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ANTISENSE OLIGONUCLEOTIDES FOR
INDUCING EXON SKIPPING AND
METHODS OF USE THEREOF

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

STATEMENT REGARDING
FEDERALLY-SPONSORED RESEARCH

This invention was made with government support under
Grant No. ROI NS044146 awarded by the National Institutes
of Health. The U.S. Government has certain vights in this
invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is [filed pursuant to 35 USC 371 as a
United States National Phase Application] a reissue of U.S.
patent application Ser. No. 11/570,691, filed on Jan. 15,
2008, now U.S. Pat. No. 7,807,816 B2 issued on Oct. 5,
2010, which is a 35 US.C. § 371 national stage filing of
International Patent Application Serial No. PCT/AU2005/
000943 filed on Jun. 28, 2005, which claims priority from
2004903474 filed on Jun. 28, 2004 in Australia. The contents
of the aforementioned applications are hereby incorporated
by reference.

STATEMENT REGARDING SEQUENCE
LISTING

[The Sequence Listing associated with this application is
provided in text format in lieu of a paper copy, and is hereby
incorporated by reference into the specification. The name of
the text file containing the Sequence Listing is
120178_411USPC_SEQUENCE_LISTING.txt. The text
file is 48 KB, was created on Dec. 17, 2009, and is being
submitted electronically via EFS-Web.] The instant appli-
cation contains a Sequence Listing which has been submit-
ted electronically in ASCII format and is hereby incorpo-
rated by reference in its entirvety. Said ASCII copy, created on
Nov. 11, 2016, is named AVN_OOSRE Sequence_Listing.txt
and is 61891 bytes in size.

FIELD OF THE INVENTION

The present invention relates to novel antisense com-
pounds and compositions suitable for facilitating exon skip-
ping. It also provides methods for inducing exon skipping
using the novel antisense compounds as well as therapeutic
compositions adapted for use in the methods of the inven-
tion.

BACKGROUND ART

Significant effort is currently being expended researching
methods for suppressing or compensating for disease-caus-
ing mutations in genes. Antisense technologies are being
developed using a range of chemistries to affect gene expres-
sion at a variety of different levels (transcription, splicing,
stability, translation). Much of that research has focused on
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the use of antisense compounds to correct or compensate for
abnormal or disease-associated genes in a myriad of differ-
ent conditions.

Antisense molecules are able to inhibit gene expression
with exquisite specificity and because of this many research
efforts concerning oligonucleotides as modulators of gene
expression have focused on inhibiting the expression of
targeted genes such as oncogenes or viral genes. The anti-
sense oligonucleotides are directed either against RNA
(sense strand) or against DNA where they form triplex
structures inhibiting transcription by RNA polymerase I1. To
achieve a desired effect in specific gene down-regulation, the
oligonucleotides must either promote the decay of the tar-
geted mRNA or block translation of that mRNA, thereby
effectively preventing de novo synthesis of the undesirable
target protein.

Such techniques are not useful where the object is to
upregulate production of the native protein or compensate
for mutations which induce premature termination of trans-
lation such as nonsense or frame-shifting mutations. Fur-
thermore, in cases where a normally functional protein is
prematurely terminated because of mutations therein, a
means for restoring some functional protein production
through antisense technology has been shown to be possible
through intervention during the splicing processes (Siera-
kowska H, et al., (1996) Proc Natl Acad Sci USA 93,
12840-12844; Wilton S D, et al., (1999) Neuromusc Disor-
ders 9, 330-338; van Deutekom J C et al., (2001) Human
Mol Genet 10, 1547-1554). In these cases, the defective
gene transcript should not be subjected to targeted degra-
dation so the antisense oligonucleotide chemistry should not
promote target mRNA decay.

In a variety of genetic diseases, the effects of mutations on
the eventual expression of a gene can be modulated through
a process of targeted exon skipping during the splicing
process. The splicing process is directed by complex multi-
particle machinery that brings adjacent exon-intron junc-
tions in pre-mRNA into close proximity and performs cleav-
age of phosphodiester bonds at the ends of the introns with
their subsequent reformation between exons that are to be
spliced together. This complex and highly precise process is
mediated by sequence motifs in the pre-mRNA that are
relatively short semi-conserved RNA segments to which
bind the various nuclear splicing factors that are then
involved in the splicing reactions. By changing the way the
splicing machinery reads or recognises the motifs involved
in pre-mRNA processing, it is possible to create differen-
tially spliced mRNA molecules. It has now been recognised
that the majority of human genes are alternatively spliced
during normal gene expression, although the mechanisms
invoked have not been identified. Using antisense oligo-
nucleotides, it has been shown that errors and deficiencies in
a coded mRNA could be bypassed or removed from the
mature gene transcripts.

In nature, the extent of genetic deletion or exon skipping
in the splicing process is not fully understood, although
many instances have been documented to occur, generally at
very low levels (Sherrat T G, et al., (1993) Am J Hum Genet
53, 1007-1015). However, it is recognised that if exons
associated with disease-causing mutations can be specifi-
cally deleted from some genes, a shortened protein product
can sometimes be produced that has similar biological
properties of the native protein or has sufficient biological
activity to ameliorate the disease caused by mutations asso-
ciated with the target exon (Lu Q L, et al., (2003) Nature
Medicine 9, 1009-1014; Aartsma-Rus A et al., (2004) Am J
Hum Genet 74: 83-92).
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This process of targeted exon skipping is likely to be
particularly useful in long genes where there are many exons
and introns, where there is redundancy in the genetic con-
stitution of the exons or where a protein is able to function
without one or more particular exons (e.g. with the dystro-
phin gene, which consists of 79 exons; or possibly some
collagen genes which encode for repeated blocks of
sequence or the huge nebulin or titin genes which are
comprised of ~80 and over 370 exons, respectively).

Efforts to redirect gene processing for the treatment of
genetic diseases associated with truncations caused by muta-
tions in various genes have focused on the use of antisense
oligonucleotides that either: (1) fully or partially overlap
with the elements involved in the splicing process; or (2)
bind to the pre-mRNA at a position sufficiently close to the
element to disrupt the binding and function of the splicing
factors that would normally mediate a particular splicing
reaction which occurs at that element (e.g., binds to the
pre-mRNA at a position within 3, 6, or 9 nucleotides of the
element to be blocked).

For example, modulation of mutant dystrophin pre-
mRNA, splicing with antisense oligoribonucleotides has
been reported both in vitro and in vivo. In one type of
dystrophin mutation reported in Japan, a 52-base pair dele-
tion mutation causes exon 19 to be removed with the
flanking introns during the splicing process (Matsuo et al.,
(1991) J Clin Invest. 87:2127-2131). An in vitro minigene
splicing system has been used to show that a 31-mer
2'-O-methyl oligoribonucleotide complementary to the 5'
half of the deleted sequence in dystrophin Kobe exon 19
inhibited splicing of wild-type pre-mRNA (Takeshima et al.
(1995), J. Clin. Invest., 95, 515-520). The same oligonucle-
otide was used to induce exon skipping from the native
dystrophin gene transcript in human cultured lymphoblas-
toid cells.

Dunckley et al., (1997) Nucleosides & Nucleotides, 16,
1665-1668 described in vitro constructs for analysis of
splicing around exon 23 of mutated dystrophin in the mdx
mouse mutant, a model for muscular dystrophy. Plans to
analyse these constructs in vitro using 2' modified oligo-
nucleotides targeted to splice sites within and adjacent to
mouse dystrophin exon 23 were discussed, though no target
sites or sequences were given.

2'-O-methyl oligoribonucleotides were subsequently
reported to correct dystrophin deficiency in myoblasts from
the mdx mouse from this group. An antisense oligonucle-
otide targeted to the 3' splice site of murine dystrophin intron
22 was reported to cause skipping of the mutant exon as well
as several flanking exons and created a novel in-frame
dystrophin transcript with a novel internal deletion. This
mutated dystrophin was expressed in 1-2% of antisense
treated mdx myotubes. Use of other oligonucleotide modi-
fications such as 2'-O-methoxyethyl phosphodiesters are
described (Dunckley et al. (1998) Human Mol. Genetics, 5,
1083-90).

Thus, antisense molecules may provide a tool in the
treatment of genetic disorders such as Duchenne Muscular
Dystrophy (DMD). However, attempts to induce exon skip-
ping using antisense molecules have had mixed success.
Studies on dystrophin exon 19, where successful skipping of
that exon from the dystrophin pre-mRNA was achieved
using a variety of antisense molecules directed at the flank-
ing splice sites or motifs within the exon involved in exon
definition as described by Errington et al. (2003) J Gen Med
5, 518-527".

In contrast to the apparent ease of exon 19 skipping, the
first report of exon 23 skipping in the mdx mouse by
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Dunckley et al., (1998) is now considered to be reporting
only a naturally occurring revertant transcript or artefact
rather than any true antisense activity. In addition to not
consistently generating transcripts missing exon 23, Dunck-
ley et al., (1998) did not show any time course of induced
exon skipping, or even titration of antisense oligonucle-
otides, to demonstrate dose dependent effects where the
levels of exon skipping corresponded with increasing or
decreasing amounts of antisense oligonucleotide. Further-
more, this work could not be replicated by other researchers.

The first example of specific and reproducible exon
skipping in the mdx mouse model was reported by Wilton et
al., (1999) Neuromuscular Disorders 9, 330-338. By direct-
ing an antisense molecule to the donor splice site, consistent
and efficient exon 23 skipping was induced in the dystrophin
mRNA within 6 hours of treatment of the cultured cells.
Wilton et al., (1999), also describe targeting the acceptor
region of the mouse dystrophin pre-mRNA with longer
antisense oligonucleotides and being unable to repeat the
published results of Dunckley et al., (1998). No exon
skipping, either 23 alone or multiple removal of several
flanking exons, could be reproducibly detected using a
selection of antisense oligonucleotides directed at the accep-
tor splice site of intron 22.

While the first antisense oligonucleotide directed at the
intron 23 donor splice site induced consistent exon skipping
in primary cultured myoblasts, this compound was found to
be much less efficient in immortalized cell cultures express-
ing higher levels of dystrophin. However, with refined
targeting and antisense oligonucleotide design, the effi-
ciency of specific exon removal was increased by almost an
order of magnitude (see Mann C J et al., (2002) J Gen Med
4, 644-654).

Thus, there remains a need to provide antisense oligo-
nucleotides capable of binding to and modifying the splicing
of a target nucleotide sequence. Simply directing the anti-
sense oligonucleotides to motifs presumed to be crucial for
splicing is no guarantee of the efficacy of that compound in
a therapeutic setting.

SUMMARY OF THE INVENTION

The present invention provides antisense molecule com-
pounds and compositions suitable for binding to RNA motifs
involved in the splicing of pre-mRNA that are able to induce
specific and efficient exon skipping and a method for their
use thereof.

The choice of target selection plays a crucial role in the
efficiency of exon skipping and hence its subsequent appli-
cation of a potential therapy. Simply designing antisense
molecules to target regions of pre-mRNA presumed to be
involved in splicing is no guarantee of inducing efficient and
specific exon skipping. The most obvious or readily defined
targets for splicing intervention are the donor and acceptor
splice sites although there are less defined or conserved
motifs including exonic splicing enhancers, silencing ele-
ments and branch points. The acceptor and donor splice sites
have consensus sequences of about 16 and 8 bases respec-
tively (see FIG. 1 for schematic representation of motifs and
domains involved in exon recognition, intron removal and
the splicing process).

According to a first aspect, the invention provides anti-
sense molecules capable of binding to a selected target to
induce exon skipping.

For example, to induce exon skipping in exons 3 to 8, 10
to 16, 19 to 40, 42 to 44, 46, 47, and 50 to 53 in the
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Dystrophin gene transcript the antisense molecules are pref-
erably selected from the group listed in Table 1A.

In a further example, it is possible to combine two or more
antisense oligonucleotides of the present invention together
to induce multiple exon skipping in exons 19-20, and 53.
This is a similar concept to targeting of a single exon. A
combination or “cocktail” of antisense oligonucleotides are
directed at adjacent exons to induce efficient exon skipping.

In another example, to induce exon skipping in exons
19-20, 31, 34 and 53 it is possible to improve exon skipping
of a single exon by joining together two or more antisense
oligonucleotide molecules. This concept is termed by the
inventor as a “weasel”, an example of a cunningly designed
antisense oligonucleotide. A similar concept has been
described in Aartsma-Rus A et al., (2004) Am J Hum Genet
74: 83-92).

According to a second aspect, the present invention
provides antisense molecules selected and or adapted to aid
in the prophylactic or therapeutic treatment of a genetic
disorder comprising at least an antisense molecule in a form
suitable for delivery to a patient.

According to a third aspect, the invention provides a
method for treating a patient suffering from a genetic disease
wherein there is a mutation in a gene encoding a particular
protein and the affect of the mutation can be abrogated by
exon skipping, comprising the steps of: (a) selecting an
antisense molecule in accordance with the methods
described herein; and (b) administering the molecule to a
patient in need of such treatment.

The invention also addresses the use of purified and
isolated antisense oligonucleotides of the invention, for the
manufacture of a medicament for treatment of a genetic
disease.

The invention further provides a method of treating a
condition characterised by Duchenne muscular dystrophy,
which method comprises administering to a patient in need
of treatment an effective amount of an appropriately
designed antisense oligonucleotide of the invention, relevant
to the particular genetic lesion in that patient. Further, the
invention provides a method for prophylactically treating a
patient to prevent or at least minimise Duchene muscular
dystrophy, comprising the step of: administering to the
patient an effective amount of an antisense oligonucleotide
or a pharmaceutical composition comprising one or more of
these biological molecules.

The invention also provides kits for treating a genetic
disease, which kits comprise at least a antisense oligonucle-
otide of the present invention, packaged in a suitable con-
tainer and instructions for its use.

Other aspects and advantages of the invention will
become apparent to those skilled in the art from a review of
the ensuing description, which proceeds with reference to
the following figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 Schematic representation of motifs and domains
involved in exon recognition, intron removal and the splic-
ing process (SEQ ID NOS:213 and 214).

FIG. 2. Diagrammatic representation of the concept of
antisense oligonucleotide induced exon skipping to by-pass
disease-causing mutations (not drawn to scale). The hatched
box represents an exon carrying a mutation that prevents the
translation of the rest of the mRNA into a protein. The solid
black bar represents an antisense oligonucleotide that pre-
vents inclusion of that exon in the mature mRNA.
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FIG. 3 Gel electrophoresis showing differing efficiencies
of'two antisense molecules directed at exon 8 acceptor splice
site. The preferred compound [H8A(-06+18)] induces
strong and consistent exon skipping at a transfection con-
centration of 20 nanomolar in cultured normal human
muscle cells. The less preferred antisense oligonucleotide
[H8A(-06+14)] also induces efficient exon skipping, but at
much higher concentrations. Other antisense oligonucle-
otides directed at exon 8 either only induced lower levels of
exon skipping or no detectable skipping at all (not shown).

FIG. 4 Gel electrophoresis showing differing efficiencies
of two antisense molecules directed at internal domains
within exon 7, presumably exon splicing enhancers. The
preferred compound [H7A(+45+67)] induces strong and
consistent exon skipping at a transfection concentration of
20 nanomolar in cultured human muscle cells. The less
preferred antisense oligonucleotide [H7A(+2+426)] induces
only low levels of exon skipping at the higher transfection
concentrations. Other antisense oligonucleotides directed at
exon 7 either only induced lower levels of exon skipping or
no detectable skipping at all (not shown).

FIG. 5 Gel electrophoresis showing an example of low
efficiency exon 6 skipping using two non-preferred antisense
molecules directed at human exon 6 donor splice site. Levels
of induced exon 6 skipping are either very low [H6D(+04-
21)] or almost undetectable [H6D(+18-04)]. These are
examples of non-preferred antisense oligonucleotides to
demonstrate that antisense oligonucleotide design plays a
crucial role in the efficacy of these compounds.

FIG. 6 Gel electrophoresis showing strong and efficient
human exon 6 skipping using an antisense molecules [H6A
(+69+491)] directed at an exon 6 internal domain, presumably
an exon splicing enhancer. This preferred compound induces
consistent exon skipping at a transfection concentration of
20 nanomolar in cultured human muscle cells.

FIG. 7 Gel electrophoresis showing strong human exon 4
skipping using an antisense molecule H4A(+13+32)
directed at an exon 6 internal domain, presumably an exon
splicing enhancer. This preferred compound induces strong
and consistent exon skipping at a transfection concentration
of 20 nanomolar in cultured human muscle cells.

FIG. 8 Gel electrophoresis showing (8B) strong human
exon 11 skipping using antisense molecule H11A(+75497)
directed at an exon 11 internal domain; and (8B) strong
human exon 12 skipping using antisense molecule HI2A(+
52+75) directed at exon 12 internal domain.

FIG. 9 Gel electrophoresis showing (9A) strong human
exon 15 skipping using antisense molecules H1SA(+48+71)
and H15A(-12+19) directed at an exon 15 internal domain;
and (9B) strong human exon 16 skipping using antisense
molecules HI6A(-12+19) and H16A(-06+25).

FIG. 10 Gel electrophoresis showing human exon 19/20
skipping using antisense molecules H20A(+44+71) and
H20A(+149+170) directed at an exon 20 and a “cocktail” of
antisense oligonucleotides H19A(+35+65, H20A(+44+71)
and H20A(+149+170) directed at exons 19/20.

FIG. 11 Gel electrophoresis showing human exon 19/20
skipping using “weasels™ directed at exons 19 and 20.

FIG. 12 Gel electrophoresis showing exon 22 skipping
using antisense molecules H22A(+125+106), H22A(+47+
69), H22A(+80+101) and H22D(+13-11) directed at exon
22

FIG. 13 Gel electrophoresis showing exon 31 skipping
using antisense molecules H31D(+01-25) and H31D(+03-
22); and a “cocktail” of antisense molecules directed at exon
31.
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FIG. 14 Gel electrophoresis showing exon 33 skipping
using antisense molecules H33A(+30+56) and H33A(+64+
88) directed at exon 33.

FIG. 15 Gel electrophoresis showing exon 35 skipping
using antisense molecules H35A(+141+161), H35A(+116+
135), and H35A(+24+43) and a “cocktail of two antisense
molecules, directed at exon 35.

FIG. 16 Gel electrophoresis showing exon 36 skipping
using antisense molecules H32A(+49+73) and H36A(+26+
50) directed at exon 36.

FIG. 17 Gel electrophoresis showing exon 37 skipping
using antisense molecules H37A(+82+105) and H37A(+
134+157) directed at exon 37.

FIG. 18 Gel electrophoresis showing exon 38 skipping
using antisense molecule H38A(+88+112) directed at exon
38.

FIG. 19 Gel electrophoresis showing exon 40 skipping
using antisense molecule H40A(-05+17) directed at exon
40.

FIG. 20 Gel electrophoresis showing exon 42 skipping
using antisense molecule H42A(-04+23) directed at exon
42.

FIG. 21 Gel electrophoresis showing exon 46 skipping
using antisense molecule H46A(+86+115) directed at exon
46

FIG. 22 Gel electrophoresis showing exon 51, exon 52
and exon 53 skipping using various antisense molecules
directed at exons 51, 52 and 53, respectively. A “cocktail” of
antisense molecules is also shown directed at exon 53.

BRIEF DESCRIPTION OF THE SEQUENCE
LISTINGS

TABLE 1A

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA.
Since these 2'-0-methyl antisense oligonucleo-
tides are more RNA-like, U represents uracil.
With other antisense chemistries such as pep-

tide nucleic acids or morpholinos, these U
bases may be shown as “T”.

