发明名称
用于基于ECG信号来提供睡眠质量的视觉表示的方法和装置

摘要
一种提供睡眠质量的图形表示的方法包括：获取患者的ECG数据；从所述ECG数据获取多个N-N间隔；基于所述多个N-N间隔来计算多个频谱密度，其中，每个频谱密度与多个相继的时间窗中的一个相关联并且是基于与所述多个相继的时间窗中的所述一个相关联的所述N-N间隔中的特定的一些来计算的，并且使用所述多个频谱密度来生成所述睡眠质量的图形表示。
1. 一种提供睡眠质量的图形表示 (44) 的方法，包括：
获取患者的 ECG 数据；
从所述 ECG 数据获取多个 N-N 间隔 (40)；
基于所述多个 N-N 间隔来计算多个频谱密度 (42)，其中，每个频谱密度与多个相继的时间窗中的一个相关联并且是基于与所述多个相继的时间窗中的所述一个相关联的所述 N-N 间隔中的特定的一些来计算的；并且
使用所述多个频谱密度来生成睡眠质量的所述图形表示 (44)。
2. 如权利要求 1 所述的方法，其中，从所述 ECG 数据获取多个 N-N 间隔包括处理所述 ECG 数据以识别多个正常搏动，并且基于识别出的正常搏动来提取所述多个 N-N 间隔。
3. 如权利要求 1 所述的方法，其中，获取患者的 ECG 数据包括以下中的至少一项：(i) 从所述患者收集心脏信号并且基于所述心脏信号来生成所述 ECG 数据；或者 (ii) 接收被构造为执行以下步骤的模块的所述 ECG 数据：获取多个 N-N 间隔、计算所述多个频谱密度，并且生成所述图形表示。
4. 如权利要求 1 所述的方法，其中，所述相继的时间窗是由 x 时间窗滑动 y 定义的滑动时间窗，意指每个时间窗长 x 单位，并且每个相继的时间窗与紧接在它前面的时间窗的开始相隔 y 单位。
5. 如权利要求 1 所述的方法，其中，所述图形表示是具有时间轴和频率轴的曲线图。
6. 如权利要求 5 所述的方法，其中，所述多个时间窗中的每个具有表示所述时间窗的中央的相关联的中值，使得每个频谱密度与所述中值中的一个相关联，并且其中，每个频谱密度都被用来创建所述图形表示中的图 像，所述图像在所述图形表示中沿所述时间轴被定位在对应于与所述频谱密度相关联的所述中值的时间处。
7. 如权利要求 6 所述的方法，其中，所述图形表示中的每幅图像具有沿所述频率轴等于频谱密度的频率范围的长度。
8. 如权利要求 7 所述的方法，其中，所述相继的时间窗是由 x 时间窗滑动 y 定义的滑动时间窗，意指每个时间窗长 x 单位，并且每个相继的时间窗与紧接在它前面的时间窗的开始相隔 y 单位，并且其中，所述图形表示中的每幅图像具有沿所述时间轴等于 y 单位的宽度。
9. 如权利要求 8 所述的方法，其中，所述频谱轴包括沿其长度的多个具体频率，其中，在每幅图像中，被定位在所述具体频率中的每一个处的具体颜色是基于在来自被用来创建所述图像的所述频谱密度的所述具体频率中的所述一个处的相关联的功率来确定的。
10. 如权利要求 8 所述的方法，其中，每幅图像只包括灰度颜色或每幅图像包括来自全色阶的颜色。
11. 如权利要求 5 所述的方法，其中，所述多个频谱密度覆盖第一频率范围，并且其中，所述图形表示覆盖所述第一频率范围的全部。
12. 如权利要求 11 所述的方法，其中，所述多个频谱密度是使用第一技术来计算的，其中，所述方法还包括：(i) 基于所述多个 N-N 间隔来计算多个第二频谱密度 (42)，其中，每个所述第二频谱密度与多个相继的时间窗中的一个相关联并且是使用与所述第一技术不同的第二技术基于与所述多个相继的时间窗中的所述一个相关联的所述 N-N 间隔中的特定的一些来计算的，使得所述多个所述第二频谱密度覆盖只包括所述第一频率范围的较低部分的第二
频率范围；并且(ii) 使用只覆盖所述第二频率范围的所述多个第二频谱密度来生成睡眠质量的第二图形表示。

