

US 20100301254A1

(19) United States(12) Patent Application Publication

(10) Pub. No.: US 2010/0301254 A1 (43) Pub. Date: Dec. 2, 2010

Jabar, JR. et al.

(54) BARRIER COMPOSITIONS AND ARTICLES PRODUCED WITH THE COMPOSITIONS

 (75) Inventors: Anthony Jabar, JR., Waterville, ME (US); Michael A. Bilodeau, Brewer, ME (US); David J.
Neivandt, Bangor, ME (US); Jonathan M. Spender, Enfield, ME (US)

> Correspondence Address: MACMILLAN SOBANSKI & TODD, LLC ONE MARITIME PLAZA FIFTH FLOOR, 720 WATER STREET TOLEDO, OH 43604-1619 (US)

- (73) Assignees: University of Maine System Board of Trustees, Bangor, ME (US); Cerealus Holdings, LLC, Waterville, ME (US)
- (21) Appl. No.: 12/815,334

(22) Filed: Jun. 14, 2010

Related U.S. Application Data

- (63) Continuation-in-part of application No. 11/093,621, filed on Mar. 30, 2005, now Pat. No. 7,737,200.
- (60) Provisional application No. 60/582,260, filed on Jun. 23, 2004.

Publication Classification

- (51) Int. Cl.
- **D06M 15/19** (2006.01)
- (52) U.S. Cl. 252/8.62

(57) ABSTRACT

A stable, aqueous barrier coating composition includes: (a) prolamine; (b) cold water insoluble polymer; (c) water; (d) water-soluble co-solvent; and (e) stabilizer. The composition, when applied to a substrate, produces an article having a high surface energy and resistance to oil and grease penetration. A method of producing the article involves applying the composition to a substrate.

BARRIER COMPOSITIONS AND ARTICLES PRODUCED WITH THE COMPOSITIONS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation-in-part of pending U.S. utility application Ser. No. 11/093,621, filed Mar. 30, 2005, which claims the benefit of U.S. provisional application Ser. No. 60/582,260, filed Jun. 23, 2004, now abandoned.

FIELD OF THE INVENTION

[0002] The present invention relates to barrier compositions, more particularly to barrier compositions providing resistance to oil and grease penetration, and to articles which are produced with the compositions.

TECHNICAL BACKGROUND

[0003] Industry has utilized compounds based on fluorocarbon chemistry for many years to produce articles having improved resistance to penetration by oil and grease, due to the ability of fluorocarbons to lower the surface energy of the articles. One emerging issue with the use of perfluorinated hydrocarbons is that they are remarkably persistent in the environment. The EPA and FDA have recently begun a review of the source, environmental fate, and toxicity of these compounds. A recent study reported a very high (>90%) rate of occurrence of perfluorooctane sulfonate in blood samples taken from school children. The expense and potential environmental liability of these compounds has driven manufacturers to seek alternative means of producing articles having resistance to penetration by oil and grease.

[0004] While lowering the surface energy improves the penetration resistance of the articles, lowering the surface energy also has some disadvantages. For example, a textile fabric treated with a fluorocarbon will exhibit good stain resistance; however, once soiled, the ability of cleaning compositions to penetrate and hence release the soil from the fabric, which may result in permanently soiled fabrics of reduced useful life. Another example is a greaseproof paper which is to be subsequently printed and or coated with an adhesive. In this case the requisite grease resistance is attained by treatment with the fluorocarbon, but the low surface energy of the paper may cause problems related to printing ink or adhesive receptivity, including blocking, back trap mottle, poor adhesion, and register. If a greaseproof paper is to be used as a release paper having an adhesive applied, the low surface energy may reduce the strength of the adhesion. To improve their printability, coatability or adhesion, the low surface energy articles can be treated by a post forming processes such as corona discharge, chemical treatment, flame treatment, or the like. However, these processes increase the cost of producing the articles and may have other disadvantages.

[0005] Prolamines are proteinaceous compounds present as the storage proteins of cereal grains. For example, zein is a prolamine found in corn gluten meal, a by-product of corn milling. Since the primary use for corn gluten meal is animal feed, which typically sells for a low price, there has been a great deal of interest in the development of value added products from zein. Unfortunately, the suitable applications for zein have been limited due to its lack of solubility in water.

