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PROCESSOR WITH IMPROVED ACCURACY
FOR MULTIPLY-ADD OPERATIONS

BACKGROUND OF THE INVENTION

The present invention relates to floating-point processors, and more
particularly to floating-point processors having improved accuracy for multiply-add
(Madd) operations.

In digital processing systems, numerical data is typically expressed using
integer or floating-point representation. Floating-point representation is preferred in
many applications because of its ability to express a wide range of values and its ease of
manipulation for some specified operations. A floating-point representation typically
includes three components: a sign bit (sign), a mantissa (mant) that is sometimes referred
to as a significand, and an exponent (exp). The represented floating-point number can be
expressed as (-1)"®"emante2°*®. Floating-point representations are also defined by “IEEE
Standard for Binary Floating-Point Arithmetic,” which is referred to herein as the IEEE-
754 standard (or simply the IEEE standard) and incorporated herein by reference in its
entirety for all purposes.

Many operations can be performed on floating-point numbers, including
arithmetic operations such as addition, subtraction, and multiplication. For arithmetic
operations, the IEEE standard provides guidelines to be followed to generate a unique
answer for each floating-point operation. In particular, the IEEE standard describes the
processing to be performed on the result from a particular operation (e.g., multiply, add),
the precision of the resultant output, and the data format to be used. For example, the
IEEE standard defines several rounding modes available for the results from add and
multiply operations, and the bit position at which the rounding is to be performed. The
requirements ensure identical results from different implementations of [EEE-compliant
floating-point processors.

Many applications perform multiplication on two operands and addition
(or subtraction) of the resultant product with a third operand. This multiply-add (or
Madd) operation is common, for example, in digital signal processing where it is often
used for computing filter functions, convolution, correlation, matrix transformations, and
other functions. The Madd operation is also commonly used in geometric computation

for (3-D) graphics applications.
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Conventionally, a Madd operation can be achieved by sequentially
performing a multiply (MUL) operation followed by an add (ADD) operation.
Performing the operations sequentially results in long processing delay. Improved
performance can often be obtained by performing the Madd operation using a specially
designed unit that also supports conventional floating-point multiplication and addition.

For Madd operations, post-processing is typically performed on the
intermediate result from the multiply portion. To obtain a final Madd output that is
fulfills IEEE rounding requirement, the post-processing includes possible
denormalization and rounding of the intermediate result in accordance with one of the
rounding modes defined by the IEEE standard. Denormalization is performed on a
denormalized number (i.e., a non-zero number between the smallest positive
representable normalized number, +am,, and the smallest negative representable
normalized number, -ayin) to place the denormalized number in a proper format such that
rounding can be performed at the bit location specified by the IEEE standard. The post-
processing (or more specifically, the denormalization and rounding) to generate an IEEE-
compliant Madd result typically lead to reduced accuracy (since some bits may be
discarded during the denormalization and rounding), increased hardware complexity, and
increased processing time. To reduce hardware complexity and improve processing time,
some Madd architectures provide an additional operating mode in which numbers (e.g.,
intermediate results) smaller than the smallest representable normalized number are set or
flushed to zero, or some other values such as ay;,. However, the flush-to-zero mode
suffers from a higher loss in accuracy since the mantissa is replace with zero or some
other predefined minimum value.

Accordingly, for Madd operations, techniques that increase the accuracy of
the output result, simplify the post-processing of the intermediate result, and reduce the

overall processing time are highly desirable.

SUMMARY OF THE INVENTION
The invention provides a floating-point processors capable of performing
multiply-add (Madd) operations and having improved accuracy, reduced circuit
complexity, and possibly enhanced operating speed. Improved performance is achieved
by processing the intermediate result from the multiplier unit, when operating in a
specified operating mode, in a particular manner. Specifically, the intermediate result is

rounded but not normalized or denormalized, as described in detail below.
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An embodiment of the invention provides a floating-point unit (FPU)
configurable to perform multiply-add (Madd) operations. The FPU includes a multiplier
unit coupled to an adder unit. The muitiplier unit receives and multiplies the mantissas
for the first and second operands to generate a multiplier output mantissa. The multiplier
unit is configurable to operate in a first operating mode defined by the multiplier output
mantissa being rounded and having a pseudo-normalized format. The adder unit couples
to the multiplier unit and receives and combines the multiplier output mantissa and a
mantissa for a third operand to generate a FPU output mantissa.

In an embodiment, the pseudo-normalized format is characterized by at
least one bit to the left of a binary point having a value of one. The multiplier output
mantissa can be rounded at a bit position defined by IEEE standard, and can also be
rounded without regard to its associated exponent.

The multiplier unit can be designed to selectively operate in one of a
number of operating modes. Besides the first operating mode described above, a second
operating mode can be defined by the multiplier output mantissa being in conformance
with the IEEE standard. In this mode, the multiplier output mantissa is normalized or
denormalized, as necessary, and rounded in accordance with the IEEE standard. A third
operating mode can be defined by the multiplier output mantissa being flushed to zero or
other predefined values when a denormalized multiplier output is detected. The operating
mode can be selected by a value stored in a control register, a control signal, or some
other mechanisms.

The FPU can provided improved performance when configured to execute
a set of operations designed to approximate a reciprocal of a number or a reciprocal
square root of a number. These approximation can be performed in accordance with a
Newton-Raphson algorithm.

Yet another embodiment of the invention provides a floating-point
processor configurable to perform Madd operations. The floating-point processor
includes a multiplier unit coupled to an adder unit. The multiplier unit includes a
multiplier array operatively coupled to a first rounding unit. The multiplier array receives
and multiplies mantissas for two operands. The first rounding unit is configurable to
round an output from the multiplier array to generate a rounded multiplier output
mantissa having a pseudo-normalized format. The adder unit includes a carry
propagation adder (CPA), a second rounding unit, and a normalization unit. The CPA

receives and combines the multiplier output mantissa and a mantissa for a third operand.
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The second rounding unit couples to the CPA and receives and rounds the mantissa from
the CPA. The normalization unit couples to the second rounding unit and receives and
normalizes the rounded mantissa. Within the multiplier unit, another CPA can be coupled
between the multiplier array and the first rounding unit, to receive and combine a sum
output and a carry output from the multiplier array.

The FPU and floating-point processor described above typically include
additional units to process the exponents for the operands. The FPU and floating-point
processor can be incorporated within a microprocessor or other hardware structure, and
can also be described and/or implemented using hardware design languages (e.g.,
Verilog).

Yet another embodiment of the invention provides a method for
performing a floating-point Madd operation. In accordance with the method, the
mantissas for two operands are multiplied to generate a third mantissa, which is then
rounded to generate a fourth mantissa. The fourth mantissa has a pseudo-normalized
format and a range greater than a normalized mantissa. The fourth mantissa is combined
with a mantissa for a third operand to generate an output mantissa. The output mantissa
can further be rounded and normalized to generate a representation that conforms to the
IEEE standard.

