(45) 域名: METHOD OF PROMOTING SUBSISTENCE AND/OR PROLIFERATION OF NEURAL STEM CELL AND PROMOTING EXTENSION OF NEURITE, PROMOTER THEREOF, PHARMACEUTICAL COMPOSITION CONTAINING NEURAL STEM CELL, METHOD OF ASSAY AND METHOD OF SCREENING

(46) 発明の名称: 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬製剤、検定方法、スクリーニング方法

(54) Title: METHOD OF PROMOTING SUBSISTENCE AND/OR PROLIFERATION OF NEURAL STEM CELL AND PROMOTING EXTENSION OF NEURITE, PROMOTER THEREOF, PHARMACEUTICAL COMPOSITION CONTAINING NEURAL STEM CELL, METHOD OF ASSAY AND METHOD OF SCREENING

(56) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.

(57) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.

(57) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.

(57) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.

(57) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.

(57) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.

(57) Abstract: [PROBLEMS] To provide a method of promoting the subsistence and/or proliferation of neural stem cells; a pharmaceutical composition containing neural stem cells produced by the method; and a method of assaying and screening a factor capable of promoting the subsistence and/or proliferation of neural stem cells. [MEANS FOR SOLVING PROBLEM] Excess expression of galectin-1 is effected in neural stem cells, or neural stem cells are cultured in a culture solution containing galectin-1. The pharmaceutical composition comprising the thus produced neural stem cells wherein excess expression of galectin-1 is effected and the pharmaceutical composition comprising galectin-1 ameliorate high-order functions having been disturbed by intracerebral ischemia. There is further provided a method of assay, comprising seeding neural stem cells at a clonal concentration and determining whether or not the seeded neural stem cells can proliferate in an assay culture medium as an assay subject to thereby identify whether or not this factor promotes the subsistence and/or proliferation of neural stem cells. With the use of this assay method, the factor capable of promoting the subsistence and/or proliferation of neural stem cells is screened.
２文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイダンスノート」を参照。
明 細 書
神経幹細胞の生存及び／又は増殖及び神経突起伸張を促進する方法
並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法
技術分野
[0001] 本発明は、神経幹細胞の生存及び／又は増殖及び神経突起伸張を促進する方法
並びに神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法に関する。
背景技術
[0002] 障害を起こした中枢神経系の再生は困難であるが、動物実験では胎児組織、特に
神経幹細胞の移植が有用であることが報告されている。しかし、治療に十分な神経
幹細胞を得るには多数の中絶胎児の献体を必要とする上に、胎児の使用に倫理面
での問題があるため、現実的な臨床応用は難しい。
[0003] そこで、胎児から直接単離した神経幹細胞に代わる移植材料の候補として、体外
で培養し、増殖させた神経幹細胞が注目されている。神経幹細胞は自己複製能と多
分化能を有する未分化な細胞であり、体外で培養することにより無尽蔵に増殖するた
め、十分なドナー細胞の供給が可能である。
[0004] 神経幹細胞の体外増殖法は、Weissらの報告したニューロスフィア法（Science255,
1707–1710, 1992）が一般的であり、ニューロスフィア法を用いて増殖させた神経幹細
胞を、特に脳虚血、神経変性疾患等の難治性疾患を有する患者へ移植することで、
多くの治療成功例が報告されている（Nature 422, 688–694, 2003）。
発明の開示
発明が解決しようとする課題
[0005] ニューロスフィア法によると、神経幹細胞を体外で増殖させることができるが、この培
養条件では、神経幹細胞の1つの特徴として、他の細胞に比べ、細胞の増殖速度が
非常に遅いことがある。従って、実際の移植に使用する数の神経幹細胞を得るには、
増殖速度を改善する必要がある。また、移植した神経幹細胞が患者体内で神経に分
化し機能するためには、神経突起伸張が良いほど好ましい。
[0006] そこで、本発明は、神経幹細胞の生存及び／又は増殖を促進する方法、その方法
によって作製された神経幹細胞を含む医薬品組成物、並びに神経幹細胞を分化誘導する際の神経突起伸長を促進する方法を提供することを目的とする。

[0007] また、ニューロスフェア法を用いて増殖させた神経幹細胞を、特に脳虚血、神経変性疾患等の難治性疾患を有する患者へ移植する際、神経幹細胞が他の個体由来であれば、移植された患者において、拒絶反応に対する対策が必要となるため、患者本人の神経幹細胞をその場で増殖させることが好ましい。

[0008] そこで、本発明は、脊椎動物個体において、神経幹細胞やSVZアストロサイトの増殖を促進するための神経幹細胞増殖促進剤及びSVZアストロサイト増殖促進剤、並びに、神経幹細胞やSVZアストロサイトの増殖を促進するための神経幹細胞増殖促進方法及びSVZアストロサイト増殖促進方法を提供することもまた目的とする。

課題を解決するための手段

[0009] 発明者らは、OP9細胞株の培養上清及びニューロスフェアの培養上清（以下それぞれ、OP9CM、NSF－CM）と称する）に、神経幹細胞の低密度での生存及び増殖を維持する活性があることを見いだした。そこで、定量性質量分析計(CIPHERGEN社製Protein chip)を用いて、活性のあるOP9CMと活性の無いOP9CMを比較(N=4)し、培養上清中で発現差のある分子の分子量リストを作成した。そのリストの内最も再現性の高かった一つを選択し、二次マススペクトル（ABI社製 Q star）を用いて、断片アミノ酸配列を決定したところ、ガレクチン－1であることが判明した。

[0010] ガレクチン－1はβ－ガラクトシドに結合するレクチンであって、細胞質内及び細胞外の両方に存在することが知られている。ウエスタン・プロットによりOP9CM及びNSF－CM中のガレクチン－1の発現を調べたところ、確かにこれらの培養上清中にガレクトン－1が検出された。そこで、ガレクチン－1のアンチセンスcDNAを強制発現することによりガレクトン－1活性を阻害したところ、神経幹細胞の増殖が著しく抑制を受けた。また、糖結合に対する競合作用によりガレクトン－1の阻害活性を有するThiodigalactoside（10mM）をNSF－CMに添加すると、神経幹細胞の低密度での生存及び増殖を維持する活性が阻害された。

[0011] これらの結果は、OP9CM及びNSF－CM中の上記活性が、ガレクトン－1の糖結合活性に由来することを示唆する。このガレクトン－1を神経幹細胞で過剰発現させ
るか、またはガレクチン-1を神経幹細胞を培養する培地中に添加することにより、神経幹細胞の生存率及び／又は増殖率を促進できることが明らかとなり、本発明の完成に至った。

[0012] こうして完成された本発明において、培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法は、ガレクチン-1又はガレクチン-3を神経幹細胞内で過剰発現させるステップを含むことを特徴とする。別の実施形態として、神経幹細胞を、ガレクチン-1またはガレクチン-3を含有した培養液で培養することを特徴としてもよい。

[0013] なお、本明細書中で、単にガレクチン-1（又は-3）と呼ばれた時は野生型ガレクチン-1（又は-3）及びβガラクトシド結合活性を有する変異型ガレクチン-1の両方を含むものとする。