SEQ SE-

ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')

1 H8A GAU AGG UGG UAU CAA CAU CUG UAA
(-06 +
18)

2 H8A GAU AGG UGG UAU CAA CAU CUG
(=03 +
18)

3 H8A GAU AGG UGG UAU CAA CAU CUG UAA G
(=07 +
18)

4 HS8A GGU GGU AUC AAC AUC UGU AA
(-06 +
14)

5 H8A GUA UCA ACA UCU GUA AGC AC
(=10 +
10)

6 H7A UGC AUG UUC CAG UCG UUG UGU GG
(+45 +
67)
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TABLE 1A-continued

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA.
Since these 2'-O-methyl antisense oligonucleo-
tides are more RNA-like, U represents uracil.
With other antisense chemistries such as pep-

tide nucleic acids or morpholinos, these U
bases may be shown as “T”.
SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
7 H7A CAC UAU UCC AGU CAA AUA GGU CUG G
(+02 +
26)
8 H7D AUU UAC CAA CCU UCA GGA UCG AGU A
(+15 -
10)
9 H7A GGC CUA AAA CAC AUA CAC AUA
(-18 +
03)
10 CéA CAU UUU UGA CCU ACA UGU GG
(=10 +
10)
11 Céa UUU GAC CUA CAU GUG GAA AG
(-14 +
06)
12 CéA UAC AUU UUU GAC CUA CAU GUG GAA AG
(-14 +
12)
13 CéAa AUU UUU GAC CUA CAU GGG AAA G
(=13 +
09)
14 CHéA UAC GAG UUG AUU GUC GGA CCC AG
(+69 +
91)
15 CéD GUG GUC UCC UUA CCU AUG ACU GUG G
(+12 -
13)
16 CéD GGU CUC CUU ACC UAU GA
(+06 -
11)
17 HéD UGU CUC AGU AAU CUU CUU ACC UAU
(+04 -
21)
18 HéD UCU UAC CUA UGA CUA UGG AUG AGA
(+18 -
04)
19 H4A GCA UGA ACU CUU GUG GAU CC
(+13 +
32)
20 H4D CCA GGG UAC UAC UUA CAU UA
(+04 -
16)
21 H4D AUC GUG UGU CAC AGC AUC CAG
(-24 -
44)
22 H4A UGU UCA GGG CAU GAA CUC UUG UGG AUC
(+11 + cUuU
40)
23 H3A UAG GAG GCG CCU CCC AUC CUG UAG GUC
(+30 + ACU G

60)
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TABLE 1A-continued

10

TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA. 5 the processing of the dystrophin pre-mRNA.
Since these 2'-0-methyl antisense oligonucleo- Since these 2'-O-methyl antisense oligonucleo-
tides are more RNA-like, U represents uracil. tides are more RNA-like, U represents uracil.
With other antisense chemistries such as pep- With other antisense chemistries such as pep-
tide nucleic acids or morpholinos, these U tide nucleic acids or morpholinos, these U
bases may be shown as “T”. bases may be shown as “T”.
10
SEQ SE- SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3') ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
24 H3A AGG UCU AGG AGG CGC CUC CCA UCC UGU 40 H5A AUU UCC AUC UAC GAU GUC AGU ACU UCC
(+35 + AGG U 15 (+15 + AAU A
65) 45)
25 H3A GCG CCU CCC AUC CUG UAG GUC ACU G 41 HI10A CAG GAG CUU CCA AAU GCU GCA
(+30 + (-05 +
54) 16)
26 H3D CUU CGA GGA GGU CUA GGA GGC GCC UC 20 42 HI10A CUU GUC UUC AGG AGC UUC CAA AUG CUG CA
(+46 - (-05 +
21) 24)
27 H3A CUC CCA UCC UGU AGG UCA CUG 43 HI10A UCC UCA GCA GAA AGA AGC CAC G
(+30 + (+98 +
50) 25 119)
28 H3D UAC CAG UUU UUG CCC UGU CAG G 44 HI10A UUA GAA AUC UCU CCU UGU GC
(+19 - (+130 +
03) 149)
29 H3A UCA AUA UGC UGC UUC CCA AAC UGA AA 30 45 HI10A UAA AUU GGG UGU UAC ACA AU
(-06 + (=33 -
20) 14)
30 H3A CUA GGA GGC GCC UCC CAU CCU GUA G 46 H11D CCC UGA GGC AUU CCC AUC UUG AAU
+37 + +26 +
( 35 (
61) 49)
31 H5A UUA UGA UUU CCA UCU ACG AUG UCA GUA 47 H11D AGG ACU UAC UUG CUU UGU UU
(+20 + CUu C (+11 -
50) 09)
40
32 HS5D CUU ACC UGC CAG UGG AGG AUU AUA UUC 48 HI11A CUU GAA UUU AGG AGA UUC AUC UG
(+25 - CAA A (+118 +
05) 140)
33 HS5D CAU CAG GAU UCU UAC CUG CCA GUG G 49 HI11A CAU CUU CUG AUA AUU UUC CUG UU
(+10 - 45 (+75 +
15) 97)
34 H5A CGA UGU CAG UAC UUC CAA UAU UCA C 50 HI12A UCU UCU GUU UUU GUU AGC CAG UCA
(+10 + (+52 +
34) 75)
50
35 HS5D ACC AUU CAU CAG GAU UCU 51 HI12A UCU AUG UAA ACU GAA AAU UU
(-04 - (-10 +
21) 10)
36 HS5D ACC UGC CAG UGG AGG AUU 52 HI12A UUC UGG AGA UCC AUU AAA AC
(+16 - 55 (+11 +
02) 30)
37 H5A CCA AUA UUC ACU AAA UCA ACC UGU UAA 53 HI13A CAG CAG UUG CGU GAU CUC CAC UAG
(=07 + (+77 +
20) 100)
60
38 HS5D CAG GAU UCU UAC CUG CCA GUG GAG GAU 54 HI13A UUC AUC AAC UAC CAC CAC CAU
(+18 - UAU (+55 +
12) 75)
39 H5A ACG AUG UCA GUA CUU CCA AUA UUC ACU AAA 55 HI13D CUA AGC AAA AUA AUC UGA CCU UAA G
(+05 + U 65 (+06 -
35) 19)
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TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA. 5
Since these 2'-0-methyl antisense oligonucleo-
tides are more RNA-like,
With other antisense chemistries such as pep-

U represents uracil.

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA.
Since these 2'-O-methyl antisense oligonucleo-
tides are more RNA-like,
With other antisense chemistries such as pep-

U represents uracil.

tide nucleic acids or morpholinos, these U tide nucleic acids or morpholinos, these U
bases may be shown as “T”. bases may be shown as “T”.
10
SEQ SE- SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3') ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
56 H14A CUU GUA AAA GAA CCC AGC GGU CUU CUG U 72 HleA CCG CUU UUA AAA CCU GUU AA
(+37 + 15 (=07 +
64) 13)
57 H14A CAU CUA CAG AUG UUU GCC CAU C 73 HleA UGG AUU GCU UUU UCU UUU CUA GAU CC
(+14 + (+12 +
35) 37)
58 HI14A GAA GGA UGU CUU GUA AAA GAA CC 20 74 HIle6A CAU GCU UCC GUC UUC UGG GUC ACU G
(+51 + (+92 +
73) 116)
59 H14D ACC UGU UCU UCA GUA AGA CG 75 HleA G AUC UUG UUU GAG UGA AUA CAG U
(=02 + (+45 +
18) 25 67)
60 H14D CAU GAC ACA CCU GUU CUU CAG UAA 76 HIleA GUU AUC CAG CCA UGC UUC CGU C
(+14 - (+105 +
10) 126)
61 H14A CAU UUG AGA AGG AUG UCU UG 30 77 H1leD UGA UAA UUG GUA UCA CUA ACC UGU G
(+61 + (+05 -
80) 20)
62 H14A AUC UCC CAA UAC CUG GAG AAG AGA 78 H1eD GUA UCA CUA ACC UGU GCU GUA C
=12 + +12 -
( 35 (
12) 11)
63 HI15A GCC AUG CAC UAA AAA GGC ACU GCA AGA 79 HI19A CAG CAG UAG UUG UCA UCU GC
(-12 + CAU U (+35 +
19) 53)
40
64 HI15A UCU UUA AAG CCA GUU GUG UGA AUC 80 HI1%A GCC UGA GCU GAU CUG CUG GCA UCU UGC
(-48 + (+35 + AGU U
71) 65)
65 HI15A UUU CUG AAA GCC AUG CAC UAA 81 H20A CUG GCA GAA UUC GAU CCA CCG GCU GUU C
(+08 + 45 (+44 +
28) 71)
66 HI15D GUA CAU ACG GCC AGU UUU UGA AGA C 82 H20A CAG CAG UAG UUG UCA UCU GCU C
(+17 - (+149 +
08) 170)
50
67 HleA CUA GAU CCG CUU UUA AAA CCU GUU AAA ACA 83 H20A UGA UGG GGU GGU GGG UUG G
(-12 + A (+185 +
19) 203)
68 HIleA UCU UUU CUA GAU CCG CUU UUA AAA CCU 84 H20A AUC UGC AUU AAC ACC CUC UAG AAA G
(-06 + GUU A 55 (-08 +
25) 17)
69 HIleA CUA GAU CCG CUU UUA AAA CCU GUU A 85 H20A CCG GCU GUU CAG UUG UUC UGA GGC
(-06 + (+30 +
19) 53)
60
70 HleA CCG UCU UCU GGG UCA CUG ACU UA 86 H20A AUC UGC AUU AAC ACC CUC UAG AAA GAA A
(+87 + (-11 +
109) 17)
71 HleA CUA GAU CCG CUU UUA AAA CCU GUU AA 87 H20D GAA GGA GAA GAG AUU CUU ACC UUA CAA A
(-07 + 65 (+08 -
19) 20)
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TABLE 1A-continued
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TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA. 5 the processing of the dystrophin pre-mRNA.
Since these 2'-0-methyl antisense oligonucleo- Since these 2'-O-methyl antisense oligonucleo-
tides are more RNA-like, U represents uracil. tides are more RNA-like, U represents uracil.
With other antisense chemistries such as pep- With other antisense chemistries such as pep-
tide nucleic acids or morpholinos, these U tide nucleic acids or morpholinos, these U
bases may be shown as “T”. bases may be shown as “T”.
10
SEQ SE- SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3') ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
88 H20A AUU CGA UCC ACC GGC UGU UC 104 H24A UCU UCA GGG UUU GUA UGU GAU UCU
(+44 + 15 (=02 +
63) 22)
89 H20A CUG CUG GCA UCU UGC AGU U 105 H25A4 CTG GGC UGA AUU GUC UGA AUA UCA CUG
(+149 + (+9 +
168 36)
90 H21A GCC GGU UGA CUU CAU CCU GUG C 20 106 H25A4 CUG UUG GCA CAU GUG AUC CCA CUG AG
(-06 + (+131 +
16) 156)
91 H21A CUG CAU CCA GGA ACA UGG GUC C 107 H25D GUC UAU ACC UGU UGG CAC AUG UGA
(+85 + (+16 -
106) 25 08}
92 H21A GUC UGC AUC CAG GAA CAU GGG UC 108 H26A UGC UUU CUG UAA UUC AUC UGG AGU U
(+85 + (+132 +
108) 156)
93 H21A GUU GAA GAU CUG AUA GCC GGU UGA 30 109 H26A CCU CCU UUC UGG CAU AGA CCU UCC AC
(+08 + (-07 +
31) 19)
94 H21D UAC UUA CUG UCU GUA GCU CUU UCU 110 H26A UGU GUC AUC CAU UCG UGC AUC UCU G
+18 - +68 +
( 35 (
07) 92)
95 H22A CAC UCA UGG UCU CCU GAU AGC GCA 111 H27A UUA AGG CCU CUU GUG CUA CAG GUG G
(+22 + (+82 +
45) 106)
40
96 H22A CUG CAA UUC CCC GAG UCU CUG C 112 H27A GGG CCU CUU CUU UAG CUC UCU GA
(+125 + (-4 +
106) 19)
97 H22A ACU GCU GGA CCC AUG UCC UGA UG 113 H27D GAC UUC CAA AGU CUU GCA UUU C
(+47 + 45 (+19 -
69) 03)
98 H22A CUA AGU UGA GGU AUG GAG AGU 114 H28A GCC AAC AUG CCC AAA CUU CCU AAG
(+80 + (-05 +
101) 19)
50
99 H22D UAU UCA CAG ACC UGC AAU UCC CC 115 H28A CAG AGA UUU CCU CAG CUC CGC CAG GA
(+13 - (+99 +
11) 124)
100 H23A ACA GUG GUG CUG AGA UAG UAU AGG CC 116 H28D CUU ACA UCU AGC ACC UCA GAG
(+34 + 55 (+16 -
59) 05)
101 H23A UAG GCC ACU UUG UUG CUC UUG C 117 H29A UCC GCC AUC UGU UAG GGU CUG UGC C
(+18 + (+57 +
39) 81)
60
102 H23A UUC AGA GGG CGC UUU CUU C 118 H29A AUU UGG GUU AUC CUC UGA AUG UCG C
(+72 + (+18 +
90) 42)
103 H24A GGG CAG GCC AUU CCU CCU UCA GA 119 H29D CAU ACC UCU UCA UGU AGU UCU C
(+48 + 65 (+17 -
70) 05)
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TABLE 1A-continued
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TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA. 5 the processing of the dystrophin pre-mRNA.
Since these 2'-0-methyl antisense oligonucleo- Since these 2'-O-methyl antisense oligonucleo-
tides are more RNA-like, U represents uracil. tides are more RNA-like, U represents uracil.
With other antisense chemistries such as pep- With other antisense chemistries such as pep-
tide nucleic acids or morpholinos, these U tide nucleic acids or morpholinos, these U
bases may be shown as “T”. bases may be shown as “T”.
10
SEQ SE- SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3') ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
120 H30A CAU UUG AGC UGC GUC CAC CUU GUC UG 136 H34A CCA GGC AAC UUC AGA AUC CAA AU
(+122 + 15 (+143 +
147) 165)
121 H30A UCC UGG GCA GAC UGG AUG CUC UGU UC 137 H34A UUU CUG UUA CCU GAA AAG AAU UAU AAU GAA
(+25 + (-20 +
50) 10)
122 H30D UUG CCU GGG CUU CCU GAG GCA UU 20 138 H34A CAU UCA UUU CCU UUC GCA UCU UAC G
(+19 - (+46 +
04) 70)
123 H31D UUC UGA AAU AAC AUA UAC CUG UGC 139 H34A UGA UCU CUU UGU CAA UUC CAU AUC UG
(+06 - (+95 +
18) 25 120)
124 H31D UAG UUU CUG AAA UAA CAU AUA CCU G 140 H34D UUC AGU GAU AUA GGU UUU ACC UUU CCC
(+03 - (+10 - CAG
22) 20)
125 H31A GAC UUG UCA AAU CAG AUU GGA 30 141 H34A CUG UAG CUG CCA GCC AUU CUG UCA AG
(+05 + (+72 +
25) 96)
126 H31D GUU UCU GAA AUA ACA UAU ACC UGU 142 H35A4 UCU UCU GCU CGG GAG GUG ACA
+04 - +141 +
( 35 (
20) 161)
127 H32D CAC CAG AAA UAC AUA CCA CA 143 H35A4 CCA GUU ACU AUU CAG AAG AC
(+04 - (+116 +
16) 135)
40
128 H32A CAA UGA UUU AGC UGU GAC UG 144 H35A UCU UCA GGU GCA CCU UCU GU
(+151 + (+24 +
170) 43)
129 H32A CGA AAC UUC AUG GAG ACA UCU UG 145 H36A UGU GAU GUG GUC CAC AUU CUG GUC A
(+10 + 45 (+26 +
32) 50)
130 H32A CUU GUA GAC GCU GCU CAA AAU UGG C 146 H36A CCA UGU GUU UCU GGU AUU CC
(+49 + (-02 +
73) 18)
50
131 H33D CAU GCA CAC ACC UUU GCU CC 147 H37A CGU GUA GAG UCC ACC UUU GGG CGU A
(+09 - (+26 +
11) 50)
132 H33A UCU GUA CAA UCU GAC GUC CAG UCU 148 H37A UAC UAA UUU CCU GCA GUG GUC ACC
(+53 + 55 (+82 +
76) 105)
133 H33A GUC UUU AUC ACC AUU UCC ACU UCA GAC 149 H37A UUC UGU GUG AAA UGG CUG CAA AUC
(+30 + (+134 +
56) 157)
60
134 H33A CCG UCU GCU UUU UCU GUA CAA UCU G 150 H38A CCU UCA AAG GAA UGG AGG CC
(+64 + (-01 +
88) 19)
135 H34A UCC AUA UCU GUA GCU GCC AGC C 151 H38A UGC UGA AUU UCA GCC UCC AGU GGU U
(+83 + 65 (+59 +
104) 83)
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TABLE 1A-continued

Description of 2'-O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

Description of 2'-0O-methyl phosphorothioate
antisense oligonucleotides that have been used
to date to study induced exon skipping during

the processing of the dystrophin pre-mRNA. 5 the processing of the dystrophin pre-mRNA.
Since these 2'-0-methyl antisense oligonucleo- Since these 2'-O-methyl antisense oligonucleo-
tides are more RNA-like, U represents uracil. tides are more RNA-like, U represents uracil.
With other antisense chemistries such as pep- With other antisense chemistries such as pep-
tide nucleic acids or morpholinos, these U tide nucleic acids or morpholinos, these U
bases may be shown as “T”. bases may be shown as “T”.
10
SEQ SE- SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3') ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
152 H38A UGA AGU CUU CCU CUU UCA GAU UCA C 168 H46D UUA CCU UGA CUU GCU CAA GC
(+88 + 15 (+16 -
112) 04)
153 H39%A CUG GCU UUC UCU CAU CUG UGA UUC 169 H46A UCC AGG UUC AAG UGG GAU AC
(+62 + (+90 +
85) 109)
154 H39%A GUU GUA AGU UGU CUC CUC UU 20 170 H47A GCU CUU CUG GGC UUA UGG GAG CAC U
(+39 + (+76 +
58) 100)
155 H39%A UUG UCU GUA ACA GCU GCU GU 171 H47D ACC UUU AUC CAC UGG AGA UUU GUC UGC
(+102 + (+25 -
121) 25 02)
156 H39D GCU CUA AUA CCU UGA GAG CA 172 Ha7A UUC CAC CAG URR CUG ARR CAG
(+10 - (=9 +
10) 12)
157 H40A CUU UGA GAC CUC AAA UCC UGU U 30 173 I;Ifgi . CCA CUC AGA GCU CAG AUC UUC UAA CUU CC
(-05 + 30)
17)
174 H50A CUU CCA CUC AGA GCU CAG AUC UUC UAA
158 H40A CUU UAU UUU CCU UUC AUC UCU GGG C (+07 +
(+129 + 35 33)
153)
175 H50D GGG AUC CAG UAU ACU UAC AGG CUC C
159 H42A AUC GUU UCU UCA CGG ACA GUG UGC UGG (+07 -
(-04 + 18)
23)
40 176 H51A ACC AGA GUA ACA GUC UGA GUA GGA GC
160 H42A GGG CUU GUG AGA CAU GAG UGA UUU (-01 +
(+86 + 25)
109)
177 H51D CUC AUA CCU UCU GCU UGA UGA UC
161 H42D A CCU UCA GAG GAC UCC UCU UGC (+16 -
(+19 - 45 07)
02)
178 H51A UUC UGU CCA AGC CCG GUU GAA AUC
162 H43D UAU GUG UUA CCU ACC CUU GUC GGU C (+111 +
(+10 - 134)
15)
50 179 H51A ACA UCA AGG AAG AUG GCA UUU CUA GUU
163 H43A GGA GAG AGC UUC CUG UAG CU (+61 + UGG
(+101 + 90)
120)
180 H51A ACA UCA AGG AAG AUG GCA UUU CUA G
164 H43A UCA CCC UUU CCA CAG GCG UUG CA (+66 +
(+78 + 55 90)
100)
181 H51A CUC CAA CAU CAA GGA AGA UGG CAU UUC
165 H44A UUU GUG UCU UUC UGA GAA AC (+66 + UAG
(+85 + 95)
104)
60 182 H51D AUC AUU UUU UCU CAU ACC UUC UGC U
166 H44D AAA GAC UUA CCU UAA GAU AC (+08 -
(+10 - 17)
10)
183 H51A/D AUC AUU UUU UCU CAU ACC UUC UGC UAG
167 H44A AUC UGU CAA AUC GCC UGC AG (+08 - GAG CUA AAR
(-06 + 65 17) &
14) (-15 +)
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TABLE 1A-continued TABLE 1A-continued

Description of 2'-O-methyl phosphorothiocate Description of 2'-O-methyl phosphorothiocate
antisense oligonucleotides that have been used

to date to study induced exon skipping during
the processing of the dystrophin pre-mRNA.

