TORSIONAL OSCILLATION DAMPER FOR A VIBRATING MEASURING TRANSFORMER

TORSIONSCHWINGUNGS-TILGER FÜR EINEN MESSWANDLER VOM VIBRATIONSTYP

In order to guide a liquid, a measuring transformer comprises a measuring tube (10) which vibrates in operation and is driven by an excitation arrangement (40). Oscillations on the inlet side and outlet side of the tube are detected by means of a sensor arrangement (50). In order to produce shearing forces in the liquid, the measuring tube (10) is at least temporarily excited during operation in order to create torsional oscillations about an imaginary measuring tube longitudinal axis (L). Said measuring transformer also comprises a torsional oscillation damper (60) which is fixed to the measuring tube (10) and, during operation, oscillates with the torsionally oscillating measuring tube (10). In this way, counter-forces are created at least partially compensating the torsional torque created in the vibrating measuring tube (10). Said measuring transformer is characterised, inter alia, in that, during operation, it is largely dynamically counterbalanced even in the event of varying liquid densities or viscosity.

Zusammenfassung: Zum Führen eines Fluids weist der Messwandler ein, angetrieben von einer Erregeranordnung (40), im Betrieb vibrierendes Messrohr (10) auf, von dem einlassseitige und ausselseitige Schwingungen mittels einer Sensoranordnung (50) erfasst werden. Zum Erzeugen von Scherkräften im Fluid, wird das Messrohr (10) im Betrieb zumindest zeitweise zu Torsionschwingungen um eine gedachte Messrohrachse (L) angereg. Der Messwandler umfasst ferner einen am Messrohr (10) fixierten Torsionschwingungs-Tilger (60), der im Betrieb mit dem torsions-schwingenden Messrohr (10) mitschwingen gelassen wird, wodurch Gegenmoment erzeugt, die im vibrierenden Messrohr (10) erzeugte Torsionsmomente zumindest teilweise kompensieren. Der vorgeschlagene Messwandler zeichnet sich u.a. dadurch aus, dass er im Betrieb auch bei schwankender Fluiddichte oder Viskosität weitgehend dynamisch ausbalanciert ist.
Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Die Erfindung betrifft einen, insb. für eine Verwendung in einem Viskositätsmesser, einem Viskositäts-/Dichtemesser oder einem Viskositäts-/Massendurchflußmesser geeigneten, Meßwandler vom Vibrationstyp.

- ein einziges gerades, im Betrieb vibrierendes Meßrohr zum Führen des Fluids, welches Meßrohr über ein einlaßseitig einmündendes Einlaßrohrstück und über ein auslaßseitig einmündendes Auslaßrohrstück mit der Rohrleitung kommuniziert, sowie
- eine Erregeranordnung, die das Meßrohr im Betrieb zumindest anteilig zu Torsionsschwingungen um eine mit dem Meßrohr fluchende Schwingungsachse anregt
- eine Sensoranordnung zum örtlichen Erfassen von Vibrationen des Meßrohres.

Gerade Meßrohre bewirken bekanntlich, zu Torsionsschwingungen um eine mit dem Meßrohr fluchende Schwingungsachse angeregt, daß im

Demgegenüber besteht ein wesentlicher Nachteil vorbeschriebener Meßwandler darin, daß im Meßbetrieb via Meßrohr und ein ggf. vorhandenes Wandlergehäuse Torsionsschwingungen vom Meßwandler auf die angeschlossene Rohrleitung übertragen werden können, was wiederum zu einer Veränderung des kalibrierten Nullpunkts und somit zu Ungenauigkeiten im Meßergebnis führen kann. Desweiteren kann das Auskoppeln von Schwingungsenergie in die Umgebung des Meßwandlers zu einer erheblichen Verschlechterung des Wirkungsgrades und ggf. auch zur Verschlechterung des Signal-zu-Rausch-Verhältnisses im Meßsignal führen.

Ein Aufgabe der Erfindung besteht daher darin, einen, insb. für einen Viskositätssmesser geeigneten, Meßwandler vom Vibrationstyp anzugeben, der, auch bei einer Verwendung nur eines einzigen, insb. geraden, Meßrohrs, im Betrieb über einen weiten Fluiddichtebereich dynamisch gut ausbalanciert ist und der trotzdem von vergleichsweise geringer Masse ist.

Rohrleitung wird der Torsionschwingungs-Tilger im Betrieb zumindest anteilig außerphasig zum torsions-schwingenden Meßrohr schwingen gelassen.