[0014] これら実施形態において、培養液が神経幹細胞培養上清特にニューウロスフィア培養上清又はOP9細胞の培養上清を含んでもよい。また、ガレクチン-1またはガレクチン-3がこれらの培養上清に由来してもよい。

[0015] さらに、本発明に係る医薬組成物は、ガレクチン-1またはガレクチン-3を過剰発現させた神経幹細胞を有効成分として含有し、脳内虚血によって障害が生じた高次機能を改善することを特徴とする。また、高次機能が運動機能であっても感覚機能であってもよい。

[0016] さらに、本発明に係る治療方法は、ヒト以外の哺乳動物において、ガレクチン-1またはガレクチン-3を強制発現させた神経幹細胞を移植することによって、脳虚血に由来する症状を改善するものである。症状としては、例えば、高次機能障害、運動機能障害、あるいは感覚機能障害であることが考えられる。治療対象は、ヒトにも適用可能である。

[0017] さらに、本発明に係る、in vitroで神経幹細胞を分化誘導する際の神経突起伸長を促進する方法は、ガレクチン-1またはガレクチン-3を前記神経幹細胞内で過剰発現させるステップを含む。また、この方法を個体に適用してもよい。

[0018] さらに、本発明にかかる神経幹細胞増殖促進剤は、脊椎動物個体において、神経幹細胞の増殖を促進するための神経幹細胞増殖促進剤であって、ガレクチン-1ま
たはガレクチン-3を有効成分として含有する。

[0019] また、本発明にかかる神経幹細胞増殖促進方法は、正常脊椎動物個体において
神経幹細胞の増殖を促進するための方法であって、脳にガレクチン-1またはガレク
チン-3を注入することを特徴とする。この方法は、正常個体であれば、ヒトにも、ヒト以外
の脊椎動物個体に対しても適用できる。

[0020] また、本発明にかかる神経幹細胞増殖促進方法は、ヒト以外の脊椎動物個体にお
いて神経幹細胞の増殖を促進するための神経幹細胞増殖促進方法であって、脳に
ガレクチン-1またはガレクチン-3を注入することを特徴としてもよい。この方法は、神
経疾患を有し、神経治療を必要とする脊椎動物個体を対象とし、特にヒト以外の脊椎
動物個体を対象とするが、ヒトにも適用可能である。

[0021] さらに、本発明にかかるSVZアストロサイト増殖促進剤は、脊椎動物個体において
、SVZアストロサイトの増殖を促進するためのSVZアストロサイト増殖促進剤であって
、ガレクチン-1またはガレクチン-3を有効成分として含有する。

[0022] また、本発明にかかるSVZアストロサイト増殖促進方法は、正常脊椎動物個体にお
いてSVZアストロサイトの増殖を促進するためのSVZアストロサイト増殖促進方法であって、脳にガレクチン-1またはガレクチン-3を注入することを特徴とする。この方
法は、正常個体であれば、ヒトにも、ヒト以外の脊椎動物個体に対しても適用できる。

[0023] また、本発明にかかるSVZアストロサイト増殖促進方法は、ヒト以外の脊椎動物個
体においてSVZアストロサイトの増殖を促進するためのSVZアストロサイト増殖促進
方法であって、脳にガレクチン-1またはガレクチン-3を注入することを特徴としてもよ
い。この方法は、神経疾患を有し、神経治療を必要とする脊椎動物個体を対象とし
、特にヒト以外の脊椎動物個体を対象とするが、ヒトにも適用可能である。

[0024] これまで、神経幹細胞をクローナルに培養する技術も知られていなかったが、クロー
ナルに培養できるかどうかえ明らかでなかったのだが、本発明者らによって、神経
幹細胞をクローナルに培養する技術が確立された。そこで、以下の検定方法及びス
クリーニング方法の完成に至った。

[0025] 本発明にかかる検定方法は、培養液中に添加された対象物質に対し、神経幹細胞
の生存、増殖、またはそれら両方を促進する活性を検定する検定方法であって、神
経幹細胞を、クローナルな濃度で播種された状況下の神経幹細胞を増殖させることができない基礎培地に対象物質を添加した検定培地を用いて、クローナルな濃度で播種する工程と、播種した神経幹細胞が、検定培地中で増殖できるかどうかを判定する工程とを含む。この神経幹細胞がCD15+を指標として選択された神経幹細胞であってもよい。また、培養皿の1ウェルにつき1個の神経幹細胞を入れることにより、クローナルな濃度で播種してもよい。

[0026] さらに、本発明にかかるスクリーニング方法は、複数の対象物質の中から、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有する活性物質を同定するためのスクリーニング方法であって、上記いずれかに記載の検定方法を用いることによって前記活性物質を同定する。

[0027] なお、上記いずれのガレクチン-1も、C-S変異型ガレクチンであってもよい。C-S変異型ガレクチンとは、本明細書中では、ガレクチン-1の有するシステイン残基のうち、少なくとも1つが変異している変異ガレクチン-1タンパク質をいう。

[0028] ＝＝関連文献とのクロスリファレンス＝＝

なお、本願は、2003年9月9日付けで出願した日本国特願2003-317379号に基づく優先権を主張する。この文献を本明細書に援用する。

図面の簡単な説明

[0029] 図1は、本発明に係る実施例2において、神経幹細胞内でガレクチン-1を強制発現させた時のニューロスフィアの形成効率を、コントロールと共に表したグラフである。

[0030] 図2は、本発明に係る実施例3において、神経幹細胞の培養液中にガレクチン-1を添加した時のニューロスフィアの形成効率を、コントロールと共に表したグラフである。

[0031] 図3は、本発明に係る実施例3において、神経幹細胞の培養液中にガレクチン-3を添加した時のニューロスフィアの形成効率を、ガレクチン-1を添加した時のニューロスフィアの形成効率と比較したグラフである。

[0032] 図4は、本発明に係る実施例4において、ガレクチン-1を強制発現させた神経幹細胞（Gal-1）を発血誘導したスナネズミに移植した後、EBSTを行った結果を、コントロ
ール（Gal-1）と共に示したグラフである。

[0033] 図5は、本発明に係る実施例4において用いたレンチウイルスペクターCSII–EF–MCS–IRE2–Venusの制限酵素地図である。

[0034] 図6は、本発明に係る実施例4において、ガレクチンー1を強制発現させた神経幹細胞（GAL）を虚血誘導したスナネズミに移植した後、BATを行った結果を、コントロール（LV）と共に示したグラフである。

[0035] 図7は、本発明に係る実施例5において、無処理の神経幹細胞（A）及びガレクチンー1を強制発現させた神経幹細胞（B）を分化させ、抗βIII−チューブリン抗体を用いて抗体染色した写真である。矢印は伸張した神経突起を示す。

[0036] 図8は、（A）本発明に係る実施例6において、ガレクチンー1を注入した脳より単離した神経幹細胞より形成された初代ニューロスフィアの総数を示すグラフである。（lpsi.注入側の脳半球から得られたニューロスフィア、Ctra. その逆側の脳半球から得られたニューロスフィア）（Gal−1 ガレクチンー1を注入した個体の脳、Saline 生理食塩水を注入した個体の脳）（B）本発明に係る実施例6において、ガレクチンー1を注入した脳のSVZにおける細胞増殖能を調べた結果を示す写真である。（C）Bにおいて、複数の切片上でシグナル数を数えたグラフである。

