
United States Statutory Invention Registration (19)

Peterson

(54) METHOD AND APPARATUS FOR
PROCESSING BINARY-CODED/PACKED
DECMAL, DATA

Ralph W. Peterson, 6S556 Sussex
Rd., Naperville, Ill. 60540

Appl. No.: 2,428
22 Filed: Jan. 12, 1987
Sli Int. Cl." G06F 1/00; G05F 7/50
S2) U.S. C. 364/200; 364/771
s S6) References Cited

U.S. PATENT DOCUMENTS
3,937.94 2/1976 Zemel et al. 233/159

FOREIGN PATENT DOCUMENTS
330336 8/1983 Fed. Rep. of Germany .
2115962 9/1983 United Kingdom.

OTHER PUBLICATIONS
R. Zaks, Programming the 280 (Sybex, 1982) pp.
107-13, 236-237.
J. A. Otto, "Predicting Potential COBOL Performance
on Low Level Machine Architectures," SIGPLAN
Notices, vol. 20, No. 10.
R. K. Richards, Arithmetic Operation in Digital Con
puters (D. Van Nostrand Co. 1955), pp. 209-285.
G. Chroust, "Method of Adding Decimal Numbers by
Means of Binary Arithmetic", IBM Technical Disclosure
Bulletin, vol. 23, No. 10 (3-81).
D. R. Hicks et al., "Multidigit Decimal Addition and
Subtraction", IBM Technical Disclosure Bulletin, wol. 9,
No. 1 1 (4-77),

76) Inventor:

Primary Examiner-Stephen C. Buczinski

H472
May 3, 1988

(11) Reg. Number:
(43) Published:

Assistant Examiner-Linda J. Wallace

(57) ABSTRACT
A system (FIG. 1; FIGS. 18-19) performs addition or
subtraction of packed, or binary-coded-decimal (BCD),
values. Each BCD digit is stored in a nibble (500) of a
register (400, 401). The least-significant bits (LSE3s)
(502) of corresponding nibbles of the registers are exci
sive-ORed and results are stored in a third register (402)
(FIG. 4 or 9). For addition, the registers' binary valucs
are summed, six is added to each nibble of the sum using
binary addition, and results are stored in one register
(401) (FIG. 5). For subtraction, the registers' binary
values are subtracted, and the results are stored in one
register (401) (FIG. 10). The LSB of each nibble of the
one register is compared with the corresponding exclu
sive-OR value from the third register (FIG. 6 or 11).
For every comparison that indicates equality for addi
tion, and that indicates inequality for subtraction, six is
subtracted using binary subtraction from the value of
the one register's nibble that precedes the compared
values' corresponding nibble in the registers (FIGS. 6-7
or 11-12).

52 Clains, 15 Drawing Sheets

A statutory invention registration is not a patent. It has
the defensive attributes of a patent but does not have the
enforceable attributes of a patent. No article or advertise
neat or the like may use the term patent, or any term
suggestive of a patent, when referring to a statutory in
vention registration. For more specific information on the
rights associated with a statutory invention registration
see 35 U.S.C. 157,

H472 Sheet 1 of 15 May 3, 1988 U.S. Patent

U.S. Patent May 3, 1988 Sheet 2 of 15 H472
FIG 2 START r2OO

20

RECEIVE EMPLOYEE IDENTIFICATION

2O2

RECEIVE NUMBER OF REGULAR HOURS WORKED BY EMPLOYEE

2O3

RECEIVE NUMBER OF OVERTIME HOURS WORKED BY EN1PLOYEE

204

ACCESS EPLOYEE FIUE TO OBTAIN STANDARD HOURLY
RATE OVERTIME RATE AND PAYROL DEDUCTIONS

205

MULTIPLY REGULAR HOURS BY STANDARD RATE
TO OBTAIN STANDARD PAY

20 6

MULTIPLY OVERTIME HOURS BY OVERTE RATE
TO OBTAN. OVERTIME PAY

7

ADO OVERTE PAY TO STANDARD PAY
TO OBTAIN GROSS PAY

SU8TRACT DEDUCTIONS FROM GROSS PAY
TO OBTAN NET PAY

2OS

SUBTRACT NET PAY FRO1 PAYROLL ACCOUNT BALANCE -

2 O

PRINT CHECK TO E-1PLOYEE FOR NET PAY

U.S. Patent May 3, 1988 Sheet 3 of 15 H472

FIG 3

ADD WAR A, WAR B

301

EXCLUSIVE-OR LEAST SIGNIFICANT BIT OF EACH DIGIT
FIELD OF REGISTER A WITH LEAST SIGNIFICANT BIT OF

CORRESPONDING DIGIT FIELD OF REGISTER B,
STORE RESULT IN REGISTER C

3O2

ADD 6 TO EACH DIGIT FELD OF REGISTER A ;
STORE RESULT IN REGISTER A

303

ADD BINARY CONTENTS OF REGISTER A
TO BINARY CONTENTS OF REGISTER B,

STORE RESULT IN REO STER B, SAVE CARRY

COPARE THE VALUE OF THE LEAST SIGN F CANT BIT
OF EACH DCT FELD OF REGISTER 8 WITH THE VALUE

OF THE CORRESPOND:NG BT OF REGISTER C

305

FOR EVERY COPARISON INDICATING EQUALITY, SUBTRACT
S FRO THE DIGIT FELD THAT PRECEDES THE
CORRESPONDING DIGIT FELD IN REGISTER B;