DESCRIPTION OF PRIOR ART

[0006] Fluorochemicals and other surface modifying compositions are known for imparting oil and grease resistance to articles. Such compositions include, for example, compositions of cationic and non-cationic fluorochemicals (U.S. Pat. No. 4,540,497, Chang et al), compositions useful in the treatment of articles to impart oil and grease resistance (PCT Application WO 02/14426, Dixit et al), fluorinated polymeric paper sizes (U.S. Pat. No. 6,818,717, Kantamneni), urethane oligomers containing perfluoroalkyl moieties for imparting water and oil repellency (U.S. Pat. No. 6,803,109, Qiu et al), compositions for oil and water repellency containing a polyalkoxylated urethane and a fluorochemical (U.S. Pat. No. 5,725,789, Huber et al), compositions containing a filler material and wheat gluten (U.S. Pat. No. 6,605,367, Bassi et al), starch and gelatin surface sizes for oil and grease resistant papers (U.S. Pat. No. 6,790,270, Billmers et al), and flexible starch films to impart oil and grease resistance (U.S. Pat. No. 6,649,188, Gilleland et al). However, these compositions usually suffer from one or more disadvantages, e.g., they have low surface energy, they do not provide for a high degree of oil and grease resistance, they contain fluorocarbons, they are not biodegradable, they contain high concentrations (>50%) of VOCs, or they are cost prohibitive on a commercial scale.

[0007] A number of patents relate to compositions containing prolamines such as zein. For example, U.S. Pat. No. 5,705,207, Cook et al, discloses a coating/barrier against water, oil and gas, consisting of a colloidal dispersion of a prolamine-derived protein and starch in an aqueous acid. Propylene glycol or polyethylene glycol can be used to plasticize the composition. U.S. Pat. No. 6,231,970, Andersen et al, discloses a thermoplastic starch composition that can be shaped into articles such as sheet, films and packaging materials. The composition includes starch, a protein-based polymer such as zein, and a plasticizer such as propylene glycol. U.S. Pat. No. 5,705,242, Andersen et al, discloses food beverage containers made from aggregates held together by organic binders. The binders can include starch-based polysaccharides, cellulose-based polysaccharides and/or prolamines.

[0008] U.S. Pat. No. 6,573,340, Khemani et al, discloses biodegradable polymer films having good water vapor barrier properties, which are useful as packaging materials. The films can include starch, a prolamine, and polyethylene glycol. U.S. Pat. No. 5,356,467, Oshlack et al, discloses aqueous dispersions of zein which may be used as controlled release coatings for pharmaceutical, animal, health or food products. The coatings can also include starch and propylene glycol. U.S. Pat. No. 5,609,909, Meyer et al, discloses prolamine coatings for orally administered drugs. The coatings also include a hydrophilic plasticizer such propylene glycol and/ or a non-ionic cellulosic polymer such as hydroxyethyl cellulose. U.S. Pat. No. 6,844,181, Jabar, Jr., discloses a composition used to inhibit fungal growth containing a peptide such as zein and a polysaccharide such as starch, dissolved in a water/alcohol solution. A plasticizing agent such as propylene glycol can also be added.

SUMMARY OF THE INVENTION

[0009] The present invention relates to a stable, aqueous barrier composition which comprises: (a) prolamine; (b) cold

water insoluble polymer; (c) water; (d) water-soluble cosolvent; and (e) stabilizer. The composition, when applied to a substrate, produces an article having a high surface energy and resistance to oil and grease penetration.

[0010] The invention also relates to a method of producing an article. The method comprises applying the above-described composition to a substrate to produce the article which has a high surface energy and resistance to oil and grease penetration.

[0011] The invention also relates to an article which comprises the above-described composition applied to a substrate. The article has a high surface energy and resistance to oil and grease penetration.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] The present invention provides value added products from zein by overcoming its lack of solubility in water to produce stable, aqueous barrier compositions. When applied to a substrate, the compositions produce an article having resistance to oil and grease penetration. Surprisingly, the compositions achieve these barrier properties while producing articles having a high surface energy. As a result, the compositions avoid the disadvantages associated with the use of barrier compositions that lower the surface energy of articles. In certain embodiments, the barrier composition may be characterized as a solution or a stable suspension and not a latex.