The invention also provides computer program products that implement
the embodiments described above.

The foregoing, together with other aspects of this invention, will become
more apparent when referring to the following specification, claims, and accompanying

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a simplified diagram of an embodiment of a processor that
incorporates a floating-point unit (FPU) of the invention;

Fig. 2 shows a block diagram of an embodiment of a FPU capable of
performing add, multiply, and multiply-add operations in accordance with the invention;
Fig. 3A shows a representation of a floating-point number;

Fig. 3B shows representations for single and double-precision floating-
point numbers as defined by the IEEE standard;
Fig. 4A shows a diagram of a line that graphically represents all real

numbers;
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Fig. 4B shows a diagram of an exponent representation for single-
precision numbers in accordance with the IEEE standard,

Fig. 5A shows the representations for some normalized numbers;

Fig. 5B shows the representations for some denormalized numbers and for
zero (0);

Fig. 6A shows two mantissa representations that can result from a multiply
operation;

Fig. 6B shows a representation of a normalized but unrounded mantissa;

Fig. 6C shows a representation of a normalized mantissa that conforms to
the IEEE standard;

Fig. 7A shows two mantissa representations for the mantissa from a carry
propagation adder (CPA) within a multiplier unit of the FPU in Fig. 2;

Fig. 7B shows two mantissa representations for the mantissa from the
rounding unit within the multiplier unit; and

Fig. 8 shows a representation of a floating-point control status register

(“FCSR”) configured to store bits identifying a particular operating mode.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Fig. 1 shows a simplified diagram of an embodiment of a processor 100
that incorporates a floating-point unit (FPU) 110 of the invention. As shown in the
specific embodiment in Fig. 1, processor 100 further includes an instruction dispatch unit
(IDU) 120, a load store unit (LSU) 130, and an integer execution unit (IXU) 140. IDU
120 decodes a sequence of instructions, dispatches floating-point instructions to FPU 110,
and keeps track of the state of each dispatched floating-point instruction, resource and
register dependencies, and the possibility of bypassing a resultant operand to the next
FPU instruction. FPU 110 performs floating-point computations, as directed by IDU 120.
LSU 130 interfaces with other elements (i.e., internal or external to processor 100) and
provides data to, and receives data from FPU 110. For example, operands are loaded
from LSU 130 to FPU 110 and results are provided from FPU 110 to LSU 130. IXU 140
performs integer computations, and is able to transfer data to, and receive data from FPU
110.

Fig. 1 also shows a block diagram of an embodiment of FPU 110. FPU
110 includes a floating-point register file (FPR) 152 that interfaces with LSU 130. FPR

152 includes a number of read ports (i.e., for reading up to three operands for each
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arithmetic operation and one operand for a store operation) and a number of write ports
(i.e., for writing one operand for each arithmetic and load operation).

A floating-point pipe file (PIP) 154 couples to FPR 152 and further
interfaces with LSU 130 and IXU 140. For each instruction, PIP 154 selects and receives
operands from FPR 152, a load pipe file, a result pipe file, or a ROM. PIP 154 then
unpacks the received operands (i.e., from an IEEE-compliant format) into an internal data
format recognized by the processing units within FPU 110. PIP 154 also packs the results
from FPU 110 into a data format (i.e., IEEE-compliant format) required by the external
circuitry and provides the packed results to FPR 152.

A floating-point multiplier (MUL) 156 couples to PIP 154 and executes
floating-point multiply instructions as well as the muitiply portion of compound
instructions such as a multiply-add (MADD) instruction. MUL 156 receives the
mantissas of two operands from PIP 154. In an embodiment, MUL 15 6 is implemented
with a multiplier array that generates a set of sum and carry outputs having full precision.
The sum and carry are provided to, and combined in a carry-propagate adder (CPA) to
generate a precise, unrounded resultant mantissa. The lower bits of the resultant mantissa
are logically combined to form a “sticky” bit that, in combination with the round bit and
the current rounding mode, are used to generate rounding information to be sent to a
subsequent rounding unit within MUL 156. MUL 156 is described in further detail
below.

A floating-point adder (ADD) 158 couples to PIP 154 and MUL 156.
ADD 158 executes floating-point add and subtract instructions as well as the add portion
of compound instructions such as MADD. ADD 158 receives two operands and performs
floating-point magnitude addition/subtraction using, for example, a prescale adder (PSA)
operated in parallel with a massive cancellation adder (MCA). The final output is
selected from one of the adders and provided to PIP 154 for storage. In one embodiment,
adder selection is based upon the exponent difference of the subject operands and the first
few bits of the mantissas of such operands (i.e., the integer bit(s) and the most significant
bit of the fractional portion) so that: (1) the PSA is always used for addition and
selectively used for subtraction when the result is guaranteed to be no less than 0.1000000
before rounding and normalization and (2) the MCA is selectively used for subtraction
when the result is guaranteed to be less than 1.0 and may have a large number of leading
zeros before rounding and normalization. Operands that satisfy both conditions may be

processed by either the PSA or MCA. Often, this selection criteria results in selection of
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the PSA for additions and subtractions when the difference between operand exponents is
greater than two, and the selection of the MCA for subtractions when the difference
between operand exponents is less than or equal to two.

A floating-point exponent unit (EXP) 160 couples to PIP 154 and ADD
158. EXP 160 receives the exponents of the operands from PIP 154, estimates an output
exponent based on the operation being performed and the exponents of the operands, and
adjusts the estimated output exponent based on the rounding and normalization performed
on the mantissa (e.g., by MUL 156 and ADD 158). EXP 160 also performs other
functions, such as overflow/underflow prediction and checks.

A floating-point divide/square-root unit (DSQ) 162 couples to MUL 156
and operates on the mantissas for divide and square-root instructions. DSQ 162 is
designed to implement a particular algorithm (e.g., a radix-2 SRT or a radix-4 SRT
algorithm).

A floating-point control unit (CTL) 164 is the control unit for FPU 110.
CTL 164 receives floating-point instructions and directs the operation of various units
within FPU 110 to generate the proper output.

Fig. 2 shows a block diagram of an embodiment of a floating-point unit
(FPU) 200 capable of performing add, multiply, and multiply-add (Madd) operations.
FPU 200 represents a portion of FPU 100 shown in Fig. 1. FPU 200 includes a multiplier
unit coupled to an adder unit. Support circuitry, such as that shown in Fig. 1, is not
shown in Fig. 2 for simplicity. The multiplier unit includes a multiplier array 210, a
carry-propagation adder (CPA) 212, a rounding unit 216, and an exponent combine unit
220. The adder unit includes the remaining units shown in Fig. 2. FPU 200 includes
several features that increase accuracy, simplify the hardware design, and improve
operational performance, as described below.

