are delivered as a package together.

Moreover, the transcoder 210 can be a stand alone program
(e.g., a platform specific program in native machine code),
interpreted and/or partially compiled code that relies on the
runtime library 218 to operate (e.g., SWF code), or a combi-
nation of these. The transcoder 210 can include program
content (e.g., a Flex script, Flash® file, etc.) that when com-
piled and/or interpreted creates code to provide functionality
to the transcoder 210. For example, the transcoder 210 can
include program content that provides a presentation layer
250 for the transcoder 210 during the installation process.
This program content can be in the form of SWF containing
code, video, images, etc. (e.g., SWF generated from another
tool or language, such as Flex), or it can be in another form.

The program content can be compiled and/or interpreted
using the runtime library 218 to create a SWF file that can
access information from a to-be-installed application, such as
the package information 202 in the cross-platform package
206. During installation of an application 216, the SWF file
can run as a movie, providing an install user interface (UI)
250. This install UT can include user input controls to affect
the installation process (e.g., full install to the current plat-

US 8,191,060 B2

9

form or target install to create a specified target native instal-
lation package), and the install UI can present ongoing install
process updates (e.g., a progress bar generated from commu-
nications received by UI 250 from the OS installation mecha-
nism). Moreover, this Flash® movie install UI 250 can run
through the native OS installer 214 process for a full install
and mask the user interface of the OS installer 214, while the
transcoder 210 controls the installation through the native OS
installer 214 to generate the final, OS integrated and installed
platform-specific application 216.

Note that while the install UI 250 masks the native OS
install UI, the look and feel of the new install UI 250 can be
made to match that of a native OS installer UL The UI 250 can
dynamically present an appearance that matches the native
OS installer UI of the target platform. Thus, the UI 250 can
appear to be a Mac OS® install Ul when the transcoder 210
generates the application 216 for a Mac® target, even while
running on a Windows® computer.

A user can obtain and install the transcoder 210 and/or
virtual machine 208 for installing a first application, then
subsequently reuse the transcoder 210 and/or virtual machine
208 for installation and/or application support. The
transcoder 210 and virtual machine 208 can be made avail-
able for multiple different platforms (e.g., different platform
specific versions of the transcoder 210 and virtual machine
208 can be freely distributed, such as over a public network or
by pre-installation on computer equipment prior to sale). If
the transcoder 210 and/or virtual machine 208 are not already
present on a given machine, they can be included with the
cross-platform package 206 as well. In some implementa-
tions, the transcoder 210 can run natively on a generating
computer without requiring a virtual machine. In some imple-
mentations, use of a virtual machine can increase portability
of'a transcoder by reducing the number of transcoders devel-
oped for generating native OS installation packages. In some
implementations, the transcoder 210 can have the ability to
generate multiple native installation packages for different
target platforms.

Moreover, the transcoder 210 can be pre-installed and
include a copy of the runtime library 218, and the transcoder
210 can add the runtime library 218 to the native installation
package 212 so that the runtime library 218 is installed on the
target computer along with the application 216. The runtime
library 218 can be bound to the application 216 (i.e., a dedi-
cated copy of the library 218, which only the application 216
can use), or the runtime library 218 can be simply bundled
with the application 216 (i.e., the library 218 is installed along
with the application 216, but is then available for other appli-
cations on the target computer).

The transcoder 210 can generate a native installation pack-
age 212 using the cross-platform package 206. The
transcoder 210 can use the package information 202 and
program content 204 included in the cross-platform package
206 to generate the native installation package 212. Some of
the program content 206 can be platform specific, such as
hardware drivers used for a specific peripheral device. In
some implementations, the transcoder 210 can use preexist-
ing components from the OS, such as Dynamic-Link Librar-
ies (DLLs) or other installed components. In some implemen-
tations, the transcoder 210 can use components included with
the virtual machine 208. The transcoder 210 can use multiple
template executables 220, 222 and one or more template
installation packages 224 to create the native installation
package 212, as described in more detail below.

