(54) 发明名称
抗类风湿性关节炎的多肽及其在制药中的应用

(57) 摘要
本发明公开了一种抗类风湿性关节炎的多肽，所述多肽的氨基酸序列由 SEQ ID NO. 3 所示。应用本发明的多肽注射大鼠后，人工诱导动物关节炎，结果表明，被注射多肽的大鼠体内产生了相应抗体，血管内皮生长因子浓度同时相应降低，90%以上的大鼠注射 II 型胶原后不再出现类风湿性关节炎症状。组织病理学分析表明，实验动物病变关节内的血管增生明显减少，VEGF 水平降低。表明本发明的多肽可通过免疫干预方式抑制类风湿关节炎关节滑膜毛细血管增生，阻断滑膜细胞增殖的营养途径和 T 细胞渗入途径，抑制组织炎症和组织损伤，从而抑制类风湿关节炎过程病变进程，并能开发为抗类风湿关节炎药物。
1. 一种抗类风湿性关节炎的多肽，其特征在于：它是 SEQ ID NO. 3 所示的氨基酸序列：
具体序列描述为：
Arg Thr Glu Thr Gly Ala Thr Glu Thr Val Thr Pro Ser Glu
1 5 10

2. 权利要求 1 所述的抗类风湿性关节炎的多肽在制备抑制类风湿关节炎关节的血管翳生成药物或硫氧还蛋白 5 抗体中的应用。
抗类风湿性关节炎的多肽及其在制药中的应用

技术领域

本发明涉及一类多肽及其在制药应用，尤其涉及一类抗类风湿性关节炎的多肽及其在制药中的应用。

背景技术

硫氧还蛋白家族定位在细胞内质网上，具有蛋白质二硫键异构酶（protein disulfide isomerase, PDI）功能。PDI 对细胞异常分化，毛细血管增生及抗氧化损伤起着重要作用 \(^1\)。硫氧还蛋白5（thioredoxin domain containing 5, TXNDC5）位于人 6 号染色体上（6p24.3），其编码的二硫化物异构酶含有 PDI 结构，在缺氧的状况下高表达，催化蛋白质二硫键异构过程 \(^1\)。有人用蛋白质组学方法发现 TXNDC5 在肝细胞癌、直肠癌等肿瘤组织表达，在组织低氧的环境下对内皮细胞起到保护的作用 \(^2\)。

类风湿关节炎（rheumatoid arthritis, RA）是一种自身免疫病，临床表现为慢性、多滑膜关节炎。RA 病理学表现为关节滑膜严重炎症，组织增厚，滑膜内 T 细胞大量渗入，B 细胞和滑膜纤维状细胞异常增生，毛细血管大量生成，解剖学上称之为血管翳。本发明人利用蛋白质组学技术比较 RA、骨性关节炎（osteoarthritis, OA）和强直性脊柱炎（ankylosing spondilitis, AS）病变滑膜组织的蛋白表达谱，发现 TXNDC5 在 RA 的滑膜组织中显著性高表达。免疫组化、western blotting 和定量 PCR 方法在转录和蛋白水平上均证实了 TXNDC5 在 RA 关节滑膜细胞中的特异性高表达。此外，本发明人用酶联免疫分析方法（ELISA）发现，与 OA、AS 患者相比，53.3% RA 患者的血液和 73.3% RA 患者的关节滑液中 TXNDC5 的表达量增加两倍或两倍以上 \(^3\)，显示 TXNDC5 可能与 RA 发病过程有关。

基于上述发现，本发明人就 TXNDC5 对 RA 的致病机制进行了研究。许多研究证明，RA 病变关节为低氧环境，RA 本质上具有低氧特性 \(^4\)，并表现出氧化应激反应 \(^5,6\)。本发明人发现，RA 低氧条件下诱导滑膜 TXNDC5 高表达。高浓度的 TXNDC5 可以上调 RA 滑膜血管内皮生长因子 VEGF 表达，VEGF 刺激滑膜组织毛细血管增生，形成血管翳。血管翳是 RA 滑膜病变的重要组织学特征。正是由于血管翳的形成，T 细胞得以向滑膜组织大量渗入造成炎症，同时，病变组织获得充足的营养支持 B 细胞和纤维状细胞大量增殖。鉴于此，TXNDC5 可成为潜在的 RA 治疗靶点。通过抑制 TXNDC5 酶活性，可抑制 RA 滑膜组织毛细血管生成，从而阻断病变滑膜细胞增生的营养途径和 T 细胞迁移途径，达到杀伤 RA 滑膜细胞和抑制炎症过程的治疗 RA 目的。