Since these 2'-0-methyl antisense oligonucleo-

tides are more RNA-like, U represents uracil.

antisense oligonucleotides that have been used

5 to date to study induced exon skipping during
the processing of the dystrophin pre-mRNA.

Since these 2'-O-methyl antisense oligonucleo-

With other antisense chemistries such as pep- tides are more RNA-like, U represents uracil.
tide nucleic acids or morpholinos, these U With other antisense chemistries such as pep-
bases may be shown as “T”. 10 tide nucleic acids or morpholinos, these U
bases may be shown as “T”.
SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3') SEQ SE-
ID QUENCE NUCLEOTIDE SEQUENCE (5'-3')
184 H51A CAC CCA CCA UCA CCC UCU GUG 15
(+175 +
195) 199 H53A AUU CUU UCA ACU AGA AUA AAA G
(=12 +
185 H51A AUC AUC UCG UUG AUA UCC UCA A 10)
(+199 +
220) 20 200 HS53A GAU UCU GAA UUC UUU CAA CUA GAA U
186 H52A UCC UGC AUU GUU GCC UGU AAG (-07 +
(-07 + 18)
14)
201 H53A AUC CCA CUG AUU CUG AAU UC
187 H52A UCC AAC UGG GGA CGC CUC UGU UCC AAA 25 (+07 +
(+12 + uce 26)
41)
202 H53A UUG GCU CUG GCC UGU CCU AAG A
188 H52A ACU GGG GAC GCC UCU GUU CCA (+124 +
(+17 + 145)
37) 30
189 H52A CCG UAA UGA UUG UUC UAG CC 203 H46A CUC UUU UCC AGG UUC AAG UGG GAU ACU
(+93 + (+86 + AGC
112) 115)
190 H52D UGU UAA AAA ACU UAC UUC GA 35 204 H46A CAA GCU UUU CUU UUA GUU GCU GCU CUU
(+05 - (+107 + UUC C
15) 137)
191 H53A CAU UCA ACU GUU GCC UCC GGU UCU G 205 H46A UAU UCU UUU GUU CUU CUA GCC UGG AGA
(+45 + 40 (=10 + ARG
69) 20)
192 H53A CUG UUG CCU CCG GUU CUG ARG GUG 206 H46A CUG CUU CCU CCA ACC AUA AAA CAA AUU
22?9 + (+50 + C
45 77)
193 H53A CAU UCA ACU GUU GCC UCC GGU UCU GAA
(+39 + GGU @ 207 H45A CCA AUG CCA UCC UGG AGU UCC UGU AA
69) (-06 +
20)
194 H53D UAC UAA CCU UGG UUU CUG UGA 50
(+12 - 208 H45A UCcC UGU AGA AUA CUG GCA UC
07) (+91 +
195 H53A CUG AAG GUG UUC UUG UAC UUC AUC C 110)
(+23 +
47) 55 209 H45A UGC AGA CCU CCU GCC ACC GCA GAU UCA
(+125 +
196 H53A UGU AUA GGG ACC CUC CUU CCA UGA CUC 151)
(+150 +
176) 210 H45D CUA CCU CUU UUU UCU GUC UG
60 (+16 -
197 H53D CUA ACC UUG GUU UCU GUG AUU UUC U 04)
(+20 -
05)
211 H45A UGU UUU UGA GGA UUG CUG AA
198 H53D GGU AUC UUU GAU ACU AAC CUU GGU UUC (+71 +
(+09 - 65 90)

18)
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TABLE 1C-continued

Description of a cocktail of 2'-O-methyl phos-
phorothicate antisense oligonucleotides that
have been used to date to study induced exon
skipping during the processing of the dystro-

phin pre-mRNA.

SEQ
D

SE-
QUENCE

NUCLEOTIDE SEQUENCE

(5'-3")

81

82

79

81

82

194

195

196

H20A
(+44 +
71)

H20A
(+149 +
170)

H1l9A
(+35 +
65)

H20A
(+44 +
71)

H20A
(+149 +
170)

H53D
(+14 -
07)

H53A
(+23 +
47)

H53A
(+150 +
175)

cuG

CAG

GCC

AGU

cuG

CAG

UAC

CTG

UGU

GCA GAA UUC GAU

CAG UAG UUG UCA

UGA GCU GAU CUG

GCA GAA UUC GAU

CAG UAG UUG UCA

UAA CCU UGG UUU

AAG GUG UUC UUG

AUA GGG ACC CUC

CCA CCG GCU GUU C

UCU GCU C

CUG GCA UCU UGC

CCA CCG GCU GUU C

UCU GCU C

CUG UGA

UAC UUC AUC C

CUU CCA UGA CUC

TABLE 1C

Description of a “weasel” of 2'-O-methyl phos-
phorothicate antisense oligonucleotides that
have been used to date to study induced exon
skipping during the processing of the dys-
trophin pre-mRNA.

SEQ SE-
ID QUENCE NUCELOTIDE SEQUENCE (5'-3')
80 H20A CUG GCA GAA UUC GAU CCA CCG GCU GUU C-
(+44 +
71) -
82 H20A CAG CAG UAG UUG UCA UCU GCU C
(+149 +
170)
81 HI1%A GCC UGA GCU GAU CUG CUG GCA UCU UGC
(+35 + AGU U
53) -
88 H20A -AUU CGA UCU ACC GGC UGU UC-
(+44 +
63) -
89 H20A AA CUG CUG GCA UCU UGC AGU U
(+149 +
168)
80 HI1%A GCC UGA GCU GAU CUG CUG GCA UCU UGC
(+35 + AGU U
53) -

w
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Description of a “weasel” of 2'-O-methyl phos-
phorothicate antisense oligonucleotides that
have been used to date to study induced exon

skipping during the processing of the dys-
trophin pre-mRNA.

SEQ SE-
ID QUENCE NUCELOTIDE SEQUENCE (5'-3')

88 H20A -AUU CGA UCU ACC GGC UGU UC-
(+44 +
63)

80 H19A GCC UGA GCU GAU CUG CUG GCA UCU UGC
(+35 + AGU U
53) -

89 H20A -AA CUG CUG GCA UCU UGC AGU U
(+149 +
168)

138 H34A CAU UCA UUU CCU UUC GCA UCU UAC G-
(+46 +
70) -

139 H34A UGA UCU CUU UGU CAA UUC CAU AUC UG
(+94 +
120}

124 H31D UAG UUU CUG AAA UAA CAU AUA CCU G-
(+03 - UU-
22) -
UuU-

144 H35A UCU UCA GGU GCA CCU UCU GU
(+24 +
43)

195 H53A CUG AAG GUG UUC UUG UAC UUC AUC C-
(+23 + UGU AUA GGG ACC CUC CUU CCA UGA CUC-
47) -

196 H53A AA-
(+150 + UAC UAA CCU UGG UUU CUG UGA
175) -

H53D
(+14 -
07)

194 H53D UAC UAA CCU UGG UUU CUG UGA
(+14 -
07)

212 Aimed CAG CAG UAG UUG UCA UCU GCU CAA CUG
at GCA GAA UUC GAU CCA CCG GCU GUU CAA
exons  GCC UGA GCU GAU CUG CUC GCA UCU UGC
19/20/ AGU
20

Table 1C: Description of a “weasel” of 2'-O-methyl phos-
phorothioate antisense oligonucleotides that have been used
to date to study induced exon skipping during the processing
of the dystrophin pre-mRNA.

DETAILED DESCRIPTION OF THE
INVENTION

General

Those skilled in the art will appreciate that the invention
described herein is susceptible to variations and modifica-
tions other than those specifically described. It is to be
understood that the invention includes all such variation and
modifications. The invention also includes all of the steps,
features, compositions and compounds referred to or indi-
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cated in the specification, individually or collectively and
any and all combinations or any two or more of the steps or
features.

The present invention is not to be limited in scope by the
specific embodiments described herein, which are intended
for the purpose of exemplification only. Functionally
equivalent products, compositions and methods are clearly
within the scope of the invention as described herein.

Sequence identity numbers (SEQ ID NO:) containing
nucleotide and amino acid sequence information included in
this specification are collected at the end of the description
and have been prepared using the programme Patent In
Version 3.0. Each nucleotide or amino acid sequence is
identified in the sequence listing by the numeric indicator
<210> followed by the sequence identifier (e.g. <210>1,
<210>2, etc.). The length, type of sequence and source
organism for each nucleotide or amino acid sequence are
indicated by information provided in the numeric indicator
fields <211>, <212> and <213>, respectively. Nucleotide
and amino acid sequences referred to in the specification are
defined by the information provided in numeric indicator
field <400> followed by the sequence identifier (e.g.
<400>1, <400>2, etc.).

An antisense molecules nomenclature system was pro-
posed and published to distinguish between the different
antisense molecules (see Mann et al., (2002) J Gen Med 4,
644-654). This nomenclature became especially relevant
when testing several slightly different antisense molecules,
all directed at the same target region, as shown below:

H#A/D(x:y).

The first letter designates the species (e.g. H: human, M:
murine, C: canine)

“#” designates target dystrophin exon number.

“A/D” indicates acceptor or donor splice site at the
beginning and end of the exon, respectively.

(x y) represents the annealing coordinates where or
“+” indicate intronic or exonic sequences respectively. As an
example, A(-6+18) would indicate the last 6 bases of the
intron preceding the target exon and the first 18 bases of the
target exon. The closest splice site would be the acceptor so
these coordinates would be preceded with an “A”. Describ-
ing annealing coordinates at the donor splice site could be
D(+2-18) where the last 2 exonic bases and the first 18
intronic bases correspond to the annealing site of the anti-
sense molecule. Entirely exonic annealing coordinates that
would be represented by A(+65+85), that is the site between
the 65” and 85” nucleotide from the start of that exon.

The entire disclosures of all publications (including pat-
ents, patent applications, journal articles, laboratory manu-
als, books, or other documents) cited herein are hereby
incorporated by reference. No admission is made that any of
the references constitute prior art or are part of the common
general knowledge of those working in the field to which
this invention relates.

As used necessarily herein the term “derived” and
“derived from” shall be taken to indicate that a specific
integer may be obtained from a particular source albeit not
directly from that source.

Throughout this specification, unless the context requires
otherwise, the word “comprise”, or variations such as “com-
prises” or “comprising”, will be understood to imply the
inclusion of a stated integer or group of integers but not the
exclusion of any other integer or group of integers.

Other definitions for selected terms used herein may be
found within the detailed description of the invention and
apply throughout. Unless otherwise defined, all other scien-
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tific and technical terms used herein have the same meaning
as commonly understood to one of ordinary skill in the art
to which the invention belongs.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

When antisense molecule(s) are targeted to nucleotide
sequences involved in splicing in exons within pre-mRNA
sequences, normal splicing of the exon may be inhibited
causing the splicing machinery to by-pass the entire mutated
exon from the mature mRNA. The concept of antisense
oligonucleotide induced exon skipping is shown in FIG. 2.
In many genes, deletion of an entire exon would lead to the
production of a non-functional protein through the loss of
important functional domains or the disruption of the read-
ing frame. In some proteins, however, it is possible to
shorten the protein by deleting one or more exons, without
disrupting the reading frame, from within the protein with-
out seriously altering the biological activity of the protein.
Typically, such proteins have a structural role and or possess
functional domains at their ends. The present invention
describes antisense molecules capable of binding to speci-
fied dystrophin pre-mRNA targets and re-directing process-
ing of that gene.

Antisense Molecules

According to a first aspect of the invention, there is
provided antisense molecules capable of binding to a
selected target to induce exon skipping. To induce exon
skipping in exons of the Dystrophin gene transcript, the
antisense molecules are preferably selected from the group
of compounds shown in Table 1A. There is also provided a
combination or “cocktail” of two or more antisense oligo-
nucleotides capable of binding to a selected target to induce
exon skipping. To induce exon skipping in exons of the
Dystrophin gene transcript, the antisense molecules in a
“cocktail” are preferably selected from the group of com-
pounds shown in Table 1B. Alternatively, exon skipping may
be induced by antisense oligonucleotides joined together
“weasels” preferably selected from the group of compounds
shown in Table 1C.

Designing antisense molecules to completely mask con-
sensus splice sites may not necessarily generate any skip-
ping of the targeted exon. Furthermore, the inventors have
discovered that size or length of the antisense oligonucle-
otide itself is not always a primary factor when designing
antisense molecules. With some targets such as exon 19,
antisense oligonucleotides as short as 12 bases were able to
induce exon skipping, albeit not as efficiently as longer
(20-31 bases) oligonucleotides. In some other targets, such
as murine dystrophin exon 23, antisense oligonucleotides
only 17 residues long were able to induce more efficient
skipping than another overlapping compound of 25 nucleo-
tides.

The inventors have also discovered that there does not
appear to be any standard motif that can be blocked or
masked by antisense molecules to redirect splicing. In some
exons, such as mouse dystrophin exon 23, the donor splice
site was the most amenable to target to re-direct skipping of
that exon. It should be noted that designing and testing a
series of exon 23 specific antisense molecules to anneal to
overlapping regions of the donor splice site showed consid-
erable variation in the efficacy of induced exon skipping. As
reported in Mann et al., (2002) there was a significant
variation in the efficiency of bypassing the nonsense muta-
tion depending upon antisense oligonucleotide annealing
(“Improved antisense oligonucleotide induced exon skip-
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ping in the mdx mouse model of muscular dystrophy”. J Gen
Med 4: 644-654). Targeting the acceptor site of exon 23 or
several internal domains was not found to induce any
consistent exon 23 skipping.

In other exons targeted for removal, masking the donor
splice site did not induce any exon skipping. However, by
directing antisense molecules to the acceptor splice site
(human exon 8 as discussed below), strong and sustained
exon skipping was induced. It should be noted that removal
of human exon 8 was tightly linked with the co-removal of
exon 9. There is no strong sequence homology between the
exon 8 antisense oligonucleotides and corresponding
regions of exon 9 so it does not appear to be a matter of cross
reaction. Rather the splicing of these two exons is inextri-
cably linked. This is not an isolated instance as the same
effect is observed in canine cells where targeting exon 8 for
removal also resulted in the skipping of exon 9. Targeting
exon 23 for removal in the mouse dystrophin pre-mRNA
also results in the frequent removal of exon 22 as well. This
effect occurs in a dose dependent manner and also indicates
close coordinated processing of 2 adjacent exons.

In other targeted exons, antisense molecules directed at
the donor or acceptor splice sites did not induce exon
skipping while annealing antisense molecules to intra-ex-
onic regions (i.e. exon splicing enhancers within human
dystrophin exon 6) was most efficient at inducing exon
skipping. Some exons, both mouse and human exon 19 for
example, are readily skipped by targeting antisense mol-
ecules to a variety of motifs. That is, targeted exon skipping
is induced after using antisense oligonucleotides to mask
donor and acceptor splice sites or exon splicing enhancers.

To identify and select antisense oligonucleotides suitable
for use in the modulation of exon skipping, a nucleic acid
sequence whose function is to be modulated must first be
identified. This may be, for example, a gene (or mRNA
transcribed form the gene) whose expression is associated
with a particular disorder or disease state, or a nucleic acid
molecule from an infectious agent. Within the context of the
present invention, preferred target site(s) are those involved
in mRNA splicing (i.e. splice donor sites, splice acceptor
sites, or exonic splicing enhancer elements). Splicing branch
points and exon recognition sequences or splice enhancers
are also potential target sites for modulation of mRNA
splicing.

Preferably, the present invention aims to provide anti-
sense molecules capable of binding to a selected target in the
dystrophin pre-mRNA to induce efficient and consistent
exon skipping. Duchenne muscular dystrophy arises from
mutations that preclude the synthesis of a functional dys-
trophin gene product. These Duchenne muscular dystrophy
gene defects are typically nonsense mutations or genomic
rearrangements such as deletions, duplications or micro-
deletions or insertions that disrupt the reading frame. As the
human dystrophin gene is a large and complex gene with the
79 exons being spliced together to generate a mature mRNA
with an open reading frame of approximately 11,000 bases,
there are many positions where these mutations can occur.
Consequently, a comprehensive antisense oligonucleotide
based therapy to address many of the different disease-
causing mutations in the dystrophin gene will require that
many exons can be targeted for removal during the splicing
process.

Within the context of the present invention, preferred
target site(s) are those involved in mRNA splicing (i.e. splice
donor sites, splice acceptor sites or exonic splicing enhancer
elements). Splicing branch points and exon recognition
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sequences or splice enhancers are also potential target sites
for modulation of mRNA splicing.

The oligonucleotide and the DNA or RNA are comple-
mentary to each other when a sufficient number of corre-
sponding positions in each molecule are occupied by nucleo-
tides which can hydrogen bond with each other. Thus,
“specifically hybridisable” and “complementary” are terms
which are used to indicate a sufficient degree of comple-
mentarity or precise pairing such that stable and specific
binding occurs between the oligonucleotide and the DNA or
RNA target. It is understood in the art that the sequence of
an antisense molecule need not be 100% complementary to
that of its target sequence to be specifically hybridisable. An
antisense molecule is specifically hybridisable when binding
of the compound to the target DNA or RNA molecule
interferes with the normal function of the target DNA or
RNA to cause a loss of utility, and there is a sufficient degree
of complementarity to avoid non-specific binding of the
antisense compound to non-target sequences under condi-
tions in which specific binding is desired, i.e., under physi-
ological conditions in the case of in vivo assays or thera-
peutic treatment, and in the case of in vitro assays, under
conditions in which the assays are performed.

While the above method may be used to select antisense
molecules capable of deleting any exon from within a
protein that is capable of being shortened without affecting
its biological function, the exon deletion should not lead to
a reading frame shift in the shortened transcribed mRNA.
Thus, if in a linear sequence of three exons the end of the
first exon encodes two of three nucleotides in a codon and
the next exon is deleted then the third exon in the linear
sequence must start with a single nucleotide that is capable
of completing the nucleotide triplet for a codon. If the third
exon does not commence with a single nucleotide there will
be a reading frame shift that would lead to the generation of
truncated or a non-functional protein.

It will be appreciated that the codon arrangements at the
end of exons in structural proteins may not always break at
the end of a codon, consequently there may be a need to
delete more than one exon from the pre-mRNA to ensure
in-frame reading of the mRNA. In such circumstances, a
plurality of antisense oligonucleotides may need to be
selected by the method of the invention wherein each is
directed to a different region responsible for inducing splic-
ing in the exons that are to be deleted.

The length of an antisense molecule may vary so long as
it is capable of binding selectively to the intended location
within the pre-mRNA molecule. The length of such
sequences can be determined in accordance with selection
procedures described herein. Generally, the antisense mol-
ecule will be from about 10 nucleotides in length up to about
50 nucleotides in length. It will be appreciated however that
any length of nucleotides within this range may be used in
the method. Preferably, the length of the antisense molecule
is between 17 to 30 nucleotides in length.