When generation of the native package 212 is complete, the
transcoder 210, or the virtual machine 208, can initiate the
native operating system installer 214. In some implementa-

20

25

30

35

40

45

50

55

60

65

10

tions, the native operating system installer 214 can be auto-
matically invoked when generation is complete. In some
implementations, the user can choose to manually execute the
native installation package 212 at a later time or transfer the
native installation package 212 to another computer.

The target computer’s native operating system installer
214 can be used to install the application in a fashion that is
natural for the platform. For example, computers running a
Windows® operating system can use an .msi file to control
application installations; a native operating system user inter-
face can be used to perform maintenance functions on an
application installed using an .msi file, such as reinstalling,
adding components to, or removing the application.

After installation, the installed platform specific applica-
tion 216 can be used. The conversion to the native installation
package 212 and use of the native operating system installer
214 to perform application setup can result in the application
216 being tightly integrated with the OS, even when the new
logic for the new application 216 is written in cross-platform
interpreted code, such as Flash® code, and the new applica-
tion 216 relies on the runtime library 218 to operate. For
example, menu icons can be appropriately placed in program
groups or on desktops, local settings can be used, and icons
which are appropriate for the target system can be used.

In some cases, applications can be linked to other compo-
nents. In some implementations, the transcoder 210 can con-
struct the native installation package 212 in such a manner so
that the native operating system installer 214 creates an appli-
cation startup icon that initiates linked resources such as the
runtime library 218 when the application 216 is started. In
some implementations, the instance of the runtime library
218 can be dedicated to supporting the application 216. In
some implementations, the application 216 can share an
instance of the runtime library 218 with other applications.

The generation process creates the native installation pack-
age 212 in a format specific to the target platform, e.g., .msi
file for a Windows® operating system. Since the installation
process uses the platform’s native installer, the installation
process can proceed as though the cross-platform installation
package was developed specifically for that target, i.c. instal-
lation and maintenance follows the native operating system
installation procedure(s) the user is familiar with on his or her
computer.

When installation is complete, the user can use the native
installation package 212 and the native operating system to
perform maintenance or to uninstall the application 216. For
example, the user can maintain the application 216 (e.g.,
install a missing component or uninstall the application)
using the procedure that is natural and appropriate to the
platform, such as using the “Add-Remove Software” tool ina
Windows® operating system.

FIG. 3 is a block diagram showing an example template
executable 306 (e.g., for a Wmpows® OS) being converted to
an application specific executable 302. The native application
executable 302 can be created and put into the native instal-
lation package such as described above in connection with
FIGS.1and 2. Alternatively, the native application executable
302 can be created and placed into an install directory (along
with possibly some associated files), and there be immedi-
ately ready to run. Thus, the template conversion described
here in connection with FIG. 3 can be implemented as part of
the conversion from the cross-platform package to the native
package, or this template conversion can be done as part of a
process of directly installing the application, without an inter-
mediate native installation package.

Application information 304 can be supplied with a cross-
platform package or by other means. This application infor-

US 8,191,060 B2

11

mation 304 can be combined with information from the plat-
form-specific template executable 306 to generate the
application executable 302. The application information 304
includes information specific to the application, such as code
implementing algorithms, data, or documentation. The tem-
plate executable 306 is specific to the target computer and
contains machine code common to executables of that plat-
form.

The template 306 is copied and renamed according to
information included in the application information 304. The
template 306 can include generic filler material, such as a
generic icon 316, that is overwritten when creating the appli-
cation executable 302. The template executable 306 can
include other resources such as common code that can be used
for performing common tasks or links to system libraries such
as DLLs. In some implementations, the template executable
306 can include a version resource 324 to which version
information about the application can be added when gener-
ating the application executable 302.