[0037] 図9は、本発明に係る実施例6において、ガレクチンー1注入による、SVZを構成する細胞の割合の変化を表したグラフである。

[0038] 図10は、本発明に係る実施例6において、ガレクチンー1の注入が、マウス脳内で増殖の遅い細胞の増殖を促進するかどうか調べた結果を示す図である。マウスは、ガレクチンー1注入の最終日から10日後（A, B）と30日後（C, D）に解剖し、脳を単離した。なお、A及びCは本発明に係る実施例6において、脳のSVZにおける増殖の遅い細胞の増殖増殖能を調べた結果を示す写真であり、B及びDはそれぞれ、A及びCにおいて、複数の切片上でシグナル数を数えたグラフである。

発明を実施するための最良の形態

[0039] 以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd
なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることがは、当業者にとって明らかである。

＝＝神経幹細胞におけるガレクチンの過剰発現＝＝

本発明は、培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって、ガレクチン-1又はガレクチン-3を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とする。

適用する神経幹細胞は、Weissのニューロスフィア法あるいはそれを改良した方法を用いて単離する。神経幹細胞の由来する動物種や中枢神経系内の部位、神経幹細胞の発生段階は特に限定しないが、以下の実施例では、マウス14日胚前脳より単離した神経幹細胞を用いた。

ガレクチン-1を過剰発現させる方法としては、神経幹細胞で機能する転写プロモーターを有したウイルスベクターをプラスミドベクターを用いて、ガレクチン-1遺伝子を外来的に神経幹細胞に導入し、強制発現させてもよい。導入方法は、常法に従って、細胞にトランスフェクトしてもよいし、ベクターにウイルスベクターを用いる場合などは、予めベクターを含んだウイルス粒子を形成させ、そのウイルスを細胞に感染させてもよい。ウイルスとしては、ガレクチン-1遺伝子を神経幹細胞に導入し、ガレクチン-1を強制発現できるものであれば何でもよく、例えばアデノウイルスやレトロウイルス
などが使用できる。外来性遺伝子ではなく、内在性ガレクチン－1遺伝子座に対し、遺伝子操作を行い、過剰発現するようにしてもよい。その方法としては、例えば、相間組換えによって、内在性ガレクチン－1遺伝子座のプロモーター領域を、恒常的に発現する遺伝子のプロモーター領域などで置換したり、恒常的に発現する遺伝子の構造遺伝子部分をガレクチン－1遺伝子で置換したりすること等が考えられる。

[0044] 神経幹細胞内で過剰発現させるのは、ガレクチン－1の代わりに、ガレクチン－3でもよい。

[0045] ＝＝培養液中へのガレクチンの添加＝＝

また、別の実施形態として、ガレクチン－1またはガレクチン－3を、神経幹細胞を培養する培地中に添加してもよい。この場合、添加するガレクチン－1またはガレクチン－3の濃度は、最終濃度100pg／ml以上になるようにするのが好ましく、100ng／ml以上になるようにするのがより好ましい。

[0046] 精製したガレクチン－1を添加する代わりに、ガレクチン－1を含有した培地を添加してもよい。例えば、OP9細胞株や神経幹細胞の培養上清や、ガレクチン－1を適当な細胞株（例えばCOS細胞株や293T細胞株など）で精製発現させ、その培養上清を用いてもよい。

[0047] ＝＝マウス個体内へのガレクチンの投与＝＝

本発明に従って、ガレクチン－1またはガレクチン－3を、直接脊椎動物個体の脳に注入することにより、本来個体が有する神経幹細胞及び／又はSVZアストロサイトを増殖させることができる。

[0048] 注入部位は脳内であればどこでもよいが、神経幹細胞の近傍、例えば側脳室などが好ましい。注入するガレクチン量は5－100μg／個体が好ましく、10－20μg／個体がより好ましい。ガレクチンの形態は、特に限定されないが、精製したガレクチンを培地や生理食塩水やPBS等に溶解した溶液状であることが好ましい。その際、溶液は、β－メルカプトエタノールを1－10mM及びEDTAを1－5mM添加するのが好ましい。あるいは、OP9細胞株や神経幹細胞の培養上清や、ガレクチン－1を上記のような適当な細胞株で強制発現させ、その培養上清を用いてもよい。

[0049] 対象とする脊椎動物は、ヒトでもヒト以外でも良い。健康な正常個体に行ってもよく、
神経疾患を有し、神経治療を必要とする個体に行ってもよい。正常個体にガレクチンを投与することにより、神経機能の向上、ひいては生活の質（QOL）の向上が期待される。また、特に脳虚血、神経変性疾患等の難治性疾患を有する患者にガレクチンを投与することにより、神経細胞の再生を促進し、運動機能、感覚機能、認知機能の低下などの神経症状を緩和させたり回復させたりすることが期待できる。

[0050] マウス個体内へのガレクチン及び神経幹細胞の同時投与

上記のようにして得られた、ガレクチン－1又はガレクチン－3を過剰発現させた神経幹細胞を、脳内虚血による症状、特に障害が生じた高次機能を改善するための治療薬として用いることができる。脳内虚血によって障害の生じる高次機能として、運動機能・感覚機能・認識機能が知られているが、以下のような例では、運動機能及び感覚機能を例にとって、機能改善を測定した。

[0051] 神経幹細胞を移植する際には、パッファーやキャリアなどとともに形成した医薬組成物を移植するのが好ましい。以下の実施例で示すように、通常の神経幹細胞を移植するのに比べ、ガレクチン－1又はガレクチン－3を過剰発現させた神経幹細胞を移植した場合、症状の改善の効果が、より著しいことがわかる。

[0052] 神経幹細胞の移植の際、ガレクチン－1又はガレクチン－3を脳内に投与する別の方法として、ガレクチン－1又はガレクチン－3を過剰発現させた神経幹細胞を移植するのではなく、神経幹細胞の移植とともに、ガレクチン－1又はガレクチン－3を脳内に直接投与するか、または静注により血中投与しても良い。

[0053] 野生型ガレクチン－1は、還元剤（例えばβ－メルカプトエタノール）非存在下で24時間以内にβ－ガラクトシド結合活性を失うが、C－S変異型ガレクチン－1（例えば、2S、C16S、C42S、C60S、C88S、C130Sの各変異型ガレクチン－1）は1週間以上その活性を保つことから、システィン残基が還元状態にあるが糖結合活性を安定に保つのに重要であることが示された（Hirabayashi and Kasai, J Biol Chem 268, 23648-23653）。このように、C－S変異型ガレクチンは、野生型ガレクチンと同じβ－ガラクトシド結合活性を有するばかりでなく、非還元状態において、野生型ガレクチンより、長期にわたって安定に活性を保つことができる。従って、本発明のいずれにおいても、上記野生型ガレクチンの代わりにC－S変異型ガレクチンを用いてもよい。C－S
変異型ガレクチンの1の場合、中でもC2S型変異体は非還元状態で最も安定であり（Hirabayashi and Kasai, J Biol Chem 268, 23648-23653）、特に好ましい変異体である。また、C-S変異型ガレクチンは、複数のシステイン残基がセリン残基と置換していてもよい。なお、これらの変異型タンパク質は、常法により、ガレクチン遺伝子に対してin vitro mutagenesisの方法を用いて得られた変異遺伝子を大腸菌で発現させ、精製することにより得られる（Hirabayashi and Kasai, J Biol Chem 268, 23648-23653）。