In order to determine which exons can be connected in a
dystrophin gene, reference should be made to an exon
boundary map. Connection of one exon with another is
based on the exons possessing the same number at the 3'
border as is present at the 5' border of the exon to which it
is being connected. Therefore, if exon 7 were deleted, exon
6 must connect to either exons 12 or 18 to maintain the
reading frame. Thus, antisense oligonucleotides would need
to be selected which redirected splicing for exons 7 to 11 in
the first instance or exons 7 to 17 in the second instance.
Another and somewhat simpler approach to restore the
reading frame around an exon 7 deletion would be to remove
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the two flanking exons. Induction of exons 6 and 8 skipping
should result in an in-frame transcript with the splicing of
exons 5 to 9. In practise however, targeting exon 8 for
removal from the pre-mRNA results in the co-removal of
exon 9 so the resultant transcript would have exon 5 joined
to exon 10. The inclusion or exclusion of exon 9 does not
alter the reading frame. Once the antisense molecules to be
tested have been identified, they are prepared according to
standard techniques known in the art. The most common
method for producing antisense molecules is the methylation
of the 2' hydroxyribose position and the incorporation of a
phosphorothioate backbone produces molecules that super-
ficially resemble RNA but that are much more resistant to
nuclease degradation.

To avoid degradation of pre-mRNA during duplex for-
mation with the antisense molecules, the antisense mol-
ecules used in the method may be adapted to minimise or
prevent cleavage by endogenous RNase H. This property is
highly preferred as the treatment of the RNA with the
unmethylated oligonucleotides either intracellularly or in
crude extracts that contain RNase H leads to degradation of
the pre-mRNA: antisense oligonucleotide duplexes. Any
form of modified antisense molecules that is capable of
by-passing or not inducing such degradation may be used in
the present method. An example of antisense molecules
which when duplexed with RNA are not cleaved by cellular
RNase H is 2'-O-methyl derivatives. 2'-O-methyl-oligoribo-
nucleotides are very stable in a cellular environment and in
animal tissues, and their duplexes with RNA have higher Tm
values than their ribo- or deoxyribo-counterparts.

Antisense molecules that do not activate RNase H can be
made in accordance with known techniques (see, e.g., U.S.
Pat. No. 5,149,797). Such antisense molecules, which may
be deoxyribonucleotide or ribonucleotide sequences, simply
contain any structural modification which sterically hinders
or prevents binding of RNase H to a duplex molecule
containing the oligonucleotide as one member thereof,
which structural modification does not substantially hinder
or disrupt duplex formation. Because the portions of the
oligonucleotide involved in duplex formation are substan-
tially different from those portions involved in RNase H
binding thereto, numerous antisense molecules that do not
activate RNase H are available. For example, such antisense
molecules may be oligonucleotides wherein at least one, or
all, of the inter-nucleotide bridging phosphate residues are
modified phosphates, such as methyl phosphonates, methyl
phosphorothioates, phosphoromorpholidates, phospho-
ropiperazidates and phosphoramidates. For example, every
other one of the internucleotide bridging phosphate residues
may be modified as described. In another non-limiting
example, such antisense molecules are molecules wherein at
least one, or all, of the nucleotides contain a 2' lower alkyl
moiety (e.g., C,-C,, linear or branched, saturated or unsatu-
rated alkyl, such as methyl, ethyl, ethenyl, propyl, 1-prope-
nyl, 2-propenyl, and isopropyl). For example, every other
one of the nucleotides may be modified as described.

While antisense oligonucleotides are a preferred form of
the antisense molecules, the present invention comprehends
other oligomeric antisense molecules, including but not
limited to oligonucleotide mimetics such as are described
below.

Specific examples of preferred antisense compounds use-
ful in this invention include oligonucleotides containing
modified backbones or non-natural inter-nucleoside link-
ages. As defined in this specification, oligonucleotides hav-
ing modified backbones include those that retain a phospho-
rus atom in the backbone and those that do not have a
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phosphorus atom in the backbone. For the purposes of this
specification, and as sometimes referenced in the art, modi-
fied oligonucleotides that do not have a phosphorus atom in
their inter-nucleoside backbone can also be considered to be
oligonucleosides.

In other preferred oligonucleotide mimetics, both the
sugar and the inter-nucleoside linkage, i.e., the backbone, of
the nucleotide units are replaced with novel groups. The
base units are maintained for hybridization with an appro-
priate nucleic acid target compound. One such oligomeric
compound, an oligonucleotide mimetic that has been shown
to have excellent hybridization properties, is referred to as a
peptide nucleic acid (PNA). In PNA compounds, the sugar-
backbone of an oligonucleotide is replaced with an amide
containing backbone, in particular an aminoethylglycine
backbone. The nucleo-bases are retained and are bound
directly or indirectly to aza nitrogen atoms of the amide
portion of the backbone.

Modified oligonucleotides may also contain one or more
substituted sugar moieties. Oligonucleotides may also
include nucleobase (often referred to in the art simply as
“base”) modifications or substitutions. Certain nucleo-bases
are particularly useful for increasing the binding affinity of
the oligomeric compounds of the invention. These include
S-substituted pyrimidines, 6-azapyrimidines and N-2, N-6
and O-6 substituted purines, including 2-aminopropylad-
enine, S-propynyluracil and 5-propynylcytosine. 5-methyl-
cytosine substitutions have been shown to increase nucleic
acid duplex stability by 0.6-1.2° C. and are presently pre-
ferred base substitutions, even more particularly when com-
bined with 2'-O-methoxyethyl sugar modifications.

Another modification of the oligonucleotides of the inven-
tion involves chemically linking to the oligonucleotide one
or more moieties or conjugates that enhance the activity,
cellular distribution or cellular uptake of the oligonucle-
otide. Such moieties include but are not limited to lipid
moieties such as a cholesterol moiety, cholic acid, a thio-
ether, e.g., hexyl-5-tritylthiol, a thiocholesterol, an aliphatic
chain, e.g., dodecandiol or undecyl residues, a phospholipid,
e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-
O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or
a polyethylene glycol chain, or adamantane acetic acid, a
palmityl moiety, or an octadecylamine or hexylamino-car-
bonyl-oxycholesterol moiety.

It is not necessary for all positions in a given compound
to be uniformly modified, and in fact more than one of the
aforementioned modifications may be incorporated in a
single compound or even at a single nucleoside within an
oligonucleotide. The present invention also includes anti-
sense compounds that are chimeric compounds. “Chimeric”
antisense compounds or “chimeras,” in the context of this
invention, are antisense molecules, particularly oligonucle-
otides, which contain two or more chemically distinct
regions, each made up of at least one monomer unit, i.c., a
nucleotide in the case of an oligonucleotide compound.
These oligonucleotides typically contain at least one region
wherein the oligonucleotide is modified so as to confer upon
the increased resistance to nuclease degradation, increased
cellular uptake, and an additional region for increased bind-
ing affinity for the target nucleic acid.

Methods of Manufacturing Antisense Molecules

The antisense molecules used in accordance with this
invention may be conveniently and routinely made through
the well-known technique of solid phase synthesis. Equip-
ment for such synthesis is sold by several vendors including,
for example, Applied Biosystems (Foster City, Calif.). One
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method for synthesising oligonucleotides on a modified
solid support is described in U.S. Pat. No. 4,458,066.

Any other means for such synthesis known in the art may
additionally or alternatively be employed. It is well known
to use similar techniques to prepare oligonucleotides such as
the phosphorothioates and alkylated derivatives. In one such
automated embodiment, diethyl-phosphoramidites are used
as starting materials and may be synthesized as described by
Beaucage, et al., (1981) Tetrahedron Letters, 22:1859-1862.

The antisense molecules of the invention are synthesised
in vitro and do not include antisense compositions of bio-
logical origin, or genetic vector constructs designed to direct
the in vivo synthesis of antisense molecules. The molecules
of the invention may also be mixed, encapsulated, conju-
gated or otherwise associated with other molecules, mol-
ecule structures or mixtures of compounds, as for example,
liposomes, receptor targeted molecules, oral, rectal, topical
or other formulations, for assisting in uptake, distribution
and/or absorption.

Therapeutic Agents

The present invention also can be used as a prophylactic
or therapeutic, which may be utilised for the purpose of
treatment of a genetic disease.

Accordingly, in one embodiment the present invention
provides antisense molecules that bind to a selected target in
the dystrophin pre-mRNA to induce efficient and consistent
exon skipping described herein in a therapeutically effective
amount admixed with a pharmaceutically acceptable carrier,
diluent, or excipient.

The phrase “pharmaceutically acceptable” refers to
molecular entities and compositions that are physiologically
tolerable and do not typically produce an allergic or simi-
larly untoward reaction, such as gastric upset and the like,
when administered to a patient. The term “carrier” refers to
a diluent, adjuvant, excipient, or vehicle with which the
compound is administered. Such pharmaceutical carriers can
be sterile liquids, such as water and oils, including those of
petroleum, animal, vegetable or synthetic origin, such as
peanut oil, soybean oil, mineral oil, sesame oil and the like.
Water or saline solutions and aqueous dextrose and glycerol
solutions are preferably employed as carriers, particularly
for injectable solutions. Suitable pharmaceutical carriers are
described in Martin, Remington’s Pharmaceutical Sciences,
18th Ed., Mack Publishing Co., Easton, Pa., (1990).

In a more specific form of the invention there are provided
pharmaceutical compositions comprising therapeutically
effective amounts of an antisense molecule together with
pharmaceutically acceptable diluents, preservatives, solubi-
lizers, emulsifiers, adjuvants and/or carriers. Such compo-
sitions include diluents of various buffer content (e.g.,
Tris-HCl, acetate, phosphate), pH and ionic strength and
additives such as detergents and solubilizing agents (e.g.,
Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic
acid, sodium metabisulfite), preservatives (e.g., Thimersol,
benzyl alcohol) and bulking substances (e.g., lactose, man-
nitol). The material may be incorporated into particulate
preparations of polymeric compounds such as polylactic
acid, polyglycolic acid, etc. or into liposomes. Hylauronic
acid may also be used. Such compositions may influence the
physical state, stability, rate of in vivo release, and rate of in
vivo clearance of the present proteins and derivatives. See,
e.g., Martin, Remington’s Pharmaceutical Sciences, 18th
Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages
1435-1712 that are herein incorporated by reference. The
compositions may be prepared in liquid form, or may be in
dried powder, such as lyophilised form.
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It will be appreciated that pharmaceutical compositions
provided according to the present invention may be admin-
istered by any means known in the art. Preferably, the
pharmaceutical compositions for administration are admin-
istered by injection, orally, or by the pulmonary, or nasal
route. The antisense molecules are more preferably deliv-
ered by intravenous, intra-arterial, intraperitoneal, intramus-
cular, or subcutaneous routes of administration.

Antisense Molecule Based Therapy

Also addressed by the present invention is the use of
antisense molecules of the present invention, for manufac-
ture of a medicament for modulation of a genetic disease.

The delivery of a therapeutically useful amount of anti-
sense molecules may be achieved by methods previously
published. For example, intracellular delivery of the anti-
sense molecule may be via a composition comprising an
admixture of the antisense molecule and an effective amount
of a block copolymer. An example of this method is
described in US patent application US 20040248833.

Other methods of delivery of antisense molecules to the
nucleus are described in Mann C J et al., (2001) [“Antisense-
induced exon skipping and the synthesis of dystrophin in the
mdx mouse”. Proc. Natl. Acad. Science, 98(1) 42-47] and in
Gebski et al., (2003). Human Molecular Genetics, 12(15):
1801-1811.

A method for introducing a nucleic acid molecule into a
cell by way of an expression vector either as naked DNA or
complexed to lipid carriers, is described in US patent U.S.
Pat. No. 6,806,084.

It may be desirable to deliver the antisense molecule in a
colloidal dispersion system. Colloidal dispersion systems
include macromolecule complexes, nanocapsules, micro-
spheres, beads, and lipid-based systems including oil-in-
water emulsions, micelles, mixed micelles, and liposomes or
liposome formulations.

Liposomes are artificial membrane vesicles which are
useful as delivery vehicles in vitro and in vivo. These
formulations may have net cationic, anionic or neutral
charge characteristics and are useful characteristics with in
vitro, in vivo and ex vivo delivery methods. It has been
shown that large unilamellar vesicles (LUV), which range in
size from 0.2-4.0 .PHI.m can encapsulate a substantial
percentage of an aqueous buffer containing large macromol-
ecules. RNA, and DNA can be encapsulated within the
aqueous interior and be delivered to cells in a biologically
active form (Fraley, et al., Trends Biochem. Sci., 6:77,
1981).

In order for a liposome to be an efficient gene transfer
vehicle, the following characteristics should be present: (1)
encapsulation of the antisense molecule of interest at high
efficiency while not compromising their biological activity;
(2) preferential and substantial binding to a target cell in
comparison to non-target cells; (3) delivery of the aqueous
contents of the vesicle to the target cell cytoplasm at high
efficiency; and (4) accurate and effective expression of
genetic information (Mannino, et al., Biotechniques, 6:682,
1988).

The composition of the liposome is usually a combination
of phospholipids, particularly high-phase-transition-tem-
perature phospholipids, usually in combination with ste-
roids, especially cholesterol. Other phospholipids or other
lipids may also be used. The physical characteristics of
liposomes depend on pH, ionic strength, and the presence of
divalent cations.

Alternatively, the antisense construct may be combined
with other pharmaceutically acceptable carriers or diluents
to produce a pharmaceutical composition. Suitable carriers
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and diluents include isotonic saline solutions, for example
phosphate-buffered saline. The composition may be formu-
lated for parenteral, intramuscular, intravenous, subcutane-
ous, intraocular, oral or transdermal administration.

The routes of administration described are intended only
as a guide since a skilled practitioner will be able to
determine readily the optimum route of administration and
any dosage for any particular animal and condition. Multiple
approaches for introducing functional new genetic material
into cells, both in vitro and in vivo have been attempted
(Friedmann (1989) Science, 244:1275-1280). These
approaches include integration of the gene to be expressed
into modified retroviruses (Friedmann (1989) supra; Rosen-
berg (1991) Cancer Research 51(18), suppl.: 50745-5079S);
integration into non-retrovirus vectors (Rosenfeld, et al.
(1992) Cell, 68:143-155; Rosenfeld, et al. (1991) Science,
252:431-434); or delivery of a transgene linked to a heter-
ologous promoter-enhancer element via liposomes (Fried-
mann (1989), supra; Brigham, et al. (1989) Am. J. Med. Sci.,
208:278-281; Nabel, et al. (1990) Science, 249:1285-1288;
Hazinski, et al. (1991) Am. J. Resp. Cell Molec. Biol.,
4:206-209; and Wang and Huang (1987) Proc. Natl. Acad.
Sci. (USA), 84:7851-7855); coupled to ligand-specific, cat-
ion-based transport systems (Wu and Wu (1988) J. Biol.
Chem., 263:14621-14624) or the use of naked DNA, expres-
sion vectors (Nabel et al. (1990), supra); Wolff et al. (1990)
Science, 247:1465-1468). Direct injection of transgenes into
tissue produces only localized expression (Rosenfeld (1992)
supra); Rosenfeld et al. (1991) supra; Brigham et al. (1989)
supra; Nabel (1990) supra; and Hazinski et al. (1991) supra).
The Brigham et al. group (Am. J. Med. Sci. (1989)298:278-
281 and Clinical Research (1991) 39 (abstract)) have
reported in vivo transfection only of lungs of mice following
either intravenous or intratracheal administration of a DNA
liposome complex. An example of a review article of human
gene therapy procedures is: Anderson, Science (1992) 256:
808-813.

The antisense molecules of the invention encompass any
pharmaceutically acceptable salts, esters, or salts of such
esters, or any other compound which, upon administration to
an animal including a human, is capable of providing
(directly or indirectly) the biologically active metabolite or
residue thereof. Accordingly, for example, the disclosure is
also drawn to prodrugs and pharmaceutically acceptable
salts of the compounds of the invention, pharmaceutically
acceptable salts of such pro-drugs, and other bioequivalents.

The term “pharmaceutically acceptable salts” refers to
physiologically and pharmaceutically acceptable salts of the
compounds of the invention: i.e., salts that retain the desired
biological activity of the parent compound and do not impart
undesired toxicological effects thereto.

For oligonucleotides, preferred examples of pharmaceu-
tically acceptable salts include but are not limited to (a) salts
formed with cations such as sodium, potassium, ammonium,
magnesium, calcium, polyamines such as spermine and
spermidine, etc.; (b) acid addition salts formed with inor-
ganic acids, for example hydrochloric acid, hydrobromic
acid, sulfuric acid, phosphoric acid, nitric acid and the like;
(c) salts formed with organic acids such as, for example,
acetic acid, oxalic acid, tartaric acid, succinic acid, maleic
acid, fumaric acid, gluconic acid, citric acid, malic acid,
ascorbic acid, benzoic acid, tannic acid, palmitic acid,
alginic acid, polyglutamic acid, naphthalenesulfonic acid,
methanesulfonic acid, p-toluenesulfonic acid, naphthalene-
disulfonic acid, polygalacturonic acid, and the like; and (d)
salts formed from elemental anions such as chlorine, bro-
mine, and iodine. The pharmaceutical compositions of the
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present invention may be administered in a number of ways
depending upon whether local or systemic treatment is
desired and upon the area to be treated. Administration may
be topical (including ophthalmic and to mucous membranes
including rectal delivery), pulmonary, e.g., by inhalation or
insufflation of powders or aerosols, (including by nebulizer,
intratracheal, intranasal, epidermal and transdermal), oral or
parenteral. Parenteral administration includes intravenous,
intra-arterial, subcutaneous, intra-peritoneal or intramuscu-
lar injection or infusion; or intracranial, e.g., intrathecal or
intraventricular, administration. Oligonucleotides with at
least one 2'-O-methoxyethyl modification are believed to be
particularly useful for oral administration.

The pharmaceutical formulations of the present invention,
which may conveniently be presented in unit dosage form,
may be prepared according to conventional techniques well
known in the pharmaceutical industry. Such techniques
include the step of bringing into association the active
ingredients with the pharmaceutical carrier(s) or excipient
(s). In general the formulations are prepared by uniformly
and intimately bringing into association the active ingredi-
ents with liquid carriers or finely divided solid carriers or
both, and then, if necessary, shaping the product.

Kits of the Invention

The invention also provides kits for treatment of a patient
with a genetic disease which kit comprises at least an
antisense molecule, packaged in a suitable container,
together with instructions for its use.

In a preferred embodiment, the kits will contain at least
one antisense molecule as shown in Table 1A, or a cocktail
of antisense molecules as shown in Table 1B or a “weasel”
compound as shown in Table 1C. The kits may also contain
peripheral reagents such as buffers, stabilizers, etc.

Those of ordinary skill in the field should appreciate that
applications of the above method has wide application for
identifying antisense molecules suitable for use in the treat-
ment of many other diseases.

Examples

The following Examples serve to more fully describe the
manner of using the above-described invention, as well as to
set forth the best modes contemplated for carrying out
various aspects of the invention. It is understood that these
Examples in no way serve to limit the true scope of this
invention, but rather are presented for illustrative purposes.
The references cited herein are expressly incorporated by
reference.

Methods of molecular cloning, immunology and protein
chemistry, which are not explicitly described in the follow-
ing examples, are reported in the literature and are known by
those skilled in the art. General texts that described conven-
tional molecular biology, microbiology, and recombinant
DNA techniques within the skill of the art, included, for
example: Sambrook et al., Molecular Cloning: A Laboratory
Manual, Second Edition, Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, N.Y. (1989); Glover ed., DNA
Cloning: A Practical Approach, Volumes 1 and II, MRL
Press, Ltd., Oxford, U.K. (1985); and Ausubel, F., Brent, R.,
Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A.,
Struhl, K. Current Protocols in Molecular Biology. Greene
Publishing Associates/Wiley Intersciences, New York
(2002).

Determining Induced Exon Skipping in Human Muscle
Cells

Attempts by the inventors to develop a rational approach

in antisense molecules design were not completely success-
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ful as there did not appear to be a consistent trend that could
be applied to all exons. As such, the identification of the
most effective and therefore most therapeutic antisense
molecules compounds has been the result of empirical
studies.

These empirical studies involved the use of computer
programs to identify motifs potentially involved in the
splicing process. Other computer programs were also used
to identify regions of the pre-mRNA which may not have
had extensive secondary structure and therefore potential
sites for annealing of antisense molecules. Neither of these
approaches proved completely reliable in designing anti-
sense oligonucleotides for reliable and efficient induction of
exon skipping.

