A fusible link (26) is selectively opened by selectively applying a high voltage signal to a transistor (28) in series with the fusible link while the high voltage signal is applied to the fusible link (26). A grounding circuit (18) ensures that one terminal of the fusible link (26) is coupled to ground in the absence of the high voltage signal. The grounding circuit (18) can be used in conjunction with a plurality of means for selectively opening fusible links.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT:

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
A CIRCUIT FOR APPLYING A HIGH VOLTAGE SIGNAL
TO A FUSIBLE LINK

Technical Field
This invention relates to integrated circuits having
fusible links, and more particularly to circuits for
applying a high voltage signal to fusible links.

Background Art
It is becoming more common to use polysilicon fuses
in integrated circuits for permanent selection purposes.
One use is for permanently replacing a row or column of a
memory which has a defective memory element with a redundant row or column. Another use is in array division of a
memory in which major portions of the memory array are
permanently deselected. In integrated circuit technology
the polysilicon fuses are typically selectively opened by
having a control transistor act as a switch in series with
the polysilicon fuse. A voltage is applied to the polysilicon fuse and if the fuse is to be opened, the transistor
is turned on to provide a current path so that current
will flow through the fuse. The current must, of course,
be sufficient to open the fuse.

The limitations on the current for a given polysilicon fuse are the magnitude of the applied voltage and the
current carrying capability of the transistor. For a given
transistor its current carrying capability is increased by
applying a higher voltage on its control electrode. Techniques exist for doing this. Another technique has been to
apply a high voltage signal to the fuse. Each of these
techniques has been used separately but not together. In
"Equipping a line of memories with spare cells," by Robert
Abbot, Kim Kokkonen, Roger I. Kung, and Ronald J. Smith,
Electronics, July 28, 1981, pp. 127-130, each technique
is used. Figure 1.a on page 128 shows a high voltage
coupled to the control electrode of the series transistor. Figure 2.6 on page 129 shows a high voltage coupled to the control electrode of the series transistor.

Brief Summary of the Invention

An object of the invention is to provide an improved circuit for applying a high voltage signal to a fusible link.

Another object of the invention is to provide a high voltage signal to both a fusible link and a control electrode of a transistor in series with the fusible link.

Yet another object of the invention is to couple a common terminal for receiving a high voltage signal to both a fusible link and a control electrode of a transistor in series with the fusible link.

The above and other objects of the present invention are achieved by a transistor in series with a fusible link. The fusible link has a first terminal for receiving a high voltage signal, and a second terminal. The transistor has a first current electrode coupled to the second terminal of the fusible link, a second current electrode coupled to a first power supply terminal, and a control electrode. A selection circuit selectively couples the first terminal of the fusible link to the control electrode of the transistor. A load device has a first terminal coupled to a second power supply terminal, and a second terminal coupled to the first current electrode of the transistor. A coupling circuit couples the first terminal of the fusible link to the first power supply terminal in response to the high voltage signal being absent.

Brief Description of the Drawings

FIG. 1 is a circuit diagram of a preferred embodiment of the invention.

FIG. 2 is a circuit diagram of the preferred embodiment of FIG. 1 in a modified form.
Description of a Preferred Embodiment

Shown in FIG. 1 is a fuse circuit 10 according to a preferred embodiment of the invention comprised generally of a selection circuit 12, a fuse control circuit 14, a transistor 16, a grounding circuit 18, and a terminal 20 for receiving a high voltage signal \(V_p \) which can be, for example, 5-15 volts. The circuits of FIGS. 1 and 2 are depicted using conventional N channel insulated gate field effect transistors of one of four types; enhancement transistors with a characteristic threshold voltage of 0.4 to 0.8 volt, natural transistors with a characteristic threshold voltage of 0.0 to 0.4 volt, depletion transistors with a characteristic threshold voltage of -3.0 to -4.0 volts, and light depletion transistors with a characteristic threshold voltage of -2.0 to -3.0 volts.