[0013] A barrier composition according to the invention includes one or more prolamines. Prolamines are proteinaceous compounds present as the storage proteins of cereal grains, such as corn, wheat, barley, rice and sorghum. Representative prolamines include, for example, zein, hordein, gliadin and kafirin. The preferred prolamine for use in the invention is zein. Zein is available commercially from various manufacturers, including Freeman Industries, Tuckahoe, N.Y. and Global Protein Products, Marina, Calif. In certain embodiments, the prolamine used in the barrier composition is raw or unmodified, in contrast with prolamines that are chemically and/or enzymatically altered. For example, fine milling of the zein is not required. Also, in certain embodiments, the prolamine is zein having a molecular weight within a range of from about 15 kd to about 30 kd, more particularly an alpha zein having a molecular weight within a range of from about 19 kd to about 24 kd. Further, in certain embodiments, the three-dimensional properties of the zein are relevant to the film forming ability of the barrier composition; for example, the zein may be in alpha helix configuration rather than beta sheet. The prolamine can be included in the composition in any suitable amount. In certain embodiments, the prolamine is included in an amount within a range of from 1 wt % to about 10 wt %, and more particularly from about 2 wt % to about 5 wt %.

[0014] The barrier composition also includes one or more cold water insoluble polymers. By "cold water insoluble" is meant that the polymer is insoluble in water at temperatures of 75° F. (24° C.) or below. The polymer may be soluble or insoluble at higher temperatures. Water solubility, as defined herein, is tested as follows. A 1 g sample of the polymer is provided. The sample is added to a flask containing 100 mL of distilled water held at a temperature of 75° F. The flask is subjected to vigorous stirring or shaking for one minute(s), and then held still for 60 minute(s). If any precipitation of the polymer has occurred, the supernatant is poured from the

flask and the precipitate is collected and weighed. The polymer is considered to be water soluble if not more than 5 wt % of the polymer precipitates.

[0015] The composition can include any type of cold water insoluble polymer suitable for combining with the other components to produce the stable barrier composition. Preferably, the polymer is a polysaccharide. Some examples of suitable polysaccharides include starches, starch derivatives, modified starches, thermoplastic starches, starch esters, such as starch acetate, starch hydroxyethyl ethers, alkyl starches, dextrins, amine starches, phosphate starches, and dialdehyde starches. The starch can be cationic, anionic, amphoteric, or non-ionic. Preferably, the starch is non-ionic. The starch derivatives include carboxymethylstarch, hydroxyethylstarch, hydroxypropylstarch, carboxymethylhydroxypropylstarch, and oxidized starch.

[0016] Some other examples of cold water insoluble polymers include synthetic polymers such as polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, ultralow density polyethylene, polyolefins, poly(ethylene-co-methyl acrylate), poly(ethylene-coethyl acrylate), poly(ethylene-co-butyl acrylate), poly(ethylene-co-(meth)acrylic acid), metal salts of poly(ethylene-co-(meth)acrylic acid), poly((meth)acrylates), such as poly (methyl methacrylate), poly(ethyl methacrylate), and the like, poly(vinyl acetate), poly(ethylene-co-vinyl acetate), poly(vinyl alcohol), poly(ethylene-co-vinyl alcohol), polypropylene, polybutylene, polyesters, poly(ethylene terephthalate), poly(1,3-propyl terephthalate), poly(1,4-butylene terephthalate), poly(vinyl chloride), PVDC, poly(vinylidene chloride), polystyrene, polyamides, nylon, nylon 6, nylon 46, nylon 66, nylon 612, polycarbonates, polysulfides, polyethers, polysulfones, and the like, and copolymers thereof.

[0017] The composition can contain any suitable amount of water. In certain embodiments, the composition contains water in an amount within a range of from about 30 wt % to about 90 wt %, more particularly about 40 wt % to about 85 wt %, and most particularly about 50 wt % to about 80 wt %. [0018] The barrier composition also includes one or more

water-soluble co-solvents. Preferably, the co-solvent is soluble in both aqueous and nonaqueous solvents. The cosolvent is usually multifunctional, i.e. it serves as co-solvent for the prolamine and as a plasticizer for the film formed from the aqueous composition. Any suitable type of co-solvent can be used in the composition. Preferably, the co-solvent is a glycol, such as propylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, or diethylene glycol monobutyl ether. Other examples of suitable co-solvents include diethanolamine, and glycerol. In certain embodiments, the co-solvent excludes a monohydric alcohol, and also in certain embodiments it excludes a ketone such as acetone. In other embodiments, these materials are included in amounts no greater than 10 wt %, and more particularly no greater than 5 wt %. The co-solvent can be included in any suitable amount in the composition. In certain embodiments, the composition includes co-solvent in an amount within a range of from about 5 wt % to about 60 wt %, more particularly from about 10 wt % to about 50 wt %, and most particularly from about 20 wt % to about 45 wt %. The amount of water in the composition is usually greater than the amount of co-solvent, so that the primary solvent of the composition is water.