Annealing sites on the human dystrophin pre-mRNA were
selected for examination, initially based upon known or
predicted motifs or regions involved in splicing. 20Me
antisense oligonucleotides were designed to be complemen-
tary to the target sequences under investigation and were
synthesised on an Expedite 8909 Nucleic Acid Synthesiser.
Upon completion of synthesis, the oligonucleotides were
cleaved from the support column and de-protected in ammo-
nium hydroxide before being desalted. The quality of the
oligonucleotide synthesis was monitored by the intensity of
the trityl signals upon each deprotection step during the
synthesis as detected in the synthesis log. The concentration
of'the antisense oligonucleotide was estimated by measuring
the absorbance of a diluted aliquot at 260 nm.

Specified amounts of the antisense molecules were then
tested for their ability to induce exon skipping in an in vitro
assay, as described below.

Briefly, normal primary myoblast cultures were prepared
from human muscle biopsies obtained after informed con-
sent. The cells were propagated and allowed to differentiate
into myotubes using standard culturing techniques. The cells
were then transfected with the antisense oligonucleotides by
delivery of the oligonucleotides to the cells as cationic
lipoplexes, mixtures of antisense molecules or cationic
liposome preparations.

The cells were then allowed to grow for another 24 hours,
after which total RNA was extracted and molecular analysis
commenced. Reverse transcriptase amplification (RT-PCR)
was undertaken to study the targeted regions of the dystro-
phin pre-mRNA or induced exonic re-arrangements.

For example, in the testing of an antisense molecule for
inducing exon 19 skipping the RT-PCR test scanned several
exons to detect involvement of any adjacent exons. For
example, when inducing skipping of exon 19, RT-PCR was
carried out with primers that amplified across exons 17 and
21. Amplifications of even larger products in this area (i.e.
exons 13-26) were also carried out to ensure that there was
minimal amplification bias for the shorter induced skipped
transcript. Shorter or exon skipped products tend to be
amplified more efficiently and may bias the estimated of the
normal and induced transcript.

The sizes of the amplification reaction products were
estimated on an agarose gel and compared against appro-
priate size standards. The final confirmation of identity of
these products was carried out by direct DNA sequencing to
establish that the correct or expected exon junctions have
been maintained.

Once efficient exon skipping had been induced with one
antisense molecule, subsequent overlapping antisense mol-
ecules may be synthesized and then evaluated in the assay as
described above. Our definition of an efficient antisense
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molecule is one that induces strong and sustained exon
skipping at transfection concentrations in the order of 300
nM or less.

Antisense Oligonucleotides Directed at Exon 8

Antisense oligonucleotides directed at exon 8 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 3 shows differing efficiencies of two antisense mol-
ecules directed at exon 8 acceptor splice site. HSA(-06+18)
[SEQ ID NO:1], which anneals to the last 6 bases of intron
7 and the first 18 bases of exon 8, induces substantial exon
8 and 9 skipping when delivered into cells at a concentration
of 20 nM. The shorter antisense molecule, H8A(-06+14)
[SEQ ID NO: 4] was only able to induce exon 8 and 9
skipping at 300 nM, a concentration some 15 fold higher
than H8A(-06+18), which is the preferred antisense mol-
ecule.

This data shows that some particular antisense molecules
induce efficient exon skipping while another antisense mol-
ecule, which targets a near-by or overlapping region, can be
much less efficient. Titration studies show one compound is
able to induce targeted exon skipping at 20 nM while the less
efficient antisense molecules only induced exon skipping at
concentrations of 300 nM and above. Therefore, we have
shown that targeting of the antisense molecules to motifs
involved in the splicing process plays a crucial role in the
overall efficacy of that compound.

Efficacy refers to the ability to induce consistent skipping
of a target exon. However, sometimes skipping of the target
exons is consistently associated with a flanking exon. That
is, we have found that the splicing of some exons is tightly
linked. For example, in targeting exon 23 in the mouse
model of muscular dystrophy with antisense molecules
directed at the donor site of that exon, dystrophin transcripts
missing exons 22 and 23 are frequently detected. As another
example, when using an antisense molecule directed to exon
8 of the human dystrophin gene, all induced transcripts are
missing both exons 8 and 9. Dystrophin transcripts missing
only exon 8 are not observed.

Table 2 below discloses antisense molecule sequences
that induce exon 8 (and 9) skipping.

TABLE 2
Anti-
sense
Oligo- Ability
nucle- to
otide induce
name Sequence skipping
H8A 5'-GAU AGG UGG UAU CAA CAU CUG UAA Very
(-06 + strong
18) to 20 nM
H8A 5'-GAU AGG UGG UAU CAA CAU CUG Very
(-03 + strong
18) skipping
to 40 nM
H8A 5'-GAU AGG UGG UAU CAA CAU CUG UAA Strong
(-07 + skipping
18) to 40 nM
H8A 5'-GGU GGU AUC AAC AUC UGU AA Skipping
(-06 + to 300
14) nM
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TABLE 2-continued
Anti-
sense
Oligo- Ability
nucle- to
otide induce
name Sequence skipping
H8A 5'-GUA UCA ACA UCU GUA AGC AC Patchy/
(=10 + weak
10) skipping
to 100

nm

Antisense Oligonucleotides Directed at Exon 7

Antisense oligonucleotides directed at exon 7 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 4 shows the preferred antisense molecule, H7A(+
45+67) [SEQ ID NO: 6], and another antisense molecule,
H7A (+2+426) [SEQ ID NO: 7], inducing exon 7 skipping.
Nested amplification products span exons 3 to 9. Additional
products above the induced transcript missing exon 7 arise
from amplification from carry-over outer primers from the
RT-PCR as well as heteroduplex formation.

Table 3 below discloses antisense molecule sequences for
induced exon 7 skipping.

TABLE 3
Anti-
sense Abili-
Oligo- ty to
nucle- induce
otide skip-
name Sequence ping
H7A 5'-UGC AUG UUC CAG UCG UUG UGU GG Strong
(+45 + skip-
67) ping
to 20
nM
H7A 5'-CAC UAU UCC AGU CAA AUA GGU Weak
(+02 + cUG G skip-
26) ping
at 100
nM
H7D 5'-AUU UAC CAA CCU UCA GGA UCG Weak
(+15 - AGU A skip-
10) ping
to 300
nM
H7A 5'-GGC CUA AAA CAC AUA CAC AUA Weak
(-18 + skip-
03) ping
to 300
nM

Antisense Oligonucleotides Directed at Exon 6

Antisense oligonucleotides directed at exon 6 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 5 shows an example of two non-preferred antisense
molecules inducing very low levels of exon 6 skipping in
cultured human cells. Targeting this exon for specific
removal was first undertaken during a study of the canine
model using the oligonucleotides as listed in Table 4, below.
Some of the human specific oligonucleotides were also
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evaluated, as shown in FIG. 5. In this example, both anti-
sense molecules target the donor splice site and only induced
low levels of exon 6 skipping. Both H6D(+4-21) [SEQ ID
NO: 17] and H6D(+18-4) [SEQ ID NO: 18] would be
regarded as non-preferred antisense molecules.

One antisense oligonucleotide that induced very efficient
exon 6 skipping in the canine model, C6A(+69+91) [SEQ ID
NO: 14], would anneal perfectly to the corresponding region
in human dystrophin exon 6. This compound was evaluated,
found to be highly efficient at inducing skipping of that
target exon, as shown in FIG. 6 and is regarded as the
preferred compound for induced exon 6 skipping. Table 4
below discloses antisense molecule sequences for induced
exon 6 skipping.

TABLE 4
Anti-
sense Ability to
Oligo induce
name Sequence skipping
Cé6A 5' CAU UUU UGA CCU ACA UGU GG No skipping
(=10 +
10)
Cé6A 5' UUU GAC CUA CAU GUG GAA AG No skipping
(-14 +
06)
Cé6A 5' UAC AUU UUU GAC CUA CAU GUG No skipping
(-14 + GAA AG
12)
Cé6A 5' AUU UUU GAC CUA CAU GGG No skipping
(-13 + AAA G
09)
CH6A 5' UAC GAG UUG AUU GUC GGA CCC Strong
(+69 + AG skipping to
91) 20 nM
CéD 5' GUG GUC UCC UUA CCU AUG ACU Weak skip-
(+12 - GUG G ping at
13) 300 nM
CéD 5' GGU CUC CUU ACC UAU GA No skipping
(+06 -
11)
Hé6D 5' UGU CUC AGU AAU CUU CUU ACC Weak skip-
(+04 - TUAU ping to
21) 50 nM
Hé6D 5' UCU UAC CUA UGA CUA UGG AUG Very weak
(+18 - AGA skipping
04) to 300 nM

Antisense Oligonucleotides Directed at Exon 4

Antisense oligonucleotides directed at exon 4 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 7 shows an example of a preferred antisense mol-
ecule inducing skipping of exon 4 skipping in cultured
human cells. In this example, one preferred antisense com-
pound, H4A(+13+32) [SEQ ID NO:19], which targeted a
presumed exonic splicing enhancer induced efficient exon
skipping at a concentration of 20 nM while other non-
preferred antisense oligonucleotides failed to induce even
low levels of exon 4 skipping. Another preferred antisense
molecule inducing skipping of exon 4 was H4A(+111+40)
[SEQ ID NO:22], which induced efficient exon skipping at
a concentration of 20 nM.
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Table 5 below discloses antisense molecule sequences for
inducing exon 4 skipping.

TABLE 5
Anti-
sense
Oligo- Ability
nucle- to
otide induce
name Sequence skipping
H4A 5' GCA UGA ACU CUU GUG GAU CC Skipping
(+13 + to 20
32) nM
H4A 5'UGU UCA GGG CAU GAA CUC UUG Skipping
(+11 + UGG AUC CUU to 20
40) nM
H4D 5' CCA GGG UAC UAC UUA CAU UA No
(+04 - skipping
16)
H4D 5' AUC GUG UGU CAC AGC AUC CAG No
(-24 - skipping
44)

Antisense Oligonucleotides Directed at Exon 3

Antisense oligonucleotides directed at exon 3 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H3A(+30+60) [SEQ ID NO:23] induced substantial exon
3 skipping when delivered into cells at a concentration of 20
nM to 600 nM. The antisense molecule, H3A(+35+65) [SEQ
ID NO: 24] induced exon skipping at 300 nM.

Table 6 below discloses antisense molecule sequences

that induce exon 3 skipping.
TABLE 6

Anti-

sense

Oligo- Ability

nucleo- to

tide induce

name Sequence skipping

H3A UAG GAG GCG CCU CCC AUC CUG UAG Moderate

(+30 + GUC ACU G skipping

60) to 20 to
600 nM

H3A AGG UCU AGG AGG CGC CUC CCA UCC Working

(+35 + UGU AGG U to 300

65) nM

H3A GCG CCU CCC AUC CUG UAG GUC ACU G Moderate

(+30 + 100-600

54) nM

H3D CUU CGA GGA GGU CUA GGA GGC GCC UC No

(+46 - skipping

21)

H3A CUC CCA UCC UGU AGG UCA CUG Moderate

(+30 + 20-600

50) nM

H3D UAC CAG UUU UUG CCC UGU CAG G No

(+19 - skipping

03)

H3A UCA AUA UGC UGC UUCCCA AAC UGA AA No

(-06 + skipping

20)
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TABLE 6-continued
Anti-
sense
Oligo- Ability
nucleo- to
tide induce
name Sequence skipping
H3A CUA GGA GGC GCC UCC CAU CCU GUA G No
(+37 + skipping
61)

Antisense Oligonucleotides Directed at Exon 5

Antisense oligonucleotides directed at exon 5 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

HS5A(+20+50) [SEQ ID NO:31] induces substantial exon
5 skipping when delivered into cells at a concentration of
100 nM. Table 7 below shows other antisense molecules
tested. The majority of these antisense molecules were not as
effective at exon skipping as HSA(+20+50). However, HSA
(+15445) [SEQ ID NO: 40] was able to induce exon 5
skipping at 300 nM.

Table 7 below discloses antisense molecule sequences
that induce exon 5 skipping.

TABLE 7

Anti-

sense

Oligo- Ability

nucle- to

otide induce

name Sequence skipping

H5A UUA UGA UUU CCA UCU ACG AUG UCA Working

(+20 + GUA CUU C to 100

50) nM

H5D CUU ACC UGC CAG UGG AGG AUU AUA No

(+25 - UUC CAA A skipping

05)

H5D CAU CAG GAU UCU UAC CUG CCA GUG G Incon-

(+10 - sistent

15) at 300
nM

H5A CGA UGU CAG UAC UUC CAA UAU UCA C Very

(+10 + weak

34)

H5D ACC AUU CAU CAG GAU UCU No

(-04 - skipping

21)

H5D ACC UGC CAG UGG AGG AUU No

(+16 - skipping

02)

H5A CCA AUA UUC ACU AAA UCA ACC UGU No

(-07 + TUAA skipping

20)

H5D CAG GAU UCU UAC CUG CCA GUG GAG No

(+18 - GAU UAU skipping

12)

H5A ACG AUG UCA GUA CUU CCA AUA UUC No

(+05 + ACU ARA U skipping

35)
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TABLE 7-continued
Anti-
sense
Oligo- Ability
nucle- to
otide induce
name Sequence skipping
H5A AUU UCC AUC UAC GAU GUC AGU ACU Working
(+15 + UCC AAU A to 300
45) nM

Antisense Oligonucleotides Directed at Exon 10

Antisense oligonucleotides directed at exon 10 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H10A(-05+16) [SEQ ID NO:41] induced substantial
exon 10 skipping when delivered into cells. Table 8 below
shows other antisense molecules tested. The antisense mol-
ecules ability to induce exon skipping was variable. Table 8
below discloses antisense molecule sequences that induce
exon 10 skipping.

TABLE 8
Anti-
sense
Oligo- Ability
nucle- to
otide induce
name Sequence skipping
H10A CAG GAG CUU CCA AAU GCU GCA Not
(-05 + tested
16)
H10A CUU GUC UUC AGG AGC UUC CAA AUG Not
(-05 + CUG CA tested
24)
H10A UCC UCA GCA GAA AGA AGC CAC G Not
(+98 + tested
119)
H10A UUA GAA AUC UCU CCU UGU GC No
(+130 + skipping
149)
H10A UAA AUU GGG UGU UAC ACA AU No
(-33 - skipping
14)

Antisense Oligonucleotides Directed at Exon 11

Antisense oligonucleotides directed at exon 11 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 8B shows an example of HI1A(+75+97) [SEQ ID
NO:49] antisense molecule inducing exon 11 skipping in
cultured human cells. HI1A(+75+97) induced substantial
exon 11 skipping when delivered into cells at a concentra-
tion of 5 nM. Table 9 below shows other antisense molecules
tested. The antisense molecules ability to induce exon skip-
ping was observed at 100 nM.
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TABLE 9
Anti-
sense
Oligonu- Ability to
cleotide induce
name Sequence skipping
H11D CCC UGA GGC AUU CCC AUC UUG AAU Skipping at
(+26 + 100 nM
49)
H11D AGG ACU UAC UUG CUU UGU UU Skipping at
(+11 - 100 nM
09)
H1liAa CUU GAA UUU AGG AGA UUC AUG UG Skipping at
(+118 + 100 nM
140)
H1liAa CAU CUU CUG AUA AUU UUC CUG UU Skipping at
(+75 + 100 nM
97)
H11D CCC UGA GGC AUU CCC AUC UUG AAU Skipping at
(+26 + 5 nM
49)

Antisense Oligonucleotides Directed at Exon 12

Antisense oligonucleotides directed at exon 12 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H12A(+52+75) [SEQ ID NO:50] induced substantial
exon 12 skipping when delivered into cells at a concentra-
tion of 5 nM, as shown in FIG. 8A. Table 10 below shows
other antisense molecules tested at a concentration range of
5, 25, 50, 100, 200 and 300 nM. The antisense molecules
ability to induce exon skipping was variable.

TABLE 10
Anti-
sense
Oligonu- Ability to
cleotide induce
name Sequence skipping
H12A UCU UCU GUU UUU GUU AGC CAG UCA Skipping at
(+52 + 5 nM
75)
H12A UCU AUG UAA ACU GAA AAU UU Skipping at
(-10 + 100 nM
10)
H12 UUC UGG AGA UCC AUU AAA AC No skipping
(+11 +
30)

Antisense Oligonucleotides Directed at Exon 13

Antisense oligonucleotides directed at exon 13 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H13A(+77+100) [SEQ ID NO:53] induced substantial
exon 13 skipping when delivered into cells at a concentra-
tion of 5 nM. Table 11 below includes two other antisense
molecules tested at a concentration range of 5, 25, 50, 100,
200 and 300 nM. These other antisense molecules were
unable to induce exon skipping.
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TABLE 11
Anti- Abili-
sense ty to
Oligonu- induce
cleotide skip-
name Sequence ping
H13A CAG CAG UUG CGU GAU CUC CAC UAG Skip-
(+77 + ping
100) at 5
nM
H13A UUC AUC AAC UAC CAC CAC CAU No
(+55 + skip-
75) ping
H13D CUA AGC AAA AUA AUC UGA CCU UAA G No
(+06 - skip-
19) ping

Antisense Oligonucleotides Directed at Exon 14

Antisense oligonucleotides directed at exon 14 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H14A(+37+64) [SEQ ID NO:56] induced weak exon 14
skipping when delivered into cells at a concentration of 100
nM. Table 12 below includes other antisense molecules
tested at a concentration range of 5, 25, 50, 100, 200 and 300
nM. The other antisense molecules were unable to induce
exon skipping at any of the concentrations tested.

TABLE 12
Anti-
sense Abili-
Oligo- ty to
nucle- induce
otide skip-
name  Sequence ping
H14A CUU GUA AAA GAA CCC AGC GGU CUU CUG U Skip-
(+37 + ping
64) at 100
nM
H14A CAU CUA CAG AUG UUU GCC CAU C No
(+14 + skip-
35) ping
H14A GAA GGA UGU CUU GUA AAA GAA CC No
(+51 + skip-
73) ping
H14D ACC UGU UCU UCA GUA AGA CG No
(-02 + skip-
18) ping
H14D CAU GAC ACA CCU GUU CUU CAG UAA No
(+14 - skip-
10) ping
H14A CAU UUG AGA AGG AUG UCU UG No
(+61 + skip-
80) ping
H14A AUC UCC CAA UAC CUG GAG AAG AGA No
(=12 + skip-
12) ping

Antisense Oligonucleotides Directed at Exon 15

Antisense oligonucleotides directed at exon 15 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H15A(-12+19) [SEQ ID NO:63] and HI15A(+48+71)
[SEQ ID NO:64] induced substantial exon 15 skipping when
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delivered into cells at a concentration of 10 Nm, as shown
in FIG. 9A. Table 13 below includes other antisense mol-
ecules tested at a concentration range of 5, 25, 50, 100, 200
and 300 Nm. These other antisense molecules were unable
to induce exon skipping at any of the concentrations tested.

TABLE 13
Anti-
sense
Oligo- Ability
nucle- to in-
otide duce
name Sequence skipping
H15A GCC AUG CAC UAA AAA GGC ACU GCA AGA Skipping
(-12 + CAU U at 5 Nm
19)
H15A UCU UUA AAG CCA GUU GUG UGA AUC Skipping
(+48 + at 5 Nm
71)
H15A UUU CUG AAA GCC AUG CAC UAA No
(+08 + skipping
28)
H15A GCC AUG CAC UAA AAA GGC ACU GCA AGA No
(-12 + CAU U skipping
19)
H15D GUA CAU ACG GCC AGU UUU UGA AGA C No
(+17 - skipping
08)

Antisense Oligonucleotides Directed at Exon 16

Antisense oligonucleotides directed at exon 16 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H16A(-12+19) [SEQ ID NO:67] and H16A(-06+25)
[SEQ ID NO:68] induced substantial exon 16 skipping when
delivered into cells at a concentration of 10 nM, as shown in
FIG. 9B. Table 14 below includes other antisense molecules
tested. H1I6A(-=06+19) [SEQ ID NO:69] and H16A(+87+
109) [SEQ ID NO:70] were tested at a concentration range
of 5, 25, 50, 100, 200 and 300 nM. These two antisense
molecules were able to induce exon skipping at 25 nM and
100 nM, respectively. Additional antisense molecules were
tested at 100, 200 and 300 nM and did not result in any exon
skipping.

