发明名称
一种由四根角钢捆编组成的防屈曲支撑构件

摘要
一种由四根角钢捆编组成的防屈曲支撑构件，由十字形内核构件和外围约束构件组成。十字形内核构件由三块平行钢板焊接而成，并在其表面粘贴硬质橡胶。外围约束构件由四根角钢捆编组成。捆编作用通过对角钢分肢端部进行高强度螺栓连接实现，高强度螺栓穿过角钢分肢端部开设的螺栓孔及其在角钢之间布置的钢垫板以及若干橡胶垫片，将四根角钢连为一体。钢垫板的厚度大于十字形内核构件的板件厚度，并通过调节橡胶垫片的厚度，使得在高强度螺栓预紧力下角钢表面上与十字形内核构件表面间保持1mm～2mm的间隙，该间隙由粘贴在十字形内核构件表面的硬质橡胶填充，以满足十字形内核构件受压膨胀的需要。
1. 一种由四根角钢捆绑组成的防屈曲支撑构件，其特征在于，由以下部件组成：十字形内核构件、四根等边角钢、硬质橡胶、加劲板、钢垫板、橡胶垫片、高强度螺栓。

2. 根据权利要求1所述的防屈曲支撑构件，其特征在于，所述十字形内核构件由两块较窄的平钢板与一块较宽的平钢板通过焊接组成；在十字形内核构件的被四根角钢包裹的区域表面粘贴硬质橡胶。

3. 根据权利要求1所述的防屈曲支撑构件，其特征在于，所述等边角钢共四根，其尺寸均相同，其边长大于内核十字形构件的边长，其长度小于内核十字形构件的长度；沿着等边角钢的长度方向在其内侧焊接三角形加劲板，用于提高角钢的抗截面畸变能力与约束刚度；在四根等边角钢的双肢端部的相对应的位置处分别开螺栓孔。

4. 根据权利要求1所述的防屈曲支撑构件，其特征在于，所述四根等边角钢分别置于十字形内核构件的四个凹角处，并使得十字形内核构件在两端外伸的构件段的长度相同，同时保持等边角钢的两分肢分别与十字形内核构件的两个方向的板件平行并毗邻，并使得相邻等边角钢分肢端部的螺栓孔对齐；在不同等边角钢的分肢之间开有螺栓孔的位置放置钢垫板，并在钢垫板与角钢之间放置橡胶垫片；高强度螺栓穿过等边角钢分肢端部上的螺栓孔，橡胶垫片与钢垫板，通过施加螺栓预紧力将四根等边角钢连为一体，形成十字形内核构件的外围约束构件；钢垫板的厚度大于十字形内核构件的板件厚度，并通过调节橡胶垫片的厚度，使得在高强度螺栓的预紧力作用下等边角钢的表面与十字形内核构件的表面间形成1mm～2mm的间隙，此间隙由粘贴在十字形内核构件表面的硬质橡胶填充。
一种由四根角钢捆绑组成的防屈曲支撑构件

技术领域
[0001] 本发明涉及一种新型防屈曲支撑构件，属于结构工程技术领域。

技术背景
[0002] 防屈曲支撑是一种新型抗侧力构件，在结构抗震设计中具有消能减震作用。在小震作用下，防屈曲支撑构件保持弹性，为主体结构提供足够的抗侧刚度；在中震和大震作用下，防屈曲支撑构件的内核构件率先进入屈服，对主体框架起到保护的作用，并消耗大量的地震输入能量。日本阪神地震与美国北岭地震后，防屈曲支撑构件在美、日等多震的发达国家得到了快速的推广应用。近几年来，防屈曲支撑构件在我国的大型建筑结构也开始得到应用，尤其是在地震设防烈度较高的区域，防屈曲支撑构件被视为最好的消能减震构件之一。

[0003] 防屈曲支撑构件一般由内核构件与外周约束构件两部分组成。根据其外周约束材料以及组合情况可分为三类，即钢筋混凝土外围约束截面，钢与混凝土组合外围约束截面（一般钢管外径，混凝土内径且混凝土与内核之间通过隔离剂分离），全钢装配式外围约束截面。受压内核构件的材料一般为低屈服点高延性钢材，内核截面形式多为“一”字形或“十”字形。一般在内核构件表面涂装特制的无粘结材料，而且在外围构件表面与内核构件表面之间预留一定的间隙，以防止内核构件受压时产生横向膨胀而被塞死。