Selection circuit 12 comprises a depletion transistor 22 and an enhancement transistor 24. Transistor 22 has a drain connected to terminal 20, and a gate and source connected together. Transistor 24 has a gate for receiving an input signal \(V_{IN} \), a source connected to a negative power supply shown as ground, and a drain connected to the gate and source of transistor 22 forming an output terminal of selection circuit 12.

Fuse control circuit 14 comprises a polysilicon fuse 26 and an enhancement transistor 28. Fuse 26 has a first terminal connected to terminal 20, and a second terminal. Transistor 28 has a gate connected to the output terminal of selection circuit 12, a source connected to ground, and a drain connected to the second terminal of fuse 26 forming an output terminal of fuse control circuit 14.

Transistor 16 is a depletion transistor which has a drain connected to a positive power supply \(V_{PD} \) which can be, for example, 5 volts, and a gate and a source connected together for providing an output signal \(V_1 \) of fuse circuit 10. The gate and source of transistor 16 are
connected to the output terminal of fuse control circuit 14.

Grounding circuit 18 comprises a depletion transistor 30, an enhancement transistor 32, a depletion transistor 34, and an enhancement transistor 36. Transistor 34 has a drain connected to V_{DD}, and a gate and a source connected together. Transistor 36 has a drain connected to the source and gate of transistor 34, a gate connected to terminal 20, and a source connected to ground. Transistors 30 and 32 each have a gate connected to the drain of transistor 36, a drain connected to terminal 20, and a source connected to ground.

The desired operation is that when V_P is present at terminal 20, fuse 26 will be opened in response to input signal V_{IN} being a logic low, for example, ground, but will not be opened if input signal V_{IN} is a logic high, for example, 5 volts. If fuse 26 is opened, output signal V_1 will be a logic high, whereas if fuse 26 is not opened, output signal V_1 will be a logic low.

In order to open fuse 26, V_P must be applied to terminal 20 and input signal V_{IN} must be a logic low. With input V_{IN} at a logic low, transistor 24 is off so that V_{PP} is coupled to the gate of transistor 28 through transistor 22. Transistor 22 acts as a load device. Transistor 28 is turned on by V_P being on its gate, allowing current to flow through fuse 26. Transistor 28 is chosen by conventional means so that with V_P on its gate, it will cause essentially no voltage drop from drain to source. Consequently essentially the entire voltage V_P is across fuse 26 maximizing the current there-through so that it will be opened more quickly and reliably. If input signal V_{IN} is a logic high, transistor 24 will be on so that the output terminal of selection circuit 12 will be at essentially ground and thereby turning off transistor 28. With transistor 28 off, it will not provide a current path for fuse 26 so that fuse 26 will not be opened upon application of V_P at terminal 20.
20. Upon removal of V_P, terminal 20 is coupled to ground by grounding circuit 18. There is some capacitance associated with terminal 20 so that terminal 20 will remain charged to some positive voltage unless some means for discharging is provided. Transistor 30 provides a relatively small but continuous current path to ground which discharges the capacitance of terminal 20 until the voltage at terminal 20 drops below the threshold voltage of transistor 36, turning transistor 36 off. With transistor 36 off, V_{DD} is coupled to the gate of transistor 32 as well as transistor 30 through transistor 34. Transistor 34 acts as a load device. With V_{DD} on the gates of transistors 30 and 32, transistor 32 turns on and transistor 30 also increases its conductivity so that terminal 20 is coupled solidly to ground through transistors 30 and 32. It is necessary that terminal 20 be coupled to ground when fuse 26 is not open because when fuse 26 is not open, output signal V_1 must be a logic low. Because current passes through transistor 16 and fuse 26 to terminal 20, terminal 20 must be at essentially ground to ensure output signal V_1 is a logic low. It is necessary that terminal 20 be coupled to ground when fuse 26 is open, because when fuse 26 is open, output signal V_1 must be a logic high.