Nach einer bevorzugten ersten Ausgestaltung der Erfindung ist der vibrierende Torsionschwingungs-Tilger lediglich vom vibrierenden Meßrohr angetrieben.

Nach einer bevorzugten zweiten Ausgestaltung der Erfindung ist der Torsionsschwingungs-Tilger einlaßseitig und auslaßseitig am Meßrohr fixiert.

Nach einer bevorzugten dritten Ausgestaltung der Erfindung weist der Torsionsschwingungs-Tilger eine Torsionseigenfrequenz auf, die größer als das 0,8-fache der Meßrohrschwingfrequenz ist.

Nach einer bevorzugten vierten Ausgestaltung der Erfindung weist der Torsionsschwingungs-Tilger eine Torsionseigenfrequenz auf, die kleiner als das 1,2-fache der Meßrohrschwingfrequenz ist.

Nach einer bevorzugten fünften Ausgestaltung der Erfindung ist der Torsionsschwingungs-Tilger mittels eines einlaßseitigen Teil-Tilgers und mittels eines auslaßseitigen Teil-Tilgers gebildet.

Nach einer bevorzugten sechsten Ausgestaltung der Erfindung umfaßt der Meßwandler ein einlaßseitig und auslaßseitig mit dem Meßrohr gekoppeltes Wandergehäuse.

Nach einer bevorzugten siebenten Ausgestaltung der Erfindung umfaßt der Torsionsschwingungs-Tilger ein einlaßseitig und auslaßseitig am Meßrohr fixierten, insb. mit Meßrohr fluchtenden, Gegenschwinger.

Nach einer bevorzugten achten Ausgestaltung der Erfindung sind am Meßrohr Zusatzmassen vorgesehen.
Ein Grundgedanke der Erfindung besteht darin, seitens des torsionsschwingenden Meßrohrs erzeugte Torsionsmomente dadurch dynamisch zu kompensieren, daß seitens des, insb. lediglich vom Meßrohr angetriebenen, tordierenden Torsionsschwingungs-Tiler möglichst gleich große Gegen-Torsionsmomente erzeugt wird.

Ein Vorteil der Erfindung besteht darin, daß der Meßwandler trotz allfälliger, betriebsbedingter Schwankungen der Dichte und/oder der Viskosität im Fluid, auf einfache und robuste Weise so ausbalanciert ist, daß innere Torsionsmomente von der angeschlossenen Rohrleitung weitgehend fern gehalten werden können. Der erfindungsgemäße Meßwandler zeichnet sich des weiteren dadurch aus, daß er aufgrund dieser konstruktiv sehr einfachen Schwingungsentkopplung zum einen sehr kompakt und zum anderen sehr leicht ausgeführt werden kann.

Fig. 1 zeigt ein in eine Rohrleitung einfügbares Meßgerät zum Messen einer Viskosität eines in der Rohrleitung geführten Fluids,

Fig. 2 zeigt ein Ausführungsbeispiel für einen für das Meßgerät von Fig. 1 geeigneten Meßwandler vom Vibrations-Typ in einer perspektivischen Seitenansicht,

Fig. 3 zeigt den Meßwandler von Fig. 2 geschnitten in einer Seitenansicht,
Fig. 4 zeigt den Meßwandler von Fig. 2 in einem ersten Querschnitt,

Fig. 5 zeigt den Meßwandler von Fig. 2 in einem zweiten Querschnitt,

Fig. 6 zeigt ein weiteres Ausführungsbeispiele für einen für das Meßgerät von Fig. 1 geeigneten Meßwandler vom Vibrations-Typ geschnitten in einer Seitenansicht und

Fig. 7 zeigt schematisch Biegelinien des Meßrohrs und eines Gegenschwingers in einem lateralen Biegeschwingungsmodus oszillierend.

In der Fig. 1 ist ein in eine - hier nicht gezeigte - Rohrleitung einfügbares Meßgerät zum Messen einer Viskosität eines in der Rohrleitung geführten Fluids dargestellt. Darüber hinaus ist das Meßgerät bevorzugt auch zur Messung eines Massendurchflusses und/oder einer Dichte des Fluids vorgesehen. Das Meßgerät umfaßt einen Meßwandler vom Vibrationstyp der im Betrieb vom zu messenden Fluid durchströmten. In den Fig. 2 bis 6 sind entsprechende Ausführungsbeispiele und Ausgestaltungen für solche Meßwandler vom Vibrationstyp schematisch dargestellt.

