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IMPROVEMENTS IN RESOLVING VIDEO CONTENT

Field of the Invention

The present invention is related to the field of 

improving the quality of images. In particular it relates to 

visual surveillance as is frequently employed for viable 

identification of low-resolution CCTV video images of 

persons and vehicles (e.g. crime suspects), objects (e.g. 

detecting left luggage), or events (e.g. distinguishing a 

dangerous as opposed to innocuous interaction between 

people).

Background of the Invention

The effectiveness of visual surveillance for 

identification tasks is often limited by the resolution of 

the camera relative to the distance from and area of space 

being surveyed. Persons, objects and events at a distance 

are captured with few pixels, often providing insufficient 

data for identification. Super-resolution is a computational 

technique for up-scaling image data to a higher resolution 

by intelligently filling in the missing pixels. However, 

most super-resolution methods are computationally very 

expensive, prohibiting their straightforward use in any 

real-time application such as interactive visual­

surveillance .

It is desirable to provide a faster and more accurate 

approximation technique to speed up the super-resolution 

method of Yang et al [1]. Moreover, non-selective brute­

force super-resolution of the entire image frame of a video 

stream would still be computationally prohibitive.
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Therefore, there is required a method and system that 

overcomes these problems.

Summary of the Invention

Disclosed is a system for a combined automatic and 

interactive real-time super-resolution of image regions in 

video feeds for surveillance applications. The system 

comprises a novel design for a fast and accurate 

approximation of a state-of-the-art super-resolution 

technique for real-time performance, along with a graphical 

user interface comprising four key modes: (1) a procedure 

for detecting and super-resolving all target patches defined 

by a region of interest and/or multiple regions of interest 

(e.g. human face or body patches, or vehicle number plate 

image patches) in the video stream; (2) a feature to permit 

users to draw a bounding box around a region of interest 

(and/or multiple regions of interest) in a scene depicted in 

a video feed, for the system to super-resolve in real-time; 

(3) a feature to super-resolve image regions corresponding 

to the position of the mouse pointer, enabling users to 

quickly shift a focus of interest dynamically as well as 

zoom in and out when desired; and (4) a component for the 

automatic association of detected targets (e.g. face images) 

over multiple image frames to the same individual, as well 

as the determination of the quality of such detected targets 

and the super-resolution and subsequent presentation of 

those deemed of the best quality to the user for closer 

analysis. Together, these components provide a coherent 

interactive system for human users to effectively analyse 

surveillance video feeds on-the-fly.
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According to further aspects, there are provided 

features for selective and interactive super-resolution that 

together provide a flexible system with which an human 

operator can interactively enhance a monitored surveillance 

feed to better identify persons, vehicles, objects and 

events. These additional features of our system may be 

served by the proposed super-resolution approximation method 

or some other methods. As computational resources and 

super-resolution methods continue to advance, the most 

effective super-resolution methods will continue to demand 

more computation to resolve an entire video stream than is 

feasible for real-time processing. Thus, the proposed 

intelligent methods to interactively and selectively provide 

super-resolution will continue to be required for super­

resolution services to visual surveillance applications.

Advantageous properties and features include:

1. A system and method to assist on-the-fly human 

identification of persons, objects and events in 

surveillance video by means of real-time interactive super­

resolution of selected targets of interest.

2. A faster and more accurate approximation of a 

state of the art sparse code super-resolution technique, 

which enables real-time performance without any loss of 

fidelity that would affect human observation.

3. A feature for detecting and super-resolving all 

targets of interest (e.g. faces) in a video stream.

4. A feature allowing the user to draw a bounding box 

around a region of interest in a video feed for the system 

to super-resolve in real-time.

5. A feature for super-resolution of a region of the 

video stream corresponding to the position of a mouse 

pointer .
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6. A feature to interactively adjust the size of the super-resolved region and the 

strength of the super-resolution.

7. A feature for maintaining a gallery of the best, most-clearly identifiable by human

5 users, images of each unique person present in a monitored space.
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In accordance with a first aspect there is provided a method of improving the quality 

of at least a portion, y, of an image comprising the steps of:

approximating a sparse code, a*,  using the minimisation:

10 =argmina||Dz«-j^

where D/ is a dictionary of previously acquired low resolution image portions having 

a corresponding dictionary of previously acquired high resolution image portions, Dh, 

wherein each low resolution image portion within D/ corresponds with a high resolution 

image portion within Dh·, and

15 determining a high resolution image portion x*  of the image to be improved

from the approximated sparse code, a*,  according to:

x = Dha

wherein approximating the sparse code, a, comprises using the approximation:

a = argmina|Dziz- yf2 « D^y

20 where is a pseudo inverse of Dt so that x*  can be determined from:

x* = DhDi'y and

wherein the pseudo inverse of Di is a Moore-Pen rose pseudo inverse.

