EPOXY RESIN COMPOSITION FOR OPTICAL-SEMICONDUCTOR ENCAPSULATION, CURED RESIN THEREOF, AND OPTICAL SEMICONDUCTOR DEVICE OBTAINED WITH THE SAME

Inventors: Hisataka ITO, Ibaraki-shi (JP); Shinya OTA, Ibaraki-shi (JP); Kazuhiro FUKE, Ibaraki-shi (JP)

Assignee: Nitto Denko Corporation, Ibaraki-shi (JP)

Application No.: 11/855,267
Filed: Sep. 14, 2007

Prior Publication Data

Foreign Application Priority Data
Sep. 21, 2006 (JP) 2006-255410
May 31, 2007 (JP) 2007-145913

Publication Classification
Int. Cl. C08K 5/34 (2006.01)
U.S. Cl. 524/88

The present invention relates to an epoxy resin composition for optical-semiconductor encapsulation which comprises the following ingredients (A) to (C): (A) an epoxy resin; (B) a curing agent; and (C) a naphthalocyanine colorant. The epoxy resin composition of the invention transmits visible rays and shields near infrared rays while retaining properties inherent in the epoxy resin.
FIG. 1

TRANSMISSION SPECTRUM FOR CURED RESIN (THICKNESS, 1mm) <EXAMPLE 1>

FIG. 2

TRANSMISSION SPECTRUM FOR CURED RESIN (THICKNESS, 1mm) <EXAMPLE 2>
FIG. 3

TRANSMISSION SPECTRUM FOR CURED RESIN
(THICKNESS, 1mm) <EXAMPLE 3>
FIG. 4

TRANSMISSION SPECTRUM FOR DIIMONIUM-CONTAINING RESIN (1mm-THICK CURED RESIN) <COMPARATIVE EXAMPLE 1>

FIG. 5

TRANSMISSION SPECTRUM FOR DIIMONIUM-CONTAINING RESIN (1mm-THICK CURED RESIN) <COMPARATIVE EXAMPLE 2>
EPOXY RESIN COMPOSITION FOR OPTICAL-SEMICONDUCTOR ENCAPSULATION, CURED RESIN THEREOF, AND OPTICAL SEMICONDUCTOR DEVICE OBTAINED WITH THE SAME

FIELD OF THE INVENTION

[0001] The present invention relates to an epoxy resin composition for optical-semiconductor encapsulation which has excellent properties inherent in the epoxy resin, selectively transmits rays in the whole visible light region or specific visible rays, and simultaneously shields near infrared rays. The invention further relates to a cured resin obtained by curing the composition and an optical semiconductor device obtained through resin encapsulation with the epoxy resin composition for optical-semiconductor encapsulation.

BACKGROUND OF THE INVENTION

[0002] In cell phones, liquid-crystal TV’s, and the like, the number of products having an illuminance sensor for regulating screen brightness has been increasing in recent years. Such an illuminance sensor is required to have the same sensitivity as the human eye. However, there is the following problem. The optical semiconductor element employed is sensitive not only to the visible rays but also to near infrared rays through a wavelength range of about 900 to 1,100 nm. Therefore, the optical semiconductor element, when used in its original state, senses near infrared rays, which are not sensible by human beings, and the sensor judges the environment “bright”. For preventing such a problem concerning the illuminance sensor, it is necessary to use an optical filter or the like to prevent the optical semiconductor element from being sensitive to near infrared rays. On the other hand, an epoxy resin composition excellent in heat resistance, impact resistance, transparency, etc. has come to be commercially used as an encapsulating material for optical semiconductors. In producing an illuminance sensor such as that described above, there has been employed a technique in which the upper side of an optical semiconductor element is coated, for example, with an optical filter material having the function of shielding near infrared rays and this optical semiconductor element having the optical filter formed thereon is encapsulated with an epoxy resin composition which is transparent in the visible light region and near infrared region.

[0003] In the technical field of such illuminance sensors, there presently is an earnest desire for imparting the optical filtering function to an epoxy resin itself to be used as an encapsulating resin, for the purposes of eliminating or reducing the step/cost of separately forming an optical filter on the upper surface of an optical semiconductor element and of imparting the function of shielding near infrared rays to the side surfaces of the optical semiconductor element.