At any given moment, FPU 200 can be configured to perform one of at
least three different operations including addition, multiplication, and Madd. These

operations are expressed by the following:
Fd=FstFt,
Fd = Fse Ft ,and
Fd = +((Fs e Ft)t Fr) ,
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where Fd is the resultant output and Fr, Fs, and Ft are three input operands. The Madd
operation can be further decomposed into the following operations and their

corresponding names:

Fd = (Fs e Ft)+ Fr, MADD
Fd = (Fse Ft)-Fr, MSUB
Fd = —((Fs e Ft)+ Fr), N MADD
Fd = —((Fs e Ft)-Fr), N MSUB,

As shown in Fig. 2, the mantissas, Mant S and Mant T, for two operands
are provided to multiplier array 210. Array 210 can implement, for example, a Booth or
modified Booth algorithm, and can include partial product generation logic and a number
of carry-save adders. The partial product generation logic produces partial products
based on the mantissas. The carry-save adders add a number of partial products together
and send the outputs to other carry-save adders in a tree-like fashion until only two
numbers are left, the final sum and carry. In a specific implementation, the carry-save
adders take in four terms and combine them into two, but other configurations are
possible.

Array 210 thus multiplies the two operands and provides the product in
sum-and-carry format to CPA 212. CPA 212 combines the sum and carry and provides
the resultant mantissa to rounding unit 216 that processes the mantissa based on a
specified operating mode of the FPU. The operation of rounding unit 216 is further
described below. The processed mantissa comprises the output mantissa from the
multiplier unit.

The exponents, Exp S and Exp T, of the two operands are provided to
exponent combination unit 220 that combines the exponents for a multiply operation.
The combined exponent from unit 220 comprises the output exponent from the multiplier
unit.

In an embodiment, for improved performance (i.c., faster operating speed),
the adder unit includes a prescale adder (PSA) and a massive cancellation adder (MCA)
operated in parallel. Depending on the characteristics of the operands, the output from
either the PSA or MCA is selected.

To perform a floating-point addition, the mantissas of the two operands are

typically aligned by shifting one of the mantissa and adjusting its exponent until the
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exponents of the two operands are equal. The mantissas are then combined (e.g., added
or subtracted), and the resultant mantissa is normalized. The number of shifts prior to the
combination can be large (e.g., when adding a large number with a small number), and
the number of shifts after the combination can also be large (e.g., when subtracting two
operands having similar magnitudes). The PSA and MCA are designed to efficiently
process most input conditions, including these two extreme conditions.

For the PSA, the mantissa from rounding unit 216 is provided to MUXes
232a and 232b. The mantissas for operands R and T are provided to a MUX 230 that
selects one of the mantissas, based on the operation to be performed, and provides the
selected mantissa to MUXes 232a and 232b. MUX 232a selects the mantissa of the
smaller operand and provides the selected mantissa to a right-shift unit 234. MUX 232b
selects the mantissa of the larger operand and provides the selected mantissa to a CPA
236.

The exponents of operands R and T are provided to a MUX 226 that
selects one of the exponents based on the operation to be performed. The selected
exponent from MUX 226 and the combined exponent from unit 220 are provided to an
exponent calculation unit 252 that determines the difference between the two exponents
and a preliminary result exponent. Determination of the preliminary result exponent is
dependent upon the arithmetic equation being performed, and is further described in U.S.
Patent Application Serial No. 09/363,638, filed July 30, 1999, assigned to the assignee of
the invention, and incorporated herein by reference. The preliminary result exponent
(e.g., the larger exponent when performing an add operation) is provided to an exponent
adjustment unit 256 and the exponent difference is provided to right-shift unit 234 that
shifts the mantissa of the smaller operand to the right by the indicated exponent
difference. The shifted mantissa is provided to CPA 236 that combines the two mantissas
and provides a combined mantissa to a rounding unit 242. Rounding unit 242 rounds the
combined mantissa and provides the rounded mantissa to a normalization unit 244.

The mantissa from CPA 236 can be in the 01.xxx--xxxX, 1X.XXX~-XXXX, Or
0.1xxx--xxxx (from subtraction) format. Normalization unit 244 normalizes the result to
the 01.xxx--xx format by performing a 1-bit right-shift or left-shift, if necessary. The
exponent is adjusted by exponent adjustment unit 256, as necessary, based on the
normalization performed by normalization unit 244.

The MCA portion of FPU 200 includes a CPA 262, a leading zero
anticipator (LZA) 264, and a left-shift unit 266. For the MCA, the mantissas from
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rounding unit 216 and MUX 230 are provided to MUXes 232c and 232d. MUXes 232
facilitate a small shift of one of the mantissas, based on the exponent difference, to align
the mantissas. MUXes 232 are also used to select one of the mantissas for inversion in
subtraction operations (the inverter is not shown in Fig. 2 for simplicity). The outputs
from MUXes 232c¢ and 232d are provided to CPA 262 and LZA 264. CPA 262 combines
the two mantissas and provides a combined mantissa to left-shift unit 266. LZA 264
anticipates the number of leading zeros in the resultant mantissa, based on the input
operands. The output from LZA 264 is encoded into a control signal that defines the
number of shifts for left-shift unit 266. The control signal is also provided to exponent
adjust 256 to adjust the exponent.

The outputs from normalization unit 244 and left-shift unit 266 are
provided to a MUX 246 that selects the output from the PSA or MCA as the output
mantissa from FPU 200. The adjusted exponent from unit 256 comprises the output
exponent from FPU 200. The operation of FPU 200 is further described in U.S. Patent
Application Serial No. 09/364,514, filed July 20, 1999, assigned to the assignee of the
invention, and incorporated herein by reference.

Fig. 2 shows a Madd architecture in which two rounding operations can be
performed, one after the multiply operation and the other after the add operation. This
Madd architecture can generate Madd results that fulfill the IEEE rounding requirements,
as if the multiply and add were executed separately.

Fig. 3A shows a representation of a normalized floating-point number.
The representation includes a sign bit 310, a mantissa 312, and an exponent 314. A
normalized floating-point number is represented by a mantissa having a one (1) to the left
of the binary point (i.e., the integer portion of the mantissa) and a 1.xxx--xx format,
where each “x” represents one bit that is either a one or a zero. As defined by the [EEE
standard, the fractional portion “xxx--xx” represents 23 bits after the binary point for
normalized single precision numbers and 52 bits for normalized double precision
numbers. The normalized mantissa has a range of between 1.0 and 2.0 (i.e., 1.0 <
mantissa < 2.0).