[0019] The barrier composition further includes one or more stabilizers that, in combination with the other compo-

nents of the composition, produce a stable aqueous composition as described more fully below. Any type of material suitable for stabilizing the composition can be used. When the cold water insoluble polymer is a starch, preferably the stabilizer bears an anionic charge. In such a case, a preferred stabilizer is a cellulose derivative, such as carboxymethylcellulose, hydroxyethyl-cellulose, methylcellulose, ethylcellulose, hydroxyethylpropylcellulose, methylcellulose. In certain embodiments, the barrier composition includes the combination of a starch and a cellulose derivative.

[0020] Other examples of suitable stabilzers include gums such as xanthan gum, guar gum and its derivatives, gum arabic, acaia gum, carrageenan gum, furcellaran gum, ghatti gum, locust bean gum, gum karaya, and gum tragacanth

[0021] Other stabilizers can include polymeric or surfactant species such as polyacrylates, polyoxyethylene sorbitan mono-oleate (e.g., Tween 20 or Tween 80), other glycerides preferably those derivatives of fatty acids in the C_8 - C_{20} range, sodium lauryl sulfate and cetyltrimethylammonium bromide. Other stabilizers can be inorganic steric stabilizers such as magnesium carbonate, magnesium sulfate and magnesium silicate. Additionally the stabilizers can include functional agents such as water repellant agents inlcuing alkenyl succinic anhydride (ASA), alkyl ketene dimmer (AKD), styrene maleic anhydride, octynl succinic anhydride, rosin, rosin derivatives, styrene acrylic acetates, styrene acrylic emulsions, polyurethane dispersions, wax dispersions, and the like.

[0022] The stabilizer can be included in any amount suitable for providing a stable aqueous composition. Generally, the stabilizer is included in an amount within a range of from about 0.01 wt % to about 10 wt % of the composition, and usually from about 0.01 wt % to about 5 wt %.

[0023] In addition to the above-described components, the composition can optionally contain one or more additives to enhance various properties of the composition, so long as the stability of the composition and the barrier properties are maintained. For example, suitable additives may include various dispersants, vehicles, leveling agents, defoamers, anti-foamers, antimicrobials, or pigments.

[0024] In some embodiments of the invention, the barrier composition "consists essentially of" the prolamine, cold water insoluble polymer, water, water-soluble co-solvent, and stabilizer. In other words, the barrier composition excludes other components of any essential significance to the composition.

[0025] In contrast to compositions such as those disclosed in U.S. Pat. No. 5,705,207 to Cook et al, the barrier composition does not require the use of an acid as a component. In some embodiments, the barrier composition excludes more than about 5 wt % acid, more particularly it contains not more than 2 wt % acid, more particularly not more than 1 wt %, and most particularly and it contains substantially no acid.

[0026] The barrier composition is a stable aqueous composition, "stable aqueous composition" is defined as an aqueous composition which is substantially resistant to viscosity change, coagulation, precipitation, and sedimentation over at least an 8-hour period when contained in a closed vessel and stored at a temperature in a range of from about 0° C. to about 60° C. Some embodiments of the composition are stable over at least a 24-hour period, and often over at least a 6-month period.

[0027] The barrier composition, when applied to a substrate, produces an article having a high surface energy. As used herein, "high surface energy" refers to an article having a surface energy of at least about 32 dynes/cm, and commonly at least about 36 dynes/cm. Surface energy can be measured by any suitable method, for example by contact angle measurement and the relationship between surface energies using Young's Equation, as described below in Example 1.

[0028] Importantly, the barrier composition, when applied to a substrate, also produces an article having resistance to oil and grease penetration. Resistance to oil and grease penetration includes resistance to penetration by various oils, greases, waxes, other oily substances and surprisingly highly penetrating solvents like toluene and heptane. The resistance to oil and grease penetration may be measured by the 3M Kit Test, which is described below in Example 2. The Kit number may also be measured according to a standard Tappie method. Preferably, the composition has a Kit number of at least 3, more preferably at least 5, more preferably at least 7, and most preferably at least 9.