13. 如权利要求12所述的方法，其中，所述第一技术是基于FFT的并且所述第二技术是基于Lomb的。

14. 一种睡眠质量测量装置(2,60)，包括具有一个或多个例程的处理单元(12)，所述例程能够由所述处理单元执行并且被构造为：
从ECG数据获取多个N-N间隔(40)，所述ECG数据生成自患者收集的心脏信号；
基于所述多个N-N间隔来计算多个频谱密度(42)，其中，每个频谱密度与多个相邻的时间窗中的一个相关联并且是基于与所述多个相邻的时间窗中的所述一个相关联的所述多个N-N间隔中的特定的一些来计算的；并且
使用所述多个频谱密度来生成睡眠质量的图形表示(44)。

15. 如权利要求14所述的睡眠质量测量装置，还包括用于从所述患者收集所述心脏信号的单元(6A,6B)。

16. 如权利要求14所述的睡眠质量测量装置，其中，所述一个或多个例程被构造为通过处理所述ECG数据来识别多个正常搏动并且基于识别出的正常搏动来提取所述多个N-N间隔，从而从所述ECG数据获取所述多个N-N间隔。

17. 如权利要求14所述的睡眠质量测量装置，其中，所述相邻的时间窗是由x时间窗滑动y定义的滑动时间窗，意指每个时间窗长x单位，并且每个相邻的时间窗与紧接在它前面的时间窗的开始相隔y单位。

18. 如权利要求14所述的睡眠质量测量装置，其中，所述图形表示是具有时间轴和频率轴的曲线图。

19. 如权利要求18所述的睡眠质量测量装置，其中，所述多个时间窗中的每个具有表示所述时间窗的中央的的相关联的中值，以便使得每个频谱密度与所述中值中的一个相关联，并且其中，每个频谱密度都被用来创建所述图形表示中的图像，所述图像在所述图形表示中沿所述时间轴被定位在对应于所述频谱密度相关联的所述中值的时间处。

20. 如权利要求19所述的睡眠质量测量装置，其中，所述图形表示中的每幅图像具有沿所述频率轴等于频谱密度的频率范围的长度。

21. 如权利要求20所述的睡眠质量测量装置，其中，所述相邻的时间窗是由x时间窗滑动y定义的滑动时间窗，意指每个时间窗长x单位，并且每个相邻的时间窗与紧接在它前面的时间窗的开始相隔y单位，并且其中，所述图形表示中的每幅图像具有沿所述时间轴等于y单位的宽度。

22. 如权利要求21所述的睡眠质量测量装置，其中，所述频率轴包括沿其长度的多个具体频率，其中，在每幅图像中，被定位在所述具体频率中每一个处的具体颜色是基于在来自被用来创建所述图像的所述频谱密度的所述具体频率中的所述一个处的相关联的功率来确定的。

23. 如权利要求22所述的睡眠质量测量装置，其中，每幅图像只包括灰度颜色或者每幅图像包括来自全色阶的颜色。

24. 如权利要求18所述的睡眠质量测量装置，其中，所述多个频谱密度覆盖第一频率范围，并且其中，所述图形表示覆盖所述第一频率范围的全部。
25. 如权利要求24所述的睡眠质量测量装置，其中，所述多个频谱密度是使用第一技术来计算的，其中，所述一个或多个例程还被构造为：(i) 基于所述多个N-N间隔来计算多个第二频谱密度(42)，其中，每个第二频谱密度与多个相距的时间窗中的一个相关联并且是使用与所述第一技术不同的第二技术基于与所述多个相距的时间窗中的所述一个相关联的所述N-N间隔中的特定的一些来计算的，使得所述多个第二频谱密度覆盖只包括所述第一频率范围的较低部分的第二频率范围，并且(ii) 使用只覆盖所述第二频率范围的所述多个第二频谱密度来生成睡眠质量的第二图形表示。