The dictionaries Dt and Dh may be conceptually (and in some embodiments

25 actually) low and high resolution sets of image portions or patches. However, an 

improvement in efficiency may be gained by using sparse code dictionaries trained from 

low and high resolution pairs, as this can reduce the number of entries required. In other 

words, Di and Dh may be derived from previously acquired low and high resolution image 

portions, respectively. Preferably, Di and Dh may be jointly trained. This is described in

30 further detail in [1],

In accordance with an illustrative example, not within the scope of the presently 

claimed invention, there is provided a method of displaying video comprising the steps of:
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extracting one or more portions of a video stream;

improving the quality of the extracted one or more portions; and 

displaying the one or more improved portions.
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5 In accordance with a third aspect there is provided a system for improving the

quality of at least a portion, y, of an image, the system comprising:

a video source arranged to supply the image; and

logic configured to:

approximate a sparse code, a, using the minimisation:

10 =argmina|Dza-yg

where D/ is a dictionary of previously acquired low resolution image portions 

having a corresponding dictionary of previously acquired high resolution image 

portions, Dh, wherein each low resolution image portion within D/ corresponds with

15 high resolution image portion within Dh, and

determine a high resolution image portion x*  of the image to be improved 

from the approximated sparse code, a*,  according to:

x = Dha

20 wherein the logic is further configured to approximate the sparse code, a, 

using the approximation:

a = argminJ^iz-j^ « D^y

wherein is a pseudo inverse of Di so that x*  can be determined from:

x* = DhDi'y and

wherein the pseudo inverse of Di is a Moore-Pen rose pseudo inverse.

As described in more detail in Appendix A, each individual window selected for 

super-resolution (like face/doorway) may need to be broken down into even smaller
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"patches", and each of those smaller patches upscaled, and 

then all the patches combined to get the overall super­

resolved window. Stacking into matricies may occur at that 

level, to be resolved within one frame. (See in the Appendix 

A after Eq (6)). Reference [5] also provides more details on 

the rational and process for the use in constructing small 

patches from images or image portions.

The extracted one or more portions may be automatically 

detected objects (e.g. human faces, vehicle number plates, 

passenger luggage, pedestrians involved in an act) within a 

video stream.

A display or screen maybe used to present results to a 

user. Displays may provide an inlay within a low resolution 

image, for example. Separate windows may be included in a 

display. These display types, as well as others, may be used 

for any of the described methods.

The methods described above may be implemented as a 

computer program comprising program instructions to operate 

a computer. The computer program may be stored on a 

computer-readable medium.

It should be noted that any feature described above may 

be used with any particular aspect or embodiment of the 

invention .
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Brief description of the Figures

The present invention may be put into practice in a 

number of ways and embodiments will now be described by way 

of example only and with reference to the accompanying 

drawings, in which:

FIG. 1 shows a schematic diagram of a system for 

improving the quality of an image, given by way of example 

only;

FIG. 2 shows a schematic diagram of a display of a 

portion of an image with improved the quality;

FIG. 3 shows a further schematic diagram of a display 

of a portion of an image with improved the quality;

FIG. 4 show a further schematic diagram of a display of 

a portion of an image with improved the quality; and

FIG. 5 shows a schematic diagram of a system for 

selectively improving the quality of portions of an image.

It should be noted that the figures are illustrated for 

simplicity and are not necessarily drawn to scale.

Detailed description of the preferred embodiments

Super-resolution approximation: Sparse code super­

resolution methods (e.g. Yang et al [1]) super-resolve a low 

resolution image y into a high resolution image x by means 

of the following optimisation problem:

s = argniinQ.A|a||g + — ylj
x = DjjS Equation 1

where D! and Dh are sparse code dictionaries learned from 

high and low resolution training image pairs. The L0
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optimisation for the sparse code e? requires a 

computationally costly iterative algorithm. In this 

invention, we discovered that in practice L0 optimisation by 

iterations is not required, and a sparse code a' can be 

obtained instead by L2 minimization in a single step with 

greatly reduced computation, and with little loss of 

fidelity relative to the standard approach above. Our 

alternative method is defined as:

® = argmin^ - ylf
A· — I? U

% = DjA Equation 2

Sparse dictionaries and Dh are trained in the 

standard way as before, offline in advance. However our new 

method for super-resolution is (i) significantly simpler to 

program and faster to compute than the standard approach, 

requiring only two matrix multiplications instead of an 

iteration over patches and iterative L0 optimisation and 

(ii) can be implemented on a GPU processor for further speed 

enhancement, due to the elimination of iterative loops.