STORE RESULT IN REGISTER 8

30S

F No CARRY, SUTRACT 6 FROM THE MOST
SIGNIFICANT DIGIT FELD OF REGISTER B,

STORE REGULT IN REC SER 9

U.S. Patent May 3, 1988 Sheet 4 of 15 H472
SOO

SO SO SO SO

SOO SO SO2 SO SO2

8 63 & &

REC A

H472 Sheet S of 15 May 3, 1988 U.S. Patent

FIG S

OMS O/6 OMG

-40 REO B

FIG 7

U.S. Patent May 3, 1988 Sheet 6 of 15 H472

FIG - B

SUB VAR A, VAR B

8 Ol

EXCLUSIVE-OR LEAST S GNIFICANT BIT OF EACH DIGIT
FIELD OF REGISTER A WITH EAST SIGNIFICANT BIT OF

CORRESPONDING DIGIT FELD OF REGISTER B,
STORE RESULT IN REGISTER c

BO2

SUBTRACT BINARY CONTENTS OF REGISTER B
FROM BINARY CONTENTS OF REGISTER A;

STORE RESULT IN REGISTER B; SAVE CARRY

303

CONPARE THE VALUE OF THE LEAST S GNIFICANT BIT
OF EACH D G T FED OF REGISTER B WITH THE VALUE

OF THE CORRESPONDING BT OF REGISTER C

B04

FOR EVERY COPARISON INDICATING NEQUALITY,
SUBTRACT 6 FROM THE DOT FIELD THAT PRECEDES
THE CORRESPONDING D G T FIELD IN REGISTER B,

STORE RESULT IN REGISTER B

BOS

1F CARRY, SUBTRACT 6 FROM THE MOST
SONIFCANT D G T FED OF REGISTER B,

STORE RESULT IN REGISTER B

U.S. Patent May 3, 1988 Sheet 7 of 15 H472
SOO

SO SO SO SO
SOO SO SO2 SO SO2

REG. A essee's so S-100
3. (3 3. 3.

REO B 'i's else's at 5-40

sea c | | | -102

REo a -10.

REO B -40

H472 Sheet 8 of 15 May 3, 1988 U.S. Patent

REG C

1 FIG.

S/O S/O S/O SMO

-10 REC B

12 FIG.

U.S. Patent May 3, 1988 Sheet 9 of 15 H472
FIG 13

ADD WAR A, VAR 8 3OO

30
OBTAN VARIABLE SONS

1302 3O3

yd GO TO F
(FIG. 15)

Go) SAVE WAR A SIGN R-131 O

13t

OVE VAR A-REGS A AND
ALIGN DECIMAL POINT POSITION

1312

Move war B-REGs B AND ALIGN DECIAL POINT POSITION
3 3

3 4

REO A8 REO Bi-REO Ci

REO A+ c--REO A.

REO at Ox6666-REO B
13

REo A+REO Bi-REO Bi
38

save c

(e) CA) (F.O. 14)

U.S. Patent May 3, 1988 Sheet 10 of 15 H472
(B) (Fig. 13) (a) FIG 4

32

REG 88 REG C-REG C

323

REG Cia Ox O-REG Ci

324

REG C+1 - REG Ci

ROT (REG ci). RIGHT BY 3-REG C.
327

REG B-REG C-REG B
32

REG C+REG C-REG C
1329

REO B-REG C-REO B

1330
133

NO

YES 332
APPEND SAVED SIN

1333

roVE REGS B - VAR B

CRETuRNO-334

U.S. Patent May 3, 1988 Sheet 11 of 15 H472

FIG 15
400

40
OBTAN VARIABLE S GNS

COMPARE p GO TO G
WARIABLE (FIG. 3)
SCNS

14 O
OBTAN VARABLES

4

VAR A2IVAR B

SAVE OPPOSITE 412
OF WAR A SIGN SAVE WAR A SON

1 4 3

roVE VAR B-REOS A
AND ALON DECAL
PONT POSITION

OVE VAR A-REGS A
AND ALIGN DECIMAL
POINT POSITION

4 4

OVE VAR B-REGS e
AND ALGN DECMAL
PONT POSITION

OVE WAR A-REGS B
ANO ACN DECMAL
PONT POST ON

U.S. Patent May 3, 1988 Sheet 12 of 15 H472

FIG 16

49

REG A® Bi-REG Cl

U.S. Patent May 3, 1988 Sheet 13 of 15 H472
FIG 17

(E) (FIG. 16) GD)
43

YES
432

Ciar REG C+1 - REG C

life ROT (REG c) r1GHT BY 3-REG ci
4. 3 4

REG B-REG C-REO B
4. 3. S

REG C+REG C-REG Cl
4 3 G

REG B-REG C-REO Bi

437
43B

NO <CS
YES 43s

1440

roVE REGS b-var B

CRETURNO-44

FG, 2O

H472

º l º 9 I -|

Sheet 14 of 15

|

---- - - - - - - - ==|------~--~~

U.S. Patent

H472 Sheet 15 of 15 May 3, 1988 U.S. Patent

*== ** = = = = = = = = = = =

H472
1.

METHOD AND APPARATUS FOR PROCESSING
BINARY CODEDMPACKED DECMA, DATA

TECHNICAL FIELD

The invention is directed to the field of general pur
pose digital computers in general, and in particular
concerns the efficient processing in such computers of
data represented in binary-coded, or packed, decimal
form and other non-base-2 forms.