Zum Führen des Fluids umfaßt der Meßwandler ein, insb. einziges, im wesentlichen gerades Meßrohr 10, das im Betrieb, zumindest zeitweise um ein Meßrohrlängsachse Torsionsschwingungen ausführend, wiederholt elastisch verformt wird.

Für den Fall, daß der Meßwandler lösbar mit der Rohrleitung zu montieren ist, ist dem Einlaßrohrstück 11 und dem Auslaßrohrstück 12 bevorzugt jeweils ein erster bzw. zweiter Flansch 13, 14 angeformt; falls erforderlich können Ein- und Auslaßrohrstück 11, 12 aber auch direkt mit der Rohrleitung, z.B. mittels Schweißen oder Hartlöten, verbunden werden.

Ferner ist, wie in den Fig. 1 schematisch dargestellt, am Ein- und am Auslaßrohrstück 11, 12 ein äußere Tragsystem 100 fixiert, das, bevorzugt auch als ein das Meßrohr 10 aufnehmendes oder umhüllendes Wandergehäuse ausgestaltet sein kann, vgl. Fig. 1 und 3.

Bevorzugt wird das Messrohr 10 dabei im Betrieb mit einer Torsionsschwingungs-Frequenz f_{exc} angeregt, die möglichst genau einer natürlichen Resonanzfrequenz eines Grund-Torsionseigenmodes entspricht, bei dem das tordierende Messrohr 10 über seine gesamte Länge im wesentlichen gleichgerichtet verdreht wird. Eine natürliche Resonanzfrequenz dieses Grund-Torsionseigenmodes kann bei einem als Messrohr 10 dienenden Edelstahlrohr mit einer Nennweite von 20 mm, einer Wandstärke von etwa 1,2 mm und einer Länge von etwa 350 mm sowie allfälligen Anbauten (s. u.), beispielsweise bei etwa 1500 Hz bis 2000 Hz liegen.

Nach einer bevorzugten Weiterbildung der Erfindung wird das Messrohr 10 im Betrieb des Messwandlers zusätzlich zu den Torsionsschwingungen, insb. simultan zu diesen, zu Biegeschwingungen so angeregt, daß es sich im wesentlichen gemäß einer natürlichen ersten Biegeschwingungsform ausbiegt. Bevorzugt wird das Messrohr 10 dazu mit einer Biegeschwingungs-Frequenz f_{excB} angeregt, die möglichst genau einer niedrigsten natürlichen Biege-Resonanzfrequenz des Messrohrs 10 entspricht, so daß also das vibrierende, jedoch nicht vom Fluid durchströmte Messrohr 10, wie in Fig. 7a, 7b schematisch dargestellt, bezüglich einer zur Längsachse senkrechten Mittelachse im wesentlichen symmetrisch ausgebogen wird und dabei einen einzigen Schwingungsbauch aufweist. Diese niedrigste Biege-Resonanzfrequenz kann beispielsweise bei einem als Messrohr 10 dienenden Edelstahlrohr mit einer Nennweite von 20 mm, einer Wandstärke von etwa 1,2 mm und einer Länge von etwa 350 mm sowie den üblichen Anbauten bei etwa 850 Hz bis 900 Hz liegen.

Für den Fall, daß das Fluid in der Rohrleitung strömt und somit ein Massendurchfluß m von Null verschieden ist, werden so mittels biegeschwingenden Messrohrs 10 im hindurchströmenden Fluid Corioliskräge induziert. Diese wiederum wirken auf das Messrohr 10 zurück und bewirken so eine zusätzliche, sensorisch erfassbare, hier jedoch nicht dargestellte, Verformung des Messrohrs 10 gemäß einer natürlichen zweiten

Zum Erzeugen mechanischer Schwingungen des Meßrohrs 10 umfaßt der Meßwandler ferner eine, insb. elektrodynamische, Erregeranordnung 40. Diese dient dazu, eine von einer, hier nicht dargestellten, Steuer-Elektronik eingespeiste, elektrische Erregerenergie \(E_{exc} \), z.B. mit einem geregelten Strom und/oder einer geregelten Spannung, in ein auf das Meßrohr 10, z.B. pulsformig oder harmonisch, einwirkendes und dieses in der vorbeschriebenen Weise elastisch verformendes Erregermoment \(M_{exc} \) und ggf. eine laterale wirkende Erregerkraft \(F_{exc} \) umzuwandeln. Das Erregermoment \(M_{exc} \) kann hierbei, wie in Fig. 4 oder 6 schematisch dargestellt, bidirektional oder aber auch unidirektional ausgebildet sein und in der dem Fachmann bekannten Weise z.B. mittels einer Strom- und/oder Spannungs-Regelschaltung, hinsichtlich ihrer Amplitude und, z.B. mittels einer Phasen-Regelschleife, hinsichtlich ihrer Frequenz eingestellt werden. Abgeleitet von der zum Aufrechterhalten der Torsionsschwingungen und ggf. auch der Biegeschwingungen des Meßrohrs 10 erforderlichen elektrischen Erregerenergie \(E_{exc} \), kann in der dem Fachmann bekannten Weise die Viskosität des Fluids ermittelt werden, vgl. hierzu im besonderen die US-A 45 24 610, die US-A 52 53 533, die US-A 60 06 609 oder die EP-A 1 158 289.