The computational cost of all super-resolution methods 

is proportional to the number of output pixels after super­

resolution. So super-resolving a larger area, or super­

resolving with more magnification is increasingly costly. 

The following features describe components of a system (Fig.

1) that together provide flexible interactive super­

resolution services to assist the operator in surveillance 

monitoring tasks without the prohibitive cost of super­

resolving the entire stream.

Inline target mode: This feature enables an operator to 

more easily identify all targets of interest (e.g. persons) 

in a live stream by super-resolving their face regions (Fig.

2) . It works by first automatically detecting faces in the 

video stream using any effective face detector, followed by
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super-resolving only the sub-windows of each frame which 

contain faces (Fig. 2, node 1). Therefore, a set of the most 

identifiable faces for each unique person can be acquired. 

In this way all persons in the video stream are made more 

identifiable for either human observation or automated 

recognition, with computational cost constrained for real­

time use.

Inline window mode: This feature enables an operator to 

interactively drag a bounding box to define a fixed region 

within the image plane (e.g. using mouse point-and-click) 

and zoom-level (e.g. using mouse-wheel) for super-resolution 

(Fig. 3). This is useful if physical constraints (e.g. 

doorway or corridor) in the area monitored by a particular 

camera mean that anyone entering or leaving the scene has to 

pass through a particular area (Fig. 3, node 1). Defining a 

super-resolution region over such gauntlets (Fig. 3, node 

2), the operator can focus his attention here in order to 

identify each person entering/exiting the scene. This also 

enables the system to store a high-resolution face image of 

each person entering/exiting the scene for recording 

purposes .

Dynamic interactive mode: When enabled, this feature 

automatically super-resolves a rectangle under the 

operator's mouse cursor. The operator may move the mouse 

cursor to point at any person/object/event of interest to 

see it super-resolved, and thus improves his ability to 

identify it (Fig. 4). Fig. 4 has been drawn to scale in 

illustrating objects of each size 3:4:6 magnified by factor 

4:3:2 respectively to obtain a constant output size of 12.

This illustrates the trade off due to a maximum output 

size. This maximum output size may be obtained by 
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magnifying a larger input area less, or a smaller input area 

more. This trade-off may be user-selectable.

The computational constraint of real-time super­

resolution is a limit on the maximum number of output 

pixels; and hence the product of input pixels times 

magnification factor. This feature therefore connects the 

super-resolution algorithm parameters (size of input region, 

and magnification factor) to allow the operator to trade-off 

magnification factor versus input area on the fly according 

to the task at hand. For example: Scroll to 

increase/decrease the magnification, click and scroll to 

increase/decrease the input rectangle scale. Past the 

ceiling of maximum number of output pixels which can be 

computed in real-time, further increasing magnification or 

size could optionally (i) be prevented; (ii) result in 

decreased frame rate in the super-resolution window; (iii) 

to maintain real-time processing, automatically decrease the 

input rectangle size with increasing magnification or 

automatically decrease the magnification with increasing 

input rectangle size.

In this way the operator can balance on-the-fly super­

resolution service based on different operational 

requirements: (i) the benefit of super-resolution 

enhancement of small objects versus the increasing 

inaccuracies inevitably introduced by synthesizing 

increasing numbers of pixels; (ii) the size versus 

magnification of the input region. For example, viewing a 

distant small object that is far from identifiable at native 

resolution with more magnification (Fig 4, node 2) than a 

near large object that needs less super-resolution to be 

made identifiable (Fig 4, node 3).
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Gallery mode: The goal of visual surveillance is often 

to identify all persons in a scene or match them to a watch 

list. However, a serious drawback of performing this task by 

monitoring live video (whether super-resolved or not) is 

that in any given frame a person may be looking away from 

the camera, occluded, or obscured by motion blur. Indeed 

there are typically only be a minority of frames in which a 

person's face is cleanly visible, and these may easily be 

missed while monitoring a live stream.