[0004] On the other hand, besides the use of an optical filter such as that described above, the following techniques of using a material having the function of shielding near infrared rays may be used for imparting the optical filtering function to an illuminance sensor. For example, a heat-ray-cutting laminated glass for automotive and other uses (see, JP-A-2005-187726), a near-infrared-cutting film used in, e.g., plasma display panels (PDPs), and the like may be applied.

[0005] However, the heat-ray-cutting laminated glass used in motor vehicles and other applications has a drawback that a compound which mainly absorbs or reflecting middle infrared rays is contained in, e.g., the interlayer of the laminated glass and, hence, this glass is low in the ability to shield near infrared rays and is insufficient for use in the illuminance sensor application in which the invention is intended to be used.

[0006] The near-infrared-cutting film used in PDPs and the like is produced by dissolving a colorant absorbing near infrared rays having wavelengths of 800 or 900 nm or longer in poly(ethylene terephthalate) (PET), poly(methyl methacrylate) (PMMA), or the like and then forming this polymer into a film. Consequently, one of the properties required to the colorant is solubility in organic solvents, and dyes such as rhodanine salts (see, JP-A-2004-182857) and cyanine colorants (see, JP-A-2004-315789) are used as the colorants for PDPs and the like.

[0007] However, the thermal stability of those colorants is about 100°C at the most because of the steps for producing the near-infrared-cutting film for use in PDPs and for producing the PDPs and because of the environment in which the PDPs are used. That temperature is considerably lower than the curing temperature of resins for optical-semiconductor encapsulation, which should be about 120 to 170°C. Consequently, when a colorant used in PDPs or the like is used, this colorant undergoes alteration such as pyrolysis, due to the action of an acid or basic compound used in raw materials for the resin and due to heating in the step of curing the resin, whereby a problem, for example, that the colorant disadvantageously changes in the optical property of shielding near infrared rays occurs.

SUMMARY OF THE INVENTION

[0008] The invention has been achieved under such circumstances. An object of the invention is to provide an epoxy resin composition for optical-semiconductor encapsulation which retains properties inherent in the epoxy resin, transmits visible rays, and shields near infrared rays, by incorporating a colorant which is resistant to acids or bases and to the step of heating in a resin curing reaction and has the function of shielding near infrared rays. Another object of the invention is to provide a cured epoxy resin obtained by curing the composition for optical-semiconductor encapsulation and an optical semiconductor device produced with the epoxy resin composition for optical-semiconductor encapsulation.

[0009] The present inventors have made a series of investigations in order to overcome the problem that an epoxy resin composition for optical-semiconductor encapsulation, which contains a conventional colorant which shields near infrared rays, changes in the optical properties of the colorant (in particular, decrease or elimination of the property of shielding near infrared rays) due to heating in molding, etc. As a result, they found that the optical properties can be prevented from deterioration during molding to get a cured resin and during a heat resistance test by using a naphthalocyanine colorant or a combination of a naphthalocyanine colorant and a phthalocyanine colorant. The invention has been thus achieved.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a transmission spectrum for the cured resin of Example 1 (thickness, 1 mm).

[0011] FIG. 2 is a transmission spectrum for the cured resin of Example 2 (thickness, 1 mm).

[0012] FIG. 3 is a transmission spectrum for the cured resin of Example 3 (thickness, 1 mm).

[0013] FIG. 4 is a transmission spectrum for the cured resin of Comparative Example 1 (thickness, 1 mm).
FIG. 5 is a transmission spectrum for the cured resin of Comparative Example 2 (thickness, 1 mm).

DETAILED DESCRIPTION OF THE INVENTION

Namely, the present invention relates to the followings.

(1) An epoxy resin composition for optical-semiconductor encapsulation, which comprises the following ingredients (A) to (C):

(A) an epoxy resin;
(B) a curing agent; and
(C) a phthalocyanine colorant.

(2) The epoxy resin composition for optical-semiconductor encapsulation according to (1), wherein the ingredient (C) is represented by the following formula (1):

wherein R's are the same or different and each represent a hydrogen atom, alkyl, alkoxy, aryl, dialkylamino, nitro, phenyl, amino, methylamino, or N-phenyl-N-methylamino;

n is an integer of 0 to 6; and

M is a metal or a metal oxide.