Als Erregeranordnung 40 kann z.B. eine einfache Tauchspulenanordnung mit einer am Wandlergehäuse 100 befestigten zylindrischen Erregerspule, die im Betrieb von einem entsprechenden Erregerstrom durchflossen ist, und mit einem in die Erregerspule zumindest teilweise eintauchenden dauermagnetischen Anker, der von außen exzentrisch, insb. mittig, am

Zum Detektieren von Schwingungen des Meßrohrs 10 kann z.B. eine für derartige Meßwandler übliche Sensoranordnung verwendet werden, bei der in der dem Fachmann bekannten Weise mittels wenigstens eines ersten Sensors 51, vorzugsweise aber auch mittels eines zweiten Sensors 52 die Bewegungen des Meßrohrs 10, insb. einlaßseitig und auslaßseitig, erfaßt und in entsprechende Sensorsignale S_1, S_2 umgewandelt werden. Als Sensoren 51, 52 können z.B., wie in Fig. 2, 3 oder 5 schematisch dargestellt, die Schwingungen relativ messende, elektrodynamische Geschwindigkeitssensoren oder aber elektrodynamische Wegsensoren oder Beschleunigungssensoren verwendet werden. Anstelle elektrodynamischer Sensoranordnungen können ferner auch mittels resistiver oder piezo-elektrischer Dehnungsmeßstreifen messende oder opto-elektronische Sensoranordnungen zum Detektieren der Schwingungen des Meßrohrs 10 dienen.

Wie bereits erwähnt, werden die Torsionsschwingungen einerseits durch eine erwünschte und, insb. zum Zwecke der Viskositätsmessung, sensorisch erfaßte Energieabgabe an das Fluid bedämpft. Andererseits aber kann dem vibrierenden Meßrohr 10 auch dadurch Schwingungsenergie entzogen werden, daß mit diesem mechanisch gekoppelte Bauteile, wie z.B. das Wandergehäuse 100 oder die angeschlossene Rohrleitung, ebenfalls zu Schwingungen angeregt werden. Während die, wenn auch unerwünschte, Energieabgabe an das Gehäuse 100 noch kalibrierbar wäre, so erfolgt jedoch zumindest die Energieabgabe an die Umgebung des Meßwandlers, insb. die Rohrleitung, in einer praktisch nicht mehr reproduzierer- oder sogar nicht vorherbestimmten Weise.

Zum Zwecke der Unterdrückung einer solchen Abgabe von Torsions-Schwingungsenergie an die Umgebung umfaßt der Meßwandler ferner einen
einlaßseitig und auslaßseitig am Meßrohr 10 fixierten Torsionsschwingungs-
 Tilger 60. Der Torsionsschwingungs-Tilger 60 dient erfindungsgemäß dazu,
 vom um seine Längsachse L tordierenden einzigen Meßrohr 10 abgegebene
 Torsionsschwingungs-Energie zumindest anteilig aufzunehmen und so von
 der Umgebung des Meßwandlers, insb. aber von der angeschlossenen
 Rohrleitung, fern zu halten. Dazu ist der Torsionsschwingungs-Tilger mit
 wenigstens einer seiner Torsions-Resonanzfrequenzen, beispielsweise einer
 niedrigsten, möglichst genau auf die Torsionsschwingungs-Frequenz \(f_{\text{excT}} \)
 abgestimmt, mit der das Meßrohres 10 im Betrieb überwiegend schwingen
 gelassen wird. Somit kann erreicht werden, daß der Torsionsschwingungs-
 Tilger 60 zumindest anteilig Torsionsschwingungen ausführt, die
 außerphasig, insb. gegenphasig, zu Torsionsschwingungen des Meßrohrs 10
 liegen.