To address this, the gallery mode feature maintains in 

a separate window, a list of all persons in the scene, and 

the top-K (typically K=3) most identifiable images for each 

person (Fig 5, node 3). This is achieved by: (i) performing 

tracking and association to group person detections in each 

frame to the same person identity (Fig 5, node 2); (ii) 

evaluating the goodness of each detection for identification 

by checking for a positive frontal face detection using any 

face detector module; (iii) and ranking by a blind image 

quality assessment metric such as JNB [2] to prefer un­

blurred and shadow-free images and finally (iv) improving 

identify-ability by super-resolving new entries to the top-K 

images for each person.

Displaying continually the top-K most identifiable 

images of each person in separate window allows the operator 

to easily monitor this window for an up-to-date overview of 

the most identifiable images of present people, while 

constraining the number of images requiring the most 

expensive super-resolution operation in order to maintain 

real-time processing. Fig. 5 shows an illustration of this 

setup where depending on the orientation of the camera (Fig. 

5, node 1) relative to the orientation of people in the 

scene at each moment time (Fig 5, node 2), the gallery shows 
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the most identifiable image of each person (Fig 5, node 3). 

Incorrect associations of thumbnails to person identity, or 

non-identifiable images (e.g., due to face detection false 

positive) can be dismissed by the user by clicking on those 

gallery entries. In response the system will promote the 

next best image of that person into the gallery, and in the 

case of a mis-association it will give feedback to the 

underlying tracker to update its person model and improve 

the association of detections.

Image cleaning feature: Because surveillance video 

sources are often noisy and/or low frame-rate, it may be 

desirable to clean the image of noise and/or motion blur 

before or after super-resolution. When this feature is 

enabled, a denoising (e.g., [3]) or blind deblurring (e.g.,

[4] method may be applied to the image before or after 

(selectable depending on application) super-resolution to 

further enhance the quality of the final output for the 

human operator's analysis.

It is important to note that each particular display, 

selection our output technique described may be implemented 

in isolation or together in any combination. Furthermore, 

the display techniques may use the specifically described 

resolution or image improvement technique or any others.

As will be appreciated by the skilled person, details 

of the above embodiment may be varied without departing from 

the scope of the present invention, as defined by the 

appended claims.

Many combinations, modifications, or alterations to the 

features of the above embodiments will be readily apparent 

to the skilled person and are intended to form part of the
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invention. Any of the features described specifically 

relating to one embodiment or example may be used in any 

other embodiment by making the appropriate changes.
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APPENDIX

The following appendix forms part of the description:

5 A Real-time Dictionary based Super-Resolution of

Surveillance Video Streams and Targets; Timothy M. 

Hospedales and Shaogang Gong - unpublished paper.

In particular, appendix A provides additional details on the

10 enhancement algorithm. Note: D+ in Appendix A is equivalent 

to D_1 in the present disclosure.
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Real-time Dictionary based Super-Resolution of 
Surveillance Video Streams and Targets

Timothy M. Hospedales and Shaogang Gong

Vision Semantics Ltd, UK.

Keywords: Visual surveillance, super-resolution, sparse coding

ABSTRACT
Real-time super-resolution within surveillance video streams is a powerful tool for security and crime prevention 
allowing for example, events, faces or objects such number-plates and luggage to be more accurately identified 
on the fly and from a distance. However, many of the state of the art approaches to super-resolution are compu­
tationally too expensive to be suitable for real-time applications within a surveillance context. We consider one 
particular contemporary method based on sparse coding,1 and show how, by relaxing some model constraints, 
it can be sped up significantly compared to the reference implementation, and thus approach real-time perfor­
mance with visually indistinct reduction in fidelity. The final computation is three orders of magnitude faster 
than the reference implementation. The quality of the output is maintained: PSNR of the super-resolved images 
compared to ground truth is not significantly different to the reference implementation, while maintaining a 
noticeable improvement over baseline bicubic-interpolation approach.

1. INTRODUCTION
The effectiveness of visual surveillance systems in practice is often limited by the resolution of the capture device 
relative to the area of the space being surveyed. Persons, objects and events observed at a distance from the 
camera are captured with few pixels, often providing insufficient detail for identification. Enhancement of image 
detail via super-resolution would provide a powerful capability for visual surveillance. It could enhance ability 
of the operator to, for example, identify people, determine if an object or event is suspicious or read a license 
plate.