参考文献

发明内容

【0013】基于上述TXNDC5在RA发病过程中的关键作用，本发明的目的是提供一类抗类风湿性关节炎的多肽及其在制药中的应用。

【0014】本发明所述抗类风湿性关节炎的多肽，其特征在于：它是SEQ ID NO.3所示的氨基酸序列；具体序列描述为：

Arg Thr Glu Thr Gly Ala Thr Glu Thr Val Thr Pro Ser Glu

【0016】1 5 10

【0017】上述抗类风湿性关节炎的多肽的合成方法为常规人工合成方法。根据免疫抑制的原理，对应TXNDC5不同区段的短肽，申请人设计了9段TXNDC5多肽（即SEQ ID NO.1～SEQ ID NO.9所示的氨基酸序列），按常规人工合成方法对9种多肽实施了合成，SEQ ID NO.3所示的氨基酸序列的多肽即是其中的一个。

【0018】上述抗类风湿性关节炎的多肽在制备抑制类风湿关节炎关节的血管翳生成药物中的应用。进一步的，上述抗类风湿性关节炎的多肽在制备抑制类风湿关节炎关节滑膜毛细血管增生、阻断滑膜细胞增殖的营养途径和T细胞渗入途径等抗类风湿性关节炎药物中的应用。

【0019】上述的抗类风湿性关节炎的多肽在制备硫氧还蛋白5(TXNDC5)多克隆抗体或单克隆抗体中的应用。

【0020】本发明研究思路是采用免疫治疗的途径，人为刺激RA患者免疫系统产生抗TXNDC5抗体，利用抗原、抗体特异性结合原理，用抗TXNDC5抗体结合高表达的TXNDC5，从而抑制该酶活性，阻断毛细血管形成，达到治疗RA病程的目的。目前，已有的几个RA有效的生物制剂，如益赛普（Etanercept）、类克等，皆是用RA炎症相关因子TNF（肿瘤坏死因子）的抗体，通过向患者体内注射抗TNF抗体，结合RA高表达的TNF，抑制TNF的生物活性，阻断RA炎症发展，获得RA治疗效果。本研究也按此RA治疗思路，首先以RA实验动物为模型，通
过免疫干预治疗的方式，通过抑制 TXNDC5 生物功能，达到治疗 RA 目的。[0021] 基本实施过程如下：应用本发明所述按常规制备的 TXNDC5 各区段的 9 种短肽（即 SEQ ID NO. 1 ～ SEQ ID NO. 9 所示的氨基酸序列），分别将其注入大白鼠体内，使动物产生抗 TXNDC5 抗体。然后，按常用的 RA 关节炎动物模型建立方法，向动物体内注射 II 型胶原诱导动物表现 RA 骨骼症状（向大鼠注射胶原诱导动物全性关节炎是 RA 病理研究和药物筛选最常见的动物模型）。与对照组相比，观察注射了 TXNDC5 短肽注射后的实验动物是否表现 RA 关节炎。