(3) The epoxy resin composition for optical-semiconductor encapsulation according to (2), wherein two or more kinds of phthalocyanine colorants represented by the formula (1) are used as the ingredient (C), said phthalocyanine colorants represented by the formula (1) differing from each other in at least one of the atoms, substituents, and metal or metal oxide represented by the R's and M and the n's, which indicate the number of atoms or functional groups.

(4) The epoxy resin composition for optical-semiconductor encapsulation according to (1), wherein the ingredient (C) is contained in an amount in a range of 0.0005 to 0.5 parts by weight with respect to 100 parts by weight of the ingredient (A).

(5) The epoxy resin composition for optical-semiconductor encapsulation according to (1), which contains, in addition to the ingredients (A) to (C), the following ingredient (D):

(D) a phthalocyanine colorant.

(6) The epoxy resin composition for optical-semiconductor encapsulation according to (5), wherein the ingredient (D) is represented by the formula (2):

wherein R is alkyl or alkoxyalkyl;
M is a metal or a metal oxide; and
X is a halogen atom.

(7) The epoxy resin composition for optical-semiconductor encapsulation according to (5), wherein the ingredient (D) is contained in an amount of 0.5 parts by weight or lower with respect to 100 parts by weight of the ingredient (A).

(8) A cured epoxy resin obtainable by curing the epoxy resin composition for optical-semiconductor encapsulation according to (1).

(9) An optical semiconductor device obtainable by encapsulating an optical semiconductor element with the epoxy resin composition for optical-semiconductor encapsulation according to (1).

According to the invention, a phthalocyanine colorant (ingredient C) is contained in the epoxy resin composition together with the epoxy resin (ingredient A) and curing agent (ingredient B). Accordingly, the epoxy resin composition for optical-semiconductor encapsulation which transmits visible rays and is capable of shielding near infrared rays can be obtained. Additionally, the optical properties of this composition can be prevented from deterioration by an acid or basic compound used as a raw material for the resin composition or by heating in a resin-curing step. Furthermore, the epoxy resin composition for optical-semiconductor encapsulation can retain inherent and excellent properties of the epoxy resin. Consequently, the cured epoxy resin obtained by curing this composition and the optical semiconductor device obtained with the composition are highly reliable.

When two or more phthalocyanine colorants (ingredient C) are used in combination, the light shielding in the near infrared region can be achieved more effectively.

Furthermore, when a phthalocyanine colorant (ingredient D) is incorporated in addition to ingredients A to C, the light shielding in the near infrared region can be achieved with higher certainty.

The followings described the present invention in more detail.

The epoxy resin composition for optical-semiconductor encapsulation of the invention is obtained from an epoxy resin (ingredient A), a curing agent (ingredient B), and
at least one naphthalocyanine colorant (ingredient C). It is used in the form of a liquid or powder or as pellets obtained by
tableting the powder.

[0041] The epoxy resin (ingredient A) is not particularly
limited. Examples thereof include bisphenol A epoxy resins,
bisphenol F epoxy resins, novolac epoxy resins such as pheno
nol novolac epoxy resins and cresol novolac epoxy resins,
alicyclic epoxy resins, nitrogenous-ring epoxy resins such as
ones having an isocyanuric-ring framework and hydantoin
epoxy resins, hydrogenated bisphenol A epoxy resins, hydro-
genated bisphenol F epoxy resins, aliphatic epoxy resins,
glycidyl ester epoxy resins, bisphenol S epoxy resins, biphe-
nyl epoxy resins which are mainly used as the type giving
low-water-absorption cured resins, dicyclic epoxy resins, and
naphthalene epoxy resins. These epoxy resins may be used
alone or in combination of two or more thereof. It is preferred
to use a bisphenol A epoxy resin, bisphenol F epoxy resin,
novolac epoxy resin, alicyclic epoxy resin, or epoxy resin
having an isocyanuric-ring framework among those epoxy
resins because they are excellent in transparency and unsus-
sceptibility to discoloration.