BACKGROUND OF THE INVENTION
The COBOL programming language defines a binary

coded decimal data type, which encodes each decimal 15
digit in binary form as a separate character. The tradi
tional decimal data type has been the "unpacked", or
ASCII, form, wherein commonly eight bits are used to
represent each decimal digit: four bits to hold the value
of the digit, and the other four bits to hold a code ident- 20
fying the character as representing a digit.
This form of the decimal data type is inefficient. It

consumes eight bits to hold only a four-bit value, and
hence is wasteful of memory. The large number of bits
that must be moved each time a digit is moved inside a 25
processor also adversely impacts system performance.
To avoid such inefficiency, a "packed" form of the
decimal data type had subsequently been developed,
which discards the code-bolding bits and merely retains
the four value-holding bits of the "unpacked
"packed" form is also known as the "binary-coded decis

", or BCD, form; "packed" is often used to refer to
signed BCD, whereas BCD is typically considereditobe
unsigned, i.e., a magnitude.
Because not digital computers are binary computers'

that perform binary, as opponed to decimal, operations,
it has conventionally been necessary decimal
data into binary databefore processing, such as arithmer
tic operations, could be performed on that data on most
computers. But the conversion is time-constalag and
impacts adversely system performance. A cheme was
developed that allowed arithmedo operations to be
performed on the tinpacked decimal digits withoutCode
version. But this cheme
code-holding bits for bit and teaporary
storage purposes. Hence, it is not usable with the
packed decanal form.
The prior art has attempted to a scheme that

would allow processing of packed decimal
rectly, without conversion to either the tinpacked decks
mal or binary form. The results have been disappoint
ing. The scheme requires that special hardware be press
ent in a computer for its support, henoe, the cheae is

form. The 30

disit do so

2
units introduce undesirable performance-robbing delays
into the operation of the arithmetic and logic units.

In summary, then, problems in the art are the lack of
a scheme for processing packed decimal data directly,
without need for conversion to a different data type, on
computers providing no special hardware support
therefor, and the lack of a hardware-supported Schene
for directly processing packed decimal data that is eff
cient in terms of both cost and performance.

SUMMARY OF THE INVENTION
This invention is directed to solving these and other

problems of the art. According to the invention, combi
natorial processing of binary-coded-decimal values,
which take the form of two signals each having sequen
tially-ordered data fields each of which includes a plu
rality of bits-including a least-significant bit-that
define a BCD value, is as follows. If the desired process
ing involves adding the BCD values defined by the two
signals, the binary values of the data fields of the same
sequential order are summed with each other and with
a value that comprises a plurality of sixes, one six for
data fields of the same sequential order. If the desired
processing involves subtracting the BCD values, the
binary values of the data fields of the same sequential
order are subtracted one from the other. Both cases
yield a resultant signal that defines a value which repre
sents the result of the performed operation (addition or
subtraction). The resultant signal has a plurality of data
fields ordered correspondingly to the data fields of the
initial two signals, and each field includes a plurality of
it, including a least-significant bit. Values of least-sig

nificant bits of data fields of the same sequential or
der-illustratively of all data fields but those of the least
significance in the sequential order-of the initial two
signals and of the resultant signal are examined. For
every examination of least-significant bit values that
include an odd number of zeros in the case of the addi
tion operation, and for every examination of least-sig
nificant bit values that include an odd number of ones in
the case of the subtraction a six is subtracted
from the value of the resultant signal's data field that

the coapared values in the sequential order of precedes
required the presence of the saata fields. The vilues of the data fields of the resultant

signal now represent the BCD values that are the coin
bination-sun or difference-of the BCD values of the
initial two signals.

Furthermore, a determination is illustratively made
whether the sunning or difference operation that pro
duced the resultant signal yielded a carry. If the desired
processing involves addins the BCD values of the re
ceived two signals, a six is subtracted from the value of
the most significant data field of the resultant signal if a

not suited for use on general purpong computers that doss carry a determined not to have been yielded. If the
not provide that special hard
more, the schene is Caber one and ineficient, and

benefits of thereby negates a large measure the ts of ine
proved system performance that were sought to be
achieved thereby.

computers effectively provide arithmetic and separate
logic tunits for the decimal and binary data type. Such 63
duplication is very expensive. And attempts at avoiding

support. Furthers desired processins involves subtracting the BCD val
tes, as is subtracted from the value of the most signifi
cant data field of the resultant signal if a carry is deter
mined to have been yielded.

60 he decimal values are without conversion
thereof to a different data type, yet all of the operations
performed on the decimal values are operations whose
performance lies within the capability of a binary gen:
eral purpose computer, Hence, the processing may be
performed on computers having no hardware support
for decimal data type processing. Consequently, a sys

complete duplication of arithmetic and logic unit hard- ten for combinatorily processing decimal values may
ware by hiring hardware components between the be based on such computerk

H472
3

Also, providing that its registers and arithmetic and
logic unit have a width, in terms of bits, greater than the
width of a coded decimal digit, the computer is able to
process a plurality of decimal digits in parallel. Process
ing of decimal digits may consequently be accomplished
much faster than if each decimal digit had to be pro
cessed sequentially,

Furthermore, hardware support may be provided in a
computer for performing the processing-particularly
the comparison, carry-checking, and sixes-subtraction
operations-which enables the processing to be per
formed very quickly and efficiently. The hardware
support is structurally simple, and easy to incorporate
into existing computer designa. It thus avoids the come
plexity of structure and function, and hence the cumber
someness and cost, of preceding attempts at hardware
assisted BCD processing.

In an illustrative embodiment, for purposes of ease of
implementation, comparing of least-significant bits of
the signals is replaced by exclusive-ORing of binary
values of the least-significant bits of data fields of the
same sequential order, to obtain exclusive-OR values
each corresponding with data fields of different sequene
tial order, and the values of least-significant bits of data
fields of the resultant signal are compared each with the
corresponding exclusive-OR value. Then, for every
comparison indicating equality in the case of the addie
tion and for every comparison indicating
inequality in the case of the subtraction operation,
is subtracted from the value of the resultant signa's data
field that precedes the compared values in the sequen
tial order of data fields.
Method and hether of resource allocate

tion, Code corn or computer operation-inco"
cording to the invention a characterized above need
not be limited to processing of BCD values, but may be
applied to processing of values having a base other than
ten. Aasunning that binary-coded base-(2n) values take
the form of signals each having a plurality of
ly-ordered data fields each one of which includes a bits,
where m and in are positive integers such that 2">2n,
the processing as described above holds true with the
exception that the sixes recited in the
replaced with values equal
and apparatus of the invention thus have general appli
cability to the processing of non-binary value, yet re
tain the full spectrum of their advantages with respect
to non-decimal even-radis Ruanbers.
These and other and features of the press

ent invention will become apparent from the following
description of an illustrative eabodiment of the invene
tion taken together with the drawing.

BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a block diagram of an illustrative computer

system including an embodiment of the invention;
F.O. 2 is a flow diagram of a resource allocation

function performed by the system of FIG. 1;
FIG. 3 is a flow diagram

BCD value summation process performed by the sys
ten of FIG. illustratively as part of performance of
the function of G. 2;

FIGS. 4-7 are block diagrams of register, manipular
tions occurring in the system
quence of the performance of the of FIG, 3;
FO,) is a diagram of the logical function of a

BCD difference-producing process performed by the

O

S

20

23

six so

39

sequential to

description
to (2-2n). The method is

4.
system of FIG. 1 illustratively as part of performance o
the function of FIG. 2;
FIGS. 9-12 are block diagrams of register manipula

tions occurring in the system of FIG. 1 as a conse
quence of the performance of the process of FIG. 8;
FIGS. 13-17 are flow diagrams of code for the pro

cesses of FIGS, 3 and 8 compiled by the compiler of the
system of FIG. 1;
FIGS. 18-19 are a block diagram of structural addi

tions made to the CPU of the system of FIG. 1 to pro
vide hardware support therein for the processes o
FIGS. 3 and 8; and
FG, 2.0 is a composite showing the arrangement o

FIGS. 18-19 to form a single diagram.
DETALED DESCRIPTION

F.G. 1 is a block diagram of a general purpose com
puter programmed to perform business functions, in
cluding resource allocation functions, such as payrol
functions. Such computers and programs therefor ar.
well known in the art. The computer comprises a pro
cessor 12 that performs data processing functions. Pro
cessor 12 includes a central processing unit (CPU) 1:
which performs operations on data 19 stored in a mem
ory 16 according to program instructions 17 also storec
in memory 16. A terminal 11 connected to processor 1.
is used to provide data and control input to processo:
12. A printer 13 connected to processor 12 is used to

results of data processing functions from proces
O
An illustrative example of a conventional payrol

function performed by the computer of FIG. 1 is flow
charted in FG, 2 and is described next in conjunctio
with FIG.1. A terminal 11 operator (not shown) direct
processor 12 to execute the payroll program, and the
takes employee time cards 10 and enters information
therefron into the computer via terminal 11. Alterna
tively, information from the time cards may be read int.

by means of a card reader (not shown)

yroll program begins to execute on processo
200, Processor 12 receives the employe

identification, the number of regular hours worked, an
umber of overtime hours worked that have bee

entered on terminal 11, at steps 201-203, respectively
Processor 12 then identified employee's file in menor

SO 16 to obtain information on that employee's standar

logical functions of a 60

of O. 1 as a conses 63

hourly rate of pay, the overtime rate of pay, and payro
deductions being made for that employee, at step 20
Procesaor 12 uses CPUs to multiply the regular hour
worked by the employee by the standard hourly rate t
obtain the employee's standard pay, at step 205. Proce:

12 similarly multiplies the overtime hours worke
the employee by the overtime hourly rate to obtai
employee's overtine pay, at step 205. Processor
CPUs to add the standard pay to the overtin

y to obtain the employee's gross pay, at step 20
12 tees CPU 15 to subtract the employee

deductions from the gross pay to obtain the employee
net pay, at step 208. Processor 12 then accesses in men
ory 16 the employer's payrol account balance, an
subtracts therefron the employee's net pay, at step 20
Finally, processor 12 causes printer 13 to print a pa
check18 in the employee's name in the amount of th
net pay, at step 210,

H472
5

The net result of the processing that processor 12 has
performed has been to reallocate the amount of net pay
from the employer's account to the employee. Proces
Sor 12 now checks whether input on other employees is
being received, at step 211. If so, processor 12 returns to 5
Step 201 to repeat the processing for another employee.
If not, processor 12 stops executing the program, at step
212,

Business programs, like the payroll program just
described, are very often written in the COBOL pro
gramming language, COBOL is a "high level" lan
guage: programs written in COBOL cannot be executed
by a processor directly, but must first be converted into
machine language understandable to the processor. This
conversion, called compiling, is performed by compil
ers, in a conventional and well-known manner, Illustra
tively, a compiler 18 may be a program stored in men

O

S

Data used by COBOL pro- 20
grams--such as hours worked, rate of pay, payroll bal
ance, deductions, and net pay in the example of FIG.
2-may be expressed in processor 16in packed decimal
form. But conventional processors perform binary
arithmetic, Hence, when compiler 18 encounters in a 25
COBOL program instructions to perform an arithmetic
operation-add, subtract, multiply, or divide, for exam
ple-on packed decimal data, it must convert the in
structions into one or more machine instructions. In
order to cause CPU 15 to perform an arithmetic opera- 30
tion on the packed decimal data directly, i.e., without
converting data types, compiler 18 generates code to
cause CPU 15 to performed the logical functions flow
charted in FGS. 3 and 8. Register content manipula
tions that occur as a consequence of the functions 33
shown in FIGS. 3 and are symbolically shown in the
block diagrams of FIGS 47 and 9-12, respectively,
FIG. 4 shows the function necessary to add values of

two variables, varA and var.B, of packed BCD data
type. It is assumed that varA is stored a register a 40
(rega) 400 and var.Bio stored in register b (reg.b) 401,
as shown in F.G. 4. It is also assumed that each register
400 and 401 is one 16-bit-word wide. Each register 400
and 401 comprises a plurality (four) of fields 500 each of
which comprises a plurality (four) of bits 801-302, A 45
four-bit field 500 is commonly referred to as a nibble.