[0004] 通常采用的钢筋混凝土外围约束截面以及钢与混凝土组合外围约束截面主要存在以下缺点：首先，这类构件的制作精度要求高，进而导致制作费用增加，特别是在浇注混凝土时，很难保证内核构件与外围约束构件间的预留间隙满足精度方面的要求，其次，浇注混凝土等湿作业给制作与施工带来了影响，其精度控制难度大；第三，涂装在内核构件表面的隔离材料多采用环氧树脂，品种单一，其耐久性差，易于从内核表面脱落。作者也曾经提出一种全钢装配式防屈曲支撑构件 [200910081817.5]，采用四根槽形截面热轧型钢捆绑进来进而约束一根“一”字形内核构件，但由于内核构件面积较小，屈服荷载有限，还不能满足工程上日益需要的截面种类与超大支撑力的要求。

[0005] 为解决上述问题，本专利提出了一种由四根角钢捆绑组成的防屈曲支撑构件。其外围约束截面由四个等边热轧角形型钢捆绑组成，并沿纵向在其外侧配置一定数量的加劲肋，以提高角钢抗截面畸变的能力与约束刚度；内核构件采用十字形截面，由三块板焊接而成。角钢的捆绑作用是通过在其分肢端部的高强螺栓连接而实现的，相邻角钢之间设置能穿过高强度螺栓的钢垫板，以保证高强度螺栓预拉力不直接传递到内核构件上。钢垫板的厚度须大于内核构件板件的厚度，在钢垫板与角钢之间设置若干个橡胶垫片，以便调节两个外围角钢之间的连接间距，弥补构件制作与安装时产生的几何偏差。外围约束构件与内核构件的表面之间采用硬质橡胶隔离，其厚度控制在 1mm ～ 2mm，方可满足内核构件受压膨胀量的要求。

[0006] 本发明的优点主要表现在以下几个方面：

[0007] 1. 内核构件与外围约束构件采用现场装配，施工方便且节约成本；
发明内容

【0012】本发明提出一种由四根角钢互串组成的防屈曲支撑构件，旨在提供一种具备更大承载应力且加工简单方便的新型全钢装配方式支承消能构件，为结构提供抗侧力，并在中震和大灾作用下保护主体框架结构并有效耗能。

【0013】一种由四根角钢互串组成的防屈曲支撑构件由以下部件组成：十字形内核构件、四根等边角钢、厚板橡胶、钢板、橡胶垫片、高强度螺栓。

【0014】其中，十字形内核构件由两块较宽的平钢板与一块较宽的平钢板通过焊接组成；在十字形内核构件的被四根角钢包裹的区域表面粘贴厚板橡胶。

【0015】等边角钢共四根，其尺寸均相同，其边长大于内核十字形构件的边长，其长度小于内核十字形构件的长度，沿着等边角钢的长度方向在其内侧焊接三角形加劲板，用于提高角钢的抗弯剪变能力与约束刚度，在四根等边角钢的双肢端部相对应的位置处分别开螺栓孔。

【0016】四根等边角钢分别置于十字形内核构件的四个四角处，并使得十字形内核构件在两端外伸的构件段的长度相同，保持等边角钢的五分段与与十字形内核构件的两个方向的板件平行并毗，使得相邻等边角钢分肢端部的螺栓孔对齐；在不同等边角钢的分支之间开有螺栓孔的位置放置钢板，并在钢垫板与角钢之间放置橡胶垫片；高强度螺栓穿过等边角钢分肢端部上的螺栓孔，橡胶垫片与钢垫板，通过施加螺栓预紧力将四根等边角钢连为一体，形成十字形内核构件的外围约束构件；钢垫板的厚度大于十字形内核构件的板件厚度，并通过调节橡胶垫片的厚度，使得在高角度螺栓的预紧力作用下等边角钢的表面与十字形内核构件的表面间形成1mm～2mm的间隙，此间隙由粘贴在十字形内核构件表面的橡胶填塞。