26. 如权利要求26所述的睡眠质量测量装置，其中，所述第一技术是基于FFT的并且所述第二技术是基于Lomb的。
用于基于 ECG 信号来提供睡眠质量的视觉表示的方法和装置

技术领域
[0001] 本发明涉及睡眠障碍评估和报告，并且具体涉及用于基于心电图（ECG）信号来生成并提供睡眠质量的视觉表示的方法和装置。

背景技术
[0002] 睡眠呼吸障碍（SDB）描述了以睡眠期间的异常呼吸型或异常通气量为特点的一组障碍。它是一种一种普遍的疾病并且仍然诊断不足。
[0003] 最常见的这样的障碍——阻塞性睡眠呼吸暂停（OSA）以睡眠期间咽部气道的反复的全部或部分塌陷并且需要醒来以恢复通气为特点。OSA 影响成人群体的至少 2% 至 4% 并且越来越被公众所认识。在美国、欧洲、澳大利亚和亚洲进行的若干基于群体的定群研究已经完美地证明了成人中 OSA 的高患病率和其谱的严重性。有效数据指示在患有心血管疾病（CVS）的患者中 OSA 的患病率是参考的正常群体中高 2 至 3 倍。此外，基于群体的流行病学研究和对 OSA 患者的观察一致地指出 OSA 与高血压、心力衰竭、心脏瓣膜、心肌梗塞、夜间猝死以及脑卒中之间的联系。
[0004] 被称为中枢性睡眠呼吸暂停（CSA）的另一种 SDB 是引起在睡眠期间失去全部呼吸尝试的神经学状况，并且通常以血氧饱和的降低为标志。CSA 被与心力衰竭、左心室功能障碍和脑卒中联系起来。混合睡眠呼吸暂停组合了 CSA 和 OSA 两者的部分，其中，呼吸尝试的初始失败允许上气道塌陷。
[0005] 多导睡眠图是可以被用于怀疑患有呼吸暂停的患者的权威诊断技术。通常需要在睡眠实验室中待上一夜，在这期间连续地记录多个生理变量。所述变量大体包括睡眠分段以使用若干设备来收集若干信号，所述设备包括脑电图仪（EEG）、肌电图仪（EMG）、眼电图仪（EOG）、呼吸（气流、尝试、氧饱和）检测设备和打鼾监测设备。可以利用这些信号来精确地量化呼吸障碍及其对睡眠和充氧作用的影响。
[0006] 由于多导睡眠图需要在具有专用系统和主治人员的睡眠实验室中的通宵评估，所以多导睡眠图是昂贵的。诊断睡眠实验室的成本和相对缺乏导致睡眠呼吸暂停广泛地诊断不足（估计多于 85% 的具有在临床上显著且可治疗的 OSA 的患者从没被诊断过）。因此用来利用更少的且更简单的测量并且不需要专门的睡眠实验室来针对 SDB 筛查患者的技术可以是有利的。
[0007] 已经提出了若干不同的这样的技术。范例包括 Epworth 睡眠量表、柏林问卷、夜间血氧定量法、以及将有限呼吸评估和脑电和血氧定量法组合的设备。还提出了对 24 小时 ECG 记录的专门分析作为可能的筛选工具。在临床实践中当前最常用的是夜间血氧定量法。然而这些技术中没有一种被证明是针对 SDB 筛查的可行又简单并且经济的解决方法。

发明内容
[0008] 因此，本发明的目的是提供一种克服常规设备的缺点的 SDB 筛查装置。根据本发
明的一个实施例，通过提供睡眠质量测量装置来实现该目的，所述睡眠质量测量装置基于至少一个通道的 ECG 数据来提供睡眠质量的图形表示。

[0009] 本发明的另一目的是提供一种不遭受与常规 SDB 筛选技术相关联的缺点的 SDB 筛查的方法。通过提供基于至少一个通道的 ECG 数据来生成睡眠质量的图形表示的方法来实现该目的。