如果动物未出现 RA 症状，则说明注射后的动物体内抗 TXNDC5 抗体和 TXNDC5 抗原特异性结合，通过抑制该酶的 PDI 催化功能有效地阻止了 TXNDC5 下游病理途径，阻断了 TXNDC5 对毛细血管生成的刺激作用，从而达到 RA 治疗目的。[0022] 实验结果表明：抗 TXNDC5 抗体水平在注射了 TXNDC5 短肽后明显升高，显示 TXNDC5 抗体和其抗原在大鼠体内发生特异性结合，可以对 TXNDC5 酶活性形成免疫抑制。在胶原诱导 RA 之前注射了 TXNDC5 短肽的动物不再表现 RA 临床症状和组织学特征，说明对 TXNDC5 的免疫抑制可以有效地抑制 RA 的病理进程。对照组包括 α 头发角蛋白短肽或 BSA 替代 TXNDC5 短肽后，RA 现象未受到抑制，证实 TXNDC5 短肽对 RA 抑制结果不是免疫耐受不造成的；TXNDC5 短肽注射后用 BSA 免疫的大鼠未表现 RA，这意味着 TXNDC5 短肽和多肽本身并没有对 RA 影响。在实验中，TXNDC5 短肽分别对相应酶的 C- 末端，钙离子结合区，PDI 活性部位等部位，因此，其产生的抗体可以通过免疫结合有效地抑制 TXNDC5 酶的生理功能。[0023] 本发明的意义在于潜在用途：现在治疗 RA 的生物制剂主要是益赛普和英夫利昔，均为肿瘤坏死因子 TNF 的单克隆抗体，90 年代的代在世界使用，2005 年起在中国使用，收到了良好治疗效果。该制剂主要通过抑制炎症而抑制发病进程。目前开始使用的另一生物制剂是利妥昔（Rituximab），是针对 B 细胞的单抗，通过杀死大量增殖的 B 细胞，抑制 RA 的自我免疫反应。以上这些生物制剂均针对 RA 大量增生的滑膜细胞或炎症因子，无一针对另一 RA 重要病理特征——血管翳形成。而且，中国治疗 RA 的药物无论生物制剂与否均无知识产权。本发明的试验结果显示，以 TXNDC5 短肽序列所制备的多肽药物或抗体药物，可以通过免疫抑制 TXNDC5 活性，直接抑制 RA 的血管翳形成。通过切断滑膜细胞大量增殖所需的营养渠道和 T 细胞入侵途径，从根本上达到治疗 RA 的目的。RA 病变关节组织的本质是低氧，低氧环境诱导病变进程。抑制低氧所诱导的 TXNDC5 的生物活性，是从整体上抑制 RA 的重要途径。

附图说明
[0024] 图 1 实验动物 RA 出现时间图。
[0025] 图 2 实验动物出现炎症时间（炎症指数）图。
[0026] 图 3 血中抗 TXNDC5 抗体水平图。
[0027] 图 4 血中 VEGF 水平图。
[0028] 图 5 动物的关节滑膜免疫组织化学的切片照片。