[0054] 神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有する活性物質を同定するためのスクリーニング

本発明の検定方法によると、培養液中に添加された検定対象物質が、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有するかどうか検定することができる。

[0055] 神経幹細胞を、クローナルな濃度で播種したときは、神経幹細胞が増殖することができない基礎培地を選択する。この基礎培地に検定対象物質を添加して検定培地を作製し、神経幹細胞をクローナルな濃度で播種する。適当な期間培養した後、播種した神経幹細胞が、検定培地中で増殖できるかどうか、すなわちコロニーを形成するかどうかを判定することにより、検定対象物質が、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有するかどうか判断する。

[0056] 神経幹細胞は、Weissらの報告したニューロフィア法などの常法に従って単離し、増殖させたものでもよいが、細胞膜抗原であるCD15の発現を指標にして単離した細胞を用いることが好ましい。例えば、脳から単離した細胞あるいはニューロフィア法によって増殖させた細胞を用い、FACS、アフィニティカラム、マグネットビーズ法などにより、CD15を発現している細胞を濃縮することができる。CD15は多分化能を有する神経幹細胞に強く発現しているので、この方法により、検定にかける細胞中での神経幹細胞の割合を数倍～10倍程度濃縮することができ、安定した検定結果を得られるようになる。

[0057] クローナルな濃度で播種するのには、例えば、直径10cmのプラスティックシャーレに、10個～1000個程度の細胞を播種するように、一つの培養皿に低密度で神経幹細胞を播種してもよいが、例えば96ウェルのプラスティックシャーレの各ウェ
ルに細胞一つずつ播種するというように、一つのウェルに一つの細胞を播種するのが好ましい。

[0058] 基礎培地は、例えば、実施例の表1に記載の培養液などを用いることができるが、どのような物質を単離するかにより、基礎培地を選ぶことができる。例えば、高密度の神経幹細胞を増殖させることはできるが、低密度では増殖させることができないような培地を選ぶと、低密度で増殖できない原因は、神経幹細胞自体が分泌している因子の不足によるものと考えられるので、神経幹細胞が分泌している様々な分泌因子を検定するのにお好ましいであろう。

[0059] 検定対象物質は、このように、神経幹細胞などの培養液中から単離したものであっても、市販の化合物ライブラリーや購入できるものであってもよく、本検定方法によって基本的にどんな物質でも検定できるが、神経幹細胞の培養に毒性がない物質が好ましい。

[0060] こうして選択された基礎培地に、検定対象物質を添加して、検定培地を作製する。検定培地中の神経幹細胞の培養は常法に従って行うことができる。数日〜1ヶ月程度培養後の、検定対象物質が神経幹細胞の生存、増殖、またはそれら両方に促進する活性を有すれば、検定培地中にコロニーが観察される。

[0061] この検定方法を用いることにより、化合物ライブラリーや培養液から単離された物質などのように一群の物質の中から、神経幹細胞の生存、増殖、またはそれら両方に促進する活性を有する物質をスクリーニングし、単離することが可能である。

実施例

[0062] 以下、実施例を用いて、以上に説明した実施様様を具体的に説明するが、これは、実施の一例であって、本発明をこの実施例に限定するものではない。

[0063] <実施例1:ニューロスフィアの作成>

妊娠14日目マウス子宮より、マウス14日胚を剖出し、側脳室周辺部を単離し、ピペットを用いて単一細胞に物理的に解離した。表1の培養液に5×10^5/mlの密度で播種し、一週間37℃5%で培養すると、約50〜200μm程度の球状の浮遊性細胞塊が得られた。

[表1]
<table>
<thead>
<tr>
<th></th>
<th>/L</th>
<th>製造者および型式</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM/F12 1:1</td>
<td>1.56g</td>
<td>Gibco 12400-016</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>1.2g (14mM)</td>
<td>Nacalai</td>
</tr>
<tr>
<td>Glucose</td>
<td>2.9g</td>
<td>Nacalai</td>
</tr>
<tr>
<td>Transferrin</td>
<td>100mg</td>
<td>和光208-1033</td>
</tr>
<tr>
<td>Insulin</td>
<td>25mg</td>
<td>SIGMA I-5500</td>
</tr>
<tr>
<td>Progesterone</td>
<td>6.3 μg</td>
<td>SIGMA P-0130</td>
</tr>
<tr>
<td>Sodium Selenate</td>
<td>5.2 μg</td>
<td>SIGMA S-1382</td>
</tr>
<tr>
<td>Putrescine</td>
<td>9.7mg</td>
<td>SIGMA P-7505</td>
</tr>
<tr>
<td>EGF</td>
<td>40 μg</td>
<td>Genzyme Tech</td>
</tr>
<tr>
<td>bFGF</td>
<td>40 μg</td>
<td>Genzyme Tech</td>
</tr>
</tbody>
</table>

[0064] この細胞塊を、再び単一細胞に物理的に解離し、セルソーターを用いて、新たに調製した培地中に1〜100細胞／ウェルの細胞密度でソーティングを行った。それぞれ、実験誤差を少なくするため、厳密にソーティングする細胞の大きさを10〜25μmとし、かつ死細胞をPI染色法により染色し除去した。その後、さらに7日間培養し、形成されるニューロスフィア(50μm以上の細胞塊として定義)の数を測定し、形成効率とし、このアッセイ系におけるニューロスフィアの形成効率を、神経幹細胞の生存及び／又は増殖の指標とした。

[0065] この方法に従ってソーティングした後、培養液のみではニューロスフィアは形成されなかった。しかしながら、培養液中にニューロスフィア培養上清またはOP9CMを添加することにより、ソーティング後のニューロスフィアの形成が可能となった。

[0066] OP9CMは以下のようにして調製できる。通常20％FCSを含むαMEMで継代されているOP9細胞に対し、PBSで数回洗い、表1の培地を添加して、48時間37℃5％CO2の条件下で培養する。その後、0.45μmのフィルターで細胞成分を除去し、培養上清OP9CMとする。

[0067] ＜実施例2：ガレクチン-1の強制発現＞

レトロウイルス発現ベクターpMY-IRESC-EGFPに、マウス・ガレクチン-1cDNA全長配列をクローニングした(GAL)。以下、ネガティブコントロールとして、ベクターののみのもの(RV)、及びガレクチン-1cDNAを逆向きに挿入したもの(AS)を用いた。これらのレトロウイルスベクターとVSV-G発現プラスミドを、それぞれレトロウイルス産生細胞株293gpにトランスフェクトした。その後48時間培養し、各上清をレトロウイルス含
有培地として回収した。実施例1に従ってニューロスフィアを培養する際、培養液中にレトロウィルス含有培地を添加し、感染の成立したニューロスフィア細胞のみを、セルソーターを用いてソーティングした。なお、ソーティングの際には、希釈なしのニューロスフィア培養上清を用いた。この培養上清は、ニューロスフェア形成時の培養条件にて72時間培養の後に、0.45 µmフィルターを通して細胞成分を除去することにより調製した。