15 Überdies kann der Torsionsschwingungs-Tilger so auf das Meßrohr 10
 abgestimmt und so daran fixiert sein, daß das Einlaßrohrstück 11 und das
 Auslaßrohrstück 12 auch bei torsionsschwingendem Torsionsschwingungs-
 Tilger 60 von Torsionsspannungen weitgehend frei gehalten sind.

20 Die Verwendung eines solchen Torsionsschwingung-Tilgers beruht insb. auf
 der Erkenntnis, daß das in der oben beschriebenen Weise schwingen
 gelassene Meßrohr 10 wenigstens eine Torsions-Resonanzfrequenz
 aufweist, die - im Gegensatz z.B. zu dessen Biege-Resonanzfrequenzen - in
 einem nur sehr geringen Maße mit der Dichte oder der Viskosität des Fluids
 korreliert ist, und die somit ohne weiteres im Betrieb weitestgehend konstant
 gehalten werden kann. Dementsprechend kann ein derartiger
 Torsionsschwingung-Tilger bereits vorab mit wenigstens einer seiner
 Torsions-Resonanzfrequenzen vergleichsweise genau auf die im Betrieb zu
 erwartende Torsions-Resonanzfrequenz des Meßrohrs abgestimmt werden.

30 Zumindest für den oben beschriebene Fall, daß die Erregeranordnung 40 mit
dem Meßrohr 10 und dem Wandlergehäuse 100 verbunden ist, wird der
schwingende Torsionsschwingungs-Tilger indirekt, und zwar praktisch
ausschließlich vom vibrierenden Meßrohr 10, angetrieben.

Die beiden Teil-Tilger 61, 62 sind nach einer bevorzugten Ausgestaltung der Erfindung, wie in den Fig. 7a und 7b schematisch dargestellt, auslegeraufgeformt und so im Meßwandler angeordnet, daß ein Masseschwerpunkt M_{61} des einlaßseitigen Teil-Tilgers bzw. ein Masseschwerpunkt M_{62} des
auslaßseitigen Teil-Tilgers vom Meßrohr 10, insb. in dessen Flucht liegend, beabstandet ist. Auf diese Weise können mittels der beiden Teil-Tilger 61, 62 exzentrisch, also nicht im zugehörigen Massenschwerpunkt M₆₁ bzw. M₆₂, an der jeweiligen Fixierstelle, nämlich einem Einlaßende 11⁰ des Meßrohrs 10 bzw. einem Auslaßende 12⁰ des Meßrohrs 10, angreifende Massenträgheitsmomente geschaffen werden. Dies hat insb. den Vorteil, daß für den Fall, daß das Meßrohr 10, wie oben erwähnt, biegeschwungen gelassen wird, lateral wirkende Trägheitskräfte zumindest teilweise kompensiert werden können, vgl. hierzu insb. die eigene, nicht vorveröffentlichte internationale Patentanmeldung PCT/EP02/02157.

Der Gegenschwinger 20 kann, wie in den Fig. 2 und 3 schematisch dargestellt, rohrförmig ausgeführt und beispielsweise so am Einlaßende 11⁰ und am Auslaßende 12⁰ mit dem Meßrohr 10 verbunden sein, daß er, wie in Fig. 3 gezeigt, im wesentlichen koaxial zum Meßrohr 10 ausgerichtet ist. Als Material für den Gegenschwinger 20 kommen praktisch dieselben Materialien in Frage, wie sie auch für das Meßrohr 10 verwendbar sind, also Edelstahl, Titan etc.

Bei dieser Weiterbildung der Erfindung ist die Erregeranordnung 40, wie auch in Fig. 2 gezeigt, in vorteilhafter Weise so ausgebildet und so im Meßwandler angeordnet, daß sie im Betrieb gleichzeitig, insb. differenziell, auf Meßrohr 10 und Gegenschwinger 20 wirkt. Im in der Fig. 4 gezeigten Ausführungsbeispiel weist die Erregeranordnung 40 dazu wenigstens eine im Betrieb zumindest zeitweise vom Erregerstrom oder einem Erregerteilstrom durchflossene erste Erregerspule 41a auf, die an einem mit dem Meßrohr 10
verbundenen Hebel 41c fixiert ist und über diesen und einen von außen am Gegenschwinger 20 fixierten Anker 41b differentiell auf das Meßrohr 10 und den Gegenschwinger 20 einwirkt. Diese Anordnung hat u.a. auch den Vorteil, daß einerseits der Gegenschwinger 20 und somit auch das Wandlergehäuse 100 im Querschnitt klein gehalten und trotzdem die Erregerspule 41a, insb. auch bei der Montage, leicht zugänglich ist. Darüber hinaus besteht eine weiterer Vorteil dieser Ausgestaltung der Erregeranordnung 40 auch darin, daß allfällig verwendete, insb. bei Nennweiten von über 80 mm nicht mehr vernachlässigbar schwere, Spulenbecher 41d ebenfalls am Gegenschwinger 20 fixierbar sind und somit praktisch keinen Einfluß auf die Resonanzfrequenzen des Meßrohrs 10 haben. Es sei jedoch an dieser Stelle darauf hingewiesen, daß falls erforderlich, die Erregerspule 41a auch vom Gegenschwinger 20 und dementsprechend der Anker 41b vom Meßrohr 10 gehalten werden können.