具体实施方式
[0029] 实施例 1
[0030] 根据免疫抑制的原理，对应 TXNDC5 不同区段的短肽，申请人设计了 9 段 TXNDC5 多
它是 SEQ ID NO. 1 所示的氨基酸序列，具体序列描述为：
Arg Gly Gly Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp
1 5 10
它是 SEQ ID NO. 2 所示的氨基酸序列，具体序列描述为：
Arg Asp Gly Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp
1 5 10
它是 SEQ ID NO. 3 所示的氨基酸序列，具体序列描述为：
Arg Thr Glu Thr Gly Ala Thr Glu Thr Val Thr Pro Ser Glu
1 5 10
它是 SEQ ID NO. 4 所示的氨基酸序列，具体序列描述为：
Pro Val Thr Pro Glu Pro Glu Val Glu Pro Ser Ala Pro
1 5 10
它是 SEQ ID NO. 5 所示的氨基酸序列，具体序列描述为：
Thr Trp Asn Asp Leu Gly Asp Lys Tyr Asn Ser Met Glu Asp
1 5 10
它是 SEQ ID NO. 6 所示的氨基酸序列，具体序列描述为：
Lys Pro Gly Glu Ala Val Lys Tyr Gln Gly Pro Arg Asp
1 5 10
它是 SEQ ID NO. 7 所示的氨基酸序列，具体序列描述为：
Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro His Ser
1 5 10
它是 SEQ ID NO. 8 所示的氨基酸序列，具体序列描述为：
Thr Leu Ala Pro Thr Trp Glu Glu Leu Ser Lys Lys Glu Phe
1 5 10
它是 SEQ ID NO. 9 所示的氨基酸序列，具体序列描述为：
Ser Leu His Ser Phe Val Leu Arg Glu Ala Lys Asp Glu Leu
1 5 10
按常规人工合成方法对上述 9 种多肽实施合成，备用。
实施例 2
本发明所述抗类风湿性关节炎的多肽的药物用途
实验方法
雄性 Lewis 大鼠 60 只，平均体重 120 克，8 周龄。
按常规人工合成的 TXNDC5 各区段的 9 种短肽（即 SEQ ID NO. 1 ～ SEQ ID NO. 9 所示的氨基酸序列）。
通过尾静脉向每只大鼠分别注射 100 微克的 SEQ ID NO. 1 ～ SEQ ID NO. 9 所示氨基酸序列的短肽。短肽分别与载体蛋白匙孔血蓝蛋白 (KLH) 偶联。该氨基酸序列为 TXNDC5 人完全匹配氨基酸序列。人与鼠的 TXNDC5 氨基酸序列几乎完全一致。以上短肽与同等体积浓度的弗氏佐剂 (5ug/ml) 充分混合，在第 1、14 和 28 天对实验动物免疫注射，按常规方
法使之产生抗 TXDC5 抗体。然后，在第一次注射后的第 42，56 和 70 天，向这些动物注射牛 II 型胶原 (Sigma 公司)，按常规建立 RA 动物模型方法诱导动物表现 RA。每日检查大鼠的肢体发红、肿胀和僵硬程度。RA 炎症程度按研究通常所用的 12 分评分标准评判，评分标准如下: 0: 正常; 无肿胀/发红; 1: 轻度发红; 2: 变红和整个足肿胀; 3: 强炎症和足严重变形。
每只鼠四肢 RA 程度最大累计 12 分。同时，在第 0，35，77 和 102 天采集动物血液样本，用常规 ELISA 方法测定血中抗 TXDC5 抗体和血管内皮生长因子 VEGF 水平。VEGF 代表组织毛细血管发育程度。VEGF 水平用大鼠 VEGF ELISA 试剂盒 (Invitrogen 公司) 完成。大鼠在第一次注射后的第 102 天处死。解剖出来的滑膜组织用常规免疫组织化方法检查组织病变程度和 TXDC5 表达状况。

[0065] 实验同时设置一系列对照组，每组大鼠为 60 只，具体组别如下：(1) α 头发角蛋白短肽 (AAVGSRP1HCGVRFC) 替代 TXDC5 短肽；(2) 牛血清白蛋白 (BSA, Sigma 公司) 的取代 II 型胶原蛋白诱导；(3) BSA 代替 TXDC5 短肽和 II 型胶原诱导；(4) 只注射 II 胶原诱导；(5) 只用 BSA 免疫动物，取代短肽和胶原免疫注射；(6) 未注射任何短肽和蛋白质。

[0066] 实验结果

[0067] 实验组大鼠在免疫 TXDC5 短肽后按常规用胶原诱导 RA。实验结果以 SEQ ID NO.9 短肽为例阐述如下：以在第一次注射胶原蛋白后第 50 天 (即第一次注射后第 92 天) ，60 只大鼠 (97%) 中的 58 只没有表现任何炎症和四肢关节僵硬。只有两只有在第一次注射胶原后第 56 天肢体出现轻微发炎（炎症评分 = 3)。用 α 头发角蛋白短肽替代 TXDC5 短肽注射的大鼠中，55 只大鼠 (92%) 在胶原诱导后第 34.5±3.6 关节出现明显肿胀。在用 BSA 替代 TXDC5 短肽的大鼠中，50 只 (83%) 大鼠在第一次注射胶原蛋白的第 39.7±4.3 天，关节出现明显炎症。所有 60 只 (100%) 用 BSA 替代 TXDC5 短肽、多肽和胶原的六鼠均不表现 RA 的临床表现。56 只 (93%，其中 4 只在实验期间死亡) 大鼠在单独注射胶原后第 37.3±2.1 天显示关节炎症。注射 TXDC5 短肽，然后注射 BSA 替代 II 型胶原的 60 只大鼠 (100%) 均没有表现 RA 症状。没有任何注射的大鼠也均没有显示任何关节发炎症状。