[0042] Those epoxy resins may be solid or liquid at ordi-
nary temperature. However, it is generally preferred to use
an epoxy resin having an average epoxy equivalent of 90 to
1,000. In the case of a solid epoxy resin, it preferably is one
having a softening point of 160°C or lower. The reasons for
the preference of such epoxy equivalents are as follows. In
the case where an epoxy resin having an epoxy equivalent lower
than 90 is used, the epoxy resin composition for optical-
semiconductor encapsulation tends to give a brittle cured
resin. In the case where an epoxy resin having an epoxy
equivalent exceeding 1,000 is used, it tends to give a cured resin
which has a lowered glass transition temperature (Tg)
and cannot satisfy the thermal stability required for optical-
semiconductor encapsulating materials.

[0043] Examples of the curing agent (ingredient B) include
acid anhydride curing agents and phenolic curing agents.
Examples of the acid anhydride curing agents include
phthalic anhydride, maleic anhydride, trimellitic anhydride,
pyromellitic anhydride, hexahydropthalic anhydride, tet-
rahydropthalic anhydride, methylhydrazide anhydride, nadic
anhydride, glutaric anhydride, methylhexahydropthallic
anhydride, and methyltetrahydropthallic anhydride. These
may be used alone or in combination of two or more thereof.
Preferred of these acid anhydride curing agents are phthalic
anhydride, hexahydropthallic anhydride, tetrahydropthallic
anhydride, and methylhexahydropthallic anhydride. Pre-
ferred acid anhydride curing agents are ones having a molec-
ular weight of about 140 to 200. Furthermore, acid anhydride
curing agents which are colorless or light-yellow are pre-
ferred.

[0044] Examples of the phenolic curing agents include
resol-type phenolic resins, novolac-type phenolic resins, and
polyhydroxy styrene resins. Examples of the resol type phen-
olic resins include aniline-modified resol resins and melanine-modified resol resins. Examples of the novolac
resin type phenolic resins include phenol novolac resins, cresol
novolac resins, tert-butylphenol novolac resins, nonylphenol
novolac resins, naphthol novolac resins, dicyclpentadiene-
modified phenolic resins, terpene-modified phenolic resins,
tripheno-methane type resins, phenol aralkyl resins (which
have a phenylene skeleton, diphenylene skeleton, etc.), and
naphthol aralkyl resins. Examples of the polyhydroxy styrene
resins include poly(p-hydroxy styrene).

[0045] The mixing proportion of the epoxy resin (ingredi-
ent A) with respect to the curing agent (ingredient B) prefer-
ably is such that the amount of the active group (acid anhy-
dride group or hydroxyl group) in the curing agent which is
reactive with an epoxy group is 0.5 to 1.5 equivalents, espe-
cially 0.7 to 1.2 equivalents, with respect to the epoxy groups
in the epoxy resin. The reasons for this are as follows. In the
case where the amount of the active group is smaller than 0.5
equivalents, the epoxy resin composition for optical-semi-
conductor encapsulation tends to have a reduced curing rate
and give a cured resin having a lowered glass transition tem-
perature. On the other hand, in the case where the amount
thereof exceeds 1.5 equivalents, moisture resistance tends to
decrease.

[0046] Besides the acid anhydride curing agents and the
phenolic curing agents, conventional curing agents for epoxy
resins can be used as the curing agent (ingredient B) accord-
ing to the intended use and application of the composition.
Examples of the conventional curing agents for epoxy resins
include amine curing agents, the acid anhydride curing agents
enumerated above which have been partly esterified with an
alcohol, and carboxylic acid curing agents such as hexahy-
drophenolic acid, tetrahydrophenolic acid, and methylhexahy-
drophenolic acid. These may be used alone or in combination
of two or more thereof, and may be used in combination with
one or more of the acid anhydride curing agents and phenolic
curing agents. For example, when a carboxylic acid curing
agent is used in combination, curing rate can be increased,
whereby the productivity can be improved. In the case of
using these curing agents, they may be incorporated in the
same proportion (ratio by equivalent) as in the case of using
an acid anhydride curing agent and a phenolic curing agent.

[0047] The naphthalocyanine colorant (ingredient C) to be
used together with ingredient A and ingredient B is not par-
ticularly limited. However, it preferably is a naphthalocy-
anine colorant represented by the following general formula
(1):

\[
\begin{align*}
\text{R}_n & \quad \text{N} \\
\end{align*}
\]

(wherein, R’s are the same or different and each represent a
hydrogen atom, alkyl, alkoxy, aryliethio, arylthio, dialky-
lamino, nitro, phenyl, anilino, methylamino, or N-phenyl-
n-methylanilino; n is an integer of 0 to 6; and M is a metal or a
metal oxide).