res a 400 are equentially ordered accord
ing to their with respect to each other.
Fields 500 of reb 401 are y
Each field 800 stores a BCD digit. To add BCD con- so
tent of rega 400 to BCD contents of reg.b 401, the least
significant bit soof each digit field 500 is exclusively
ORed with the east

ordered.

added to the binary contents of reg.b 401 with the result
being deposited in reg.b. 401, at

steps
in FIG, ... the value of
each digit field 800 of reg.b 401
the value of the oorresponding bit of reo. 402, at
step 304 of FIG, 3, as shown in FG, G, For every cone
parison at step 30 that indicates equality of the come

6
pared bits, six is subtracted from the reg.b. 401 digit fiel
500 that precedes the digit field 500 corresponding t
the compared bits in the ordering of digit fields 500 i.
reg.b. 401, at step 305 of FIG. 3, as shown in FIGS.
and 7. If there is no carry, i.e., if the carry value saves
at step 303 is zero, six is subtracted from the most signif
icant digit field 500 of reg.b 401, at step 306 of FIG. 3
also as shown in FIGS. 6 and 7. At this point, reg.b 40
holds the BCD sum of the BCD values of the variable
previously held by rega 400 and reg.b 401.
FIG. 8 shows the functions necessary to subtract thi

BCD values of var.B from the BCD values of var.A.. I
is assumed as before that varA is stored in rega 400 and
var.B is stored in reg.b. 401, as shown in FIG. 9. First
the least significant bit 502 of each digit field 500 o
rega 400 is exclusively-ORed with the least significan
bit 502 of the corresponding digit field 500 of reg.b. 401
and the results are stored in corresponding bits 501 o
resc 402, at step 801 of FIG.8, as shown in FIG.9. The
binary contents of reg.b. 401 are then subtracted-illus
tratively through a process of2's complement addition
as is conventional on processor-from the binary con
tents of rega 400, with the results being deposited ir
reg.b. 401 and a carry being saved in carry flag 503, a
step 802 of FIG. 8, as shown in FIG, 10. The value o
the least significant bit 502 of each digit field 500 o
reg.b 401 is then compared with the value of the corre
sponding bit 902 of regic 402, at step 803 of FIG. 8, a
shown in FIG. 11. For every comparison at step 80.
that indicates inequality of the compared bits, six i:
subtracted from the reg.b 401 digit field 500 that pre
cedes the digit field 500 g to the comparec
bits in the ordering of digit fields 500 in reg.b 401, a
step 804 of FIG.9, as shown in FIGS. 11 and 12. If there
is a carry, i.e. if the saved carry value is a one, six is
subtraced from the most significant digit field 500 ol
reg.b 401, at step 805 of FIG.8, also as shown in FIGS
11 and 12. At this point, reg.b 401 holds the BCD differ,
ence of the BCD values of the variables previously held
by rega 400 and reg.b 401.

Multiplication is performed by means of repeatec
additions and field shifts, while division is performed by
means of subtractions and field shifts, as is
conventional in processors.
Code for performing activities corresponding to the

logical functions of FIGS. 3 and 8 is generated by
peration p

no hardware support for packed decimal data opera.
This code is flowcharted in FIGS. 13-14 and

While compiling a source code program, compiler 18
may encounter an instruction "ADD varA, var. B", a
step 1300, where "varA" is the name of a first variable
of the packed decimal data type and "var.B" is the name

type. Compiler 18
of the variables from their declara
compiler 18 first generates object

of the positive or negative
ign processing code is conven:

tional. For example, compiler 10 generates Code tc
obtain the signs, at step 1301, and to compare the signs,
at step 1302, Illustratively, the sign of a variable is
stored as the least significant nibble of the one or more
memory words storing the packed decimal variable
value, and compiler 18 generates code to retrieve anc
compare the values of these nibbles,

H472
7 8

For the case of the two variables being found to have subtract contents of regic from contents of reg.bt and
different signs when the object code generated at step store the result in reg.b. at step 1327.
1392 is executed, compiler 18 illustratively generates Compiler 18 generates code to add contents of reg.
object code to performa subtraction of variables of the to itself, and store the result in regc, at step 1328. Con
same sign, as suggested at step 1303, as if the encoun- 3 piler 18 next generates code to subtract contents
tered instruction had been "SUB varA, war.B. This regc from reb and store the result in reg.b. at ste
code is shown in GS 15-17 and is discussed below. 1329, Compiler is again generates code to check th
For the case of the two variables being found to have value of , it step 1330. For the case when the value

thane sign. Whis the best side speated at step i is not the maximum, which is one less than the numb 1302 is elected compler illustratively senerates 10 of register holding each of the variables A and B, cor
code to save the sign of var.A. at step 1310. . piler 18 generates code to increment the value of it Soapils then generates Code topov the var- one and to return to code generated at step 1314 f.
ables intological or physical registers of CPU15 and to align the les in the by theird point ser execution of that and subsequent code, at st
Position spad 13.The code senerated to 15 For the case when the value of i is maximum, t) pi the is is eyesavedogs addition of varA and vars completed, with

E. compiler 18 accesses the declarations of resultstored in regs by Compiler 18 therefore generat
i. to SEE. it. Conventional code to append the saved positive or neg q in it. the tive sign to the resultat step 1332, and to move t
E. tsts rention resis biba intovars in memory, st and the les, 1333. Compiler 18 then returns, at step 1334, to proce
zeros so that their decinal point positions become prope and compile another source program instruction.
erly aligned with that of the composite, and then geners When compiler encounters an instruction "SU