[0068] 实验动物 RA 出现时间和炎症程度见图 1，图 2 和表 1。
<table>
<thead>
<tr>
<th>处理方式</th>
<th>无处理</th>
<th>TXNDC5短肽+collagen</th>
<th>α-受体阻滞剂短肽+collagen</th>
<th>TXNDC5短肽+BSA</th>
<th>BSA+胶原</th>
<th>胶原</th>
<th>BSA+BSA</th>
<th>无任何处理</th>
</tr>
</thead>
<tbody>
<tr>
<td>出现RA只数</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>55</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RA出现时间</td>
<td>未出现</td>
<td>37.2±3.6天</td>
<td>未出现</td>
<td>39.7±3.3天</td>
<td>未出现</td>
<td>未出现</td>
<td>未出现</td>
<td>未出现</td>
</tr>
<tr>
<td>炎症指数</td>
<td>未出现</td>
<td>高</td>
<td>未出现</td>
<td>高</td>
<td>未出现</td>
<td>未出现</td>
<td>未出现</td>
<td>未出现</td>
</tr>
<tr>
<td>血清抗TXNDC5水平</td>
<td>高</td>
<td>高</td>
<td>低</td>
<td>高</td>
<td>低</td>
<td>低</td>
<td>低</td>
<td>低</td>
</tr>
<tr>
<td>TXNDC5在滑膜中表达</td>
<td>高</td>
<td>高</td>
<td>低</td>
<td>高</td>
<td>低</td>
<td>低</td>
<td>低</td>
<td>低</td>
</tr>
</tbody>
</table>

[0071] 实验中用ELISA法检测大鼠血液中抗TXNDC5水平。
[0072] 结果表明，大鼠在第一次TXNDC5短肽注射后的35和77天，血液中出现高水平的抗TXNDC5抗体，在第102天后下降到正常水平（图3）。ELISA对动物血液检测还表明，VEGF水平在第一次注射后的102天明显升高。但是，相比之下，VEGF水平明显降低在注射
了 TXNDC5 寡肽的大鼠血液中却明显降低，甚至比没有治疗的大鼠低（图 4），说明该组大鼠滑膜组织内毛细血管发育程度也相对低。

[0073] 实验中用免疫组织化学方法对实验动物关节滑膜病理结构变化及 TXNDC5 表达进行了研究。在胶原注射后的大鼠滑膜组织中，滑膜明显变厚并含有大量 T 细胞，B 细胞和纤维状细胞，同时观察到大量毛细血管生成，这种状况存在于所有的注射了胶原的大鼠中，不管它们是否同时也被注射了其它短肽和或 BSA。但在那些在胶原诱导前注射了本发明所述 TXNDC5 短肽的大鼠中，它们的滑膜比较薄，与非 RA 诱导的对照组相似，同时，滑膜毛细血管也明显低于胶原 RA 诱导的大鼠。免疫组织化学在所有动物的关节滑膜中检测出 TXNDC5 的表达，该酶多在位于滑膜的表层细胞表达。然而，在注射本发明所述 TXNDC5 短肽的大鼠关节滑膜中，TXNDC5 免疫信号的强度明显低于胶原 RA 诱导对照组的水平（图 5）。