[0068] その後7日目に形成されたニューロスフィアの形成効率（ニューロスフィアの数／ソートされた神経幹細胞の数）を、GAL、RV、ASの間で比較した。図1に示すように、RV（コントロール）5.58%、GAL（ガレクチン-1強制発現群）7.78%（有意水準p＝0.002）、AS（ガレクチン-1アンチセンス強制発現群）3.9%（有意水準p＝0.05）となり、ガレクチン-1の強制発現は、神経幹細胞の生存及び／又は増殖を促進した。

[0069] ＜実施例3：培地中へのガレクチン-1またはガレクチン-3の添加＞
実施例1のソーティング後の培地中にヒト組換えガレクチン-1(Genzyme technology社)を100pg/ml、1ng/ml、100ng/mlにて添加した。結果を図2に示す。なお、本実験では、ソーティング後の培養培地としては、約66%に希釈したニューロスフィア培養上清を用いた。

[0070] 結果として、独立試行を3回行い、図2に示すように、ネガティブコントロール0.13%、ガレクチン-1 100pg/ml添加時0.23%、ガレクチン-1 1ng/ml添加時0.23%、ガレクチン-1 100ng/ml添加時1.9%となり、ガレクチン-1 100pg/ml又は1ng/ml添加により、ニューロスフィアの形成効率は上昇したが、100ng/ml添加により、最も著しくニューロスフィアの形成効率は上昇し、ガレクチン-1は、濃度依存的に神経幹細胞の生存及び／又は増殖を促進した。

[0071] さらに、ガレクチン-1との代わりにガレクチン-3を用いて、100ng/mlにて実験を行った（N＝5）。本実験では、培養の基礎培地として、希釈なしのニューロスフィア培養上清を用いた。図3に示すように、ガレクチン-1添加時3.75%、ガレクチン-3添加時3.52%となり、ガレクチン-3もガレクチン-1と同等の効果があった。

[0072] ＜実施例4：モデル動物を用いた実験＞
＝＝スナネズミの虚血誘導＝＝
16〜21週齢で体重60〜76gのスナネズミ（Meriones unguiculatus）を3匹または4
匹のグループに分け、12時間の明暗サイクルで飼育した。スナネズミを二群に分け、
2%ソフクレンを用いて麻酔し、左側の顕動脈を小ピンチコックで10分間狭窄し、
虚血を誘導した。

[0073] 脳梗塞の症状は梗塞指標（stroke index: SI）で評価した。即ち、以下の行動あるいは
状態に対し、それぞれ下記の点数を与え、当てはまる症状の点数を合計する。
毛の逆立てまたは振戦 1
感覚の鈍化 1
動作の減少 1
反り返った顔部 3
閉じない目 3
眼瞼下垂 1
外向きに広げた脚 3
回旋運動 3
発作 3
高度の筋力低下 6

[0074] 虚血誘導した個体群のうち、10以上の点数を有した個体を選択し、一度目の虚血
誘導の5時間後に、もう一度同様の虚血誘導の操作を行い、以下の移植実験に用い
た。

[0075] ＝＝神経幹細胞の移植＝＝
スナネズミに虚血誘導操作を行った4日後に、以下のように移植手術を行った。ス
ナネズミを2%ソフクレンを用いて麻酔し、定位フレーム内に置く。虚血を誘導した
のと同じ左側の頭盖骨に、頭蓋骨を平面にしたときのフレームからの座標（前方約1.0mm、側方約1.5mm、腹方約1.5mm）にある線条体の尾状核に10μlのハミルトン
シリンジが挿入できる程度の穴を開ける。ハミルトンシリンジを用いて、2分以上かけ
て移植用懸濁液（5×10^6細胞数/3μl）を3μl注入し、2分放置して、拡散させること
により、尾状核に神経幹細胞を移植した。実験に供する二群に対して、実施例2で作
製した、ウイルスベクター（RV）のみを有する神経幹細胞、及びガレクチン-1（GAL）を有する神経幹細胞を、それぞれ移植した。なお、各神経幹細胞に対し、移植前に遺伝子導入を計2回行い、合計21日間培養した。拒絶反応を抑制するため、各個体群に対し、術後4週間、週に3回ミグリオール812（ミツバ薬品）を混合したシクロスポリンA（和光製薬）を投与した。手術後は、摂餌、グルーミング、体重の増加が正常に回復するまでケージに一匹ずつ飼育した。

[0076] ＝＝EBST（elevated body swing test）＝＝
実験に用いたスナネズミの運動機能を評価するために、EBSTを行った。各スナネズミ個体を、尾の付け根で保持し、実験台から約10センチの高さに持ち上げた。左右どちらかの側に10度以上上半身を持ち上げたとき、その側へのスイングと定義する。一分間のスイングの方向と回数を測定し、これを毎日3回（合計3分）繰り返した。ここでは、左側の脳に虚血誘導を起こさせているので、その反対側、即ち右側にスイングする割合が計測された。

[0077] 虚血誘導操作をした日、神経系前駆細胞を移植した日、及び、移植後10日目、20日目、30日目に、EBSTを行った。図4に示したように、ガレクチン-1（GAL）を有する神経幹細胞を用いると、ウイルスベクター（RV）のみを有する神経幹細胞に比べ、さらに運動機能障害の回復が観察された。

[0078] ＝＝BAT（bilateral asymmetry test）＝＝
次に、実験に用いたスナネズミの体性感覚機能を評価するために、BATを行った。ここでは、実施例2とは異なり、レンチウイルスのベクターを用いた。まず、ヒト・ニューロスフェアからTotalmRNAをTRIzol（invitrogen社）にて単離し、Superscript2（Invitrogen）及び下記のプライマーを用いて、RT-PCRを行った。PCRの条件としては、酵素はKOD+（TOYOBO社）を用い、94℃2分で変性処理をした後、94℃15秒→60℃30秒→68℃60秒を30サイクル行った。
プライマー1：GCGGCCGCGCCACATGGCTTGTGGTCTGTTG
プライマー2：AGAGTGATCATCTCTGATCAGTCACACATTCG

[0079] 増幅したDNA断片をNot1とBamH1で消化し、CSII-EF-MCS-IRES2-Venus（図5）
のNot1-BamH1部位にクローニングした。このようにできたガレクチン−1の発現ベクターを用い、文献記載の方法（Miyoshi et al., J. Virol. vol.72, 8150-8157, 1998）により、ガレクチン−1を発現するレンチウイルスを得た。簡単に記載すると、上記ベクター、pMDLg/pRRE、pVSV−G、pRSV−REVの合計4つのウイルス構成要素発現プラスミドを293T細胞にトランスフェクトし、一定期間細胞にウイルスを産生させ、培養上清中のウイルスを超遠心で精製して、ニューロスフェアを培養している培地に添加することにより、神経幹細胞に感染させた。