[0010] 在一个实施例中，提供了一种提供睡眠质量的图形表示的方法，所述方法包括：获取患者的 ECG 数据；从所述 ECG 数据获取多个 N-N 间隔；基于所述多个 N-N 间隔来计算多个频谱密度，其中，每个频谱密度与多个相继的时间窗中的一个相关联并且是基于与所述多个相继的时间窗中的所述一个相关联的所述 N-N 间隔中的特定的一些来计算的；并且使用所述多个频谱密度来生成所述睡眠质量的图形表示。

[0011] 在另一个实施例中，提供了一种睡眠质量测量装置，所述睡眠质量测量装置包括具有一个或多个例程的处理单元，所述例程能由所述处理单元执行并且被构造为：从 ECG 数据获取多个 N-N 间隔 (40)，所述 ECG 数据生成从患者收集的心脏信号；基于所述多个 N-N 间隔来计算多个频谱密度，其中，每个频谱密度与多个相继的时间窗中的一个相关联并且是基于与所述多个相继的时间窗中的所述一个相关联的所述 N-N 间隔中的特定的一些来计算的；并且使用所述多个频谱密度来生成睡眠质量的图形表示。

[0012] 参考附图，考虑以下的说明书和权利要求书，本发明的这些和其他目的、特征和特性，以及操作的方法和相关结构元件的功能，以及部件的组合和制造经济性将变得更加显而易见，所有附图均构成说明书的一部分，其中，类似的附图标记在各图中指代对应部分。然而，应当明确理解，附图仅出于说明和描述的目的，并非旨在定义本发明的限度。

附图说明

[0013] 图 1 是示出了根据本发明的一个示范性实施例的睡眠质量测量设备的示意图；

[0014] 图 2 是图示了根据本发明的一个示范性实施例的基于 ECG 数据来生成睡眠质量的图形表示的方法的流程图；

[0015] 图 3 图示了可以如何使用图 2 的方法来生成示范性的睡眠质量的图形表示；

[0016] 图 4 示出了针对患有 SDB 的人使用图 2 的方法来生成的示范性的睡眠质量的图形表示；

[0017] 图 5 示出了针对（不患有 SDB 的）健康的人使用图 2 的方法来生成的另一个额外的示范性的睡眠质量的图形表示；并且

[0018] 图 6 是示出了根据本发明的备选示范性实施例的睡眠质量测量系统的示意图。

具体实施方式

[0019] 如在本文中使用的，单数形式的“一”、“一个”和“所述”包括多个引用对象，除非上下文中明确做出其他说明。如在本文中使用的，两个或更多个部分或部件被“耦合”的陈述应该指该部分直接或间接地（即通过一个或多个中间部分或部件）被结合或一起工作，只要发生链接。如在本文中使用的，“直接耦合”意指两个元件彼此直接接触。如在本文中使用的，“固定耦合”或“固定的”意指两个部件被耦合从而作为一体移动，同时保持相对于彼此的恒定取向。
如在本文中使用的，单词“单式”意指部件被作为单件或单元来创建。亦即，包括分别创建然后耦合到一起作为单元的件或部件不是“单式”部件或主体。如在本文中采用的，两个或更多个部分或部件相互“接合”陈述应该意指该部分直接或通过一个或多个中间部分或部件互相施力。如在本文中采用的，术语“数量”应该意指一或大于一的整数（即多个）。

本文中使用的方向性短语，例如但不限于顶部、底部、左、右、上、下、前、后及其派生词，涉及在附图中示出的元件的取向，并且不对权利要求书构成限制，除非其中明确记载。

来自美国睡眠医学协会（AASM）的最近修订的睡眠评分手册中已经认识到了对睡眠的心血管响应的重要性，所述睡眠评分手册现在包括将连续导联 ECG 作为多导睡眠图的推荐部分来评分。如在本文多个示范性实施例中所详细描述的，本发明提供了一种使用基于 ECG 的技术通过在图形报告（在一个具体的实施例中可以是一页报告）中呈现 SNB 来呈现睡眠呼吸暂停的并且使睡眠呼吸暂停时期可视化的技术。更具体地，本发明的技术采用在睡眠期间扫描记录的至少一个通道的 ECG 数据来生成图形报告，所述图形报告通过对 ECG 数据应用各系列的信号处理技术来指示包括睡眠呼吸暂停的 SNB 时段的存在或缺失。