In entsprechender Weise kann auch die Sensoranordnung 50 so ausgelegt und im Meßwandler angeordnet sein, daß durch sie die Vibrationen von Meßrohr 10 und Gegenschwinger 20 differentiell erfaßt werden. Im in der Fig. 5 gezeigten Ausführungsbeispiel umfaßt die Sensoranordnung 50 eine am Meßrohr 10 fixierte, hier außerhalb sämtlicher Trägheitshauptachsen der Sensoranordnung 50 angeordnete, Sensorspule 51a. Die Sensorspule 51a ist möglichst nah zu einem am Gegenschwinger 20 fixierten Anker 51b angeordnet und mit diesem magnetisch so gekoppelt, daß in der Sensorspule eine durch rotatorische und/oder laterale, ihre relative Lage und/oder ihren relativen Abstand verändernde Relativbewegungen zwischen Meßrohr 10 und Gegenschwinger 20 beinflußte, veränderliche Meßspannung induziert wird. Aufgrund einer solchen Anordnung der Sensorspule 51a können in vorteilhafter Weise gleichzeitig sowohl die oben genannten Torsionsschwingungen als auch die ggf. angeregten Biegeschwingungen erfaßt werden. Falls erforderlich können die Sensorspule 51a dazu aber auch am Gegenschwinger 20 und in entsprechender Weise der mit dieser gekoppelte Anker 51b am Meßrohr 10 fixiert sein.
Für den oben beschriebenen Fall, daß das Meßrohr 10 im Betrieb zusätzlich zu Biegeschwingungen angeregt wird, kann der Gegenschwinger 20 weiter dazu dienen, den Meßwandler für genau einen vorherbestimmten, z.B. einen im Betrieb des Meßwandlers am häufigsten zu erwartenden oder auch kritischen Fluiddichtewert soweit dynamisch auszubalancieren, daß im vibrierenden Meßrohr 10 allfällig erzeugte Querkräfte zumindest zeitweise vollständig kompensiert werden und letzteres dann seine statische Ruhelage praktisch nicht verläßt, vgl. Fig. 7a, 7b. Dementsprechend wird der Gegenschwinger 20, wie in Fig. 7b schematisch dargestellt, im Betrieb des Meßwandlers ebenfalls zu Biegeschwingungen angeregt, die im wesentlichen koplanar zu den Biegeschwingungen des Meßrohrs 10 ausgebildet sind.

Nach einer weiteren bevorzugten Ausgestaltung der Erfindung weist der Gegenschwinger 20 eine niedrigste Torsions-Resonanzfrequenz \(f_{20} \) auf die von einer jeweiligen Torsions-Resonanzfrequenz \(f_{61}, f_{62} \) des Teil-Tilgers 61 bzw. 62 jeweils verschieden ist. Vorzugsweise ist die Torsions-Resonanzfrequenz \(f_{20} \) des Gegenschwingers 20 dabei so eingestellt, daß sie im wesentlichen gleich der Torsionsschwingungs-Frequenz \(f_{\text{excT}} \) ist, auf der das Meßrohr 10 im Betrieb angeregt wird. Dies führt dazu, daß das Meßrohr 10 und der Gegenschwinger 20 zueinander außerphasig torsionsschwingen, und zwar im wesentlichen gegenphasig. In vorteilhafter Weise weist der Gegenschwinger 20 zumindest für diesen Fall eine dem Meßrohr 10 ähnliche oder gleiche Torsionssteifigkeit oder auch Torsionselastizität auf. Es hat sich jedoch auch als vorteilhaft erwiesen, die Torsions-Resonanzfrequenzen \(f_{61}, f_{62} \) der beiden Teil-Tilger 61 bzw. 62 so einzustellen, daß sie im
wesentlichen gleich der Torsionsschwingungs-Frequenz \(f_{\text{exct}} \) sind. Für diesen Fall ist die Torsions-Resonanzfrequenz \(f_{20} \) des Gegenschwingers 20 vorzugsweise so gewählt, daß sie unterhalb oder oberhalb der zu erwartenden Torsionsschwingungs-Frequenz \(f_{\text{exct}} \) liegt.