The IEEE standard defines the representation for floating-point numbers.
For normalized numbers, the IEEE standard mandates storing only the fractional portion
of the mantissa (i.e., the “xxx--xx" portion in Fig. 3A). The leading one (1) to the left of

the binary point is implicit and not stored.
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Fig. 3B shows representations for single and double-precision floating-
point numbers as defined by the [EEE standard. The IEEE standard defines the number
of bits to be used for the exponent and for the fractional portion of the mantissa, for single
(32-bit) and double (64-bit) precision floating-point numbers. As shown in Fig. 3B, the
single-precision representation includes three components: a single sign bit (sign), an 8-
bit exponent (exp), and a 23-bit mantissa (mant). The double-precision representation
includes a single sign bit (sign), an 11-bit exponent (exp), and a 52-bit mantissa (mant).

A floating-point number (y) can be expressed as:
y = (1) e mant e 2 . Eq. (1)

Fig. 4A shows a diagram of a line that graphically represents all real
numbers. It should be noted that this line representation is not drawn to scale. Generally,
real numbers range from negative infinity (-cc) to positive infinity (+ec). In the line
representation shown in Fig. 4A and for the floating-point expression shown in equation
(1), numbers greater than 0.0 (i.e., y > 0.0) are represented by a positive sign bit (i.e., sign
= 0) and numbers less than 0.0 (i.e., y < 0.0) are represented by a negative sign bit (i.e.,
sign = 1). Numbers having an absolute value greater than 1.0 (i.e., [y| > 1.0) are
represented by a positive exponent (i.e., exp = 0) and numbers having an absolute value
less than 1.0 (i.e., |y| < 1.0) are represented by a negative exponent (i.e., exp < 0).

For floating-point representations having finite resolution (such as those
shown in Fig. 3B with 32 bits for single-precision and 64 bits for double-precision), only
numbers within a particular range of values can be represented as normalized number
using the expression shown in equation (1). This range is defined by a maximum
normalized value ayux and a minimum normalized value am,. For single-precision

*128 and Amin = 27126 Some numbers between zero

numbers, am.x is slightly smaller than 2
and the minimum normalized value (i.e., amin >y > 0.0) can be represented as
denormalized numbers, which are described below. Special representations are used for
zero (0.0) and for some numbers greater than the maximum normalized value (e.g.,
infinity).

Fig. 4B shows a diagram of an exponent representation for single-
precision numbers in accordance with the IEEE standard. To obtain both positive and
negative exponent values with a binary representation, the represented exponent is offset
with a bias value. For single-precision numbers, the IEEE standard defines the exponent

bias value to be 127. Thus, the actual (i.e., unbiased) exponent value is equal to the
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represented (i.e., biased) exponent value (i.e., as stored in the exponent portion shown in
Fig. 3B) minus the exponent bias value of 127. For example, the biased exponent values
of 254, 127, and 1 correspond to the unbiased exponent values of +127, 0, and -126,
respectively. In accordance with IEEE standard, exponent values of all ones (e.g., 255)
and all zeros (e.g., 0) are used to represent special cases, as described below. Thus,
normalized numbers that can be represented have exponents within the range of +127 to -
126.

Fig. 5A shows the representations for some normalized numbers. As
noted above, a normalized number has a mantissa that conforms to the 1.xxx--xx format,
where the bit to the left of the binary point is a one (1) and each “x” to the nght of the
binary point represents a single bit that can be either a one (1) or a zero (0). Generally, a
normalized number has a biased exponent that is within the defined range (e.g., between
254 to 1 for single-precision, which corresponds to a biased exponents of +127 to -126,
respectively). The biased exponent value of 0 is reserved for representing zero (i.e., y =
0.0) and denormalized numbers, as described below.

The largest normalized number (i.€., amx) has a biased exponent of
111...110 (corresponding to an unbiased exponent of +127 for single-precision) and a
mantissa of all ones (corresponding to a mantissa value of 1.111...11, since a “1” to the
left of the binary point is implicit for a normalized number). It should be noted that the
all ones exponent is reserved for special representations. The next largest number that
can be represented has the same exponent value (e.g., unbiased exponent of +127 for
single-precision) and a mantissa value that is one least significant bit (LSB) less than that
of the largest normalized number (i.., 1.111...10). Generally, for decreasingly smaller
numbers, the fractional part of the mantissa is decremented by one from all ones to all
zeros. When the fractional part is all zeros, the next smaller number is expressed by
resetting the fractional part back to all ones and decrementing the exponent value by one.
This process continues until the smallest value is reached, which is represented by an
exponent of 000...001 and a fractional part of all zeros.

Fig. 5B shows the representations for some denormalized numbers and for
zero. As noted above, a zero real number (i.e., y = 0.0) is represented by an all-zero
exponent and an all-zero mantissa. To extend the range of numbers that can be
represented, the IEEE standard defines the representation of denormalized numbers using
the all-zero exponent and non-zero mantissas. The denormalized mantissa has a format of

0.xxx--xx, where the bit to the left of the binary point is a zero (0) and each “x” to the
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right of the binary point is either a one (1) or a zero (0). The largest denormalized
number has a mantissa value of 0.111...11 (corresponding to a number slightly smaller
than 2"'?° for single-precision) and the smallest denormalized number has a mantissa
value of 0.000...01 (i.e., corresponding to 2*°, for single-precision). Thus, the
denormalized numbers cover a range between the minimum normalized number ayi» and
zero (i.e., a range of 276 to 2% for single-precision).

Denormalized numbers extend the range of representable numbers, as
indicated in the line representation in Fig. 4A, but are generally more difficult to handle
in the FPU because extra processing is required to manipulate the exponent and mantissa.
To facilitate handling and to simplify processing of denormalized numbers, the FPU is
typically designed with additional resolution to allow for representation of IEEE-
compliant denormalized numbers using internal normalized representations. For
example, by increasing the exponent by one additional bit, the resolution is greatly
increased and denormalized numbers can be normalized using the internal representation
prior to processing. As a specific example, for single-precision, a 9-bit exponent having
an unbiased exponent range of +255 to -254 can easily present the smallest [IEEE
denormalized number of 2%,

Typically, numbers are stored in memory or storage in accordance with the
[EEE format. As such, these numbers can be normalized numbers, denormalized
numbers, or special numbers (e.g., zero and infinity). For many FPU architectures,
numbers are retrieved from storage and, prior to processing by the FPU, are “unpacked”
into internal normalized representations. The resultant output from the FPU may be
“packed” back into the IEEE format prior to being transferred back to storage.

The IEEE standard defines guidelines to be followed to generate unique
results for floating-point operations such as addition and multiplication. The IEEE
standard does not define the processing for a Madd operation, which is basically a
concatenation of a multiplication followed by an addition. To generate a Madd result that
is IEEE-compliant, the intermediate result from the multiply portion of the Madd
operation needs to be processed to generate an [EEE-compliant intermediate result that is
identical to a result from an IEEE multiply operation.