由于本发明的方法的无创和低成本的特性，本发明的方法对于睡眠医学中的许多应用具有潜力。如已知的，单导联 ECG 对于多数在医院中或在家的患者是现实可行的。因此，本发明的技术在不为包括已经包括至少一个通道的 ECG 的那些技术添加额外技术的情况下提供睡眠呼吸暂停筛查报告。在基于家庭的多通道睡眠呼吸暂停诊断设备由于夜间失去呼吸信号的情况下它可以是添加到所述设备的备选解决方案。另外，本发明的技术可以被设计为可以被集成在特定设备（例如 ECG 记录仪）内部的软件模块/工具，或者被呈现为在同一设备上或在单独的设备（例如个人计算机）上的独立软件。

图 1 是示出了根据本发明的一个非限制性的示范性实施例的睡眠质量测量设备 2 的示意图。在图示的非限制性实施例中，睡眠质量测量设备 2 采用单导联/通道 ECG 检测并且包括分别耦合到线 6A 和 6B 的电极 4A 和 4B 以用于由患者 8 收集心脏信号。然而应当理解，这仅旨在是示范性的，并且本发明可以采用多于单个的导联/通道 ECG 检测。例如，本发明可以使用多导联技术（例如但不限于已知或之后发展的三导联、五导联或十二导联技术）来收集 ECG 数据。应当意识到，可以通过使用多于单个的导联/通道来提高 ECG 数据的准确度（例如，在本文中其他地方所述的，这可以为对 N-N 隔离的更准确的检测做准备）。然而，应当理解，本发明中仅需要至少一个导联/通道的 ECG 数据。

如在图 1 中看出的，睡眠质量测量设备 2 包括模拟前端 10，线 6A 和 6B 连接到模拟前端 10。图示的实施例中的模拟前端 10 接收由线 6A 和 6B 经由电极 4A 和 4B 收集到的模拟心脏信号，放大该信号并且将该信号转换成数字形式。睡眠质量测量设备 2 还包括接收由模拟前端 10 输出的数字心脏数据的处理单元 12。处理单元 12 包括有效地耦合到用于存储将由处理单元 12 执行的例程的合适的存储器的微处理器，微控制器或任何其他合适的处理器。所述存储器可以是提供用于数据存储的存储装置寄存器的多种形式的内部和/或外部存储介质中的任何一种。例如但不限于，RAM、ROM、(一个或多个)EPROM、(一个或多个)EEPROM 等，并且可以是易失性存储器或非易失性存储器。此外，可以独立于所述微处理
器，微控制器或其他合适的处理器或者在所述微处理器、微控制器或其他合适的处理器的内部的所述存储器存储一个或多个程序/例程，所述程序/例程用于执行睡眠质量测量设备2的运行以使得睡眠质量测量设备2能够执行各种功能并且能够实现在本文中的其他地方更详细地描述的操作的方法（所述程序/例程可以是多种形式中的任何一种，例如但不限于软件、固件等）。具体地，如图1中看出的，处理单元12至少包括ECG生成模块14和睡眠评估模块16，下面详细描述其中的每个。

【0026】ECG生成模块14是接收来自模拟前端10的数字心脏信号数据并且使用若干公知的或之后发展出的用于根据原始心脏信号来生成ECG数据的技术/算法中的一种技术/算法来生成基于此的ECG数据的软件模块。在示范性实施例中，该数据被存储在存储器中直到需要如本文中详细描述地实现本发明，所述存储器可以包括诸如SD卡的可移除存储器设备。

【0027】睡眠评估模块16是接收由ECG生成模块14生成的ECG数据并且通过对ECG数据应用本文的多个实施例中具体描述的一系列信号处理技术使用该数据来生成指示SDB时段的存在或缺失的图像报告的软件模块。

【0028】此外，如在图1中看出的，睡眠质量测量设备2还包括用于显示如本文中所述的图形报告的显示设备18，例如LCD。还可以以有线（例如经由USB）或无线的方式将睡眠质量测量设备2耦合到打印机（未示出），使得如果希望也可以打印图形报告。最后，睡眠质量测量设备2还包括信号信息（例如控制信息和/或操作信息）能够被输入到处理单元12中的输出设备20，例如键盘/小键盘。在一个具体实施例中，可以将显示设备18和输入设备20组合在例如触摸屏等设备中。