Falls erforderlich, kann der Gegenschwinger 20 auch, wie z.B. auch in der US-A 59 69 265, der EP-A 317 340 oder der WO-A 00 14 485 gezeigt, mehrteilig zusammengesetzt oder mittels zweier separater, einlaß- bzw. auslaßseitig am Meßrohr 10 fixierter Teil-Gegenschwinger realisiert sein, vgl. Fig. 6. Insbesondere für diesen Fall, bei dem der praktisch als ein inneres Tragsystem dienende Gegenschwinger 20 mittels eines einlaßseitigen und eines auslaßseitigen Teil-Gegenschwingers gebildet ist, kann dementsprechend das äußere Tragsystem 100 ebenfalls mehrteilig mit einem einlaßseitigen und einem auslaßseitigen Teilsystem ausgeführt sein, vgl. Fig. 6.

Nach einer weiteren bevorzugten Weiterbildung der Erfindung sind ferner, wie in Fig. 3 schematisch dargestellt, Massenausgleichskörper 101, 102 vorgesehen, die am Meßrohr 10 fixiert ein genaues Einstellen von dessen Torsions-Resonanzfrequenzen und somit z.B. auch eine verbesserte Angleichung an die Signalauswertung ermöglichen. Als Massenausgleichskörper 101, 102 können z.B. auf das Meßrohr 10 aufgeschobene Metallringe oder an diesem fixierte Metallplättchen dienen.

Nach einer anderen bevorzugten Weiterbildung der Erfindung sind ferner, wie in Fig. 3 schematisch dargestellt, im Gegenschwinger 20 eingearbeitete Nuten 201, 202 vorgesehen, die eine genaues Einstellen von dessen Torsions-Resonanzfrequenzen, insb. ein Absenken der Torsions-Resonanzfrequenzen durch Absenken einer Torsions-Steifigkeit des Gegenschwingers 20, auf einfache Weise ermöglichen. Obwohl die Nuten 201, 202 in der Fig. 2 oder 3 in Richtung der Längsachse \(L \) im wesentlichen gleichverteilt gezeigt sind, können sie, falls erforderlich, ohne weiteres auch in Richtung der Längsachse \(L \) ungleich verteilt angeordnet sein.
Wie sich aus den vorangegangenen Erläuterungen unschwer erkennen läßt, zeichnet sich der erfindungsgemäße Meßwandler durch eine Vielzahl von Einstellmöglichkeiten aus, die es dem Fachmann, insb. auch noch nach einer Spezifikation von äußeren oder inneren Einbaumaßen, ermöglichen, eine Kompensation von im Meßrohr 10 und ggf. im Gegenschwinger 20 betriebsbedingt erzeugten Torsionskräften mit einer hohen Güte zu erzielen und somit die Abgabe von Torsionsschwingungs-Energie an die Umgebung des Meßwandlers zu minimisieren.
PATENTANSPRÜCHE

1. Meßwandler vom Vibrationstyp für ein in einer Rohrleitung strömendes Fluid, welcher Meßwandler umfaßt:
- ein im Betrieb mit einer vorgebaren Meßrohrschwingfrequenz vibrierendes Meßrohr (10) zum Führen des Fluids,
 wobei das Meßrohr (10) über ein in ein Einlaßende (11#) des Meßrohrs (10) mündendes Einlaßrohrstück (11) und über ein in ein Auslaßende (12#) des Meßrohrs (10) mündendes Auslaßrohrstück (12) mit der Rohrleitung kommuniziert,
- eine auf das Meßrohr (10) einwirkende Erregeranordnung (40) zum Vibrierenlassen des Meßrohrs (10),
 wobei das Meßrohr (10), insb. zum Erzeugen von Scherkräften im Fluid, zumindest zeitweise Torsionsschwingungen um eine gedachte Meßrohrlängsachse (L) mit einer momentanen Torsions-Schwingungsfrequenz, \(f_{\text{excT}} \), ausführt,
 eine Sensoranordnung (50) zum Erfassen von Vibrationen des Meßrohrs (10) sowie
 einen am Meßrohr (10) fixierten Torsionsschwingungs-Tilger (60), der im Betrieb zumindest anteilig außerphasig zum torsions-schwingenden Meßrohr (10) schwingen gelassen wird.