[0048] It is also preferred to use a combination of two or
more of such naphthalocyanine colorants which differ from
each other in at least one of the atoms, substituents, and metal
or metal oxide represented by the R’s and M and the n’s,
which indicate the number of atoms or functional groups. This is because use of the combination of two or more of different naphthalocyanine colorants is preferred from the standpoints of preventing optical properties from being deteriorated by heating, etc. and of obtaining the desired excellent property of shielding near infrared rays.

[0049] In general formula (1), R’s are the same or different and each represent a hydrogen atom, alkyl, alkoxy, alkythio, aroylthio, dialkylamino, nitro, phenyl, anilino, methylanilino, or N-phenyl-N-methylamino.

[0050] For example, when R is alkyl, it preferably is linear or branched alkyl having 1 to 15 carbon atoms, and especially preferably is linear or branched alkyl having 1 to 8 carbon atoms. Examples thereof include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, isobutyl, isopropyl, isopentyl, tert-pentyl, n-hexyl, isohexyl, n-heptyl, isohexyl, n-octyl, tert-octyl, 2-ethylhexyl, and n-dodecyl.

[0051] When R is alkoxy, it preferably is linear, branched, or cyclic alkoxy having 1 to 15 carbon atoms in total, and especially preferably is linear, branched, or cyclic alkoxy having 1 to 8 carbon atoms in total. Examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentoxy, isopentoxy, n-hexoxy, cyclohexoxy, n-heptyoxy, isohexoxy, sec-heptyoxy, n-octoxy, 2-ethylhexoxy, methoxyethoxy, methoxypropoxy, methoxybutoxy, ethoxyethoxy, ethoxypropoxy, ethoxybutoxy, n-propoxyethoxy, isopropoxyethoxy, (2-methoxyethoxy)methoxy, (2-ethoxyethoxy)methoxy, 2-(2-methoxyethoxy)ethoxy, 2-(1-methoxyethoxy)ethoxy, 2-(2-ethoxyethoxy)ethoxy, 2-(propoxyethoxy)ethoxy, 3-(2-methoxyethoxy)propoxy, 3-(2-ethoxyethoxy)propoxy, 2-methylthioethoxy, 2-ethylthioethoxy, and 2-dimethylaminoethoxy.

[0052] When R is alkythio, it preferably is linear, branched, or cyclic alkythio having 1 to 8 carbon atoms in total. Examples thereof include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, tert-butylthio, n-pentylthio, isopentylthio, n-hexylthio, cyclohexylthio, and n-octylthio.

[0053] When R is arylthio, examples thereof include phenylthio, p-methylphenylthio, p-tert-butylphenylthio, and naphthylthio.

[0054] When R is dialkylamino, each alkyl preferably is linear, branched, or cyclic alkyl having 1 to 12 carbon atoms, and especially preferably is linear, branched, or cyclic alkyl having 1 to 8 carbon atoms. Examples thereof include dimethylamino, diethylamino, di-n-propylamino, di-isopropylamino, di-n-butylamino, di-isobutylamino, di-n-hexylamino, di-n-heptylamino, di-n-octylamino, N-ethyl-N-methylamino, N-isopropyl-N-ethylamino, N-sec-butyl-N-ethylamino, N-isopentyl-N-ethylamino, N-cyclohexyl-N-methylamino, N-sec-heptyl-N-ethylamino, and N-(2-ethylhexyl)-N-butylamino.

[0055] In general formula (1), n, which indicates the number of atoms or functional groups, is an integer of 0 to 6. From the standpoint of availability, naphthalocyanine colorants in which n is 0 to 2 are preferred.

[0056] In general formula (1), M is a metal or a metal oxide. Preferred examples of the metal represented by M include Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Ma, Sn, and V. Preferred examples of the metal oxide include VO and TiO. Especially preferred of these metals and metal oxides include Cu, Ni, Co, Zn, VO, Pd, and V.