[0080] ガレクチン−1発現神経幹細胞を上記の様に移植したスナネズミ各個体の両前肢の足部分に約60mm²の粘着テープを貼り、虚血誘導を起こさせた側の反対側、即ち右側の足のテープを除去するまでの時間を記録する。この試みを一日に3回行い、その平均時間を各個体のスコアとした。テストを行った個体群及び日は、EBSTと同様である。

[0081] 図6に示すように、ガレクチン−1（GAL）を発現する神経幹細胞を用いると、30日後、ウイルスベクター（LV）のみを有する神経幹細胞に比べ、テープを除去するまでの時間が短くなり、感覚神経障害の回復が観察された。

[0082] ＜実施例5：中枢神経突起伸長効果＞

実施例2で作製した、マウス・ガレクチン−1cDNAを組み込んだレトロウイルスベクターpMY−IRES−EGFを有する神経幹細胞を、培養培地から増殖因子EGF及びFGFを除去して接着培養を行うことにより、ニューロンを分化させた。分化した細胞を、ニューロンの特異的マーカーであるβIII−チューブリンで染色したところ、図7に示すように、ガレクチン−1を発現する神経幹細胞が分化した神経細胞は、コントロールである無処理の神経幹細胞が分化した神経細胞に比べ、顕著に伸長した神経突起を有することがわかった。

[0083] ＜実施例6：マウス個体におけるガレクチン−1注入の効果＞

＝＝ガレクチン−1注入によるニューロスフィア形成能の増加＝＝

マウス・ガレクチン−1を0.9％生理食塩水に溶解し、全量14μgのマウス・ガレクチン−1を含む溶液、及び含まない溶液を、マウス（10〜15週令）の片側の側脳室（lpsi.）に7日間、浸透圧ボンプを用いて時速0.5μlの速度で注入し、逆側の側脳室（
ガレクチン-1注入側（Ipsi. Gal-1）、ガレクチン-1注入逆側（Ctra. Gal-1）、生理食塩水注入側（Ipsi. saline）、生理食塩水逆側（Ctra. saline）の4つの場所についての実験結果を比較した。

脳先端から左右の脳室の交差点まで、皮質や海馬の混入がないようにして両側の側脳室周辺の組織を単離し、それぞれ単一細胞に解離した。解離した細胞を、20ng/mlのEGFを含む上記培地を用い、1000-2000細胞/mlの濃度で、6ウェルのプレートに播種した。10-12日培養後、形成された初代ニューロスフィアの総数を数えた。結果を図8Aに示す。

ガレクチン-1（Ipsi., Gal-1）を注入した場合、生理食塩水（Ipsi., Saline）を注入した時より、脳半球当たり得られるニューロスフィアの数は、有意に増加し、この増加は、注入していない側（Ctra.）の脳半球でも観察された（Gal-1 vs Saline）。

また、ガレクチン-1を注入したマウスから得られたニューロスフィアのうち99％以上が、二次ニューロスフィア形成やニューロンとグリアへの多分化能を示した。

この結果は、ガレクチン-1の注入によって神経幹細胞数が増加していることを示唆し、従って、マウス個体内でも、ガレクチン-1が神経幹細胞数の生存、増殖、またはそれら両方を促進する効果を有すると考えられる。

＝＝ガレクチン-1注入によるSVZにおける細胞増殖能の促進＝＝
本実施例では、マウスの脳にガレクチン-1を注入した時、SVZ(subventricular zone)における細胞増殖能が促進されるかどうか調べた。SVZは、成体脳においても、神経細胞の増殖が継続していることが知られている領域である。

7日間マウス（8週令）の脳にガレクチン-1を注入した後、2時間おきに10時間にわたって、0.007%NaOHを含有するリン酸緩衝液に溶解した溶液BrdU（シグマ社）を、最終量120mg/kg体重になるように、腹腔に注入した。最終投与後30分して、マウスを4％ホルムアルデヒド溶液で灌流固定し、脳を単離し、4％ホルムアルデヒド溶液に浸し、さらに一晩、後固定した。ウィプラトーム（vibratome）で50μmの切片を作製し、PBSで3度リンスした後、TNBブロッキング溶液（TNB blocking solution; Vector社）で1時間インキュベートした。抗BrdU抗体（ラットモノクローナル、Abcam社、1:100）で一晩4℃でインキュベートした後、ビオチン化二次抗体（抗ラットIgG、1:200）で1時間
室温でインキュベートした。PBSでリンスし、ABC Elite kit（Vector社）で発色させた。
その結果を、生理食塩水を注入した個体における結果とともに図8Bに示す。また、
複数のSVZの切片上で抗BrdU抗体によって核が染色された細胞数を数えた結果を
図8Cに示す。

[0089] ガレクチンー1を注入した場合、生理食塩水の注入に比べて核が染色された細胞が
平均36%増加していた。また、これらのサンプル間で、アポトーシスを起こしている細
胞数に、有意な差はなかった（図示せず）。この結果より、マウス個体内では、ガレク
チンー1が神経幹細胞の増殖を促進する効果を有すると考えられる。

[0090] ＝＝ガレクチンー1注入によるSVZを構成する細胞数の増加＝＝

このように、ガレクチンー1の注入は、SVZにおける細胞増殖を促進したが、それによ
って、SVZを構成する細胞数の増加が生じるかどうかを調べた。

[0091] SVZにおいては、SVZアストロサイトの一部は幹細胞として機能し、中間分化段階
のTA細胞（transit amplifying cells）を経て、さらに細胞増殖の後、NB（神経芽細胞）
へと分化することが知られている。そこで、細胞タイプを識別するため、上記のように
ガレクチンー1及びBrdUを注入したマウスの切片に対し、各種細胞マーカーを用いて
SVZを構成する細胞を染色した。

[0092] ここでは、BrdUで増殖細胞を染色すると共に、ウサギ抗Dlx抗体（Grace
Pananaganibんから供与、1:400で使用）、マウス抗Mash1モノクローナル抗体（
PhaemingGen社、1:100で使用）、ウサギ抗Sox21抗体（発明者らが作製、1:10で使用
った。抗Dlx抗体はTA細胞とNBに特異的に認識する。また、抗Mash1抗体は、Dlx+
細胞の一部の細胞集団を認識するが、この細胞集団は、ほとんどの細胞がBrdUポジ
ティブで、GFAPやPSA–NCAMネガティブであることから、抗Mash1抗体はTA細胞の
全部または一部を特異的に認識することになる。抗Sox21抗体は、SVZの全ての細
胞種を認識する。組織化学的染色は、上記抗BrdU抗体の場合と同じ手法で行った。
結果を図9及び表2に示す。

[表2]
ガレクチン-1は成体SVZにおいてNSPCを増加させる

<table>
<thead>
<tr>
<th>マーカー</th>
<th>SVZアストロサイト</th>
<th>TA細胞</th>
<th>ニューロプラスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sox21</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dlx</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mash1</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>細胞数</th>
<th>ガレクチン-1</th>
<th>生理食塩水</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65.0±13.0*</td>
<td>236±18.7*</td>
</tr>
<tr>
<td></td>
<td>125±37.2</td>
<td>109±9.20</td>
</tr>
</tbody>
</table>