2. Meßwandler nach Anspruch 1, bei dem der schwingende Torsionsschwingungs-Tilger (60) lediglich vom vibrierenden Meßrohr (10) angetrieben ist.

3. Meßwandler nach Anspruch 1 oder 2, bei dem der Torsionsschwingungs-Tilger (60) einlaßseitig und auslaßseitig am Meßrohr (10) fixiert ist.
4. Meßwandler nach einem der vorherigen Ansprüche, bei dem der Torsionsschwingungs-Tilger (60) eine Torsionseigenfrequenz aufweist, die größer als das 0,8-fache der Meßrohrschwingfrequenz ist.

5. Meßwandler nach einem der vorherigen Ansprüche, bei dem der Torsionsschwingungs-Tilger (60) eine Torsionseigenfrequenz aufweist, die kleiner als das 1,2-fache der Meßrohrschwingfrequenz ist.

7. Meßwandler nach Anspruch, bei dem eine Torsions-Resonanzfrequenz, f_{61}, f_{62}, der Teil-Tilger (61, 62) so eingestellt ist, daß sie im wesentlichen gleich der Torsionsschwingungs-Frequenz ist, auf der das Meßrohr (10) im Betrieb angeregt wird.

8. Meßwandler nach einem der vorherigen Ansprüche, bei dem der Meßwandler ein einlaßseitig und auslaßseitig am am Meßrohr (10) fixiertes Wandlergehäuse (100) umfaßt.

9. Meßwandler nach einem der vorherigen Ansprüche, bei dem am Meßrohr (10) fixierte Zusatzmassen (101, 102) vorgesehen sind.

10. Meßwandler nach einem der vorherigen Ansprüche, bei dem der Meßwandler ein einlaßseitig und auslaßseitig am am Meßrohr (10) fixierten, insb. mit Meßrohr (10) fluchtenden, Gegenschwinger (20) umfaßt.

12. Meßwandler nach Anspruch 10 oder 11, bei dem eine Torsions-Resonanzfrequenz des Gegenschwingers (20) so eingestellt ist, daß sie im
wesentlichen gleich der Torsionsschwingungs-Frequenz ist, auf der das Meßrohr (10) im Betrieb angeregt wird.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
- IPC 7: GOIF1/84 GOIN11/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
- Minimum documentation searched (classification system followed by classification symbols)
 - IPC 7: GOIF GOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,P</td>
<td>EP 1 260 798 A (FLOWTEC AG) 27 November 2002 (2002-11-27) column 4, line 21 -column 15, line 16; figures 1,4</td>
<td>1-12</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 521 439 A (ROTA YOKOGAWA GMBH & CO KG) 7 January 1993 (1993-01-07) column 2, line 35 -column 7, line 26; figures 1,2</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 154 254 A (FLOWTEC AG) 14 November 2001 (2001-11-14) column 9, line 10-23; figure 3</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search: 22 July 2003

Date of mailing of the international search report: 31/07/2003

Name and mailing address of the ISA:
European Patent Office, P.O. Box 5818 Patentlaan 2 NL - 2280 HA Rijswijk
Tel. +31-70-345-200, Fax. +31-70-340-3016

Authorized officer: Roetsch, P
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 02099363 A1</td>
<td>12-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002174730 A1</td>
<td>28-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0521439 A2</td>
<td>07-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 243844 T</td>
<td>15-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002005809 A</td>
<td>09-01-2002</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

IPK 7 GO1F1/84 GO1N11/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RESEARCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 GO1F GO1N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendbare Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategori*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Vorständnis der Erfindung zugrundeliegendem Prinzip oder der ihr zugrundeliegenden Theorie angegeben ist

Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

Datum des Abschlusses der Internationalen Recherche

22. Juli 2003

Absendetermin des internationalen Recherchenberichts

31/07/2003

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentibau 2 NL-2280 HV RIJWIJK
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3019

Bevollmächtigter Bediensteter

Roetsch, P

Formblatt PCT/ISA/210 (Blatt 2) [Juli 1992]
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdocument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 02099363 A1</td>
<td>12-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002174730 A1</td>
<td>28-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0521439 A2</td>
<td>07-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 243844 T</td>
<td>15-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002005809 A</td>
<td>09-01-2002</td>
</tr>
</tbody>
</table>