[0057] The amount of the naphthalocyanine colorant (ingredient C) to be added is generally in the range of 0.0005 to 0.5 parts by weight (hereinafter abbreviated to “parts”) with respect to 100 parts of the epoxy resin (ingredient A). The amount thereof is preferably in the range of 0.001 to 0.3 parts. The reasons for this are as follows. In the case where the amount thereof is smaller than 0.0005 parts, the property of shielding near infrared rays tends to decrease. In the case where the amount thereof exceeds 0.5 parts, the property of transmitting rays in the whole visible light region or specific visible rays tends to decrease. Incidentally, the amount of the colorant to be added is in the case where the resin thickness is 1 mm and the range changes proportionally with changing resin thickness.

[0058] A phthalocyanine colorant (ingredient D) may be optionally incorporated together with ingredient A to ingredient C in the invention. The phthalocyanine colorant is not particularly limited. However, from the standpoint of further improving the desired near infrared ray shielding, it preferably is a phthalocyanine colorant represented by the following general formula (2):

\[
\text{(2)}
\]

(wherein, R is alkyl or alkoxyalkyl; M is a metal or a metal oxide; and X is a halogen atom).

[0059] Examples of the phthalocyanine colorant represented by general formula (2) include phthalocyanine colorants represented by the following general formulae (3) to (6):

\[
\text{(3)}
\]
However, the compounds represented by general formula (3) are apt to be mainly yielded due to the steric hindrance of substituents.

In general formulae (2) to (6), \(R \) or \(R' \) to \(R_n \) are each alkyl or alkoxyalkyl. Although the substituents \(R_1 \) to \(R_n \) are the same or different, it is especially preferred that all of \(R_1 \) to \(R_n \) be the same substituent. When \(R \) or \(R_1 \) to \(R_n \) are alkyl, it preferably is linear or branched alkyl having 1 to 12 carbon atoms, and especially preferably is linear or branched alkyl having 1 to 8 carbon atoms. Examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, neopentyl, n-heptyl, isohexyl, sec-heptyl, n-octyl, and 2-ethylhexyl.

When \(R \) or \(R_1 \) to \(R_n \) are alkoxyalkyl, it preferably is one having 2 to 8 carbon atoms in total, and especially preferably is one having 3 to 6 carbon atoms in total. Examples thereof include methoxyethyl, methoxypropyl, methoxybutyl, ethoxyethyl, ethoxypropyl, ethoxybutyl, n-propoxyethyl, and isoproxyethyl.

In general formulae (2) to (6), \(M \) is a metal or a metal oxide. Preferred examples of the metal represented by \(M \) include \(Cu \), \(Zn \), \(Fe \), \(Co \), \(Ni \), \(Ru \), \(Pb \), \(Rh \), \(Pd \), \(Pt \), \(Mn \), \(Sn \), and \(V \). Preferred examples of the metal oxide include \(VO \) and \(TiO \). Especially preferred of these metals and metal oxides include \(Cu \), \(Ni \), \(Co \), \(Zn \), \(V \), \(VO \), and \(Pd \).

In general formulae (2) to (6), \(X \) is a halogen atom. Preferred examples thereof include a chlorine atom, a bromine atom, and a fluorine atom. Especially preferred is a chlorine atom.

The phthalocyanine colorant (ingredient \(D \)) is an optional ingredient and, hence, need not be always added. The amount of this colorant to be added is preferably 0.5 parts or lower with respect to 100 parts of the epoxy resin (ingredient \(A \)).

An especially preferred range thereof is from 0.001 to 0.3 parts. This is because in the case in which the amount thereof exceeds 0.5 parts, the property of transmitting rays in the whole visible light region or specific visible rays tend to decrease. Incidentally, that amount of the colorant to be added is in the case where the resin thickness is 1 mm, and the range changes proportionally with changing resin thickness.

The naphthalocyanine colorant (ingredient \(C \)) and the phthalocyanine colorant (ingredient \(D \)), especially the naphthalocyanine colorant, are crucial for realizing an epoxy resin composition which shields near infrared rays and undergoes little or no change in optical properties during molding or in a heat resistance test. As the colorants, ones classified as pigments are preferable to ones classified as dyes from the standpoint of thermal stability.

With respect to transmission and light shielding properties, the composition preferably is one which gives a 1 mm-thick molded object having a transmittance maximum of 10% or higher, especially 20% or higher, in the visible light region (450 to 650 nm) and a transmittance in the near infrared region (750 to 900 nm) of 5% or lower.