Super-resolution has been extensively studied in the computer graphics and vision community for offline 
enhancement of image detail - see references for classic and recent examples2,3 and for a survey.4 Various 
ancillary directions for image enhancement have also been studied including combining multiple video frames 
worth of data in super-resolution,5,6 building super-resolution models for specific objects such as faces,7,8 and 
reversing noise processes such as blur9 in the data. However, these are complementary to the core single image 
super-resolution task considered here.

In this paper we develop a significant speedup to a state of the art sparse coding (SC) super-resolution 
algorithm.1,8,10,11 The principle of sparse coding using over-complete dictionaries has emerged in recent years 
as a powerful approach for many image processing tasks including super-resolution,1,8,10,11 de-noising12 and 
restoration.13 However, many such of the mentioned methods require solving multiple expensive constrained 
optimization problems to process each incoming image, or even to process every overlapping patch of each 
image. This thereby limits their applicability to real-time surveillance applications.

We start by reviewing a general formulation of the super-resolution problem, the specific class of solutions 
entailed by sparse coding methods, and our proposed improvements in Section 2. In Section 3 we evaluate the 
computational complexity and super-resolution fidelity of the resulting system. Finally, in Section 4, we close 
with some comments about how state of the art super-resolution methods can be most effectively applied in 
visual surveillance systems.
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2. METHODS
2.1 Super-Resolution Background
Super-resolution is the problem of inverting a downsampling image formation model. An image formation 
model describes the observation of a low resolution image y given a high resolution image x obtained by some 
downsampling process:

y = SHx + e, (1)

where matrix H : Rh —> Rh is a blur filter, matrix S : Rh —> Rl is a downsampling matrix and < represents 
Gaussian noise. Since the dimension of y € Rl after downsampling is much less than x 6 Rh (h W Z), directly 
inverting this process to obtain x from y is under-constrained. That is, there are many (even an infinite number 
of) high resolution images y which correspond to a single low-resolution image x under the formation model Eq. 
(1), so a direct unique solution is impossible. Many approaches therefore leverage a probabilistic representation 
of the super-resolution process:

20
 12

 13

p(x|y) oc p(y|x)p(x). (2)

In this case, statistics from real-world data can be leveraged to alleviate the under-constrained nature of the 
problem: While an infinite number of potential high resolution images may correspond to each low resolution 
image, we can search for the high resolution image which matches the low resolution image and is also likely to 
occur based on real-life image statistics. This knowledge is learned from training data D, either in the form of (i) 
pairs {x,, y, } of high hand low resolution images, from which a direct mapping p(x|y) can be learned; or (ii) high 
resolution images {x,} images alone, from which the prior statistics p(x) of images can be learned to constrain 
Eq. (2) and permit a MAP solution. In both cases, super-resolution of x from y is then posed as searching for 
the most likely x given y and the learned prior knowledge:

x*  = argmaxp(x|y, D). (3)
X

2.2 Sparse Coding
The sparse coding model of1,10,11 learns a direct mapping from low to high resolution via pairs D = {x^y,} of 
high and low resolution training images (i.e., directly modeling Eq. (3)). Specifically, a large over-complete set 
of corresponding high and low resolution patches /.)/, and /)/ are sampled from {x,} and {y, } respectively. These 
patch sets are referred to as dictionaries. The assumption of this model is that the training set D is representative 
of real-world images, and hence each patch in any new image can be represented by a sparse combination of 
patches from the dictionary. Since the high and low resolution dictionaries /.)/, and /)/ correspond, such a sparse 
encoding of a low resolution image y automatically induces the most likely corresponding high resolution image 
x. Specifically, under this approach, the image formation process is approximated as:

y = SHx + e,
~ SHDhCx. -H c,

where the high resolution image x is encoded in terms of a sparse representation a, ||a||0 -v h and a dictionary 
/.)/,. In this framework, super-resolution is then posed as the optimization problem of finding a sparse encoding 
of the low-resolution image:

(4)
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a*  = argmin ||£>;α - y||j + λ ||α||θ , 
a. (5)

where the parameter λ trades-off the objective of sparsity (LO-norm of a) and the match of the encoding to the 
observed low resolution image y. Given a*,  the most likely high-resolution image can be constructed directly 
via a sparse combination of elements from the corresponding high resolution dictionary:

20
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x*  = Dha*.  (6)

The process in Eq. (5)-(6) is performed for each individual patch. To complete the super-resolution process for 
the entire image, additional constraints may be imposed on the overall image x to ensure that adjacent patches 
are chosen to be smooth, or every overlapping patch may be processed and the results averaged to obtain the 
final high resolution output x*. 1,10,11 Additionally, constraints may also be applied to ensure that the resulting 
reconstruction matches the low-resolution image under the formation model1,10 (i.e., Eq. 4 may also be enforced).