TABLE 14
Anti- Abili-
sense ty to
Oligonu- induce
cleotide skip-
name Sequence ping
HléAa CUA GAU CCG CUU UUA AAA CCU GUU AAA Skip-
(-12 + ACA A ping
19) at 5
nM
HléAa UCU UUU CUA GAU CCG CUU UUA AAA CCU Skip-
(-06 + GUU A ping
25) at 5
nM
HléAa CUA GAU CCG CUU UUA AAA CCU GUU A Skip-
(-06 + ping
19) at 25
nM
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TABLE 14-continued
Anti- Abili-
sense ty to
Oligonu- induce
cleotide skip-
name Sequence ping
HléAa CCG UCU UCU GGG UGA CUG ACU UA Skip-
(+87 + ping
109) at 100
nM
HléAa CUA GAU CCG CUU UUA AAA CCU GUU AA No
(=07 + skip-
19) ping
HléAa CCG CUU UUA AAA CCU GUU AA No
(=07 + skip-
13) ping
HléAa UGG AUU GCU UUU UCU UUU CUA GAU CC No
(+12 + skip-
37) ping
HléAa CAU GCU UCC GUC UUC UGG GUC ACU G No
(+92 + skip-
116) ping
HléAa G AUC UUG UUU GAG UGA AUA CAG U No
(+45 + skip-
67) ping
HléAa GUU AUC CAG CCA UGC UUC CGU C No
(+105 + skip-
126) ping
H16D UGA UAA UUG GUA UCA CUA ACC UGU G No
(+05 - skip-
20) ping
H16D GUA UCA CUA ACC UGU GCU GUA C No
(+12 - skip-
11) ping

Antisense Oligonucleotides Directed at Exon 19

Antisense oligonucleotides directed at exon 19 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H19A(+35+65) [SEQ ID NO:79] induced substantial
exon 19 skipping when delivered into cells at a concentra-
tion of 10 nM. This antisense molecule also showed very
strong exon skipping at concentrations of 25, 50, 100, 300
and 600 nM.

FIG. 10 illustrates exon 19 and 20 skipping using a
“cocktail” of antisense oligonucleotides, as tested using gel
electrophoresis. It is interesting to note that it was not easy
to induce exon 20 skipping using single antisense oligo-
nucleotides H20A(+44+71) [SEQ ID NO:81] or H20A(+
149+170) [SEQ ID NO:82], as illustrated in sections 2 and
3 of the gel shown in FIG. 10. Whereas, a “cocktail” of
antisense oligonucleotides was more efficient as can be seen
in section 4 of FIG. 10 using a “cocktail” of antisense
oligonucleotides H20A(+44+71) and H20A(+149+170).
When the cocktail was used to target exon 19, skipping was
even stronger (see section 5, FIG. 10).

FIG. 11 illustrates gel electrophoresis results of exon
19/20 skipping using “weasels” The “weasels” were effec-
tive in skipping exons 19 and 20 at concentrations of 25, 50,
100, 300 and 600 nM. A further “weasel” sequence is shown
in the last row of Table 3C. This compound should give good
results.
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Antisense Oligonucleotides Directed at Exon 20

Antisense oligonucleotides directed at exon 20 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

None of the antisense oligonucleotides tested induced
exon 20 skipping when delivered into cells at a concentra-
tion of 10, 25, 50, 300 or 600 nM (see Table 15). Antisense
molecules H20A(-11+17) [SEQ ID NO:86] and H20D(+
08-20) [SEQ ID NO:87] are yet to be tested.

However, a combination or “cocktail” of H20A(+44+71)
[SEQ ID NO: 81] and H20(+149+170) [SEQ ID NO:82] in
a ratio of 1:1, exhibited very strong exon skipping at a
concentration of 100 nM and 600 nM. Further, a combina-
tion of antisense molecules H19A(+35+65) [SEQ ID
NO:79], H20A (+44+71) [SEQ ID NO:81] and H20A(+
149+170) [SEQ ID NO:82] in a ratio of 2:1:1, induced very
strong exon skipping at a concentration ranging from 10 nM
to 600 nM.

TABLE 15
Anti- 2Abili-
sense ty to
Oligonu- induce
cloetide skip-
name Sequence ping
H20A CUG GCA GAA UUC GAU CCA CCG GCU GUU No
(+44 + C skip-
71) ping
H20A CAG CAG UAG UUG UCA UCU GCU C No
(+149 + skip-
170) ping
H20A UGA UGG GGU GGU GGG UUG G No
(+185 + skip-
203) ping
H20A AUC UGC AUU AAC ACC CUC UAG ARAA G No
(-08 + skip-
17) ping
H20A CCG GCU GUU CAG UUG UUC UGA GGC No
(+30 + skip-
53) ping
H20A AUC UGC AUU AAC ACC CUC UAG AAA GAA Not
(-11 + A tested
17) yet
H20D GAA GGA GAA GAG AUU CUU ACC UUA CAA Not
(+08 - A tested
20) yet
H20A CUG GCA GAA UUC GAU CCA CCG GCU GUU Very
(+44 + C strong
71) & skip-
H20A CAG CAG UAG UUG UCA UCU GCU C ping
(+149 +
170)
H1l9Aa GCC UGA GCU GAU CUG CUG GCA UCU UGC Very
(+44 + 2AGU U strong
71) skip-
H20A CUG GCA GAA UUC GAU CCA CCG GCU GUU ping
(+44 + C
71);
H20A CAG CAG UAG UUG UCA UCU GCU C
(+149 +
170)




US RE47,769 E

45 46
Antisense Oligonucleotides Directed at Exon 21 TABLE 17-continued
Antisense oligonucleotides directed at exon 21 were pre-
pared and tested for their ability to induce exon skipping in . Abili-
human muscle cells using similar methods as described ﬁi;iii:ieo_ e
above. 5 tide skip-
H21A(+85+108) [SEQ 1D NOZ92] and H21A(+85+106) name Sequence ping
[SEQ ID NO:91] induced exon 21 skipping when delivered )
: : H22A CUA AGU UGA GGU AUG GAG AGU Skip-
into cells at a concentration of 50 nM. Table 16 below (+80 + 101) ping
includes other antisense molecules tested at a concentration to 50
range of 5, 25, 50, 100, 200 and 300 nM. These antisense 10 nM
molecules showed a variable ability to induce exon skipping
H22D UAU UCA CAG ACC UGC AAU UCC CC No
(+13 - 11) skip-
TABLE 16 ping
Antisense Ability 15
Oligonucle- to in- Antisense Oligonucleotides Directed at Exon 23
otide duce . . . .
name Sequence skipping Antisense 011g0nucle9t1de§ .dlrect.ed at exon 23 were pre-
: pared and tested for their ability to induce exon skipping in
H21A GCC GGU UGA CUU CAU CCU GUG € Skips at human muscle cells using similar methods as described
(-06 + 16) 600 nM
>0 above.
H21A CUG CAU CCA GGA ACA UGG GUC C  skips at Table 18 below shows antisense molecules tested at a
{(+85 + 106) 50 nM concentration range of 25, 50, 100, 300 and 600 nM. These
H21A GUC UGC AUC CAG GBAA CAU GGG UC Skips at aI}tisense molecules showed no ability to induce exon skip-
(+85 + 108) 50 nM ping or are yet to be tested.
25
H21A GUU GAA GAU CUG AUA GCC GGU UGA Skips
(+08 + 31) faintly TABLE 18
to .
Anti-
sense Ability
H21D UAC UUA CUG UCU GUA GCU CUU UCU No ol iconu o in-
(+18 - 07) skipping 39 clegtide duce
name Sequence skipping
Antisense Oligonucleotides Directed at Exon 22 H23A ACA GUG QUG CUG AGA UAG UAU AGG CC No
Antisense oligonucleotides directed at exon 22 were pre- (434 4+ skipping
pared and tested for their ability to induce exon skipping in 59)
human muscle cells using similar methods as described 33
b H23A UAG GCC ACU UUG UUG CUC UUG C No
above. . . . . . . (+18 + Skipping
FIG. 12 illustrates differing efficiencies of two antisense 39)
molecules directed at exon 22 acceptor splice site. H22A(+
1254106) [SEQ ID NO:96] and H22A(+80+101) [SEQ ID }(123‘; UUC AGR GGG CGC UUU CUU C Isqi ,
A . . + + 1 in
NO: 98] induce strong exon 22 skipping from 50 nM to 600 40 47, Pping
nM concentration.
H22A(+125+146) [SEQ ID NO:96] and H22A(+80+101)
[SEQ ID NO:98] induced exon 22 skipping when delivered Antisense Oligonucleotides Directed at Exon 24
into cells at a concentration of 50 nM. Table 17 below shows Antisense oligonucleotides directed at exon 24 were pre-
other antisense molecules tested at a concentration range of 45 pared using similar methods as described above. Table 19
50, 100, 300 and 600 nM. These antisense molecules below outlines the antisense oligonucleotides directed at
showed a variable ability to induce exon skipping. exon 24 that are yet to be tested for their ability to induce
exon 24 skipping.
TABLE 17
— TABLE 19
Abili-
Antj_isense t?‘y to Antisense Ability
oligonucleo- induce oligonucle- to in-
tide S},{lp_ otide duce
name Sequence ping 55 name Sequence skipping
H22A CAC UCA UGG UCU CCU GAU AGC GCA No H24A GGG CAG GCC AUU CCU CCU UCA GA Needs
(+22 + 45) S}.{lp_ (+48 + 70) testing
ping
, H24A UCU UCA GGG UUU GUA UGU GAU UCU Needs
H22A CUG CAA UUC CCC GAG UCU CUG C  Skip- (—02 + 22) testing
(+125 + 146) ping 60
to 50
M . . . .
" Antisense Oligonucleotides Directed at Exon 25
H22a ACU GCU GGA CCC AUG UCC UGA UG Skip- Antisense oligonucleotides directed at exon 25 were pre-
(+47 + 69) Eing 00 pared using similar methods as described above. Table 20
M 65 below shows the antisense oligonucleotides directed at exon

25 that are yet to be tested for their ability to induce exon 25
skipping.
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TABLE 20 TABLE 22-continued
Anti- Abili- Anti-
sense ty to sense
oligonu- induce 5 oligo- Ability
cleotide skip- 2:;;:' Eiduce
name Sequence ing
d ping name Sequence skipping
H25A CUG GGC UGA AUU GUC UGA AUA UCA CUG Needs
(+9 + test- H27D GAC UUC CAA AGU CUU GCA UUU C v. strong
36) ing 10 (+19 - skipping
03) at 600
H25A CUG UUG GCA CAU GUG AUC CCA CUG AG Needs and 200
(+131 + test- nM
156) ing
H25D GUC UAU ACC UGU UGG CAC AUG UGA Needs 5 Antisense Oligonucleotides Directed at Exon 28
(+16 - test- Antisense oligonucleotides directed at exon 28 were pre-
08) ng pared using similar methods as described above. Table 23
below outlines the antisense oligonucleotides directed at
. . . . exon 28 that are yet to be tested for their ability to induce
Antisense Oligonucleotides Directed at Exon 26 98 skinpi 4 R
. : . . 2o exon 28 skipping.
Antisense oligonucleotides directed at exon 26 were pre-
pared using similar methods as described above. Table 21 TABLE 23
below outlines the antisense oligonucleotides directed at
. . Anti-
exon 26 that are yet to be tested for their ability to induce cense
exon 26 skipping. 25 oligo-
nucle- Ability
otide to induce
TABLE 21 name Sequence skipping
Anti- . H28A GCC AAC AUG CCC AAA CUU CCU AAG v. strong
sense Abl:!'lty 30 (-05 + skipping
oligonu- to in- 19) at 600
cleotide duce and 300
name Sequence skipping nM
Haeh UGC UUU CUG URA UUC AUC UGG AGU U Needs H28A CAG AGA UUU CCU CAG CUC CGC CAG GA Needs
(+132 + testing (199 + testing
156) 35 4, 1)
H26A CCU CCU UUC UGG CAU AGA CCU UCC AC Needs H28D  CUU ACA UCU AGC ACC UCA GAG v. strong
](_;())7 + testing (+16 - skipping
05) at 600
H26A UGU GUC AUC CAU UCG UGC AUC UCU G Faint 40 iad 300
(+68 + skipping
92) at 600
M . . . .
o Antisense Oligonucleotides Directed at Exon 29
Antisense oligonucleotides directed at exon 29 were pre-
Antisense Oligonucleotides Directed at Exon 27 45 pared using similar met.hods as Qescnbed e.lbove..Table A
below outlines the antisense oligonucleotides directed at
Antisense oligonucleotides directed at exon 27 were pre- exon 29 that are yet to be tested for their ability to induce
pared using similar methods as described above. Table 22 exon 29 skipping.
below outlines the antisense oligonucleotides directed at
exon 27 that are yet to be tested for their ability to induce TABLE 24
exon 27 skipping. At
i-
sense
TABLE 22 oligonu- Ability to
cleotide induce
Anti- name Sequence skipping
sense 55
oligo- Ability H29A UCC GCC AUC UGU UAG GGU CUG  Needs testing
nucle- to (+57 + UGC C
otide induce 81)
name Sequence skipping
H29A AUU UGG GUU AUC CUC UGA AUG v. strong
H27A UUA AGG CCU CUU GUG CUA CAG GUG Needs g0 (¥18 + UCG C skipping at
(+82 + testing 42) 600 and 300
106) nM
H27A GGG CCU CUU CUU UAG CUC UCU GA Faint H29D CAU ACC UCU UCA UGU AGU UCC C v. strong
(-4 + skipping (+17 - skipping at
19) at 600 05) 600 and 300

and 300 65
nM

nM
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Antisense Oligonucleotides Directed at Exon 30

Antisense oligonucleotides directed at exon 30 were pre-
pared using similar methods as described above. Table 25
below outlines the antisense oligonucleotides directed at
exon 30 that are yet to be tested for their ability to induce
exon 30 skipping.

TABLE 25
Anti-
sense
oligonu-
cleotide Ability to in-
name Sequence duce skipping
H30A CAU UUG AGC UGC GUC CAC CUU Needs testing
(+122 + GUC UG
147)
H30A UCC UGG GCA GAC UGG AUG CUC Very strong
(+25 + UGU UC skipping at
50) 600 and 300

nM.

H30D UUG CCU GGG CUU CCU GAG GCA Very strong
(+19 - UU skipping at
04) 600 and 300

nM.

Antisense Oligonucleotides Directed at Exon 31

Antisense oligonucleotides directed at exon 31 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 13 illustrates differing efficiencies of two antisense
molecules directed at exon 31 acceptor splice site and a
“cocktail” of exon 31 antisense oligonucleotides at varying
concentrations. H31D(+03-22) [SEQ ID NO:124] substan-
tially induced exon 31 skipping when delivered into cells at
a concentration of 20 nM. Table 26 below also includes other
antisense molecules tested at a concentration of 100 and 300
nM. These antisense molecules showed a variable ability to
induce exon skipping.

TABLE 26
Anti-
sense
oligo- Ability
nucleo- to in-
tide duce
name Sequence skipping
H31D UUC UGA AAU AAC AUA UAC CUG UGC Skipping
(+06 - to 300
18) nM
H31D UAG UUU CUG AAA UAA CAU AUA CCU G Skipping
(+03 - to 20 nM
22)
H31A GAC UUG UCA AAU CAG AUU GGA No
(+05 + skipping
25)
H31D GUU UCU GAA AUA ACA UAU ACC UGU Skipping
(+04 - to 300
20) nM

Antisense Oligonucleotides Directed at Exon 32

Antisense oligonucleotides directed at exon 32 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.
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H32D(+04-16) [SEQ ID NO:127] and H32A(+49+73)
[SEQ ID NO:130] induced exon 32 skipping when delivered
into cells at a concentration of 300 nM. Table 27 below also
shows other antisense molecules tested at a concentration of
100 and 300 nM. These antisense molecules did not show an
ability to induce exon skipping.

TABLE 27
2Abili-
ty to
Antisense induce
oligonucleo- skip-
tide name Sequence ping
H32D CAC CAG AAA UAC AUA CCA CA Skip-
(+04 - 16) ping
to 300
nM
H32A CAA UGA UUU AGC UGU GAC UG No
(+151 + 170) skip-
ping
H32A CGA AAC UUC AUG GAG ACA UCU UG No
(+10 + 32) skip-
ping
H32A CUU GUA GAC GCU GCU CAA AAU Skip-
(+49 + 73) UGG C ping
to 300
nM

Antisense Oligonucleotides Directed at Exon 33

Antisense oligonucleotides directed at exon 33 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 14 shows differing efficiencies of two antisense
molecules directed at exon 33 acceptor splice site. H33A(+
64+88) [SEQ ID NO:134] substantially induced exon 33
skipping when delivered into cells at a concentration of 10
nM. Table 28 below includes other antisense molecules
tested at a concentration of 100, 200 and 300 nM. These
antisense molecules showed a variable ability to induce exon
skipping.

TABLE 28

Antisense Ability

oligonucle- to

otide induce

name Sequence skipping

H33D CAU GCA CAC ACC UUU GCU CC No

(+09 - 11) skipping

H33A UCU GUA CAA UCU GAC GUC CAG UCU Skipping

(+53 + 76) to 200
nM

H33A GUC UUU AUC ACC AUU UCC ACU UCA Skipping

(+30 + 56) GAC to 200
nM

H33A CCG UCU GCU UUU UCU GUA CAA UCU Skipping

(+64 + 88) G to 10 nM

Antisense Oligonucleotides Directed at Exon 34

Antisense oligonucleotides directed at exon 34 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

Table 29 below includes antisense molecules tested at a
concentration of 100 and 300 nM. These antisense mol-
ecules showed a variable ability to induce exon skipping.



US RE47,769 E

TABLE 29
Anti- Abili-
sense ty to
oligonu- induce
cleotide skip-
name Sequence ping
H34A UCC AUA UCU GUA GCU GCC AGC C No
(+83 + skip-
104) ping
H34A CCA GGC AAC UUC AGA AUC CAA AU No
(+143 + skip-
165) ping
H34A UUU CUG UUA CCU GAA AAG AAU UAU AAU Not
(=20 + GARA tested
10)
H34A CAU UCA UUU CCU UUC GCA UCU UAC G Skip-
(+46 + ping
70) to 300
nM
H34A UGA UCU CUU UGU CAA UUC CAU AUC UG Skip-
(+95 + ping
120) to 300
nM
H34D UUC AGU GAU AUA GGU UUU ACC UUU Not
(+10 - CCC CAG tested
20)
H34A CUG UAG CUG CCA GCC AUU CUG UCA AG No
(+72 + skip-
96) ping

Antisense Oligonucleotides Directed at Exon 35

Antisense oligonucleotides directed at exon 35 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 15 shows differing efficiencies of antisense mol-
ecules directed at exon 35 acceptor splice site. H35A(+24+
43) [SEQ ID NO:144] substantially induced exon 35 skip-
ping when delivered into cells at a concentration of 20 nM.
Table 30 below also includes other antisense molecules
tested at a concentration of 100 and 300 nM. These antisense
molecules showed no ability to induce exon skipping.

TABLE 30
Antisense
oligonucleo- Ability
tide to induce
name Sequence skipping
H35A UCU UCU GCU CGG GAG GUG ACA Skipping
(+141 + 161) to 20 nM
H35A CCA GUU ACU AUU CAG AAG AC No
(+116 + 135) skipping
H35A UCU UCA GGU GCA CCU UCU GU No
(+24 + 43) skipping

Antisense Oligonucleotides Directed at Exon 36

Antisense oligonucleotides directed at exon 36 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

Antisense molecule H36A(+26+50) [SEQ ID NO:145]
induced exon 36 skipping when delivered into cells at a
concentration of 300 nM, as shown in FIG. 16.