相対比 | ガレクチン-1/生理食塩水 | 1.99 | 1.38 | 1.14 |

[0093] 図9は、各実験条件において、検出された細胞タイプの割合を示したグラフである（A; NB細胞 Dlx+/Mash1+, B; SVZアストロサイト BrdU+/Sox21+/Dlx-, c; TA細胞 Mash1+, O; その他の細胞）。ガレクチン-1の注入によって増殖しているSVZアストロサイト（B、グラフでは＊部）の割合が有意に（p<0.05）増加したことがわかる。また、ガレクチン-1の注入によって、SVZにおける、増殖しているSVZアストロサイト（B）の割合が、ガレクチン-1を注入したのと左右逆の脳半球の側でも有意に（p<0.05）増加していた。また、表1より、SVZアストロサイト（B）だけでなくTA細胞（C）の細胞数も、有意に増加していることがわかる。

これらの結果から、ガレクチン-1の注入は、マウス個体内でSVZアストロサイトの増殖を促進することが明らかになった。SVZアストロサイトの一部は神経幹細胞として機能するため、この結果は、ガレクチン-1の注入が、マウス個体内で神経幹細胞の増殖を促進することを支持する。

[0094] ＝＝＝ガレクチン-1投与による増殖の遅い細胞数の増加＝＝

神経幹細胞は、in vivoで増殖が遅い一群の細胞に含まれていることが知られている。そこで、ガレクチン-1の注入が、マウス個体内で増殖の遅い細胞の増殖を促進するかどうか調べた。

[0095] ここでは、BrdUを脳内に注入するのではなく、1mg/mlのBrdUを飲み水に添加し、1週間、マウスに与えた。マウスは、ガレクチン-1注入の最終日から10日後と30日後に解剖し、脳を単離した。BrdUの検出は、上記と同様に行った。結果を図10に示す
ガレクチン−1を注入した脳では、生理食塩水を注入した脳より、有意に（10日目p=0.01、30日目p<0.001）BrdUポジティブな細胞数が増加していた。しかし、BrdUポジティブな細胞中、TA細胞の一部を認識するMash1の発現している細胞の割合は、コントロールと有意な差はなかった（図示せず）。これらの結果より、ガレクチン−1の注入は、マウス個体内で、TA細胞に分化する前の増殖の遅い細胞の増殖を促進することが明らかになった。この結論は、ガレクチン−1の注入が、マウス個体内で神経幹細胞の増殖を促進することを支持する。

産業上の利用可能性

本発明によれば、神経幹細胞の生存及び／又は増殖を促進する方法、及びその方法によって作製された神経幹細胞を含む医薬組成物を提供することができる。また、脊椎動物個体において、神経幹細胞やSVZアストロサイトの増殖を促進するための神経幹細胞増殖促進剤及びSVZアストロサイト増殖促進剤、並びに、神経幹細胞やSVZアストロサイトの増殖を促進するための神経幹細胞増殖促進方法及びSVZアストロサイト増殖促進方法を提供することができる。

さらに、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を検定する検定方法、及び神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有する物質のスクリーニング方法を提供することができる。
請求の範囲

[1] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって、
ガレクチンー1 (Galectin-1) を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とする方法。

[2] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって、
ガレクチンー3 (Galectin-3) を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とする方法。

[3] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって、
前記神経幹細胞を、ガレクチンー1を含有した培養液で培養することを特徴とする方法。

[4] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって、
前記神経幹細胞を、ガレクチンー3を含有した培養液で培養することを特徴とする方法。

[5] 前記培養液が神経幹細胞培養上清を含有することを特徴とする請求項 1 または 3 に記載の方法。

[6] 前記培養液がニューロスフィア培養上清を含有することを特徴とする請求項 1 または 3 に記載の方法。

[7] 前記培養液が、OP9細胞株の培養上清を含有することを特徴とする請求項 1 または 3 に記載の方法。

[8] ガレクチンー1を過剰発現させた神経幹細胞を有効成分として含有し、脳内虚血によって障害が生じた高次機能を改善することを特徴とする医薬組成物。

[9] ガレクチンー3を過剰発現させた神経幹細胞を有効成分として含有し、脳内虚血によって障害が生じた高次機能を改善することを特徴とする医薬組成物。

[10] 前記高次機能が運動機能であることを特徴とする請求項 8 または 9 に記載の医薬組
成物。
[12] ヒト以外の哺乳動物において、ガレクチンー1を過剰発現させた神経幹細胞を移植することによって、脳虚血に由来する症状を改善する脳虚血治療方法。
[13] ヒト以外の哺乳動物において、ガレクチンー3を過剰発現させた神経幹細胞を移植することによって、脳虚血に由来する症状を改善する脳虚血治療方法。
[14] 神経幹細胞が分化する際の神経突起伸長を促進する促進剤であって、
ガレクチンー1またはガレクチンー3を有効成分として含有することを特徴とする促進剤。
[15] 神経幹細胞が分化する際の神経突起伸長を促進する方法であって、
ガレクチンー1を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とする方法。
[16] 神経幹細胞が分化する際の神経突起伸長を促進する方法であって、
ガレクチンー3を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とする方法。
[17] 脊椎動物個体において、神経幹細胞の増殖を促進するための促進剤であって、
ガレクチンー1またはガレクチンー3を有効成分として含有することを特徴とする促進剤。
[18] 正常脊椎動物個体において神経幹細胞の増殖を促進するための方法であって、
脳にガレクチンー1またはガレクチンー3を注入することを特徴とする方法。
[19] ヒト以外の脊椎動物個体において神経幹細胞の増殖を促進するための方法であって、
脳にガレクチンー1またはガレクチンー3を注入することを特徴とする方法。
[20] 脊椎動物個体において、SVZアストロサイトの増殖を促進するための促進剤であって、
ガレクチンー1またはガレクチンー3を有効成分として含有することを特徴とする促進剤。
[21] 正常脊椎動物個体においてSVZアストロサイトの増殖を促進するための方法であ
って、
脳にガレクチン-1またはガレクチン-3を注入することを特徴とする方法。

[22] ヒト以外の脊椎動物個体においてSVZアストロサイトの増殖を促進するための方法であって、
脳にガレクチン-1またはガレクチン-3を注入することを特徴とする方法。

[23] 培養液中に添加された対象物質に対し、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を検定する検定方法であって、
神経幹細胞を、クローナルな濃度で播種された状況下の神経幹細胞を増殖させることができない基礎培地に前記対象物質を添加した検定培地を用いて、クローナルな濃度で播種する工程と、
前記播種した神経幹細胞が、前記検定培地中で増殖できるかどうかを判定する工程と、
を含む検定方法。