2.3 Speedup
For sparse coding based super-resolution, we discovered a good compromise between fidelity and efficiency of 
online processing by relaxing the sparsity constraint during reconstruction. The dictionaries {Di,Dh} are still 
trained by standard over-complete dictionary learning techniques.1 However, relaxing the sparsity constraint 
at reconstruction time allows the code a to be computed directly based on L2-norm optimization of the coded 
dictionary elements and the low resolution input image y. From Eq. (5) we obtain: 

ct*  = argmin \\Dtct - yl^ ,
Ct (7)

~ Dfy, (8)
x*  = Dha*, (9)

= DhD~ y, (10)

where D;+ is the Moore-Penrose pseudo-inverse of the low resolution dictionary. Since Ik is over-complete and 
with more columns than rows, this procedure finds the encoding a*  for which Dia = y (of which there are 
many) and ||is minimal (of which there is one). That is, the low-resolution image is encoded in terms of the 
dictionary, and then the high resolution image is reconstructed using this encoding. This approximation provides 
an order of magnitude speedup compared to the reference implementation1 of Eq. (5), which needs to perform 
iterative optimization to obtain a sparse (low LO-norm) code.

In contrast to the inefficient iteration over patches in,1 the proposed simplification of the per-patch super­
resolution procedure to vector operations also permits all the image patches to be stacked into matrix Y and 
hence the whole image X to be efficiently super-resolved in four large matrix operations:

A*  « d+y, (11)
X*  = unstack(DflA*'),

where unstack denotes summing out corresponding pixels in overlapping patches. This means that the procedure 
is simple to implement, because it requires only four calls to linear-algebra libraries. Moreover it is fast to compute 
due to requiring solely linear-algebra libraries which are available in highly optimized form for any given hardware 
platform. In practice this provides another order of magnitude speedup. Finally, by simplifying the whole image 
procedure into a single set of matrix operations, Eq. (11) is also amenable to efficient execution on a graphics 
processing unit (GPU) implementation unlike Eqs. (5)-(6),1 which provides a final order of magnitude speedup.
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3. EXPERIMENTS
We compare our new model (denoted DirectL2) against three baselines: a naive nearest-neighbor upscaling 
(denoted NN), the industry standard approach of bicubic interpolation (denoted BC), which should be considered 
lower baselines; as well as an upper baseline of the reference implementation of sparse coding super-resolution1 
(denoted SC). To evaluate the methods on realistic surveillance data, we collected 40 face images from a variety 
of surveillance data sources including the benchmark UK home office iLIDS and iLIDS MCT datasets14 as well as 
datasets collected by ourselves from the london underground, and by BAA from an operationally deployed system 
at Heathrow airport. We evaluate 2X, 4X and 8X super-resolution conditions - corresponding to increasingly 
small objects and an increasingly challenging super-resolution scenario. The original images ranged from 64-256 
pixels in dimension, and we down-sampled them 2-8X before super-resolving them again to attempt to reconstruct 
the original resolution.

3.1 Comparison of Super-Resolution Fidelity
In the first experiment, we compute the mean SNR between the ground truth image and the super-resolved 
image as shown in Figs. 1 and 2. In the simplest case of 2X super-resolution DirectL2 performs only slightly 
better than the BC lower baseline, and not as well as the SC upper baseline. However, in the more realistic 
case (a human operator is more likely to need assistance to identify a target if it is smaller to start with) of 4X 
super-resolution, DirectL2 performs about as well as the SC upper baseline. In the most challenging case of 8X 
super-resolution, DirectL2 actually outperforms the reference SC implementation.

Typical examples of super-resolution results at each scale are shown in Fig. 3. In most cases, both sparse 
coding methods (columns 3 and 4) are significantly sharper than the baseline bicubic method (column 2).
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Meanwhile, our DirectL2 method (column 3) is usually at least as sharp as the reference SC method (column 4). 
Most interestingly, the raw NN images at the lowest input resolution (top row of each set) would be impossible 
to identify, while some of the 8X super-resolved images would arguably be identifiable. Ground truth images of 
each person are shown at the bottom of Fig. 3.