Antisense Oligonucleotides Directed at Exon 37
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Antisense oligonucleotides directed at exon 37 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 17 shows differing efficiencies of two antisense
molecules directed at exon 37 acceptor splice site. H37A(+
82+105) [SEQ ID NO:148] and H37A(+134+157) [SEQ ID
NO:149] substantially induced exon 37 skipping when
delivered into cells at a concentration of 10 nM. Table 31
below shows the antisense molecules tested.

TABLE 31
Anti-
sense Ability
oligonu- to
cleotide induce
name Sequence skipping
H37A CGU GUA GAG UCC ACC UUU GGG CGU A No
(+26 +5 skipping
0
H37A UAC UAA UUU CCU GCA GUG GUC ACC Skipping
(+82 + to 10 nM
105)
H37A UUC UGU GUG AAA UGG CUG CAA AUC Skipping
(+134 + to 10 nM
157)

Antisense Oligonucleotides Directed at Exon 38

Antisense oligonucleotides directed at exon 38 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 18 illustrates antisense molecule H38A(+88+112)
[SEQ ID NO:152], directed at exon 38 acceptor splice site.
H38A(+88+112) substantially induced exon 38 skipping
when delivered into cells at a concentration of 10 nM. Table
32 below shows the antisense molecules tested and their
ability to induce exon skipping.

TABLE 32
Anti-
sense Ability
oligonu- to
cleotide induce
name Sequence skipping
H38A CCU UCA AAG GAA UGG AGG CC No
(-01 + skipping
19)
H38A UGC UGA AUU UCA GCC UCC AGU GGU Skipping
(+569 + U to 10 nM
83)
H38A UGA AGU CUU CCU CUU UCA GAU UCA C skipping
(+88 + to 10 nM
112)

Antisense Oligonucleotides Directed at Exon 39

Antisense oligonucleotides directed at exon 39 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H39A(+62+85) [SEQ ID NO:153] induced exon 39 skip-
ping when delivered into cells at a concentration of 100 nM.
Table 33 below shows the antisense molecules tested and
their ability to induce exon skipping.
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TABLE 33

2Abili-
ty to
induce
skip-
ping

Antisense
oligonucleo-
tide name

w

Sequence

H39A
(+62 + 85)

CUG GCU UUC UCU CAU CUG UGA UUC Skip-
ping

to 100
nM 10
H39A

(+39 + 58)

GUU GUA AGU UGU CUC CUC UU
skip-
ping

H39A
(+102 + 121)

UUG UCU GUA ACA GCU GCU GU No
skip-

ping

15

H39D
(+10 - 10)

GCU CUA AUA CCU UGA GAG CA Skip-
ping
to 300

nM 20

Antisense Oligonucleotides Directed at Exon 40

Antisense oligonucleotides directed at exon 40 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 19 illustrates antisense molecule H40A(-05+17)
[SEQ ID NO:157] directed at exon 40 acceptor splice site.
H40A(-05+17) and H40A(+129+153) [SEQ ID NO:158]
both substantially induced exon 40 skipping when delivered
into cells at a concentration of 5 nM.

Antisense Oligonucleotides Directed at Exon 42

Antisense oligonucleotides directed at exon 42 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 20 illustrates antisense molecule H42A(-04+23)
[SEQ ID NO:159], directed at exon 42 acceptor splice site.
H42A(-4+23) and H42D(+19-02) [SEQ ID NO:161] both
induced exon 42 skipping when delivered into cells at a
concentration of 5 nM. Table 34 below shows the antisense
molecules tested and their ability to induce exon 42 skip-
ping.
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TABLE 34

Antisense
oligonucle-
otide

name

Ability
to
induce
skipping

50
Sequence

H42A
(-4 + 23)

AUC GUU UCU UCA CGG ACA GUG UGC
UGG

Skipping
to 5 nM

H42A2
(+86 + 109)

GGG CUU GUG AGA CAU GAG UGA UUU Skipping
to 100

nM

H42D
(+19 - 02)

A CCU UCA GAG GAC UCC UCU UGC Skipping

to 5 nM

60
Antisense Oligonucleotides Directed at Exon 43
Antisense oligonucleotides directed at exon 43 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.
H43A(+101+120) [SEQ ID NO:163] induced exon 43
skipping when delivered into cells at a concentration of 25

65

54

nM. Table 35 below includes the antisense molecules tested
and their ability to induce exon 43 skipping.

TABLE 35
Anti-
sense Ability
oligonu- to
cleotide induce
name Sequence skipping
H43D UAU GUG UUA CCU ACC CUU GUC GGU C skipping
(+10 - to 100
15) nM
H43A GGA GAG AGC UUC CUG UAG CU Skipping
(+101 + to 25 nM
120)
H43A UCA CCC UUU CCA CAG GCG UUG CA Skipping
(+78 + to 200
100) nM

Antisense Oligonucleotides Directed at Exon 44

Antisense oligonucleotides directed at exon 44 were pre-
pared using similar methods as described above. Testing for
the ability of these antisense molecules to induce exon 44
skipping is still in progress. The antisense molecules under
review are shown as SEQ ID Nos: 165 to 167 in Table 1A.
Antisense Oligonucleotides Directed at Exon 45

Antisense oligonucleotides directed at exon 45 were pre-
pared using similar methods as described above. Testing for
the ability of these antisense molecules to induce exon 45
skipping is still in progress. The antisense molecules under
review are shown as SEQ ID Nos: 207 to 211 in Table 1A.
Antisense Oligonucleotides Directed at Exon 46

Antisense oligonucleotides directed at exon 46 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 21 illustrates the efficiency of one antisense mol-
ecule directed at exon 46 acceptor splice site. Antisense
oligonucleotide H46A(+86+115) [SEQ ID NO:203] showed
very strong ability to induce exon 46 skipping. Table 36
below includes antisense molecules tested. These antisense
molecules showed varying ability to induce exon 46 skip-

ping.

TABLE 36

Antisense Ability

oligonucle- to

otide induce

name Sequence skipping

H46D UUA CCU UGA CUU GCU CAA GC No

(+16 — 04) skipping

H46A UCC AGG UUC AAG UGG GAU AC No

(+90 + 109) skipping

H46A CUC UUU UCC AGG UUC AAG UGG GAU Good

(+86 + 115) ACU AGC skipping
to 100
nM

H46A CAA GCU UUU CUU UUA GUU GCU GCU Good

(+107 + CUU UuC ¢ skipping

137) to 100
nM

H46A UAU UCU UUU GUU CUU CUA GCC UGG Weak

(-10 + 20) AGA AAG skipping
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TABLE 36-continued
Antisense Ability
oligonucle- to
otide induce
name Sequence skipping
H46A CUG CUU CCU CCA ACC AUA AAA CAA Weak
(+50 + 77) AUU C skipping

Antisense Oligonucleotides Directed at Exon 47

Antisense oligonucleotides directed at exon 47 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

H47A(+76+100) [SEQ ID NO:170] and H47A(-09+12)
[SEQ ID NO:172] both induced exon 47 skipping when
delivered into cells at a concentration of 200 nM. H47D(+
25-02) [SEQ ID NO: 171] is yet to be prepared and tested.
Antisense Oligonucleotides Directed at Exon 50

Antisense oligonucleotides directed at exon 50 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

Antisense oligonucleotide molecule H50(+02+30) [SEQ
ID NO: 173] was a strong inducer of exon skipping. Further,
H50A(+07+33) [SEQ ID NO:174] and HS50D(+07-18)
[SEQ ID NO:175] both induced exon 50 skipping when
delivered into cells at a concentration of 100 nM.
Antisense Oligonucleotides Directed at Exon 51

Antisense oligonucleotides directed at exon 51 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 22 illustrates differing efficiencies of two antisense
molecules directed at exon 51 acceptor splice site. Antisense
oligonucleotide HS1A(+66+90) [SEQ ID NO: 180] showed
the stronger ability to induce exon 51 skipping. Table 37
below includes antisense molecules tested at a concentration
range of 25, 50, 100, 300 and 600 nM. These antisense
molecules showed varying ability to induce exon 51 skip-
ping. The strongest inducers of exon skipping were antisense
oligonucleotide H51A(+61490) [SEQ ID NO: 179] and
H51A (+66+95) [SEQ ID NO: 181].

TABLE 37
Anti- Abili-
sense ty to
oligonu- induce
cleotide skip-
name Sequence ping
H51A ACC AGA GUA ACA GUC UGA GUA GGA GC Faint
(=01 + skip-
25) ping
H51D CUC AUA CCU UCU GCU UGA UGA UC Skip-
(+1le6 - ping
07) at 300
nM
H51A UUC UGU CCA AGC CCG GUU GAA AUC Needs
(+111 + re-
134) test-
ing
H51A ACA UCA AGG AAG AUG GCA UUU CUA GUU Very
(+61 + UGG strong
90) skip-

ping
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TABLE 37-continued
Anti- Abili-
sense ty to
oligonu- induce
cleotide skip-
name Sequence ping
H51A ACA UCA AGG AAG AUG GCA UUU CUA G skip-
(+66 + ping
90)
H51A CUC CAA CAU CAA GGA AGA UGG CAU UUC Very
(+66 + UAG strong
95) skip-
ping
H51D AUC AUU UUU UCU CAU ACC UUC UGC U No
(+08 - skip-
17) ping
H51A/D AUC AUU UUU UCU CAU ACC UUC UGC UAG No
(+08 - GAG CUA AAA skip-
17) & ping
(-15 -
?)
H51A CAC CCA CCA UCA CCC UCY GUG No
(+175 + skip-
195) ping
H51A AUC AUC UCG UUG AUA UCC UCA A No
(+199 + skip-
220) ping

Antisense Oligonucleotides Directed at Exon 52

Antisense oligonucleotides directed at exon 52 were pre-
pared and tested for their ability to induce exon skipping in
human muscle cells using similar methods as described
above.

FIG. 22 also shows differing efficiencies of four antisense
molecules directed at exon 52 acceptor splice site. The most
effective antisense oligonucleotide for inducing exon 52
skipping was H52A(+17+437) [SEQ ID NO:188].

Table 38 below shows antisense molecules tested at a
concentration range of 50, 100, 300 and 600 nM. These
antisense molecules showed varying ability to induce exon
50 skipping. Antisense molecules H52A(+12+41) [SEQ ID
NO:187] and H52A(+17+37) [SEQ ID NO:188] showed the
strongest exon 50 skipping at a concentration of 50 nM.

TABLE 38
Anti- Abili-
sense ty to
oligonu- induce
cleotide skip-
name Sequence ping
H52A UCC UGC AUU GUU GCC UGU AAG No
(-07 + skip-
14) ping
H52A UCC AAC UGG GGA CGC CUC UGU UCC AAA Very
(+12 + UcCC strong
41) skip-
ping
H52A ACU GGG GAC GCC UCU GUU Ccca Skip-
(+17 + ping
37) to 50
nM
H52A CCG UAA UGA UUG UUC UAG CC No
(+93 + skip-
112) ping
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TABLE 38-continued TABLE 39-continued
Anti- Abili- Anti-
sense ty to sense Ability
oligonu- induce oligonu- to
cleotide skip- 5 cleotide induce
name Sequence ping name Sequence skipping
H52D UGU UAA AAA ACU UAC UUC GA No
(+05 - skip- H53A CAU UCA ACU GUU GCC UCC GGU UCU Strong
15) ping (+39 + GAA GGU G skipping
10 69) to 50 nM
Antisense Oligonucleotides Directed at Exon 53 H53D UAC UAA CCU UGG UUU CUG UGA Very
Antisense oligonucleotides directed at exon 53 were pre- (+14 - faint
pared and tested for their ability to induce exon skipping in o7 iilgglgﬁ
human muscle cells using similar methods as described s
above. H53A CUG AAG GUG UUC UUG UAC UUC AUC Very
FIG. 22 also shows antisense molecule H53A(+39+69) (+23 + faint
s . . 47 k- .
[SEQ ID NO:193] directed at exon 53 acceptor splice site. ) iolgglgﬁ
This antisense oligonucleotide was able to induce exon 53
skipping at 5, 100, 300 and 600 nM. A “cocktail” of three 5o HS3A UGU AUA GGG ACC CUC CUU CCA UGA Very
exon 53 antisense oligonucleotides:—HS53D(+23+47) [SEQ {(+150 + cUC f;mt
176 ippi
ID NO:195], H53A(+150+175) [SEQ ID NO:196] and ) iolgglgﬁ
HS53A (+14-07) [SEQ ID NO:194], were also tested, as
shown in FIG. 20 and exhibited an ability to induce exon H53D CUA ACC UUG GUU UCU GUG AUU UUC Not made
skipping. (+20 - yet
. . 25
Table 39 below includes other antisense molecules tested 0s)
at a concentration range of 50, 100, 300 and 600 nM. These H53D GGU AUC UUU GAU ACU AAC CUU GGU Faint at
antisense molecules showed varying ability to induce exon (+09 - UUC 600 nM
53 skipping. Antisense molecule H53A(+39+69) [SEQ ID 18)
NO:193] induced the strongest exon 53 skipping. 30 HS3A AUU CUU UCA ACU AGA AUA a Yo
(-12 + skipping
TABLE 39 10)
Anti- H53A GAU UCU GAA UUC UUU CAA CUA GAA No
sense Ability (-07 + skipping
oligonu- to 35 18)
cleotide induce
name Sequence skipping H53A AUC CCA CUG AUU CUG AAU UC No
H53A CAU UCA ACU GUU GCC UCC GGU UCU G Faint (+07 + skipping
(+45 + skipping 26)
69) at 50 nM
40 ms3A UUG GCU CUG GCC UGU CCU AAG A No
H53A CUG UUG CCU CCG GUU CUG AAG GUG Faint (+124 + skipping
(+39 + skipping 145)
62) at 50 nM
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 214
<210> SEQ ID NO 1
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
Human 2'-O-methyl phosphorothicate antisense
oligonucleotide
<400> SEQUENCE: 1
gauagguggu aucaacaucu guaa 24
<210> SEQ ID NO 2
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
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-continued

60

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 2

gauagguggu aucaacaucu g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 3

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 3

gauagguggu aucaacaucu guaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 4

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 4

ggugguauca acaucuguaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 5

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 5

gJuaucaacau cuguaagcac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 6

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 6

ugcauguuce agucguugug ugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 7

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 7

cacuauucca gucaaauagg ucugg

<210> SEQ ID NO 8

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

21

Synthetic

25

Synthetic

20

Synthetic

20

Synthetic

23

Synthetic

25
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61

62

-continued
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 8

auuuaccaac cuucaggauc gagua

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 9

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 9

ggccuaaaac acauacacau a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 10

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 10

cauuuuugac cuacaugugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 11

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 11

uuugaccuac auguggaaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 12

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 12

uacauuuuug accuacaugu ggaaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 13

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 13

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

25

Synthetic

21

Synthetic

20

Synthetic

20

Synthetic

26

Synthetic
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63

-continued

64

auuuuugacce uacaugggaa ag

<210> SEQ ID NO 14

<211> LENGTH: 23

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 14

uacgaguuga uugucggacc cag

<210> SEQ ID NO 15

<211> LENGTH: 25

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 15

guggucuccu uaccuaugac ugugg

<210> SEQ ID NO 16

<211> LENGTH: 17

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Canine 2'-0-methyl phosphorothicate antisense
oligonucleotide

<400> SEQUENCE: 16

ggucuccuua ccuauga

<210> SEQ ID NO 17

<211> LENGTH: 24

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 17

ugucucagua aucuucuuac cuau

<210> SEQ ID NO 18

<211> LENGTH: 24

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 18

ucuuaccuau gacuauggau gaga

<210> SEQ ID NO 19

<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

22

Synthetic

23

Synthetic

25

Synthetic

17

Synthetic

24

Synthetic

24
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65

-continued

66

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 19

gcaugaacuc uuguggaucc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 20

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 20

ccaggguacu acuuacauua

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 21

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 21

aucguguguc acagcaucca g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 22

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 22

uguucaggge augaacucuu guggauccuu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 23

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 23

uaggaggcge cucccauccu guaggucacu g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 24

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 24

aggucuagga ggcgccucce auccuguagg u

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

20

Synthetic

20

Synthetic

21

Synthetic

30

Synthetic

31

Synthetic

31
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67

-continued

68

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 25

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 25

gegecuccca uccuguaggu cacug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 26

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 26

cuucgaggag gucuaggagg cgccuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 27

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 27

cucccauccu guaggucacu g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 28

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 28

uaccaguuuu ugcccuguca gg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 29

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 29

ucaauvaugcu gcuucccaaa cugaaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 30

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

25

Synthetic

26

Synthetic

21

Synthetic

22

Synthetic

26

Synthetic
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69

-continued

70

<400> SEQUENCE: 30

cuaggaggceg ccucccaucce uguag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 31

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 31

uuaugauuuc caucuacgau gucaguacuu c

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 32

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 32

cuuaccugee aguggaggau uauauuccaa a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 33

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 33

caucaggauu cuuaccugcce agugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 34

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 34

cgaugucagu acuuccaaua uucac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 35

LENGTH: 18

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 35

accauucauc aggauucu

<210> SEQ ID NO 36

<211> LENGTH: 18

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

25

Synthetic

31

Synthetic

31

Synthetic

25

Synthetic

25

Synthetic

18
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71

72

-continued
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 36

accugccagu ggaggauu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 37

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 37

ccaauvauuca cuaaaucaac cuguuaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 38

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 38

caggauucuu accugccagu ggaggauuau

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 39

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 39

acgaugucag uacuuccaau auucacuaaa u

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 40

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 40

auuuccaucu acgaugucag uacuuccaau a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 41

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 41

caggagcuuc caaaugcugce a

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

18

Synthetic

27

Synthetic

30

Synthetic

31

Synthetic

31

Synthetic

21
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73

-continued

74

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 42

LENGTH: 29

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 42

cuugucuuca ggagcuucca aaugcugea

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 43

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 43

uccucagcag aaagaagcca cg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 44

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 44

uuagaaaucu cuccuugugc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 45

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 45

uaaauugggu guuacacaau

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 46

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 46

cccugaggca uucccaucuu gaau

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 47

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

29

Synthetic

22

Synthetic

20

Synthetic

20

Synthetic

24

Synthetic
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75

-continued

76

<400> SEQUENCE: 47

aggacuuacu ugcuuuguuu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 48

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 48

cuugaauuua ggagauucau cug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 49

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 49

caucuucuga uaauuuuccu guu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 50

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 50

ucuucuguuu uuguuagcca guca

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 51

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 51

ucuauguaaa cugaaaauuu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 52

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 52
uucuggagau ccauuaaaac
<210> SEQ ID NO 53

<211> LENGTH: 24
<212> TYPE: RNA

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

20

Synthetic

23

Synthetic

23

Synthetic

24

Synthetic

20

Synthetic

20
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77

78

-continued
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 53

cagcaguuge gugaucucca cuag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 54

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 54

uucaucaacu accaccacca u

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 55

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 55

cuaagcaaaa uaaucugacc uuaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 56

LENGTH: 28

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 56

cuuguaaaag aacccagegg ucuucugu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 57

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 57

caucuacaga uguuugccca uc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 58

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 58

gaaggauguc uuguaaaaga acc

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

24

Synthetic

21

Synthetic

25

Synthetic

28

Synthetic

22

Synthetic

23
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79

-continued

80

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 59

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 59

accuguucuu caguaagacg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 60

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 60

caugacacac cuguucuuca guaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 61

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 61

cauuugagaa ggaugucuug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 62

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 62

aucucccaau accuggagaa gaga

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 63

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 63

gccaugcacu aaaaaggcac ugcaagacau u

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 64

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

20

Synthetic

24

Synthetic

20

Synthetic

24

Synthetic

31

Synthetic
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81

-continued

82

<400>

oligonucleotide

SEQUENCE: 64

ucuuuaaagc caguugugug aauc

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 65

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 65

uuucugaaag ccaugcacua a

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 66

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 66

guacauacgg ccaguuuuug aagac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 67