[0074] 用其他本发明所述 SEQ ID NO. 1 ~ SEQ ID NO.8 所示的氨基酸序列的短肽均获得与 SEQ ID NO.9 号短肽相似的结果。

[0075] 实验动物 RA 出现时间见表 2。

[0076] 表 2：RA 出现状况

<table>
<thead>
<tr>
<th>处理方式</th>
<th>出现 RA 只数</th>
<th>RA 出现时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ ID NO.1 号短肽</td>
<td>1</td>
<td>46 天</td>
</tr>
<tr>
<td>SEQ ID NO.2 号短肽</td>
<td>2</td>
<td>47.2±2.0 天</td>
</tr>
<tr>
<td>SEQ ID NO.3 号短肽</td>
<td>4</td>
<td>43.7±3.1 天</td>
</tr>
<tr>
<td>SEQ ID NO.4 号短肽</td>
<td>2</td>
<td>47.7±2.3 天</td>
</tr>
<tr>
<td>SEQ ID NO.5 号短肽</td>
<td>3</td>
<td>39.3±1.1 天</td>
</tr>
<tr>
<td>SEQ ID NO.6 号短肽</td>
<td>5</td>
<td>40.7±4.5 天</td>
</tr>
<tr>
<td>SEQ ID NO.7 号短肽</td>
<td>3</td>
<td>47.2±2.7 天</td>
</tr>
<tr>
<td>SEQ ID NO.8 号短肽</td>
<td>0</td>
<td>52 天</td>
</tr>
<tr>
<td>SEQ ID NO.9 号短肽</td>
<td>0</td>
<td>56 天</td>
</tr>
</tbody>
</table>
序列表

〈110〉 山东省医药生物技术研究中心

〈120〉 抗类风湿性关节炎的多肽及其在制药中的应用

〈141〉 2009-10-16

〈160〉 9

〈170〉 PatentIn version 3.3

〈210〉 1
〈211〉 14
〈212〉 PRT
〈213〉 人工序列

〈400〉 1

Arg Gly Gly Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp 1 5 10

〈210〉 2
〈211〉 14
〈212〉 PRT
〈213〉 人工序列

〈400〉 2

Arg Asp Gly Lys Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp 1 5 10

〈210〉 3
〈211〉 14
〈212〉 PRT
〈213〉 人工序列

〈400〉 3

Arg Thr Glu Thr Gly Ala Thr Glu Thr Val Thr Pro Ser Glu 1 5 10

[0002]
<table>
<thead>
<tr>
<th>210</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>14</td>
</tr>
<tr>
<td>212</td>
<td>PRT</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
</tr>
</tbody>
</table>

400 4

Pro Val Thr Pro Glu Pro Glu Val Glu Pro Pro Ser Ala Pro
1 5 10

<table>
<thead>
<tr>
<th>210</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>14</td>
</tr>
<tr>
<td>212</td>
<td>PRT</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
</tr>
</tbody>
</table>

400 5

Thr Trp Asn Asp Leu Gly Asp Lys Tyr Asn Ser Met Glu Asp
1 5 10

<table>
<thead>
<tr>
<th>210</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>14</td>
</tr>
<tr>
<td>212</td>
<td>PRT</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
</tr>
</tbody>
</table>

400 6

Lys Pro Gly Gln Glu Ala Val Lys Tyr Gln Gly Pro Arg Asp
1 5 10

<table>
<thead>
<tr>
<th>210</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>14</td>
</tr>
<tr>
<td>212</td>
<td>PRT</td>
</tr>
<tr>
<td>213</td>
<td>人工序列</td>
</tr>
</tbody>
</table>

400 7

Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro His Ser
1 5 10

[0003]
<table>
<thead>
<tr>
<th>序列项</th>
<th>序列</th>
<th>人工序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>《210》</td>
<td>8</td>
<td>人工序列</td>
</tr>
<tr>
<td>《211》</td>
<td>14</td>
<td>人工序列</td>
</tr>
<tr>
<td>《212》</td>
<td>PRT</td>
<td>人工序列</td>
</tr>
<tr>
<td>《213》</td>
<td>人工序列</td>
<td>人工序列</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列项</th>
<th>序列</th>
<th>人工序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>《400》</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>《400》</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列项</th>
<th>序列</th>
<th>人工序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr Leu Ala Pro Thr Trp Glu Glu Leu Ser Lys Lys Glu Phe</td>
<td>1 5 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>序列项</th>
<th>序列</th>
<th>人工序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Leu His Ser Phe Val Leu Arg Gln Ala Lys Asp Glu Leu</td>
<td>1 5 10</td>
<td></td>
</tr>
</tbody>
</table>
图4