3.2 Comparison of Super-Resolution Computation Cost
To compare the speed of our DirectL2 method and the reference SC implementation,1 we recorded the compu­
tation time required to super-resolve the batch of surveillance images from the previous section with 2X, 4X 
and 8X magnification factors. Fig. 3.2 summarizes the computation time per image as a function of the size of 
the output image on a log-log scale. Color indicates the reference SC method versus DirectL2, while symbols 
indicate the degree of magnification.. As expected, the computation cost for each model is linear in the size of 
the output image. So a larger initial image with smaller magnification and a smaller initial image with larger 
magnification can take similar time (overlapping symbols).

Our DircctL2 method implemented in matlab, is about 2 orders of magnitude or more faster than the 
reference implementation throughout the range of tasks*.  Crucially, for up to about 104 output pixels, DirectL2 
approaches real time performance (10 frames per second). Exploiting matlab GPU computation to execute 
Eq. (11), DirectL2-GPU obtains almost a further order of magnitude improvement in computation speed over 
DirectL2. Overall, DirectL2-GPU provides real time performance for up to about 105 output pixels. This 
corresponds to about a 25x25 pixel image at 4X magnification, or a 12x12 pixel at 8X magnification. We did not 
execute the largest images at 8X resolution on the GPU because at this point GPU memory limitations prevent 
storing all the patches in memory simultaneously, and a more complicated implementation would be necessary 
to overcome this.

3.3 Practical Application Considerations
Application Scenarios Although we have demonstrated how to achieve dramatic speed increase over the 
reference implementation1 of SC super-resolution; in practice even with an optimized implementation, real-time 
super-resolution of an entire video stream would require prohibitive computation in the near future. Nevertheless, 
one of the most typical operator tasks is to identify all persons in a scene, possibly against a prior watch-list.15 In 
this section, we briefly discuss some application scenarios in which the improved super-resolution capabilities of 
state of the art SC algorithms could be exploited more selectively to assist in this task would requiring full-frame 
real-time performance.

Faces: To avoid costly super-resolution of the entire video stream, while supporting a typical operator task 
of identifying persons, a standard fast person16 or face17 detector could be applied to the video stream, 
and the super-resolution algorithm applied solely to detected body or face regions. When applied solely 
to face regions, the computation requirements are within the real-time capabilities of even our matlab 
implementation.

Window: Many surveilled spaces involve gauntlet situations, such as doorways or corridors which every person 
entering or exiting the scene must pass through. An appropriately defined super-resolution sub-window 
therefore provides the opportunity to enhance at least some images of all person entering or exiting a scene 
without requiring full-frame processing. This is illustrated in Fig. 5 for the iLIDS14 underground and 
doorway monitoring datasets.

Gallery: Performing live super-resolution on video streams or windows thereof may not be the most effective 
use of the technology. As people walk through a scene, their identifiability is affected by head direction, 
shadows and motion blur, etc. Indeed a person may only be identifiable for only a small subset of frames 
within a video, which could easily be missed by an operator monitoring the live stream. An alternative 
approach is to apply tracking and association to maintain a list of unique identities of people in the scene,15 
and then present in a separate window a gallery of the most identifiable image(s) so far of each unique 
person in the scene. Identifiability is ranked by (i) positive frontal face detection,17 and (ii) high score

*Both codes are implemented in matlab.
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on a blind image quality assessment metric.18 Finally, those images presented in the gallery (the most 
identifiable image so far) needs to be super-resolved. The operator can conveniently monitor this small 
gallery view to match against his/her watch list.

Image Quality Finally, we briefly mention the impact of image quality (as opposed to resolution per se) 
for super-resolution. We note that the super-resolution image-formation model Eq. (1) takes no account of 
technological noise such as compression artifacts and interlacing which are common in surveillance video. In our 
experiments, we observed that SR algorithms typically deal very badly with this type of noise. For practical 
use, video streams should ideally be de-interlaced in advanced if necessary, and only lightly compressed with a 
modern codec.
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4. CONCLUSIONS
In this paper, we have analyzed a state of the art super-resolution method1 based on sparse coding. Although 
this method provides significantly improved super-resolution fidelity over industry standard bicubic interpolation, 
it does so at massive computational cost, prohibiting its use in real-time applications such as surveillance. We 
discover a novel method and demonstrate its unique advantages for breaking the necessary computational barriers 
demanded by real-world applications. In particular, our method relaxes assumptions of the current benchmark 
sparse coding super-resolution method whilst retaining fidelity. It allows a significantly faster realization of the 
algorithm, as well as maintaining a significant margin of improvement in SNR over the bicubic baseline - especially 
at high magnification factors, which are exactly the situations where super-resolution would be necessary to help 
a surveillance operator identify a distant and/or small object. Finally, we discussed some practical application 
scenarios where super-resolution methods can be applied to good effect even if super-resolving a full-frame video 
stream is too costly for real-time computation.
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Annex A - List of Figures

Figure 1: SNR Comparison for our DirectL2 versus baselines.