If terminal 20 was charged to a positive voltage with transistor 24 off, the positive voltage would be coupled to the gate of transistor 28, turning transistor 28 on and reducing the voltage of output signal V_1. Transistor 16 acts as a load device and has a small size ratio (channel width to channel length ratio) for limiting the current which passes through fuse 26 when output signal V_1 is a logic low. Transistor 30 has a size ratio chosen by conventional means to be sufficiently larger than the size ratio of transistor 16 to ensure that the voltage on terminal 20 is reduced below the threshold voltage of transistor 36 subsequent to removal of V_P in the case
when fuse 26 is not opened.

Shown in FIG. 2 is a modified fuse circuit 10' which is a modified form of fuse circuit 10 of FIG. 1, comprised generally of a terminal 20, a modified input circuit 12', fuse control circuit 14, transistor 16, a natural transistor 38, a selection circuit 40, a fuse control circuit 42, a depletion transistor 44, a natural transistor 46, and a modified grounding circuit 18'.

Modified input circuit 12' has an additional depletion transistor 48 and an additional light depletion transistor 50. Transistor 48 is interposed between the drain of transistor 22 and terminal 20 for current limiting purposes. Transistor 48 has a gate and drain connected to terminal 20, and a source connected to the drain of transistor 22. Transistor 50 is interposed between transistor 22 and transistor 24 for voltage blocking purposes to protect transistor 24. Transistor 50 has a gate connected to \(V_{pp} \), a source connected to the drain of transistor 24, and a drain connected to the gate and source of transistor 22 to form the output terminal of modified selection circuit 12'. Functional operation of modified selection circuit 12' remains the same as that of selection circuit 12 of FIG. 2.

Transistor 38 is interposed between the output terminal of fuse circuit 14 and transistor 16 to prevent current flowing from terminal 20 to \(V_{DD} \) through fuse 26 and transistor 16 when \(V_{pp} \) is present at terminal 20 and transistor 28 is off. Transistor 38 has a gate connected to \(V_{DD} \), a first current electrode connected to the output terminal of fuse control circuit 14, and a second current electrode connected to the gate and source of transistor 16 to form a first output terminal of modified fuse circuit 10' for providing output signal \(V_1 \) as in FIG. 1.

Modified grounding circuit 18' has an additional depletion transistor 52. Transistor 52 is interposed
between terminal 20 and the drains of transistors 30 and 32.

Selection circuit 40 comprises depletion transistors 56 and 58, a light depletion transistor 60, and an enhancement transistor 62. Transistor 56 has a gate and a drain connected to terminal 20, and a source. Transistor 58 has a drain connected to the source of transistor 56, and a gate and source connected together. Transistor 60 has a drain connected to the source and gate of transistor 58 to form an output terminal of selection circuit 40, a gate connected to \(V_{DD} \), and a source. Transistor 62 has a drain connected to the source of transistor 60, a source connected to ground and a gate as an input of selection circuit 40 connected to the output terminal of modified selection circuit 12'.

Fuse control circuit 42 comprises a polysilicon fuse 64 and an enhancement transistor 66. Fuse 42 has a first terminal connected to terminal 20, and a second terminal. Transistor 66 has a drain connected to the second terminal of fuse 42 to form an output terminal of fuse control circuit 42, a gate connected to the output terminal of selection circuit 40. Transistor 46 has a gate connected to \(V_{DD} \), a source connected to the output terminal of fuse control circuit 42, and a drain. Transistor 44 has a drain connected to \(V_{DD} \), and a source and a gate connected to the drain of transistor 46 to form a second output terminal of modified fuse circuit 10' for providing a second output signal \(V_2 \) of modified fuse circuit 10'.

Selection circuit 40, fuse control circuit 42, transistor 46, and transistor 44 cooperate together to provide output signal \(V_2 \) in response to an input signal received at the gate of transistor 62 in the same manner as modified selection circuit 12', fuse control circuit 14, transistor 38, and transistor 16 cooperate together to provide output signal \(V_1 \) in response to input signal \(VIN \). Additional selection and fuse control circuits
circuits could also be added with only one required
grounding circuit 18 or modified grounding circuit 18'.
With added selection and fuse control circuits, there will
also be added transistors analogous to transistor 16 which
may supply current into terminal 20. Consequently, the
size ratio of transistor 30 must be increased to ensure
that the voltage on terminal 20 will be reduced below the
threshold voltage of transistor 36 when V_P is removed.