The gif
ing varA are referred to as resa, and register hold- varA, at step 400, compiler 18 again first general
Eagles machine code to perform processing of the signs oft g values from 0 to one-less than the maximum variables. The sign processing is, again, convention
R are: for the peopletes of description, it
variable value. , briefly described. Compiler 18 generates code to obta
To generate object code for the addition operation tPCTP sign itself, Creates a variab 1402. For the case of the two variables being found N re i s have different signs, compiler 18 generates code

and generates code to set its initial value to 0, at for an addin of variables the sign, a isit the encountered instruction had been "ADD var.
exclusive-OR Operation on rega and reb, and to store war.B. in suggested at step 1403. This code is shown
th re-C, particular registers , , C.S. 13-14 and was discussed above.
Erica. pass of CPU 15 For the case of the two variables being found to ha through the code are of contennedy the 40 the same sign wheathe Code of epis perform
Eis by compler 18 generates code to obtain the variable v

1 seaerates Code to check the value of, at tnes, at step 1410, and to compare their absolute valu
t Forecane when detentined to seen a step 14. This tests dones var-Advar-Bw
zero, compler enerates code to add the value of a binary enters of the case of var-Abeing grate carry clienerated during the precedinesecution of 4s initide Compassenerates Coolave the
i.e. of varA, at step 1412, to move varA into regs a
result in rea, at step 1916. align the decimal point position, at step 1413, and
Compiler then enerates code, for all values of, to Doy war into b and ign the decinal P

add sixto eached OO of reb and to store the result position at Esplk Stepnd diplic
in regba stepsi, Compirinatenerates code so steps and of FG, described above. For
to add content of regato content of band store case of war beinS state in side Compiler
the result in rebat 1318, and to eave the value of senerate code to save the opposite of the sign ovat
carry ceaerated by the addition, at step 1319, Nest, top to Egve vars lates and align
compler generates Code to perfora aaaclusive-OR polat at step 1416, and to move va
operation oaresband reso, and store the result in SS stores bandalisa the decimal point position, at

declina

regic at step 1. 18 generates code to thea 1
form a coalement of the contests of resoad save Aalenative to performins step
the result a resent step 172, is enerate 141417 is to always perform steps 1412-1414
code to ext na AND between each which Cnap the subsequently-generated code may re
but the lenst field SOO fresoad nona, and 80 in seneration of the Ososplenent of the des
Store the results large at step 12, ... answer, a that one compiler last snerate cod
Compter 1 accinct the value ,

of carrycatstop 12 For the case where the value of
ct is rode to
regic, and store the step s in root
valuos Erie '', botapleneat result (illustratively by checking for a tents of regoright by p and to store the result in bela a those data fields of the result that
resci, at step 1326, Compiler 18 next enerates code to more t than any data fields of the composi

H472
9 10

varA and var.B) and to 10's complement such a result in FIGS. 18-19 by the four-lead connection between
to obtain the correct result. the output port of each AIU 1500 and the input port of
Togenerate object code for the subtraction operation the associated stice of register file1502.

itself, compiler 18 creates a variable , which will be A carry output terminal of each ALU 1500 is con
used to count repeated execution of code that follows, 5 nected by a 1-bit-wide connection to a carry input ter.
and generates object code to set its initial value to 0, at minal of each "subsequent" ALU 1500. A "subsequent"
step 1418. Next, compiler 18 generates code to perform ALU 1500 is one responsible for processing the next
an exclusive-OR operation on rega and regibi and to most significant nibble 500 of a register, whereas a "pre
Store the result in regc, at step 1419. ceding" ALU 1500 is one responsible for processing the
Compiler 18 then generates code to check the value to next least significant nibble 500 of each register. The

of, at step 1420. For the case when is determined to carry output terminal of the last ALU 1500 is connected
be non-zero, compiler generates code to add the value to a carry latch 1504, Latch 1504 implements carry flag
of a carry c-t, generated during the preceding recurs 503.
sion through the code, to contents of rega and to store The modification to the conventional CPU 15 is as
the result in rega, at step 1421; to complement contents 15 follows. The least significant bit 502 leads of each of the
of reg.bt and store the result in reg.b. at step 1423; to two output ports of a slice of register file 1502 are con
add contents of regato contents of regband store the nected to inputs of an exclusive-OR gate 1505. Output
result in reg.b. at step 1424; and to save the value of of gate 1505 and an ADD/SUBINDICATOR control
carry Cseterated by this addition, at step 1425, lead are connected to the inputs of an exclusive-OR gate
For the case when it is determined to be zero by exe- 20 1506, whose outputs connected to the SELect input of

cution of code generated at step 1420, compiler 18 gene a two-to-one multiplexer 1507. Input ports of multi
erates code to subtract contents of reg.b from contents plexer 1907 are each connected to a different one of two
of regai and store the result in reg.b. at step 1427, and registers 1508 and 1509. Register 1508 permanently
to save the value of carry cigenerated by this subtrac- tores a binary 6 value, while register 1509 stores a zero
tion, at step 1428, 23 value. Output port of multiplexer 1507 is connected by