【0017】所述防屈曲支撑构件的十字形内核构件在端部外扩，其与框架结构的连接通过连接板及高强度螺栓按照图示做法实现。

附图说明

【0018】图1为一种由四根角钢互串组成的防屈曲支撑构件的截面图；

【0019】图2为十字形内核构件的截面分解图；

【0020】图3为角钢分肢端部的螺栓连接的分解图；

【0021】图4为一种由四根角钢互串组成的防屈曲支撑构件的三维图；

【0022】图5为一种由四根角钢互串组成的防屈曲支撑构件的三维分解图；
具体实施方式
[0023] 下面结合附图 1 ～ 5，详细说明本专利的实施方式。
[0024] 如图 1 所示，一种由四根角钢捆绑组成的防屈曲支撑构件包括以下部件：
[0025] 1 —— 十字形内核构件；
[0026] 2 —— 等边角钢，四根；
[0027] 3 —— 硬质橡胶；
[0028] 4 —— 加劲板；
[0029] 5 —— 钢垫板；
[0030] 6 —— 橡胶垫片；
[0031] 7 —— 高强度螺栓；
[0032] 如图 2 所示，十字形内核构件 (1) 由两块较窄的平钢板 (8)、(9) 与一块较宽的平钢板 (10) 通过焊接组成；如图 2、5 所示，在十字形内核构件 (1) 的被四根角钢包围的区域表面粘贴硬质橡胶 (3)；
[0033] 如图 1、4、5 所示，等边角钢 (2) 共四根，其尺寸均相同，其边长大于内核十字形构件 (1) 的边长，其长度小于内核十字形构件 (1) 的长度；如图 5 所示，沿着等边角钢 (2) 的长度方向在其内侧焊接三角形加劲板 (4)，用于提高角钢截面的抗剪变能力与约束刚度；如图 5 所示，在四根等边角钢的双肢端部的相对应的位置处分别开螺栓孔 (11)；
[0034] 如图 1、4、5 所示，四根等边角钢 (2) 分别置于十字形内核构件 (1) 的四个四角处，并使得十字形内核构件 (1) 在两端外伸的构件段的长度相同，保持等边角钢的两分枝分别与十字形内核构件 (1) 的两个方向的板件平行并居联，并使得相邻等边角钢分肢端部的螺栓孔对齐；如图 1、3 所示，在不同等边角钢的分肢之间开有螺栓孔 (11) 的位置放置钢垫板 (5)，并在钢垫板 (5) 与等边角钢 (2) 之间放置橡胶垫片 (6)；高强度螺栓 (7) 穿过等边角钢分肢端部上的螺栓孔 (11)、橡胶垫片 (6) 与钢垫板 (5)，通过施加螺栓预紧力将四根等边角钢连为整体，形成十字形内核构件 (1) 的外围约束构件；钢垫板 (5) 的厚度大于十字形内核构件 (1) 的板件厚度，并通过调节橡胶垫片 (5) 的厚度，使得在高强度螺栓的预紧力作用下等边角钢 (2) 的表面与十字形内核构件 (1) 的表面间形成 1mm ～ 2mm 的间隙，此间隙由粘贴在十字形内核构件 (1) 表面的硬质橡胶 (3) 填充；
[0035] 如图 4、5 所示，所述防屈曲支撑构件的十字形内核构件 1 在端部外扩，其与框架结构的连接通过连接板及高强度螺栓按照通用做法实现。
[0036] 对这种由四根角钢捆绑组成的防屈曲支撑构件的设计主要包括以下两个方面：
[0037] 1、外围约束构件与内核构件约束比要求：约束比 \(\zeta \) 定义为防屈曲支撑整体弹性屈曲荷载与内核构件屈服荷载的比值：
\[
\zeta = \frac{\pi^2 (E_1 I_1 + E_2 I_2)}{A_t f_{y1}} / L^2
\]
[0038] 其中，\(E_1 I_1 \) 为内核构件的弯曲刚度，\(E_2 I_2 \) 为外围约束构件的弯曲刚度，\(L \) 为支撑的长度，\(A_t \) 为内核构件的截面面积，\(f_{y1} \) 为内核构件的钢材屈服强度；取 \(\zeta \) 在 1.8 ～ 2.0 之间，就能保证外围约束构件对内核构件产生足够的约束作用；
[0039] 2、外围约束构件的捆绑作用要求：外围约束构件之间的连接须有一定的强度与刚
度要求，即连接螺栓的大小以及螺栓设置的间距须满足一定要求，以防止在内核压力达到屈服时外围构件之间的连接破坏而导致其捆绑作用失效。

【0041】高强螺栓连接的计算原则是：在考虑防屈曲支撑构件具有一定几何初始缺陷的情况下，其内核构件在反复荷载作用下不仅具有完整饱满以及一定循环次数的滞回曲线，而且内核构件对外围约束构件的作用力不致使得外围约束构件的捆绑作用失效。
图 5