In fuse circuit 10' the input of selection circuit 40
is coupled to the output terminal of modified selection
circuit 12'. Accordingly when V_P is applied, if V_IN
is a logic low, fuse 26 will be opened, whereas if V_IN
is a logic high, fuse 64 will be opened. Consequently
there are four possible output signal configurations: if
V_P is not applied, output signals V_1 and V_2 will
both be a logic low; if V_P is applied while V_IN is a
logic high, V_1 will be a logic low and V_2 will be a
logic high; if V_P is applied while V_IN is a logic
low; V_1 will be a logic high and V_2 will be a logic
low; and if V_P is applied while V_IN alternates
between a logic high and a logic low, V_1 and V_2 will
both be a logic high.

While the invention has been described in a preferred
embodiment, it will be apparent to those skilled in the
art that the disclosed invention may be modified in numer-
ous ways and may assume many embodiments other than that
specifically set out and described above. Accordingly, it
is intended by the appended claims to cover all modifica-
tions of the invention which fall within the true spirit
and scope of the invention.
CLAIMS

1. A circuit for applying a high voltage signal to a fusible link, comprising:
 a first transistor having a first current electrode coupled to a first power supply terminal, a second current electrode, and a control electrode;
 a fusible link having a first terminal for receiving the high voltage signal and a second terminal coupled to the second current electrode of the first transistor;
 selection means for selectively coupling the first terminal of the fusible link to the control electrode of the first transistor;
 a load device having a first terminal coupled to a second power supply terminal, and a second terminal coupled to the second current electrode of the first transistor; and
 coupling means for coupling the first terminal of the fusible link to the first power supply terminal in response to the high voltage signal being absent from the first terminal of the fusible link.

2. The circuit of claim 1 wherein the coupling means comprises:
 resistive means for providing a first current path between the first terminal of the fusible link and the first power supply terminal;
 detection means for providing a detection signal when a voltage at the first terminal of the fusible link is lower than a predetermined voltage; and
 switching means for providing a second current path between the first terminal of the fusible link
and the first power supply terminal in response to the detection signal, said second current path being substantially more conductive than the first current path.

3. The circuit of claim 2 wherein:
 the resistive means comprises a second transistor having a gate coupled for receiving the detection signal, a first current electrode coupled to the first terminal of the fusible link, and a second current electrode coupled to the first power supply terminal;
 the detection means comprises a third transistor and a fourth transistor, said third transistor having a first current electrode coupled to the second power supply terminal, and a control electrode and a second current electrode coupled together, and said fourth transistor having a control electrode coupled to the first terminal of the fusible link, a first current electrode coupled to the first power supply terminal, and a second current electrode coupled to the gate and second current electrode of the third transistor for providing the detection signal; and
 the switching means comprises a fifth transistor having a first current electrode coupled to the first terminal of the fusible link, a second current electrode coupled to the first power supply terminal, and a control electrode coupled for receiving the detection signal.

4. The circuit of claim 1 or 3 further comprising a blocking transistor interposed between the second terminal of the load device and the second current electrode of the first transistor, said blocking transistor having a first
current electrode coupled to the second terminal of the load device, a second current electrode coupled to the second current electrode of the first transistor, and a control electrode coupled to the second power supply terminal.

5. A circuit for applying a high voltage signal to a plurality of fusible links, comprising:

a plurality of fuse opening means, coupled between a first power supply terminal and a high voltage terminal for receiving a high voltage signal, each fuse opening means for applying a high voltage signal across a fusible link in response to a signal received on an input of each of the fuse opening means while the high voltage signal is present at the high voltage terminal; and coupling means for coupling the high voltage terminal to the first power supply terminal in response to the high voltage signal being absent.