【0029】图2是本发明的一个示范性实施例的示例ECG数据来生成睡眠质量的图形表示的方法的流程图。在本文中其他地方提到的，在该实施例中，在存储器中提供示例ECG数据。如在本文中其他地方所述的，这主要由ECG信号生成模块14经由线6A和6B以及电流4A和4B来完成。如在本领域中众所周知的，ECG提供对心脏电活动的方便的测量，其中，ECG信号中的每个心动周期以相对的波形为特征，称为P波、QRS复合波和T波。这些波形表示心脏的心室和心房的单元中的极化活动和重新极化活动。一旦记录了夜间ECG数据中的全部，则所述方法进行到步骤32-38，在示范性实施例中，在睡眠评估模块16中实现步骤32-38并且在下文对步骤32-38进行描述。

【0030】在步骤32中，处理ECG数据以在ECG数据中识别正常搏动，并且接着提取识别出的正常搏动的N-N间隔。如在本文中使用术语“正常搏动”应当意指正常的QRS复合波。更具体地，在示范性实施例中，步骤32中的方法使用ECG搏动检测和分类算法来分析ECG数据，以将记录下的ECG数据中的QRS复合波中的每个分类为正常的或异常的。在该背景下，被选用来表示“正常”的族包括最常看到的形态，所述形态被不规则也不限于它的相邻搏动。因此，在步骤32中，使用相同的搏动分类规则来分析记录下的ECG数据中的每个ECG搏动，并且将记录下的ECG数据中的每个ECG搏动分类为正常的或异常的。例如异常搏动可以包括心室的、有节奏的、可疑的搏动。在示范性实施例中，搏动分类规则使用以下信息中的一个或多个组合：(i)特征测量结果、(ii)计时/节律、(iii)模板匹配、(iv)与
相邻律动的形态相似性以及（v）与律动相关联的节奏脉冲（如果患者8是有效的）分类规则尝试模仿临床医生在分析ECG波形时所使用的行为来将律动分类。另外，如在本文中使用的，术语“N-N间隔”应当指两个相继的正常振荡的QRS复合波的峰（“R”点）之间的间隔时间推移。

[0031] 因此，步骤32之后，所述方法已经确定了ECG数据的若干N-N间隔，其中，N-N间隔中的每个与ECG数据中的具体时间相关联。此外，可以将计算出的N-N间隔隔离到若干（可以重叠的）时间窗中，其中，每个窗包括若干计算出的N-N间隔值。在示例性实施例中，所述时间窗是由“x时间窗滑动y”定义的滑窗。意指每个窗长x分钟（或一些其他时间单位），并且接下来相继的窗相隔y分钟（或一些其他时间单位）。基于用户配置参数x和y可以具有不同的值。此外，每个窗长x都以本文中称为“x-中”的时刻为中心。在本文中用来描述本发明的非限制性的示例性实施例中，x等于六分钟且y等于一秒钟，并且因此第一窗将是0至6分钟（“x-中=3”），第二窗将是1至7分钟（“x-中=4”）等。此外，可以对时间绘制针对每个窗的N-N间隔。图2示出了针对示例性实施例的两个这样的曲线图，标为40A和40B。其中，曲线图40A针对具有x-中=50的从47分钟至53分钟的时间窗，并且曲线图40B针对具有x-中=150的从147分钟至153分钟的时间窗。