The application information 304 can include an application
name 308, which is used as the name for the application
executable 302. An application icon 310 can be included in
the application information 304 and can be integrated with the
template executable 302 when generating the application
executable 302. For example, the application icon 310 can be
an application specific graphic in PNG format that overwrites
the generic icon 316 (e.g., after conversion to ICO format) to
form the application icon 318 in the application executable
302. This application icon 318 is then used to start the appli-
cation, such as by presenting the icon in the OS user interface
for double clicking by a user. A version number 312 can also
be provided with the application information 304 for further
identification of the application executable 302, and the ver-
sion resource 324 in the copied template executable 306 can
be updated with the version number 312 to form the version
number 320 in the application executable 302. Additionally,
the application information 304 can include code 314, which
can be cross-platform code, such as SWF and HyperText
Markup Language (HTML), platform-specific code, such as
machine code native to the target platform, or a combination
of these. The code 314 can be in source, compiled (fully
compiled or partially compiled) and/or interpreted form and
can be inserted into the application executable 302 as code
322.For example, an SWF file that provides the logic and user
interface for a new application can be embedded as a resource
in the executable. A “resource”, in this context, is a section of
an executable file reserved for storing data of various types.
Typically, an OS provides a programming interface, which
can be used to manipulate the resources programmatically,
and embedding SWF code as a resource can be done using an
OS programming interface or by modifying the executable
image directly (note that the specification for the executable
format for any given platform describes how to structure the
executable file to include these resources). Moreover, the
application information 304 can include additional files,
including both data and code, such as Portable Document
Format (PDF) files and JavaScript files.

Thus, in general, a copy of the template executable 306 is
made which becomes the application executable 302. Some
items present in the template executable 306 are replaced in
the application executable 302 with items used in whole or in
part from the application information 304 provided. Some
information or resources may need to be converted prior to
use for populating the application executable 302. Some plat-
forms may require icons to be converted to a particular graph-
ics format different from that provided with the application
information 304 (e.g., conversion from .png to .ico format). In

20

25

30

35

40

45

50

55

60

65

12

some instances, the application name 308 provided with the
application information 304 (or the install directory location)
can be changed to follow the conventions of the target plat-
form; in such cases, the application name 308 (and applica-
tion executable location) can be converted to a suitable
equivalent. In any event, the resulting application executable
302 is generated from the template 306, can run as native
software on the target platform, and includes new function-
ality added to the executable 302 without recompiling the
executable 302 from source code.

FIG. 4 is a flow chart showing an example method of
installing software. The method includes obtaining precursor
materials, checking for previously installed versions, and
installing the software on a target computer. The target com-
puter can be one of several, different platforms.

Application information can be obtained 410 for installing
a software application on a target platform. The application
information can include, for example, an application name,
an application icon, version information, and application
code. The application information can be used to form an
application executable for installation on a target computer.

A user may attempt to reinstall the application unnecessar-
ily; for example, the user may be unaware that the application
has already been installed on the target computer. The method
can include checking 420 the target computer to determine
whether a current version of the software application is
installed. In some implementations, if the software has
already been installed, a user interface can prompt the user
whether they wish to continue the installation (possibly giv-
ing the option of installing over the existing version or choos-
ing a new location) or abort the installation process.

A template executable can be obtained 430 which includes
machine code native to the target platform. This machine
code enables the executable to run as a native application on
the target platform. Application information can be added 440
to the template executable to form an application executable
for the software application. The application executable then
includes the native machine code from the template and new
code (e.g., SWF code) added to the executable, which
together form the application.

In some implementations, the method can include deter-
mining 450 if a runtime library is installed on the target
platform. The runtime library can be installed 460 on the
target platform if not already installed. The application
executable can be placed 470 into an install directory using a
file name corresponding to the application name. The appli-
cation executable is then ready to run. Alternatively, the appli-
cation executable can be added to a native installation pack-
age, which is in turn processed by the native OS installer.

FIG. 5 is a flow chart showing another example method of
installing software. The method includes converting materi-
als in a cross-platform package into a native package that can
be installed and executed on a target platform to create an
instance of the application on a target computer.

A first installation package can be obtained 510 for install-
ing software. The package can be pulled from a specific
location (local or remote) or be received in response to
another action, and the first package can be authenticated by
checking a digital signature of the first package to make sure
the package hasn’t been modified since being signed. The first
installation package is a cross-platform installation package
distributed for installation on multiple different platforms.
The first installation package can be used to install an appli-
cation on multiple, different computer platforms. The first
installation package can include interpreted and/or partially
compiled code (e.g., scripts, SWF), compiled code (e.g.,
native machine code), or a combination of these.