[24] 培養液中に添加された対象物質に対し、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を検定する検定方法であって、
CD15＋の神経幹細胞を選択する工程と、
前記選択されたCD15＋の神経幹細胞を、クローナルな濃度で播種された状況下の神経幹細胞を増殖させることができない基礎培地に前記対象物質を添加した検定培地を用いて、クローナルな濃度で播種する工程と、
前記播種したCD15＋の神経幹細胞が、前記検定培地中で増殖できるかどうかを判定する工程と、
を含む検定方法。

[25] 培養皿の1ウェルにつき1個の神経幹細胞を入れることにより、前記クローナルな濃度で播種することを特徴とする請求項23又は24に記載の検定方法。

[26] 複数の対象物質の中から、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有する活性物質を同定するためのスクリーニング方法であって、
請求項23－25のいずれかに記載の検定方法を用いることによって前記活性物質を同定することを特徴とするスクリーニング方法。
[27] 前記ガレクチン-1が、C-S変異型ガレクチンであることを特徴とする請求項1、3、5～7、15、18、19、21、22のいずれかに記載の方法。

[28] 前記ガレクチン-1が、C-S変異型ガレクチンであることを特徴とする請求項8または11に記載の薬物組成物。

[29] 前記ガレクチン-1が、C-S変異型ガレクチンであることを特徴とする請求項12に記載の脳虚血治療剤。

[30] 前記ガレクチン-1が、C-S変異型ガレクチンであることを特徴とする請求項14、17、20のいずれかに記載の促進剤。
図3

図4
[図6]

BAT

(秒)

4日前 移植当日 10日後 20日後 30日後

N=6 each
p<0.05
A: 病半球あたりのニューロソファイ数

B: ガレクチン-1 生理食塩水

C: BrdU シグナル数
図10

A

ガレクチン-1

生理食塩水

B

10日目

BrdU シグナル数

図10

C

ガレクチン-1

生理食塩水

D

30日目

BrdU シグナル数
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl C12N15/00, A61K35/12, C12N5/00, A61L27/00, A61P9/00,
A61P25/00,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl C12N15/00, A61K35/12, C12N5/00, A61L27/00, A61P9/00,
A61P25/00,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI (DIALOG), BIOSIS (DIALOG), MEDLINE (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/06724 A1 (Kirin Beer), 10 February, 2000 (10.02.00), & EP 1122311 A1</td>
<td>3,5-8,10-12, 14,15,17,19, 20,22</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2,4,9,13,16, 27-30</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>2,4,9,13,16, 27-30</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 25 October, 2004 (25.10.04)

Date of mailing of the international search report 09 November, 2004 (09.11.04)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>INAGAKI, Y. et al., Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur.J.Biochem., Vol.267(10), pages 2955 to 2964 (2000)</td>
<td>3,5-8,10-12, 14,15,17,19, 20,22</td>
</tr>
<tr>
<td>Y</td>
<td>HORIE, H. et al., Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J.Neurosci., Vol.19(22), pages 9964 to 9974 (1999)</td>
<td>3,5-8,10-12, 14,15,17,19, 20,22</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-325571 A (Proteck Co., Ltd.), 12 November, 2002 (12.11.02), (Family: none)</td>
<td>2,4,9,13,16, 27-30</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [x] Claims Nos.: 18, 21
 because they relate to subject matter not required to be searched by this Authority, namely:
 The inventions relating to methods for treatment of the human body are described.

2. [] Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

 While claims 1-17, 19, 20, 22 and 27-30 claim an invention relating to a method of promoting the subsistence and/or proliferation of neural stem cells with the use of galectin, claims 23-26 claim an invention directed to assay and identification of a substance having the activity of promoting the subsistence and/or proliferation of neural stem cells.

 Although the two inventions are common to each other in the use of neural stem cells, the neural stem cells per se were well known before the priority date. Consequently, the use of neural stem cells cannot be stated as being special technical feature within the meaning of PCT Rule 13.2. (continued to extra sheet)

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [x] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant’s protest.

[] No protest accompanied the payment of additional search fees.
Continuation of Box No.III of continuation of first sheet(2)

Therefore, the claimed inventions cannot be stated as being a group of inventions linked with each other so as to form a single general inventive concept, and it appears that the group of inventions consist of the above two inventions.
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl C12N 15/00, A61K 35/12, C12N 5/00, A61L 27/00, A61P 9/00, A61P 25/00

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl C12N 15/00, A61K 35/12, C12N 5/00, A61L 27/00, A61P 9/00, A61P 25/00

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/06724 A1 (Kirin Beer) 2000.02.10 WO 00/06724 A1 (Kirin Beer) 2000.02.10 & EP 11223111 A1</td>
<td>3, 5-8, 10-12, 14, 15, 17, 19, 20, 22</td>
</tr>
<tr>
<td>Y</td>
<td>Horie, H. et al., Identification of oxidized galectin-1 as an initial repair regulatory factor after axotomy in peripheral nerves.</td>
<td>3, 5-8, 10-12, 14, 15, 17, 19, 20, 22</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願前の出願または特許であるが、国際出願日以降に公表されたもの
「L」特許を発行する国家又は他の文献の発行日若しくは他の特別な理由を理由するために引用する文献（理由を付す）
「O」出願による開示、使用、提示等に言及する文献
「P」国際出願日で、かつ特許権の主張の基礎となる出願の日後に公表された文献
「T」国際出願日又は優先日後に公表された文献であって、発明の原理又は理論の理解のために引用するもの

国際調査を完了した日 25.10.2004 国際調査報告の発送日 09.11.2004
国際調査報告

C（続き）

関連すると認められる文献

引用文献のカテゴリ*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する*
X	Inagaki, Y. et al., Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties.	1, 3, 5-8, 10-12, 14, 15, 17, 19, 20, 22
X	Horie, H. et al., Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy.	1, 3, 5-8, 10-12, 14, 15, 17, 19, 20, 22
Y	JP 2002-325571 A (株式会社ブロテック) 2002. 11. 12 (ファミリーなし)	1

様式 PCT／ISA／210（第2ページの続き）（2004年1月）
第Ⅱ欄 請求の範囲の一部の調査ができないときの意見（第１ページの２の続き）

法第8条第3項（PCT17条2(a)）の規定により、この国際調査報告は次のような理由により請求の範囲の一部について作成した。　

1. □ 請求の範囲 18、21 は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
　人体の治療方法に係る発明が記載されている。

2. □ 請求の範囲 4 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. □ 請求の範囲 5 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第Ⅲ欄 発明の単一性が欠如しているときの意見（第１ページの３の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1－17、19、20、22、27－30には、ガレクチンを用いて神経幹細胞の生存、増殖を促進する方法に関連する発明が記載されているのに対して、請求の範囲23－26には、神経幹細胞の生存、増殖を促進する活性を有する物質を検定、同定する発明が記載されている。

そして、両者の発明は、神経幹細胞を用いる点において共通するものの、神経幹細胞自体は劣剰日前からよく知られていることから、神経幹細胞を用いることはPCT規則13.2における特別な技術的特徴であるとはいえない。

したがって、請求の範囲に記載された発明は、単一の一般的発明概念を形成するように連関している一群の発明であるとはいいず、上述した2個の発明からなる発明群であると認める。

1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。

2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めていない。

3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。

4. □ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT/ISA/210（第1ページの続き）（2004年1月）