5 Figure 2: SNR comparison of our DirectL2 versus baselines.

Left: Super-resolution SNR at each magnification. Right:

Number of wins for each model out of 40 images.

Figure 3: Super-resolution examples at 2X, 4X and 8X (rows 

10 for NN, BC, DirectL2 and SC methods (cols).

Figure 4: Super-resolution computation time for a collection 

of images.

15 Figure 5: Example applications of a super-resolution window.
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CLAIMS:

1. A method of improving the quality of at least a portion, y, of an image comprising 

the steps of:

5 approximating a sparse code, a*,  using the minimisation:

a =argmina||D/iz-^

where Di is a dictionary of previously acquired low resolution image portions having a 

corresponding dictionary of previously acquired high resolution image portions, Dy 

wherein each low resolution image portion within D; corresponds with a high resolution

10 image portion within Dy and

determining a high resolution image portion x*  of the image to be improved from 

the approximated sparse code, a, according to:

x =Dha

wherein approximating the sparse code, a , comprises using the approximation:

15 a = arg min a \\Dyx ~yf2~ D^y

where 1 is a pseudo inverse of Di so that x*  can be determined from:

x*  = DhD~Yy ; and

wherein the pseudo inverse 1 of Di is a Moore-Penrose pseudo inverse.

2 0 2. The method of claim 1, wherein Di and Dh are sparse code dictionaries.

3. The method according to any previous claim, wherein more than one portions 

high resolution image portions, x*,  are determined from more than one low resolution 

image portions, y.

25

4. The method of claim 3 further comprising the steps of:

stacking small patches constructed from the more than one low resolution image 

portions, y, into a matrix Y.
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5. The method of claim 4 further comprising the steps of approximating a sparse 

code A * for more than one low resolution image portions according to:

A*  « D-lY, and

determining a high resolution image X*  of the image to be improved according to:

5 X*  =unstack(phA*̂

where unstack denotes summing out corresponding pixels in overlapping portions.

6. The method according to any previous claim, wherein approximating the sparse 

code a is based on an L2-norm optimisation.

10

7. The method according to any previous claim, further comprising the steps of: 

extracting one or more portions of the image to be improved; and

setting the one or more extracted portions as y.

15 8. The method of claim 7, wherein the extracted one or more portions are

automatically detected objects within a video stream.

9. The method of claim 8 further comprising the step of separately displaying a set of 

the most identifiable objects within the video stream.

20

10. The method of claim 7, wherein the extracted one or more portions are user 

selected regions within a video stream.

11. The method of claim 7, wherein the extracted one or more portions include a

2 5 portion of a video stream selected by hovering over, clicking within or otherwise 

selecting a display of the video stream using a computer pointing device.

12. The method according to any previous claim, further comprising the step of: pre 

or post-processing the improved portion, y, of the image using denoising or deblurring.

30
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13. A system for improving the quality of at least a portion, j, of an image, the system 

comprising:

a video source arranged to supply the image; and

logic configured to:

5 approximate a sparse code, a, using the minimisation:

a*  =argmina||Dziz-yg

where Di is a dictionary of previously acquired low resolution image 

portions having a corresponding dictionary of previously acquired high resolution 

image portions, Dh, wherein each low resolution image portion within D;

10 corresponds with high resolution image portion within Dh, and

determine a high resolution image portion x*  of the image to be improved 

from the approximated sparse code, a, according to:

x = Dha ■,

wherein the logic is further configured to approximate the sparse code, a,

15 using the approximation:

a = argminj|/3ziz- yf2 « D^y

wherein /),.1 is a pseudo inverse of Di so that x*  can be determined from: 

x*  = I)hD'y ■ and

wherein the pseudo inverse /)/ of D; is a Moore-Penrose pseudo inverse.

20

14. The system of claim 13 further comprising a display configured to display the 

high resolution image portion x*.

15. A computer program comprising program instructions that, when executed on a

2 5 computer cause the computer to perform the method of any of claims 1 to 12.

16. A computer-readable medium carrying a computer program according to claim

15.

3 0 17. A computer programmed to perform the method of any of claims 1 to 12.