[0029] The barrier composition can be produced by any suitable method. In certain embodiments, the composition is produced without the use of a monohydric alcohol such as ethanol. The preparation of the composition may include a dihydric alcohol such as a glycol, or in certain embodiments the composition may be prepared without using any type of alcohol. Further, in certain embodiments, the barrier composition is produced without a hazardous or high VOC material.

[0030] In certain embodiments, the order of addition of the components is relevant for producing the barrier composition. For example, first the zein is dissolved in the glycol. Then a stabilizer such as a cellulose derivative is mixed with the zein and glycol. Then the water is added to the mixture of zein and stabilizer in glycol. The water is added to this mixture, and not the other way around (i.e., the mixture of zein, stabilizer and glycol are not added to the water).

[0031] In certain embodiments, the barrier composition can be produced without the need for filtering the product.

[0032] A method of producing an article according to the invention comprises applying the barrier composition to a substrate to produce the article which has a high surface energy and resistance to oil and grease penetration. The barrier composition is provided in intimate contact with one or more surfaces of the substrate in order to provide penetration resistance to those surfaces. The barrier coating can be applied as a coating on the one or more surfaces, or in some applications it can be applied such that it is absorbed into the interior of substrate and contacts one or more surfaces.

[0033] In a preferred embodiment, the barrier composition is applied as a coating on the substrate. The substrate can be coated with the composition by any suitable method, for example, by rolling, spreading, spraying, brushing, or pouring processes, followed by drying, by co-extruding the barrier composition with other materials onto a preformed substrate, or by melt/extrusion coating a preformed substrate. The substrate can be coated on one side or on both or all sides with the barrier composition. A coating knife, such as a "doctor blade", allows uniform spreading of the barrier composition onto a substrate that is moved along by rollers. The composition is then dried. For example, U.S. Pat. No. 3,378,424 discloses processes for coating a fibrous substrate with an aqueous polymeric emulsion. Coatings can be applied to **[0034]** The amount of barrier composition applied to the substrate can vary depending on the application. In certain embodiments, the application rate of the composition is within a range of from about 1 gram/square meter to about 10 grams/square meter (dry coat weight), and more particularly from about 3 grams/square meter to about 8 grams/square meter. Also, in certain embodiments, the dry coating has a substantially uniform thickness throughout the area of the coating. Further, in certain embodiments, the composition produces a substantially continuous film on the substrate. The substrate may be completely covered by the coating or only a portion covered.

[0035] After application to the substrate, the barrier composition can be dried either with or without the application of heat to produce a film or coating on the substrate.

[0036] The barrier compositions of the invention can be used to produce a wide variety of different articles having resistance to oil and grease penetration. The articles can include, for example, paper, paperboard, cardboard, containerboard, gypsum board, wood, wood composites, furniture, masonry, leather, automobile finishes, furniture polishes, plastics, non-stick cookware, and foams.

[0037] A particularly preferred use for the barrier compositions is food packaging papers and paperboard, especially fast food packaging. Specific examples of food packaging uses include fast food wrappers, food bags, snack bags, grocery bags, cups, trays, cartons, boxes, bottles, crates, food packaging films, blister pack wrappers, microwavable popcorn bags, release papers, pet food containers, beverage containers, OGR papers, and the like. In another preferred embodiment, textile articles are produced, such as natural textile fibers or synthetic textile fibers. The textile fibers can be further processed into garments, linens, carpets, draperies, wall-coverings, upholstery and the like.

[0038] Substrates can be formed into articles prior to or after applying the barrier composition. For example, containers can be produced from flat, coated paperboard by pressforming, by vacuum forming, or by folding and adhering them into the final desired shape. Coated, flat paperboard stock can be formed into trays by the application of heat and pressure, as disclosed within, for example, U.S. Pat. No. 4,900,594, or vacuum formed into containers for foods and beverages, as disclosed within U.S. Pat. No. 5,294,483.

Example 1

Contact Angle Studies

[0039] This example describes how surface energy can be measured according to the invention. Contact angle measurements allow us to determine a relationship between surface energies of different materials. Young's Equation allows us to relate these quantities:

$\gamma l \nu (COS \theta) = (\gamma s v - \gamma s l)$

[0040] Here, γ sv represents the interface between the solid substrate and the vapor. For our purposes it is considered to be zero. γ lv=the surface energy between the liquid and the vapor. The constant used for this water/air interaction is 72.94 dynes/cm. The contact angle gives us θ , and we solve for γ sl

which is the surface energy between the solid liquid interface. Table 1 below lists the surface energies of some barrier compositions according to the invention and also the surface energies of several other substances.