Fig. 6A shows two mantissa representations that can result from a multiply
operation. When performing multiplication of two normalized mantissas (i.e., using
internal representations), each being within the range of 1.0 and 2.0 (i.e., corresponding to

the 1.xxx--xx format) and having N bits of precision, the resultant mantissa can range
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from 1.0 to 4.0 and have a 01.xxx--xxxx or 1x.xxx--xxxx format. The fractional portion
“xxx--Xxxxx”’ represents up to 2N bits of precision for the unrounded multiplier result (or
more than 23 bits for single precision and more than 52 bits for double precision
numbers). Two bits to the left of the binary point are used to represent the range of 1.0 to
4.0. Normalization (e.g., a right-shift of one bit position) can be performed whenever the
resultant operand is 2.0 or greater to maintain the mantissa within the range of 1.0 and
2.0. The exponent is adjusted accordingly whenever a shift is performed (i.e., by
incrementing the exponent by one for each right shift by one bit position).

Fig. 6B shows a representation of a normalized but unrounded mantissa.
Since the resultant mantissa from the multiplier array can have up to 2N bits of precision,
rounding can be performed to provide a mantissa having N bits of precision, the same
precision as that of the input mantissas. The IEEE standard defines the position of the bit
to be rounded as well as the available rounding modes. Essentially, the mantissa is
truncated to the right of a defined bit position indicated by an arrow 620, and possibly
incremented at this bit position. The increment bit is generated based on a round bit, a
“sticky” bit, and the current rounding mode. The round bit is the bit to the right of arrow
620, and the sticky bit is the OR of all bits to the right of the round bit. The rounding
may generate a mantissa that requires re-normalization. When this occurs, a second
normalization is performed.

Fig. 6C shows a representation of a normalized mantissa that conforms to
the IEEE standard. The normalized mantissa has a range of 1.0 to 2.0 and N bits of
precision.

The formats shown in Figs. 6A through 6C can be deemed as variants of a
“pseudo-normalized” format. As used herein, the pseudo-normalized format is defined
by the presence of at least one bit having a value of one (1) located to the left of the
binary point. Thus, the pseudo-normalized format includes 01.xxx--xx, 10.xxx--XX,
11.xxx--xx, and other formats. The pseudo-normalized format covers any number of
binary digits to the right of the binary point.

As noted above, multiplication of two N-bit numbers results in a product
having up to 2N bits of precision. Depending on the input operands, the product may
exceed the maximum normalized value am,, or may fall within the IEEE denormalized
range. As part of the post-processing after the multiply operation, to generate an IEEE-
compliant multiply result, a determination is made whether the intermediate result is a

normalized or denormalized number. If the intermediate result is deemed to be a
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denormalized number, a denormalization followed by a rounding is performed in order to
generate IEEE-compliant multiply result, which is the prerequisite for generating an
IEEE-compliant Madd result.

Denormalization of the intermediate result can be performed as follows.
First, the intermediate exponent associated with the intermediate result is checked to
determine whether it is less than the minimum normalized exponent (e.g., less than -126
for single precision). This situation can occur when multiplying two small numbers, and
the additional precision of the internal exponent representation can capture the small
result. If the intermediate exponent is less than the minimum normalized exponent, the
mantissa is shifted to the right and the exponent incremented by one with each bit of
right-shift. The mantissa right-shift and exponent increment continues until the updated
exponent is equal to the minimum normalized exponent. The mantissa is then rounded at
the bit position indicated by the IEEE standard. Denormalization is necessary so that the
rounding can be performed at the correct bit position as defined by the IEEE standard.

Denormalization of the intermediate result to generate an IEEE-compliant
multiply result generally degrades accuracy because bits are thrown out during the
denormalization process. Moreover, denormalization is a time consuming process that
requires additional hardware to implement. Various approaches have been implemented
to simplify the processing of denormalized number and to reduce the hardware
requirement. Two of these approaches are described below.

In one approach, the FPU detects a denormalized number but the actual
denormalization is performed by some other mechanisms (e.g., software). Detection of a
denormalized number can be achieved using conventional techniques based upon
exponent and mantissa values. Upon detection of a denormalized number, an exception
occurs (i.e., a flag is raised) and corrective measures are carried out by software. The
hardware detection and software processing approach can be applied to input operands as
well as the intermediate result from the multiplier unit. This approach for handling
denormalized numbers to generate an IEEE-compliant multiply result typically sacrifices
performance (i.e., slower operating speed) for a more simplified hardware design.

In another approach, the FPU is designed with the capability to flush a
denormalized number to zero. In one specific implementation of this “flush-to-zero”
approach, if an operand is determined to be within the range of positive and negative
minimum normalized number (i.e., between +amin and -amn) it is set to zero (0.0). Other

variants of the flush-to-zero approach can also be implemented. For example, in a round-
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to-positive-infinity rounding mode, the operand is flushed to the minimum normalized
number a,, if it is within the range of zero (0.0) and an,, and flushed to zero (0.0) if it is
within the range of -am, and zero (0.0). In a round-to-negative-infinity rounding mode,
the operand is flushed to -ami, if it is within the range of -amin and zero (0.0), and flushed
to zero (0.0) if it is within the range of zero (0.0) and amin. The flush-to-zero operation
can be performed on denormalized input, intermediate, and output operands. This
approach provides improved operating speed and requires minimal additional hardware to
flush the intermediate result to zero. However, the Madd result is not IEEE-compliant
and accuracy is degraded since bits are thrown out when the mantissa is flushed to zero or
some other values.

Many applications do not require I[EEE-compliant results from Madd
operations. For these applications, the intermediate result from the multiply portion of a
Madd operation can be flushed to zero, as described above. However, flushing the
intermediate result to zero degrades the accuracy of the associated Madd result.

In accordance with the invention, a new approach is provided that causes
rounding, but not normalization or denormalization, of the intermediate result from the
multiply portion of the Madd operation. In this “Madd-flush-override” approach, the
intermediate result is maintained in an internal normalized format to improve accuracy.
This approach may be used exclusively or configured as one of several operating modes
of a computer system. Each such operating mode may be identified, for example, by one
or more bits held in a control register.