6. The circuit of claim 5 wherein the coupling means comprises:

resistive means for providing a first current path between the high voltage terminal and the first power supply terminal;
detection means for providing a detection signal when a voltage at the high voltage terminal is lower than a predetermined voltage; and switching means for providing a second current path between the high voltage terminal and the first power supply terminal in response to the detection signal, said second current path being substantially more conductive than the first current path.
7. The circuit of claim 6 wherein:
the resistive means comprises a first transistor hav-
ing a gate coupled for receiving the detection
signal, a first current electrode coupled to the
high voltage signal terminal, and a second cur-
rent electrode coupled to the first power supply
terminal;
the detection means comprises a second transistor and
a third transistor, said second transistor hav-
ing a first current electrode coupled to a
second power supply terminal, and a control
electrode and a second current electrode coupled
together, and said third transistor having a
control electrode coupled to the high voltage
signal terminal, a first current electrode
coupled to the first power supply terminal, and
a second current electrode coupled to the gate
and second current electrode of the second tran-
sistor for providing the detection signal; and
the switching means comprises a fourth transistor
having a first current electrode coupled to the
high voltage signal terminal, a second current
electrode coupled to the first power supply ter-

20
25

ninal, and a control electrode coupled for
receiving the detection signal.
1. A circuit for applying a high voltage signal to a fusible link, comprising:
 a first transistor having a first current electrode coupled to a first power supply terminal, a second current electrode, and a control electrode;
 a fusible link having a first terminal for receiving the high voltage signal and a second terminal coupled to the second current electrode of the first transistor;
 selection means for selectively coupling the first terminal of the fusible link to the control electrode of the first transistor;
 a load device having a first terminal coupled to a second power supply terminal, and a second terminal coupled to the second current electrode of the first transistor; and
 coupling means for coupling the first terminal of the fusible link to the first power supply terminal in response to the high voltage signal being absent from the first terminal of the fusible link.

2. The circuit of claim 1 wherein the coupling means comprises:
 resistive means for providing a first current path between the first terminal of the fusible link and the first power supply terminal;
 detection means for providing a detection signal when a voltage at the first terminal of the fusible link is lower than a predetermined voltage; and
 switching means for providing a second current path between the first terminal of the fusible link
and the first power supply terminal in response to the detection signal, said second current path being substantially more conductive than the first current path.
INTERNATIONAL SEARCH REPORT

Classification of Subject Matter

According to International Patent Classification (IPC) or to both National Classification and IPC:

US: CL 307/202.1; 365/96, 200

TNT. CL: H03K 17/18, 17/22, 17/30; H02H 7/20, G11C 7/00

Fields Searched

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>307/202.1</td>
</tr>
<tr>
<td></td>
<td>365/96, 200</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched.

Documents Considered to be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X P</td>
<td>US, A, 4,358,833 PUBLISHED 9 Nov. 1982, FOLLMSEE ET AL, MEMORY REDUNDANCY APPARATUS FOR SINGLE CHIA MEMORIES</td>
<td>1, 4-5</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,122,547 PUBLISHED 24 OCT. 1978, SCHROEDER ET AL, COMPLEMENTARY FET DRIVERS FOR PROGRAMMABLE MEMORIES</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,199,726 PUBLISHED 22 APRIL 1980, BUKOSKY DIGITALLY TUNABLE INTEGRATED CIRCUIT PULSE GENERATOR AND TUNING SYSTEM</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A": document defining the general state of the art which is not considered to be of particular relevance
 - "E": earlier document but published on or after the international filing date
 - "L": document which may raise doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O": document referring to an oral disclosure, use, exhibition or other means
 - "P": document published prior to the international filing date but later than the priority date claimed

Certification

Date of the Actual Completion of the International Search: 23 February 1983

Date of Mailing of this International Search Report: 18 MAR 1983

Signature of Authorized Officer: John S. Heyman

ISA/US

Form PCT/ISA/210 (second sheet) (October 1981)