Next, for all values of, compiler 18 generates code to four leads to an input port of a two-to-one multiplexer
perform an exclusive-OR operation on reg.b. and regic 1510. The other input port and the output port of multi
and to store the result in regc, at step 1429, Compiler plexer 1510 intercepts a formerly-direct. connection
18 generates code to then perform an AND operation between an output port of a slice of register file 1502
between each but the least significant data field 500 of 30 and an input port of ALU 1500,
reg-Ci and a one and store the results in regic at step When compiling programs for a processor 12 having
1430. Compiler 18 generates code to then check the a CPU 15 modified as shown in FIGS. 18-19, compiler
value of carry C, at step 1431. For the case where the - 18 replaces all code generated at steps 1321-1329 with a
value of cone, compier 18 generates code to add one single new machine instruction, illustratively named
to regic and store the result in regic at step 1432. For 33 declaial adjust add. Similarly compiler-18 replaces all
all values of c, compiler generates code at steps code generated at steps 1429-1436 with a single new
1433-1439 that duplicates code enerated at steps machine instruction, flustratively named decimal adjust

File:E the decimal adjust add instructi Cal return, at 1441, to and Coape R- respouse to St ction, a
other source E. ter- pile 40 controtter (not shown) of CPU 15 which directs actions
A program compiled as described above, is suited for of elements of CPU15 in perfortalag operations sets to

execution oa a processor 12 that provides no special a logical "1" level the ADD/SUBTRACTINDGA
hardware re: for perfortning packed BCD opera TOR line, asserts the SELeadofech multiplexer 10 tions. Speed of those operations my be to connect the output port of aultiplexer 10 to the
improved by providing hardware support therefor, A 43 port of anticiplexer 1510, causes each slice of
suitable modification to the CPU 15 of processor 12 to file 1902 to output coatents of the nibble 500 ol
provide such supports shown surrounded by dashed . rect that it is holding at the output post connected to
lines in FIGS. 119. Only those conventional portions multiplexer 1510 and to output at the other 9PuP9
of the CPU is necessary for an understandins of the conteats of the nibble 300 of reg.bt that it is hold
structure and function of the modification are shown in 30 and causes each ALU 1500 to perform a subtract
FIGS 1-9, operation.The controller then cause the output 9?:
CPUs assumed to be the CPU of a 16-bit procese ALU isoo to be stored a the nibble 500 of reg.bt held

sor 12 CPUs procenes a paralled the bits of 16-bit by the consected resister file. 19.
wide word. CU 15 lice each word into fostit Es: 15 controller in abbless C1 comprises four dentical stages, each 93 response to decimal adjust subtract instruction arc
one of which procentaprated forbitofa word, identical to those performed for the second add
and the four s: instruction, except that the ADD/SUBRACT IND E stage effectivelyaeparate CATOR line set to a logical "O level. CPU, stage comprises in coaveatkonal arithmetic Content of latch 1504 are combined with cither the
and octant (ALU)isodecaptport of which 60 "1" addinatorioubtract signal from ADP/SB connected by four to differinutput port of TRACTINDICATORlineby eclusive OR gate 150
nibble-widelice of registerfielsoa. Registerate 1502 output of gate 1906 is thus "if there is ng carrying holds annayofregisterncluding register selected to 0 if there a carry on the addition sperattold
serve are 400,ressbornd rec 402.The out- reversed on the subtract operation. A ""gutput of sat
but (not shown) that, lateralia, connects the output register 1908 to guiltiplexer 1510, A "O" output of gat

(alia, of the 1506 causes multipleter 1507 to channel contentso
slice of register file 1502. This connection is suggested register 1509 to multiplexer 1510, Assertion of SEL lin
f each ALU 100 to the in port

H472
1.

of multiplexer 1510 causes it to couple output of multi
plexer 1507 to an input port of ALU 1500.
The least significant bits 502 of two nibbles 500 are

combined by exclusive-OR gate 1505. Output of gate
1505 is therefore a "1" only if one input is a "1" and the 3
Other input is a "0". Output of gate 1505 is combined
with the ADD/SUBTRACTINDICATOR line signal
by exclusive-OR gate 1906, in the manner described
above for latch 1504 contents
Of course, it should be understood that various IO

changes and modifications to the illustrative embodi
meat described above will be apparent to those skilled
in the art. For example, implementation of the CPU
hardware modifications may differ with the design of
the particular CPU and the technology used to imple- 15
meat the modifications. Or, the sixes may be added to an
operand before the exclusive-OR of the operands' least
significant bits is performed. Or, this exclusive-OR op
eration may be replaced by an exclusive-NOR operse
tion or any set of one or more operations that produce 20
the same result the least bits to

to process coded a formats ha other digits s
ustrative eabodaneat where

and Rare positive integers such that2>2a and als
adata eld 00. Furtheranoe, the

of

sitti 40 O r

12
data fields each of which includes a plurality of bits, including a least-significant bit, defining a
binary-coded-decimal value;

generating object code for Symming binary values of
the fields of the same sequential order and a value
comprising a plurality of sixes, one six for data
fields of the same sequential order, to get a resul
tant signal defining a value representing the result
of the summing and having a plurality of data fields
ordered correspondingly to the data fields of the
obtained signals and each including a plurality of
bits including a least-significant bit;
enerating object code for examining values of least
significant bits of data fields of the same sequential
order of the two obtained signals and the resultant
signal; and

object code for subtracting, for each ex
amination of least-significant bit values that include
an odd number of Zero, six from the value of the
data field of the resultant signal preceding the com
pared values in the sequential order of data fields,
to obtaia a modified resultant signal;

an object program comprising the gener
ated object code yields the modified resultant sig
nal defining binary-coded-decimal values repre
senting the result of the operation on the two oper
ands.

2. The method of claim further comprising the steps
generating object code for determining whether exe
in of the summing object code yielded a carry;

generating object code for subtracting six from the v
of the i data field of the resultant
signal if a carry is determined not to have been

generating object code for obtaining two signals each s different one of the Operands and
each have a plurality of equentially-ordered
data fields E, includes a plurality of
bits, including a least-significant bit, defining a

t value; object code for subtracting binary values
of the data elds of the same sequential order to a value representing

wobtaia s: es the gener ated Code t the modified resultant sig
in defining tiny-coded-desimal value repre
enting the result of the operation on the two oper
ands.