[0032] 接下来，方法进行到步骤34，其中，对于上述所述的每个相继的时间窗，使用适合的频谱估计方法（例如傅立叶分析（例如FFT），或者最小二乘频谱分析（LSAA），也称Lomb技术）根据N-N间隔数据来计算N-N频谱密度。如在本文中使用的，术语“频谱密度”应当指与平稳随机过程相关联的频率分布的正态函数或时间的确定性函数，所述函数具有功率每赫兹（Hz）或备选的能量每赫兹的量纲，并且所述函数测量随机过程的频率成分并且帮助识别其中的周期性。频谱密度还可以被称为功率谱密度（PSD）（如在图3所示的示例性实施例中）、能量谱密度（ESD）或者仅仅被称为信号的频谱或功率谱。可以将每个计算出的N-N频谱密度表示为频率（x轴）对功率（y轴）的2D曲线图。图3示出了针对示例性实施例的两幅这样的PSD曲线图，标为42A和42B。其中，曲线图42A针对具有x-中=50的从47分钟至53分钟的时间窗，并且曲线图42B针对具有x-中=150的从147分钟至153分钟的时间窗。此外，由于每个时间窗具有与它相关联的计算出的N-N频谱密度，因此每个x-中值也将具有与它相关联的计算出的N-N频谱密度。下面将描述这样的意义。

[0033] 接下来，方法进行到步骤36，其中，计算出的N-N频谱密度被用来生成睡眠质量的图形表示。在示例性实施例中，图3示出了睡眠质量的图形表示（标出的项44），并且所述睡眠质量的图形表示是时间（x轴）对频率（y轴）的曲线图，其中，以上方法来生成所述图形表示44。如以上注意所述，时间窗中的每个x-中值具有与它相关联的计算出的N-N频谱密度，并且该N-N频谱密度被用来创建图形表示中的垂直图像，所述垂直图像：（i）定位在相关联的x-中处；（ii）具有分钟宽度（或者如由特定用户配置来确定的一些其他值；该宽度是从以上所述的“x时间窗滑动y”）的y，并且（iii）具有计算出的N-N频谱密度的频率范围的高度。此外，为在每幅垂直图像中，在沿y轴的每个频率值处的具体颜色是基于来自频谱密度的在该频率处的相关联的频率来确定的（在每个频谱密度中对于频率范围中的每个频率存在一个功率值）。换言之，为了在任何x-中点处创建垂直图像，与所述x-中相关联的频谱密度中的每个功率都被（基于一些预定的比例）转换为相对应的颜色，并且该颜色被沿垂直（y）轴放置在相关联的频率值处。垂直图像中使用的颜色可以是灰度颜色
（即范围是从黑（最弱强度）到白（最强强度）的灰色的不同深浅）（图3），或者备选地是来自全色阶的颜色。接着如以上所述的对完整的垂直图像进行定位。

0034 将相邻的一分钟宽的垂直图像中的每个放在它们的对应的位置（相关联的“x-中”点）上生成如图3所示的图形表示44。另外，图3图示了针对与曲线图42A和42B（x-中分别等于50和150）相关联的频谱密度的垂直图像的位置。结果，该实施例中的图形表示44可以被认为是这样的图像，即x轴为时间为y轴为频率并且在每个“x-中”时刻的颜色为在该时刻的频谱密度的“功率”。

0035 在步骤36之后，方法进行到步骤38，其中，在显示设备18上显示生成的图形表示44。除了显示图形表示44或替代显示图形表示44，如本文中其他地方所述的，可以打印图形表示44。

0036 在一个具体的示范性实施例中，在步骤34中，对于每个相继的时间窗，根据N-N间隔数据来计算两个N-N频谱密度，每个是使用不同的频谱估计方法来计算的。具体地说，在该实施例中使用(i)FFT方法和(ii)Lomb方法来计算N-N频谱密度。接着在步骤36中，所述两组频谱密度被独立地用来以本文中其他地方所述的方法来创建图4所示的两个不同的图形表示。更具体地，基于FFT的频谱密度被用来创建上边的图形表示44A，并且基于Lomb方法的频谱密度被用来创建右侧的图形表示44B。如在图4中看出的，图形表示44A覆盖了全部频率范围，而图形表示44B只集中在包括对于呼吸暂停筛查的最有用的信息的窄的频率范围上。由于Lomb方法生成归一化的功率谱，所以图形表示44B在较低频率部分上被归一化并放大。或者，可以通过在图形表示44A中的较少频率部分上进行归一化和放大来创建额外的图形表示。

0037 再者，接收理解，以上所述的具体实施例只是范例，并且本发明预期了使用不同于FFT或Lomb的技术，图形表示可以在不同的区域上放大和／或可以将频谱密度以不同的方式归一化。