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 67

cuagauccgc uuuuaaaacc uguuaaaaca a

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 68

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 68

ucuuuucuag auccgcuuuu aaaaccuguu a

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 69

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 69

cuagauccgc uuuuaaaacc uguua

<210>
<211>

SEQ ID NO 70
LENGTH: 23

24

Synthetic

21

Synthetic

25

Synthetic

31

Synthetic

31

Synthetic

25
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83

84

-continued
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 70

ccgucuucug ggucacugac uua

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 71

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 71

cuagauccgc uuuuaaaacc uguuaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 72

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 72

ccgcuuuuaa aaccuguuaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 73

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 73

uggauugcuu uuucuuuucu agaucc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 74

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 74

caugcuuccyg ucuucugggu cacug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 75

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 75

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

23

Synthetic

26

Synthetic

20

Synthetic

26

Synthetic

25

Synthetic
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85

-continued

86

gaucuuguuu gagugaauac agu

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 76

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 76

guuauccage caugcuuccg uc

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 77

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 77

ugauaauugg uaucacuaac cugug

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 78

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 78

guaucacuaa ccugugcugu ac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 79

LENGTH: 19

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 79

cugcuggcau cuugcaguu

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 80

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 80

gecugagcug aucugcugge aucuugcagu u

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 81

LENGTH: 28

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

23

Synthetic

22

Synthetic

25

Synthetic

22

Synthetic

19

Synthetic

31

Synthetic
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87

-continued

88

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 81

cuggcagaau ucgauccace ggcuguuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 82

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 82

cagcaguagu ugucaucuge uc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 83

LENGTH: 19

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 83

ugauggggug guggguugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 84

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 84

aucugcauua acacccucua gaaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 85

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 85

ceggouguuce aguuguucug aggc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 86

LENGTH: 28

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 86

aucugcauua acacccucua gaaagaaa

<210> SEQ ID NO 87

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

28

Synthetic

22

Synthetic

19

Synthetic

25

Synthetic

24

Synthetic

28
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89

90

-continued
<211> LENGTH: 28
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 87

gaaggagaag agauucuuac cuuacaaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 88

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 88

auucgaucca ccggcuguuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 89

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 89

cagcaguagu ugucaucugc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 90

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 90

gecgguugac uucauccugu ge

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 91

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 91

cugcauccag gaacaugggu cc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 92

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 92

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

28

Synthetic

20

Synthetic

20

Synthetic

22

Synthetic

22

Synthetic
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91

-continued

92

gucugcauce aggaacaugg guc

<210> SEQ ID NO 93

<211> LENGTH: 24

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 93

guugaagauc ugauagccgg uuga

<210> SEQ ID NO 94

<211> LENGTH: 24

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 94

uacuuacugu cuguagcucu uucu

<210> SEQ ID NO 95

<211> LENGTH: 24

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 95

cacucauggu cuccugauag cgca

<210> SEQ ID NO 96

<211> LENGTH: 22

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 96

cugcaauucce ccgagucucu gc

<210> SEQ ID NO 97

<211> LENGTH: 23

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 97

acugcuggac ccauguccug aug

<210> SEQ ID NO 98

<211> LENGTH: 21

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

23

Synthetic

24

Synthetic

24

Synthetic

24

Synthetic

22

Synthetic

23
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93

-continued

94

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 98

cuaaguugag guauggagag u

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 99

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 99

uauucacaga ccugcaauuc ccc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 100

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 100

acaguggugce ugagauagua uaggec

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 101

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 101

uaggccacuu uguugcucuu gce

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 102

LENGTH: 19

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 102

uucagaggge gcuuucuuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 103

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 103

gggcaggceca uuccuccuuc aga

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

21

Synthetic

23

Synthetic

26

Synthetic

22

Synthetic

19

Synthetic

23
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95

-continued

96

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 104

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 104

ucuucagggu uuguauguga uucu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 105

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 105

cugggcugaa uugucugaau aucacug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 106

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 106

cuguuggcac augugaucce acugag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 107

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 107

gucuauaccu guuggcacau guga

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 108

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 108

ugcuuucugu aauucaucug gaguu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 109

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

24

Synthetic

27

Synthetic

26

Synthetic

24

Synthetic

25

Synthetic
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97

-continued

98

<400> SEQUENCE: 109

ccuccuuucu ggcauagacc uuccac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 110

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 110

ugugucauce auucgugcau cucug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 111

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 111

uuaaggccuc uugugcuaca ggugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 112

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 112

gggccucuuc uuuagcucuc uga

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 113

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 113

gacuuccaaa gucuugcauu uc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 114

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 114

gccaacaugc ccaaacuucc uaag

<210> SEQ ID NO 115

<211> LENGTH: 26

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

26

Synthetic

25

Synthetic

25

Synthetic

23

Synthetic

22

Synthetic

24
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99

100

-continued
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 115

cagagauuuc cucagcuccg ccagga

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 116

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 116

cuuacaucua gcaccucaga g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 117

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 117

uccgccaucu guuagggucu gugcece

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 118

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 118

auuuggguua uccucugaau gucgc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 119

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 119

cauyaccucuu cauguaguuc cc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 120

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 120

cauuugagcu gcguccaccu ugucug

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

26

Synthetic

21

Synthetic

25

Synthetic

25

Synthetic

22

Synthetic

26
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101

-continued

102

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 121

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 121

uccugggcag acuggaugcu cuguuc

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 122

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 122

uugccuggge uuccugagge auu

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 123

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 123

uucugaaaua acauvauaccu gugc

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 124

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 124

uaguuucuga aauvaacauvau accug

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 125

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 125

gacuugucaa aucagauugg a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 126

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

Synthetic

26

Synthetic

23

Synthetic

24

Synthetic

25

Synthetic

21

Synthetic
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103

-continued

104

<400> SEQUENCE: 126

guuucugaaa uaacauauvac cugu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 127

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 127

caccagaaau acauaccaca

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 128

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 128

caaugauuua gcugugacug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 129

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 129

cgaaacuuca uggagacauc uug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 130

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 130

cuuguagacyg cugcucaaaa uuggc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 131

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 131
caugcacaca ccuuugcucc
<210> SEQ ID NO 132

<211> LENGTH: 24
<212> TYPE: RNA

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

24

Synthetic

20

Synthetic

20

Synthetic

23

Synthetic

25

Synthetic

20
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105

106

-continued
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 132

ucuguacaau cugacgucca gucu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 133

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 133

gucuuuauca ccauuuccac uucagac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 134

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 134

ccgucugouu uuucuguaca aucug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 135

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 135

uccauaucug uagcugccag cc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 136

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 136

ccaggcaacu ucagaaucca aau

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 137

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 137

uuucuguuac cugaaaagaa uuauaaugaa

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

24

Synthetic

27

Synthetic

25

Synthetic

22

Synthetic

23

Synthetic

30
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107

-continued

108

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 138

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 138

cauucauuuc cuuucgcauc uuacg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 139

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 139

ugaucucuuu gucaauucca uaucug

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 140

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 140

uucagugaua uagguuuuac cuuuccccag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 141

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 141

cuguagcuge cagccauucu gucaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 142

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 142

ucuucugcuc gggaggugac a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 143

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

25

Synthetic

26

Synthetic

30

Synthetic

26

Synthetic

21

Synthetic
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109

-continued

110

oligonucleotide

<400> SEQUENCE: 143

ccaguuacua uucagaagac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 144

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 144

ucuucaggug caccuucugu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 145

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 145

ugugaugugg uccacauucu gguca

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 146

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 146

ccauguguuu cugguauucc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 147

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 147

cguguagagu ccaccuuugg gcgua

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 148

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 148
uacuaauuuc cugcaguggu cacc

<210> SEQ ID NO 149
<211> LENGTH: 24

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

20

Synthetic

20

Synthetic

25

Synthetic

20

Synthetic

25

Synthetic

24
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111

112

-continued
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 149

uucuguguga aauggcugca aauc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 150

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 150

ccuucaaagyg aauggaggcec

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 151

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 151

ugcugaauuu cagccuccag ugguu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 152

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 152

ugaagucuuc cucuuucaga uucac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 153

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:
Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400>

SEQUENCE: 153

cuggcuuucu cucaucugug auuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 154

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

24

Synthetic

20

Synthetic

25

Synthetic

25

Synthetic

24

Synthetic

Human 2'-O-methyl phosphorothiocate antisense oligonucleotide

<400> SEQUENCE: 154

guuguaaguu gucuccucuu

20
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113

-continued

114

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 155

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 155

uugucuguaa cagcugcugu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 156

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 156

gcucuaauac cuugagagca

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 157

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 157

cuuugagacc ucaaauccug uu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 158

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 158

cuuuauuuuc cuuucaucuc ugggc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 159

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 159

aucguuucuu cacggacagu gugcugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 160

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

20

Synthetic

20

Synthetic

22

Synthetic

25

Synthetic

27

Synthetic
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115

-continued

116

oligonucleotide

<400> SEQUENCE: 160

gggcuuguga gacaugagug auuu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 161

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 161

accuucagag gacuccucuu gc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 162

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 162

uauguguuac cuacccuugu cgguc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 163

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 163

ggagagagcu uccuguagcu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 164

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 164

ucacccuuuc cacaggceguu gca

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 165

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 165
uuugugucuu ucugagaaac

<210> SEQ ID NO 166
<211> LENGTH: 20

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

24

Synthetic

22

Synthetic

25

Synthetic

20

Synthetic

23

Synthetic

20
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117

118

-continued
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 166

aaagacuuac cuuaagauac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 167

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 167

aucugucaaa ucgccugcag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 168

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 168

uuaccuugac uugcucaagc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 169

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 169

uccagguuca agugggauac

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 170

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 170

geucuucugg gcuuauggga gcacu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 171

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 171

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

20

Synthetic

20

Synthetic

20

Synthetic

20

Synthetic

25

Synthetic
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119

-continued

120

accuuuaucce acuggagauu ugucugc

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 172

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 172

uuccaccagu aacugaaaca ¢

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 173

LENGTH: 29

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 173

ccacucagag cucagaucuu cuaacuucc

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 174

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 174

cuuccacuca gagcucagau cuucuaa

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 175

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 175

gggauccagu auacuuacag gcucce

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 176

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

SEQUENCE: 176

accagaguaa cagucugagu aggagc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 177

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

27

Synthetic

21

Synthetic

29

Synthetic

27

Synthetic

25

Synthetic

26

Synthetic
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121

-continued

122

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 177

cucauvaccuu cugcuugaug auc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 178

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 178

uucuguccaa gcccgguuga aauc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 179

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 179

acaucaagga agauggcauu ucuaguuugg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 180

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 180

acaucaagga agauggcauu ucuag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 181

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 181

cuccaacauc aaggaagaug gcauuucuag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 182

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 182

aucauuuuuu cucauaccuu cugcu

<210> SEQ ID NO 183

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

23

Synthetic

24

Synthetic

30

Synthetic

25

Synthetic

30

Synthetic

25
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123

124

-continued
<211> LENGTH: 36
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 183

aucauuuuuu cucauvaccuu cugcuaggag cuaaaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 184

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 184

cacccaccau cacccucugu g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 185

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 185

aucaucucgu ugauauccuc aa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 186

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 186

uccugcauug uugccuguaa g

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 187

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 187

uccaacuggg gacgccucug uuccaaaucc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 188

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 188

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

36

Synthetic

21

Synthetic

22

Synthetic

21

Synthetic

30

Synthetic
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125

-continued

126

acuggggacg ccucuguucc a

<210> SEQ ID NO 189

<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 189

ccguaaugau uguucuagec

<210> SEQ ID NO 190

<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 190

uguuaaaaaa cuuacuucga

<210> SEQ ID NO 191

<211> LENGTH: 25

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 191

cauucaacug uugccuccgg uucug

<210> SEQ ID NO 192

<211> LENGTH: 24

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 192

cuguugccuc cgguucugaa ggug

<210> SEQ ID NO 193

<211> LENGTH: 31

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 193

cauucaacug uugccuccgg uucugaaggu g

<210> SEQ ID NO 194

<211> LENGTH: 21

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

21

Synthetic

20

Synthetic

20

Synthetic

25

Synthetic

24

Synthetic

31
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127

-continued

128

<223> OTHER INFORMATION: Description of Artificial Sequence:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 194

uacuaaccuu gguuucugug a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 195

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 195

cugaaggugu ucuuguacuu caucc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 196

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 196

uguauaggga cccuccuuce augacuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 197

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 197

cuaaccuugyg uuucugugau uuucu

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 198

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 198

gguaucuuug auacuaaccu ugguuuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 199

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400> SEQUENCE: 199

auucuuucaa cuagaauvaaa ag

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

21

Synthetic

25

Synthetic

27

Synthetic

25

Synthetic

27

Synthetic

22
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129

-continued

130

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 200

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 200

gauucugaau ucuuucaacu agaau

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 201

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 201

aucccacuga uucugaauuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 202

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 202

uuggcucugg ccuguccuaa ga

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 203

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 203

cucuuuucca gguucaagug ggauacuagce

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 204

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 204

caagcuuuuc uuuuaguugc ugcucuuuuc ¢

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 205

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

25

Synthetic

20

Synthetic

22

Synthetic

30

Synthetic

31

Synthetic
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131

-continued

132

<400> SEQUENCE: 205

uauucuuuug uucuucuagce cuggagaaag

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 206

LENGTH: 28

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 206

cugcuuccuc caaccauvaaa acaaauuc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 207

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 207

ccaaugccau ccuggaguuc cuguaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 208

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 208

uccuguagaa uacuggcauc

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 209

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide

<400> SEQUENCE: 209

ugcagaccuc cugccaccge agauuca

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 210

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 210

cuaccucuuu uuucugucug

<210> SEQ ID NO 211

<211> LENGTH: 20

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

30

Synthetic

28

Synthetic

26

Synthetic

20

Synthetic

27

Synthetic

20



US RE47,769 E

133

134

-continued

<220>
<223>

FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 211

uguuuuugag gauugcugaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 212

LENGTH: 84

TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

Human 2'-0O-methyl phosphorothiocate antisense
oligonucleotide
<400>

SEQUENCE: 212

cagcaguagu ugucaucugce ucaacuggca gaauucgauc caccggcugu ucaagcecuga

geugaucuge ucgcaucuug cagu

<210>
<211>
<212>
<213>

SEQ ID NO 213

LENGTH: 44

TYPE: RNA

ORGANISM: Homo sapiens
<400>

SEQUENCE: 213

ucaugcacug agugaccucu uucucgcagg cgcuagcugg agea

<210>
<211>
<212>
<213>

SEQ ID NO 214

LENGTH: 22

TYPE: RNA

ORGANISM: Homo sapiens
<400>

SEQUENCE: 214

ccgugcagac ugacggucuc au

OTHER INFORMATION: Description of Artificial Sequence:

OTHER INFORMATION: Description of Artificial Sequence:

Synthetic

20

Synthetic

60

84

44

22

What is claimed is:

[1. An isolated antisense oligonucleotide of 30 to 50
nucleotides in length comprising SEQ ID NO: 181, wherein
the uracil bases are optionally thymine bases.]

[2. The antisense oligonucleotide of claim 1, wherein the
antisense oligonucleotide comprises a non-natural back-
bone.]

[3. The antisense oligonucleotide of claim 1, wherein the
antisense oligonucleotide is chemically linked to one or
more moieties or conjugates that enhance the activity, cel-
Iular distribution, or cellular uptake of the antisense oligo-
nucleotide.]

[4. The antisense oligonucleotide of claim 1, wherein the
antisense oligonucleotide does not activate RNase H.]

[5. The antisense oligonucleotide of claim 2, wherein the
sugar moieties of the oligonucleotide backbone are replaced
with non-natural moieties.]

[6. The antisense oligonucleotide of claim 5, wherein the
non-natural moieties are morpholinos.]

[7. The antisense oligonucleotide of claim 6, wherein the
uracil bases are thymine bases.]

[8. The antisense oligonucleotide of claim 1, wherein the
inter-nucleotide linkages of the oligonucleotide backbone
are replaced with non-natural inter-nucleotide linkages.]

[9. The antisense oligonucleotide of claim 8, wherein the
non-natural inter-nucleotide linkages are modified phos-
phates.]

40

45

50

55

60

65

[10. The antisense oligonucleotide of claim 9, wherein the
modified phosphates are methyl phosphonates, methyl phos-
phorothioates, phosphoromorpholidates, phosphoropiper-
azidates or phosphoroamidates.]

[11. The antisense oligonucleotide of claim 10, wherein
the modified phosphates are phosphoroamidates.]

[12. The antisense oligonucleotide of claim 1, wherein the
sugar moieties of the oligonucleotide backbone are replaced
with non-natural moieties and the inter-nucleotide linkages
of the oligonucleotide backbone are replaced with non-
natural inter-nucleotide linkages.]

[13. The antisense oligonucleotide of claim 12, wherein
the non-natural moieties are morpholinos and the non-
natural internucleotide linkages are modified phosphates.]

[14. The antisense oligonucleotide of claim 13, wherein
the modified phosphates are methyl phosphonates, methyl
phosphorothioates, phosphoromorpholidates, phospho-
ropiperazidates or phosphoroamidates.]

[15. The antisense oligonucleotide of claim 14, wherein
the modified phosphates are phosphoroamidates.]

[16. The antisense oligonucleotide of claim 15, wherein
the uracil bases are thymine bases.]

[17. The antisense oligonucleotide of claim 16, wherein
the antisense oligonucleotide is chemically linked to one or
more moieties or conjugates that enhance the activity, cel-
Iular distribution, or cellular uptake of the antisense oligo-
nucleotide.]
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[18. The antisense oligonucleotide of claim 10, wherein
the modified phosphates are phosphoromorpholidates.]

[19. The antisense oligonucleotide of claim 14, wherein
the modified phosphates are phosphoromorpholidates.]

[20. The antisense oligonucleotide of claim 1, wherein the
antisense oligonucleotide is 30 nucleotides in length.]

[21. The antisense oligonucleotide of claim 20, wherein
the uracil bases are thymine bases.]

22. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length

comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

a pharmaceutically acceptable carrier or diluent;

wherein the injectable solution is formulated for intrave-

nous administration.

23. The injectable solution of claim 22, wherein the
pharmaceutically acceptable carrier or diluent comprises
an isotonic saline solution.

24. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length

comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

phosphate-buffered saline;

wherein the injectable solution is formulated for intrave-

nous administration.

25. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length

comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

a pharmaceutically acceptable carrier or diluent;

wherein the injectable solution is formulated for parent-

eral administration.

26. The injectable solution of claim 25, wherein the
pharmaceutically acceptable carrier or diluent comprises
an isotonic saline solution.

27. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length

comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and
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phosphate-buffered saline;

wherein the injectable solution is formulated for parent-
eral administration.

28. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length
comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

a pharmaceutically acceptable carrier or diluent;

wherein the injectable solution is formulated for intra-
muscular administration.

29. The injectable solution of claim 28, wherein the

pharmaceutically acceptable carrier or diluent comprises

an isotonic saline solution.

30. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length
comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

phosphate-buffered saline;

wherein the injectable solution is formulated for intra-
muscular administration.

31. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length
comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

a pharmaceutically acceptable carrier or diluent;

wherein the injectable solution is formulated for subcu-
taneous administration.

32. The injectable solution of claim 31, wherein the

pharmaceutically acceptable carrier or diluent comprises

an isotonic saline solution.

33. An injectable solution comprising:

an antisense oligonucleotide of 30 nucleotides in length
comprising the base sequence 5-CUCCAACAU-
CAAGGAAGAUGGCAUUUCUAG-3' (SEQ ID NO:
181), in which the uracil bases arve thymine bases,
wherein the antisense oligonucleotide is a morpholino
antisense oligonucleotide, and wherein the antisense
oligonucleotide is chemically linked to a polyethylene
glycol chain; and

phosphate-buffered saline;

wherein the injectable solution is formulated for subcu-
taneous administration.
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