TABLE 1

Coating type	Contact angle	Surface Energy (approx.) dyne/cm
Fluorocarbon	105.11, 104.6	19.02
Fluorocarbon	106.24, 108.96	20.40
Pure Prolamine film (PG solvent)	54.67, 54.78	42.18
Pure Prolamine film (PG solvent)	63.65, 62.35	32.39
Pure Prolamine film (Ethanol solvent)	59.75, 65.96	36.75
Pure Prolamine film (Ethanol solvent)	61.36, 60.55	34.96
Polyvinyl Alcohol (Airvol 425)	62.63, 60.78	33.53
Polyvinyl Alcohol (Airvol 425)	60.71,64.36	35.68
Invention Composition	50.10, 51.69	46.78
Invention Composition	41.27, 46.52	54.82

[0041] The barrier compositions of the invention are compositions A and B described below in Example 3. The fluorocarbon is a 5% w/w aqueous composition. The pure prolamine film made with propylene glycol (PG) solvent is 5% w/w zein, and the pure prolamine film made with ethanol solvent is 5% w/w. The polyvinyl alcohol is 4% w/w aqueous composition. The invention compositions were 5% w/w zein. All composition were cast on glass, dried at 100° C. for 60 minutes and evaluated for contact angle.

Example 2

3M Kit Test

[0042] The 3M Kit test can be used to measure the resistance to oil, grease, and solvent penetration of articles produced with the barrier compositions of the invention.

[0043] Kit solutions are prepared as follows:

Kit #	Volume of Castor Oil (ml)	Volume of Toluene (ml)	Volume of Heptane (ml)	
1	200	0	0	
2	180	10	10	
3	160	20	20	
4	140	30	30	
5	120	40	40	
6	100	50	50	
7	80	60	60	
8	60	70	70	
9	40	80	80	
10	20	90	90	
11	0	100	100	
12	0	90	110	

[0044] An article is placed on a clean flat, surface and a drop of test solution is released from a height of 25 mm onto a surface of the article to which the barrier composition has been applied. After 15 seconds, the excess fluid is removed

with a cotton swatch or a tissue and the wetted area is examined. A pronounced darkening of the article denotes a failure. The Kit Rating is the highest numbered solution that stands on the surface of the article without causing failure. Table 2 below shows the Kit Ratings of various compositions.

TABLE 2

Kit Ratings of Various Compositions						
Additive	Concen- tration	Kit achieved	Notes			
ASA (alkenyl succinic anhydride)	5%-8%	11	Stable, creamy			
Xanthan Gum	1-2%	9	Stable, creamy, thick			
Tween 20	1-2%	8	Stable			
Tween 80	1-2%	11	Stable			
Sodium Carbonate	2%		Formulation unstable			
Potassium Hydroxide	<1%	5	pH 8.3 Formulation unstable			
Carboxymethylcellu- lose, Sodium salt	1-3%	12	Stable over time, lower viscosity than xgum			

[0045] Base composition of 4% zein, 9.6% ethylated starch, 70.4% water, 14.5% propylene glycol

Example 3

Examples of Barrier Compositions

[0046] Compositions according to the present invention were formulated as follows: A creamy flowable composition was produced and coated onto paper stock. The paper stock was subsequently dried and tested using the 3M Kit procedure.

	Composition	А	В	С	D	Е
1)	zein	2.5%	1.0%	2.5%	2.5%	1.0%
2)	ethylated starch	6.0%	6.0%	9.0%	7.2%	10.8%
3)	water	50%	50%	66%	52.8%	79%
4)	propylene glycol	41.3%	43.0%	22.5%	16%	9%
5)	xanthan gum	0.2%	0	0	0	0.2%
6)	Alkyl succinic anhydride	0	0	0	21.5	0
3M I	Kit Response	9	3	6	11	5

[0047] In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained in its preferred embodiments. However, it must be understood that this invention may be practiced otherwise than as specifically explained without departing from its spirit or scope.

What is claimed is:

- 1. A stable, aqueous barrier composition comprising:
- (a) prolamine;
- (b) cold water insoluble polymer;
- (c) water;
- (d) water-soluble co-solvent; and

(e) stabilizer;

the composition not requiring an alcohol for its preparation; and

the composition, when applied to a substrate, producing an article having a high surface energy and resistance to oil and grease penetration.

* * * * *