Fig. 8 shows a representation of a floating-point control status register
(“FCSR”) configured to store bits identifying a particular operating mode. The FCSR
contains bit values that control the floating-point operations of the FPU. In a specific
embodiment, the FCSR includes a flush (“FS™) bit and a Madd-flush-override (“FO”) bit
located at bit positions 24 and 22, respectively, to specify IEEE-compliant, flush-to-zero,
and Madd-flush-override modes. The flush-to-zero mode is activated when the FS bit is
one (i.e., logic high), and the [EEE-compliant mode is activated when the FS bit is zero
(i.e., logic low). When the FO bit is one, the Madd-flush-override mode is activated and
a denormalized intermediate result of a Madd operation is not flushed nor denormalized
according to the FS bit. The FCSR is further described in U.S. Patent Application Serial
No. 09/364,787, filed July 20, 1999, assigned to the assignee of the invention, and

incorporated herein by reference.
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Table 1 summarizes the operating modes and a designation for the FS and

FO bits.
Table 1 - Mode Definition
MODE FO FS Madd Intermediate Result Processing
IEEE- 0 0 Process the intermediate result from the multiplier
compliant unit to generate IEEE-compliant intermediate
output. This processing includes normalization/
denormalization and rounding of the intermediate
result.
Flush-to- 0 1 Flush the intermediate result to zero or some other
ZEro predefined value if it is a denormalized number.
Madd- 1 X Round Madd intermediate result in internal
flush- normalized format (also referred to herein as
override “pseudo-normalized” format); 1.e., round but do
not normalize/denormalize the intermediate resulit.

Generally, the FPU can be designed to support any combination of the
modes shown in Table 1 and other modes not listed. For example, the FPU can be
designed to support only Madd-flush-override mode, IEEE-compliant and Madd-flush-
override modes, all three modes listed in Table 1, or other mode combinations. In IEEE-
compliant mode, the processing to generate the IEEE-compliant intermediate result can
be performed in hardware, software, or a combination of both. The modes listed in Table
1 are described below.

In IEEE-compliant mode, the intermediate result from the multiplier unit
in the FPU is normalized or denormalized, as necessary by hardware or software, and
rounded. Referring to Fig. 6A, the intermediate result from CPA 212 can be in either the
01.xxx--xxxx or 1x.xxx--xxxx format. Initially, the exponent for the intermediate result
is checked to determine whether the intermediate result is within the range of normalized
or denormalized number. This can be achieved by comparing the exponent against the
maximum exponent value eXpmax and the minimum exponent value €Xpmin (€.8., €XPrmax =
+127 and expmin = -126 for single-precision). If the intermediate result is determined to
be a normalized number, the mantissa is normalized to the 01.xxx--xxxx format.
Alternatively, if the intermediate result is determined to be a denormalized number, the

mantissa is denormalized in the manner described above. The normalized or
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denormalized mantissa is then rounded at the position indicated by arrow 620 in Fig. 6B.
The normalized/denormalized and rounded intermediate result is provided to the adder
unit.

In Flush-to-zero mode, the mantissa from the multiplier unit in the FPU is
flushed to zero if the intermediate result is a denormalized number. Again, this
determination can be achieved by checking the exponent for the intermediate result and
the mantissa value. Specifically, if the exponent is less than expmin and the mantissa is
not equal to zero (e.g., mant # 0), the intermediate result is deemed to be a denormalized
number and flushed to zero.

In Madd-flush-override mode, the intermediate result from the multiplier
unit is rounded but not normalized or denormalized. In an embodiment, the rounding is
performed without checking the exponent associated with the intermediate result. In an
embodiment, the mantissa from rounding unit 216 is rounded regardless of whether it is a
denormalized number or a number within the range defined by amax and amin.

Fig. 7A shows two mantissa representations for the mantissa from CPA
212 in the multiplier unit. The output from multiplier array 210 can have up to 2N bits of
precision to the right of the binary point and two bits of precision to the left of the binary
point. Rounding unit 216 initially determines whether the bit in the most significant bit
(MSB) position 708 is a zero (0) or a one (1). The position of the bit to be rounded
differs by one bit position depending on whether the mantissa has the 01.xxx--xxxx or
1x.xxx--xxxx format. For a mantissa having the 01.xxx--xxxx format, rounding unit 216
rounds the bit at the position indicated by an arrow 710a. Alternatively, for a mantissa
having the 1x.xxx--xxxx format, rounding unit 216 rounds the bit at the position indicated
by an arrow 710b.

Fig. 7B shows two mantissa representations for the mantissa from
rounding unit 216. The rounded mantissa ranges between 1.0 and 4.0, which is
approximately twice the range of a normalized mantissa. An additional bit is used to
represent the additional range in the mantissa. The subsequent units (e.g., right-shift unit
234, CPA 236, rounding unit 242, and normalization unit 244 in the PSA, and CPA 262
and left-shift unit 266 in the MCA) are designed to properly process the additional bit in
the mantissa.

Several advantages are obtained by performing rounding, but not

normalization or denormalization, in accordance with MADD-flush-override mode. First,
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accuracy is improved since denormalization, which throws out bits, is not performed. In
MADD-flush-override mode, the intermediate result is kept in internal normalized format
to improve accuracy

Second, some or all of the hardware can be designed with less than 2N bits
of precision, since some of the precision is likely to be discarded in the rounding within
the multiplier unit. For example, multiplier array 210 and CPA 212 can be implemented
with less than 2N bits of precision. The subsequent units in the adder unit can also be
designed to operate on number having less than 2N bits of precision, which again
simplify the hardware design.

Third, implementation of these units within less precision can improve the
operating speed of the FPU. As noted above, the multiplier array is typically
implemented with a set of carry-save adders operated sequentially. Less processing
delay, and therefore faster operating speed, may be obtain by calculating less than the full
2N bits result.

As noted above, floating-point processors capable of performing Madd
operations are desirable in many applications, such as digital signal processing and
graphics. Madd operations are also commonly used in arithmetic algorithms. For
example, the Newton-Raphson algorithm is a convergent algorithm used for
approximating reciprocals and reciprocal square roots. This algorithm performs many
multiply and Madd operations. The performance of the algorithm (e.g., its speed of
convergent and accuracy) is dependent on the accuracy of the Madd operation.

Moreover, since the algorithm typically includes many Madd operations, the speed of the
algorithm is also dependent on the speed of the Madd operation. A floating-point
processor incorporating the invention can provide improved performance (i.e., accuracy
and speed) when used to implement the Newton-Raphson algorithm.

The Newton-Raphson reciprocal algorithm for approximating the

reciprocal of a number R is defined as:

X

i+l

:Xi°(2_R°Xi) ’

n

1

R
where i is an integer greater than one (i.e.,1=1, 2, 3, ...), X is an approximation from the
i-th iteration, and Xj+; is a more accurate approximation at the (i+1)-th iteration.

The Newton-Raphson reciprocal square root algorithm for approximating

the reciprocal square root of a number (R) is defined as:
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where X; is an approximation of the reciprocal square root of the number R from the i-th

iteration, and X;;; is a more accurate approximation at the (i+1)-th iteration.

The Newton-Raphson algorithm and its implementation using a floating-
point processor is further described in U.S. Patent Application Serial No. 09/363,637,
filed July 20, 1999, assigned to the assignee of the invention, and incorporated herein by
reference.