0038 为了得到对睡眠质量的认识，可以查看图形表示44来检查示图的较低频率部分中的一致性。例如，图4所示的图形表示44A和图形表示44B中的白色的带（在下图中更显见）指示由于睡眠呼吸暂停的心率中的低频振荡。因此，在该范例中存在许多白色的带意味着患者的睡眠质量低，这是因为在睡眠期间常常发生睡眠呼吸暂停时期。相比之下，图5示出了与具有非常少的睡眠呼吸暂停时期或几乎没有睡眠呼吸暂停时期的健康人（即不经历SDN的人）相关联的图形表示44C和图形表示44D。可以看出对于该范例，图形表示44C、44D中的每个的较低频率部分相当一致并且不具有许多白色的带。

0039 图6是示出了根据本发明的备选的非限制性的示范性实施例的睡眠质量测量系统50的示意图。在图示的非限制性实施例中，睡眠质量测量系统50采用单导联／通道ECG检测并且包括分别耦合到线4A、4B用于从患者56收集心脏信号的电极52A和52B。然而，应当理解，这只意在是示范性的，并且如图1的实施例那样，如本文中其他地方所述的，本实施例可以采用多于单导联／通道的ECG检测。此外，睡眠质量测量系统50包括ECG记录设备58，ECG记录设备58可以是用于基于目前线5A和5B经由电极52A、52B收集到的心脏信号来生成和记录至少一个通道的ECG数据的任何类型的已知或之后发展出的装置。例如，但不做出限制，ECG记录设备58可以是多导睡眠图设备，该多导睡眠图设备包括：一个或两个通道的ECG、Holter监视器、医院床边ECG监视器或者移动心脏门诊遥测（MCOT）监
视器。

【0040】如图6中看出的，睡眠质量测量系统50还包括诸如个人计算机或服务器计算机的计算设备60，计算设备60包括如本文中描述的睡眠评估模块16。因此，可以向计算设备60提供由ECG记录设备58记录的ECG数据（例如在图2的步骤30中），并且可以由睡眠评估模块16如本文中其他地方所述的使用图2的方法基于该数据来创建图形表示44。应当意识到，可以以若干方式中的任何方式来向计算设备60提供由ECG记录设备58记录的ECG数据，例如通过ECG记录设备58与计算设备60之间的有线连接（例如USB）或无线连接来提供，或者通过使用便携存储器设备（例如SD卡、USB驱动器或压缩盘）转移来提供。此外，计算设备60可以显示和/或打印生成的图形表示44以用于由临床医生审阅。

【0041】因此，在本文中所述的各种示范性实施例中本发明提供了基于至少一个通道的ECG数据的、用于评估睡眠质量并且使SDB可视化的简单经济且无创伤的方法。

【0042】在权利要求书中，位于括号中的任何附图标记都不被解释为对权利要求的限制。词语“包括”或“包含”不排除在权利要求中列出那些之外的元件或步骤的存在。在列举了若干器件的装置型权利要求中，这些器件中的若干可以由同一件硬件来实施。在元件前面的词语“一”或“一个”不排除多个这样的元件的存在。在任何列举了若干器件的装置型权利要求中，这些器件中的若干可以由同一件硬件来实施。尽管在互相不同的从属权利要求中记载特定元件，但是这并不指示这些元件不能被组合使用。

【0043】虽然基于目前认为是实际并且最优选的实施例出于说明的目的已经详细描述了本发明，但是应当理解这样的细节只是出于该目的，并且本发明不限于公开的实施例，而是相反，本发明旨在涵盖权利要求的精神和范围内的修改和等价布置。例如，应当理解，本发明预期可以将任何实施例的一个或多个特征在可能的范围内与任何其他实施例的一个或多个特征组合。
图 1
在睡眠期间夜间
记录ECG信号

处理ECG信号以找到正常的搏动
并且提取N-N间隔

针对N-N间隔数据的每个相继的时间窗
来计算N-N频谱密度

使用计算出的频谱密度来生成
睡眠质量的图形表示

显示睡眠质量的图形表示

图 2
图 4
图 5
图 6