Various conventional additives such as a curing accelerator, deterioration inhibitor, modifier, coupling agent,
defoamer, leveling agent, release agent, dye, and pigment may be suitably incorporated into the epoxy resin composition for optical-semiconductor encapsulation of the invention.

[0070] The curing accelerator is not particularly limited. Examples thereof include tertiary amines such as 1,8-diazabicyclo[5.4.4]dodecane-7, triethylenediamine, and tri-2,4, 6-dimethylaminomethylphenol, imidazole compounds such as 1-butyl-2-methylimidazole, 1-butyl-2-phenylimidazole, 2-methyl-4-methylimidazole, and 2-methylimidazole, phos- phorus compounds such as triphenyl phosphine and tetraphenylphosphonium tetraphenylborate, quaternary ammonium salts, metal salts, and derivatives thereof. These may be used alone or in combination of two or more thereof. Preferred examples of these curing accelerators include tertiary amines, imidazole compounds, and phosphorus compounds.

[0071] The content of the curing accelerator is preferably 0.01 to 8.0 parts, more preferably 0.1 to 3.0 parts, based on 100 parts of the epoxy resin (ingredient A). The reasons for this are as follows. When the content of the curing accelerator is lower than 0.01 part, there is a case where a sufficient curing-accelerating effect is not obtained. In the case where the content thereof exceeds 8.0 parts, problems concerning, e.g., discoloration of the cured resin obtained are apt to arise.

[0072] Examples of the deterioration inhibitor include pheno- nol compounds, amine compounds, organosulfur compo-unds, and phosphorus compounds. Examples of the modifier include glycols, silicones, and alcohols. Examples of the coupling agent include silane coupling agents and titanate coupling agents. Examples of the defoamer include silicone defoamers. Such compounds shown as examples of each additive may be used alone or in combination of two or more thereof.

[0073] The epoxy resin composition for optical-semicon- ductor encapsulation of the invention can be produced, for example, by the following manner. The composition can be thereby obtained in the form of a liquid or powder or as tablets obtained by tabletting the powder. For obtaining the liquid epoxy resin composition for optical-semiconductor encapsula- tion, a method may, for example, be used in which the ingredients described above, i.e., the epoxy resin (ingredient A), curing agent (ingredient B), and naphthalocyanine colorant (ingredient C) are suitably mixed optionally together with the phthalocyanine colorant (ingredient D) and other additives.

[0074] For obtaining the composition as a powder or as tablets obtained by tabletting the powder, use may be made, for example, of a method including premixing the ingredients in a suitable proportion, thereafter kneading and melt-mixing the ingredients by means of a kneading machine, subse- quently cooling the mixture to room temperature, and then pulverizing the mixture by a known technique and optionally tabletting the resultant powder.

[0075] The epoxy resin composition for optical-semiconductor encapsulation of the invention thus obtained is used as an encapsulating resin for optical semiconductor elements such as LEDs and optical sensors. The encapsulation of an optical semiconductor element with the epoxy resin composition for optical-semiconductor encapsulation of the invention is not particularly limited, and can be conducted by a known molding technique such as ordinary transfer molding or potting. In the case where the epoxy resin composition for optical-semiconductor encapsulation of the invention is liq- uid, it may be used as the so-called two-pack type, in which the epoxy resin and the curing agent are stored separately from each other and are mixed together just before use. In the case where the epoxy resin composition for optical-semiconductor encapsulation of the invention is in the form of a powder or tablets, a method may be used in which the ingredi- ents, when melt-mixed, are brought into a B-stage state and the resultant composition is thermally melted when used.

[0076] When the epoxy resin composition for optical-semiconductor encapsulation of the invention is used to form a plate-like or lens-like cured object or encapsulate an optical semiconductor element, the function of transmitting target visible rays and shielding target near infrared rays can be imparted to the cured object or optical semiconductor device obtained, while maintaining excellent properties of the epoxy resin composition (high heat resistance and high adhesiveness).

[0077] The invention will be explained below by reference to Examples and Comparative Examples. However, the invention should not be construed as being limited to the following Examples.