A floating-point instruction set architecture (ISA) for FPU 110 includes
instructions for implementing the Newton-Raphson reciprocal and reciprocal square root
algorithms. In one embodiment, the ISA includes three instructions for implementing an
iteration of the Newton-Raphson reciprocal algorithm. The three instruction are:
RECIP1(operandl), RECIP2(operandl, operand2), and MADD(operandl1, operand2,
operand3).

The RECIP1(operand1) instruction enables FPU 110 to produce a result
that is an estimate of the reciprocal of operandl. There are a variety of ways to produce
the estimate. In one embodiment, a lookup table is used. The RECIP2(operandl,
operand2) instruction enables FPU 110 to produce a result equal to (1 -
operandleoperand2). The MADD instruction is a multiply-add instruction that enables
FPU 110 to produce a result equal to (operand1 + operand2eoperand3). The RECIP1 and
RECIP? instructions are further described in the aforementioned U.S. Patent Application
No. 09/364,787.

The Newton-Raphson algorithm for approximating the reciprocal of a
number (R) can be implemented by configuring FPU 110 to execute the above-described

instructions in the following sequence:

(1)  X;=RECIPI(R);
(2) IR =RECIP2(R, X)); and
(3)  Xi = MADD(X;, X, IR).

After FPU 110 executes the above three instructions in the above given sequence, the

following quantity is obtained:

X, =Xi+XioIR=Xi+X,.(1—R0X,.)=2X,.—R0X,.0X,. =X,(2-Re X)),



10

15

20

25

30

WO 01/09712 PCT/US00/20160

21

which is the Newton-Raphson approximation for the reciprocal of the number R.

In an embodiment, the floating-point ISA includes four instructions for
performing an iteration of the Newton-Raphson algorithm for approximating reciprocal
square roots. The four instruction are: RSQRT1(operandl),
RSQRT2(operand1,operand2), MUL(operand1, operand2), and MADD(operandl,
operand2, operand3).

The RSQRT1(operand1) instruction enables FPU 110 to produce a result
that is an estimate of the reciprocal square root of the operand. There are a variety of
ways to produce the estimate. In one embodiment, a lookup table is used. The
RSQRT2(operandl, operand2) instruction enables FPU 110 to produce a result equal to:
(1 - operandleoperand2)/2. The MADD(operandl, operand2, operand3) instruction is
described above. The MUL(operandi, operand2) instruction is a multiply instruction that
enables FPU 110 to produce a result equal to: operandleoperand2. The RSQRT1 and
RSQRT? instructions are further described in the aforementioned U.S. Patent Application
No. 09/364,787.

The Newton-Raphson algorithm for approximating the reciprocal square
root of a number (R) can be implemented by configuring FPU 110 to execute the above-

described instructions in the following sequence:

(1)  X;=RSQRTI(R);

2) IR1=MULR, X);

(3)  IR2=RSQRT2(IR1, X,); and
(4) X1 = MADD(X;, X, IR2).

After FPU 110 executes the above four instructions in the above given sequence, Xi+ = (3
- ReX;eX;)eX/2, which is the Newton-Raphson approximation for the reciprocal square
root of the number R.

Each set of instructions shown above includes a MADD instruction. The
MADD instruction has improved accuracy when executed using the MADD-flush-
override mode described above. The IR value produced by the RECIP2(R, X;) instruction
and the IR2 value produced by the RSQRT2(IR1, X;) instruction are usually small
numbers. When these numbers are internally represented in the pseudo-normalized
format as shown in Fig. 6A, a great deal of precision is achieved, thereby increasing the

accuracy of the approximation. Additionally, when X; and IR (or IR2) are small numbers,
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the multiplication of X; with IR (or IR2) during execution of a MADD instruction (as
provided in the foregoing sequences) can result in a denormalized number. However,
when these values are maintained in the pseudo-normalized format, accuracy is
maintained since denormalization processing is typically avoided.

For clarity, the invention has described in the context of single and double-
precision floating-point representations that conform to the IEEE formats. However, the
invention can be adopted for used with other floating-point representations, and this is
within the scope of the invention.

FPU 200 can be implemented in various manners. For example, FPU 200
can be implemented in hardware within a digital signal processor, an application specific
integrated circuit (ASIC), a microprocessor, and other hardware structures.

In addition to implementations of the invention using hardware, the
invention can also be embodied in an article of manufacture comprised of a computer
usable medium configured to store a computer-readable program code. The program
code causes the enablement of the functions or fabrication, or both, of the hardware
disclosed in this specification. For example, this might be accomplished through the use
of general programming languages (e.g., C, C++, and so on), hardware description
language (HDL), register transfer language (RTL), Verilog HDL, VHDL, AHDL (Altera
hardware description language), or other programming and/or circuit (i.e., schematic)
capture tools available in the art. As a specific example, the Verilog simulator "VCS
v.4.1.1" by Synopsys, Inc. was used to simulate the invention. A book entitled "A
Verilog HDL Primer" by J. Bhasker, Star Galaxy Pr., 1997 provides greater detail on
Verilog HDL, and is incorporated herein by reference in its entirety for all purposes. In
the program code implementation, Fig. 2 can serve as an embodiment of a flow diagram.

It is understood that the functions accomplished by the invention as
described above can be represented in a core that can be utilized in programming code
and transformed to hardware as part of the production of integrated circuits. Also, other
implementations of the invention (e.g., FPU 200) using a combination of hardware and
software are also possible. Therefore, the embodiments expressed above are within the
scope of the invention and should also be considered protected by this patent.

The foregoing description of the preferred embodiments is provided to
enable any person skilled in the art to make or use the present invention. Various
modifications to these embodiments will be readily apparent to those skilled in the art,

and the generic principles defined herein may be applied to other embodiments without
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the use of the inventive faculty. Thus, the present invention is not intended to be limited

to the embodiments shown herein but is to be accorded the widest scope consistent with

the principles and novel features disclosed herein.
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WHAT IS CLAIMED IS:

1. A floating-point unit (FPU) configurable to perform multiply-add
(Madd) operations comprising:

a multiplier unit configured to receive and multiply mantissas for first and
second operands to generate a multiplier output mantissa, wherein the multiplier unit is
configurable to operate in a first operating mode defined by the multiplier output mantissa
being rounded and having a pseudo-normalized format; and

an adder unit coupled to the multiplier unit, the adder unit configured to
receive and combine the multiplier output mantissa and a mantissa for a third operand to

generate a FPU output mantissa.

2. The FPU of claim 1, wherein the multiplier output mantissa is rounded

at a bit position defined by IEEE standard.

3. The FPU of claim 1, wherein the multiplier output mantissa includes
two bits of precision to the left of a binary point, and wherein the pseudo-normalized

format is characterized by at least one of the two bits having a value of one.

4. The FPU of claim 1, wherein the multiplier output mantissa is rounded
independent of a multiplier output exponent associated with the multiplier output

mantissa.

5. The FPU of claim 1, wherein the muitiplier output mantissa has

approximately double the range as that of the mantissas for the first and second operands.

6. The FPU of claim 1, wherein the mantissas for the first and second

operands are unpacked from a storage format to an internal format prior to processing.

7. The FPU of claim 6, wherein the storage format complies with IEEE

standard.
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8. The FPU of claim 6, wherein the internal format has increased
resolution over the storage format, and wherein the mantissas for the first and second

operands are converted to internal normalized representations prior to processing.

9. The FPU of claim 1, wherein the FPU output mantissa are packed from

an internal format to a storage format prior to transfer back to storage.

10. The FPU of claim 1, wherein the multiplier unit is configurable to
operate in one of a plurality of operating modes that include the first operating mode and
a second operating mode, and wherein the second operating mode is defined by the

multiplier output mantissa conforming to IEEE standard.

11. The FPU of claim 10, wherein the multiplier output mantissa is
normalized or denormalized, as necessary, and rounded in accordance with IEEE

standard.

12. The FPU of claim 10, wherein the plurality of operating modes
include a third operating mode defined by the multiplier output mantissa being flushed to

zero or other predefined values when a denormalized multiplier output is detected.

13. The FPU of claim 12, wherein detection of a denormalized multiplier
output is achieved by checking the muitiplier output mantissa and a multiplier output

exponent.

14. A processor including the FPU of claim 1, wherein the FPU is
configured to perform a set of operations designed to approximate a reciprocal of a

number.

15. A processor including the FPU of claim 1, wherein the FPU is
configured to perform a set of operations designed to approximate a reciprocal square

root of a number.
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16. A processor including the FPU of claim 1, wherein the FPU is
configured to perform a set of operations designed to implement a Newton-Raphson

algorithm.

17. The processor of claim 16, wherein the FPU is configured to perform

at least one Madd operation when implementing the Newton-Raphson algorithm.

18. A floating-point processor configurable to perform multiply-add
(Madd) operations comprising:
a multiplier unit that includes
a multiplier array configured to receive and multiply mantissas for
first and second operands, and
a first rounding unit operatively coupled to the multiplier array, the
first rounding unit configurable to round an output from the multiplier array to
generate a multiplier output mantissa, wherein the multiplier output mantissa is
rounded and has a pseudo-normalized format; and
an adder unit coupled to the multiplier unit, the adder unit includes
a carry propagation adder (CPA) configured to receive and
combine the multiplier output mantissa and a mantissa for a third operand,
a second rounding unit coupled to the CPA, the second rounding
unit configured to receive and round a mantissa from the CPA, and
a normalization unit coupled to the second rounding unit, the
normalization unit configured to receive and normalize a rounded mantissa from

the second rounding unit.

19. The processor of claim 18, wherein the first rounding unit in the
multiplier unit is configurable to operate in one of a plurality of operating modes that
including the first operating mode and a second operating mode, and wherein the second
operating mode is defined by the multiplier output mantissa conforming to IEEE

standard.

20. The processor of claim 19, wherein the first rounding unit in the

multiplier unit is further configurable to operate in a third operating mode defined by the
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multiplier output mantissa being flushed to zero or other predefined values when a

denormalized multiplier output is detected.

21. The processor of claim 18, wherein the multiplier output mantissa is

rounded at a bit position defined by IEEE standard.

22. The FPU of claim 18, wherein the multiplier output mantissa includes
two bits of precision to the left of a binary point, and wherein the pseudo-normalized

format is characterized by at least one of the two bits having a value of one.

23. A method for performing a floating-point multiply-add (Madd)
operation comprising:

multiplying mantissas for first and second operands to generate a third
mantissa,

rounding the third mantissa to generate a fourth mantissa, wherein the
fourth mantissa has a pseudo-normalized format and a range greater than a normalized
mantissa; and

combining the fourth mantissa and a mantissa for a third operand to

generate an output mantissa.

24. The method of claim 23, wherein the fourth mantissa is rounded at a

bit position defined by IEEE standard.

25. An article of manufacture comprising:

computer-readable program code for causing a computer to describe a
multiplier unit, wherein the multiplier unit is configured to receive and multiply mantissas
for first and second operands to generate a multiplier output mantissa, wherein the
multiplier unit is configurable to operate in a first operating mode defined by the
multiplier output mantissa being rounded and having a pseudo-normalized format;

computer-readable program code for causing the computer to describe an
adder unit, wherein the adder unit is coupled to the multiplier unit and configured to
receive and combine the multiplier output mantissa and a mantissa for a third operand to

generate a FPU output mantissa; and
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a computer-usable medium configured to store the computer-readable

program codes.

26. An article of manufacture comprising:

computer-readable program code for causing a computer to describe a
multiplier unit, wherein the multiplier unit includes a multiplier array operatively coupled
to a first rounding unit, wherein the multiplier array is configured to receive and multiply
mantissas for first and second operands, and wherein the first rounding unit is
configurable to round an output from the multiplier array to generate a multiplier output
mantissa that is rounded and has a pseudo-normalized format,

computer-readable program code for causing the computer to describe an
adder unit, wherein the adder unit couples to the multiplier unit and includes a carry
propagation adder (CPA), a second rounding unit, and a normalization unit, wherein the
CPA is configured to receive and combine the multiplier output mantissa and a mantissa
for a third operand, wherein the second rounding unit is coupled to the CPA and
configured to receive and round a mantissa from the CPA, and wherein the normalization
unit is coupled to the second rounding unit and configured to receive and normalize a
rounded mantissa from the second rounding unit; and

a computer-usable medium configured to store the computer-readable

program codes

27. A computer program product for performing a floating-point multiply-
add (Madd) operation comprising:

code that multiplies mantissas for first and second operands to generate a
third mantissa;

code that rounds the third mantissa to generate a fourth mantissa, wherein
the fourth mantissa has a pseudo-normalized format and a range greater than a normalized
mantissa;

code that combines the fourth mantissa and a mantissa for a third operand
to generate an output mantissa; and

a data storage medium configured to store the codes.

28. A computer program product comprising:



O 00 N & »n B W N

WO 01/09712 PCT/US00/20160

29

code that defines a multiplier unit, wherein the multiplier unit is defined to
receive and multiply mantissas for first and second operands to generate a multiplier
output mantissa, wherein the multiplier output mantissa is rounded and has a pseudo-
normalized format;

code that defines an adder unit, wherein the adder unit is coupled to the
multiplier unit and defined to receive and combine the multiplier output mantissa and a
mantissa for a third operand to generate a FPU output mantissa; and

a data storage medium configured to store the codes.
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