EXAMPLES

Examples 1 to 3

[0078] A phthalocyanine colorant and naphthalocyanine colorants were added in the amounts shown in Table 1 below to a mixture composed of 100 parts of an epoxy resin, 99 parts of a curing agent, and 1 part of a curing accelerator as shown in the table.

[0079] Each liquid resin composition obtained (epoxy resin composition for optical-semiconductor encapsulation) was poured into a mold having a thickness of 1 mm and heated at 150°C for 3 hours to obtain a cured resin composition. This cured resin composition (1-mm thick) was examined with apparatus UV-3101PC (manufactured by Shimadzu Corp.) for a transmission spectrum. The results obtained are shown in FIG. 1 (Example 1), FIG. 2 (Example 2), and FIG. 3 (Example 3). As apparent from FIGS. 1 to 3, the cured resins obtained in Examples 1 to 3 had a transmittance in the near infrared region (750 to 900 nm) of 5% or lower.

Comparative Examples 1 and 2

[0080] Liquid resin compositions were obtained in the same manner as in Example 1, except that a diionium dye was incorporated in the amount shown in Table 1 in place of the naphthalocyanine colorant used in Example 1. Each liquid resin composition obtained was poured into a mold having a thickness of 1 mm and heated at 150°C for 3 hours to obtain a cured resin. This cured resin composition was examined with the apparatus for a transmission spectrum. The results obtained are shown in FIG. 4 (Comparative Example 1) and FIG. 5 (Comparative Example 2). In the Comparative Examples shown in FIGS. 4 and 5, the transmittances of near infrared rays are considerably high.

[0081] As shown above, in each of Examples 1 to 3, the near-infrared-ray transmittance is 5% or lower and the desired property is observed. On the other hand, in Comparative Examples 1 and 2, the infrared-ray shielding properties of the diionium dyes used are lost in the heating step for curing the resins. Consequently, it can be seen that the desired property of shielding near infrared rays can be imparted to a thermostet resin by using one or more naphthalocyanine colorants or a combination of one or more naphthalocyanine colorants and a phthalocyanine colorant, as in the invention.
What is claimed is:

1. An epoxy resin composition for optical-semiconductor encapsulation, which comprises the following ingredients (A) to (C):

(A) an epoxy resin;

(B) a curing agent; and

(C) a naphthalocyanine colorant.

2. The epoxy resin composition for optical-semiconductor encapsulation according to claim 1, wherein the ingredient (C) is represented by the following formula (1):

![Chemical Structure](image)

wherein R's are the same or different and each represent a hydrogen atom, alkyl, alkoxy, arylthio, dialkylamino, nitro, phenyl, anilino, methylanilino, or N-phenyl-N-methylamino;

n is an integer of 0 to 6; and

M is a metal or a metal oxide.

3. The epoxy resin composition for optical-semiconductor encapsulation according to claim 2, wherein two or more kinds of naphthalocyanine colorants represented by the formula (1) are used as the ingredient (C), said naphthalocyanine colorants represented by the formula (1) differing from each other in at least one of the atoms, substituents, and metal or metal oxide represented by the R's and M and the n's, which indicate the number of atoms or functional groups.

4. The epoxy resin composition for optical-semiconductor encapsulation according to claim 1, wherein the ingredient (C) is contained in an amount in a range of 0.0005 to 0.5 parts by weight with respect to 100 parts by weight of the ingredient (A).

5. The epoxy resin composition for optical-semiconductor encapsulation according to claim 1, which contains, in addition to the ingredients (A) to (C), the following ingredient (D):

(D) a phthalocyanine colorant.

6. The epoxy resin composition for optical-semiconductor encapsulation according to claim 5, wherein the ingredient (D) is represented by the formula (2):

![Chemical Structure](image)
wherein R is alkyl or alkoxyalkyl;

(2) M is a metal or a metal oxide; and

X is a halogen atom.

7. The epoxy resin composition for optical-semiconductor encapsulation according to claim 5, wherein the ingredient (D) is contained in an amount of 0.5 parts by weight or lower with respect to 100 parts by weight of the ingredient (A).

8. A cured epoxy resin obtainable by curing the epoxy resin composition for optical-semiconductor encapsulation according to claim 1.

9. An optical semiconductor device obtainable by encapsulating an optical semiconductor element with the epoxy resin composition for optical-semiconductor encapsulation according to claim 1.

* * * * *