H472
13

The method of claim 3 further comprising the steps
Ot:

generating object code for determining whether exe
cution of the object code for subtracting data field
values yielded a carry and

generating object code for subtracting six from the
value of the most-significant data field of the resul
tant signal if a carry is determined to have been
yielded

5. A method of generating object-program code from
source-program code, comprising the steps of

receiving source code specifying addition of two
binary-coded-decimal operands;

identifying two registers each having contents repre
senting a different one of the operands and each 15
including a plurality of sequentially-ordered nib
bles each having a plurality of bits including a
least-significant bit, the values of the plurality of
bits of each nibble together representing a binary
coded-decimal value

generating object code for exclusive-ORing the val
ues the least-significant bits of nibbles of the same
order, to obtain in a third register a plurality of bits
each having an exclusive-OR value corresponding
with nibbles of a different order

generating object code for adding binary values rep
resented by the bits of the two registers and a value
comprising a plurality of sites, one six for each
nibble of one register, to obtain in the one register
a resultant value represented by the bits of the one 30
register

generating object code for comparing the values of
the t bits of nibbles of the one region
ter each with the value of the corresponding bit of
the third register and S

generating object code for for every
CO indicating equality, six from the value
of the nibble of the one registerpreceding the cone
pared values a the order

whereby an object program comprising the geners 40
ated object Code is for obtaining in the nibbles of
the one register binary-coded-decimal values rep
resenting the Burn of the binary-coded-decinal
values initially held by the two registers.

6. The methodofolains further comprising the steps 43
of:

generating object code for whether exee determining
cution of the object code for adding yielded a
carry and

generating object code for subtracting six from the 30
Ot abble of the one register facarry

is determined not to have been yielded.
7. A method of generating object-program code from

source-propra code, the steps of
receiving source code specifying subtraction of two 93
binary-coded-decimal operapids;

identifying two registers each
East including a plurality of sequentially-ordered abo
bles each having a plurality of bits including a 60
least-significant bit, the values of the plurality of
bits of each abble together representing a binarye
coded-decanal value generating object code for exclusive-ORing the was
ues of the least t bits of nibbles of the 69
same order to obtaia in a third register a plurality
of bits each having an exclusive-OR value corree
sponding with abbles of a different order

O

23

a locating to the
seated by

14
generating object code for subtracting binary values

represented by the bits of the two registers, to
obtain in one register a resultant value represented
by the bits of the one register;

generating object code for comparing the values of
the least-significant bits of nibbles of the one regis
ter each with the value of the corresponding bit of
the third register; and

generating object code for subtracting, for every
comparison indicating inequality, six from the
value of the nibble of the one register preceding the
compared values in the order;

whereby an object program comprising the gener
ated object code is for obtaining in the nibbles of
the one register binary-coded-decimal values rep
resenting the difference of the binary-coded-deci
mal values initially held by the two registers.

8. The method of clain 7 further comprising the steps
of:

2O generating object code for determining whether exe
cution of the object code for subtracting the two
registers' binary values yielded a carry; and

generating object code for subtracting six from the
most-significant nibble of the one register if a carry
is determined to have been yielded.

9. A method of allocating a resource to a resource
user comprising the steps of

representing two portions of the resource each by a
different signal, each signal having a plurality of
sequentially-ordered data fields each of which in
cludes a plurality of bits, including a least-signifi
cant bit, defining a binary-coded-decimal value;

sunning binary values of the data fields of the same
Sequential order and a value comprising a plurality
of sixes, one six for data fields of the same sequen
tial order, to get a resultant signal defining a value
representing the result of the summing and having
a plurality of data fields ordered correspondingly
to the data fields of the representing signals and
each including a plurality of bits including a least
significant bit;

examining values of least-significant bits of data fields
of the same sequential order of the representing
signals and the resultant signal;

for each examination of least-significant bit values
that include an odd number of Zeros, subtracting six
from the value of the data field of the resultant
signal preceding the Compared values in the se
quential order of data fields, to obtain a modified
resultant signal; and

user a portion of the resource repre
blanry-coded-decimal values defined by

the modified resultant signal.
10, The method of claim 9 further comprising the

steps of
having contents repres determining whether the step of summing yielded a

carry and
six from the value of the mostsignificant

data field of the resultant signal if a carry is deter
mined not to have been yielded.

11. A method of allocating a resource to a resource
user comprising the steps of

representing two portions of the resource each by a
different signal, each signal having a plurality of
sequentially-ordered data fields each of which in
cludes a plurality of bits, including a least-signifi.
cant bit, defining a binary-coded-decimal value;

H472
15

subtracting binary values of the data fields of the
same sequential order, to get a resultant signal
defining a value representing the result of the sub
tracting and having a plurality of data fields or
dered correspondingly to the data fields of the 5
representing signals and each including a plurality
of bits including a least-significant bit;

examining values of least-significant bits of data fields
of the same sequential order of the representing
signals and the resultant signal: O

for each examination of least-significant bit values
that include an odd number of ones, subtracting six
from the value of the data field of the resultant
signal preceding the compared values in the see
quential order of data fields, to obtain a modified 15
resultant signal; and

allocating to the user a portion of the resource repre
sented by binary-coded-decimal values defined by
the modified resultant signal.

12. he method of claim 11 further comprising the 20 steps of:
determining whether the step of subtracting data field

values yielded a carry and
subtracting six from the value of the nost-significant

data field of the resultant signal if a carry is deter- 23
mined to have been yielded.

13. A method of allocating a resource to a resource
user comprising the steps of

representing two portions of the resource each by

16
exclusive-ORing the values of the least-significa

bits of nibbles of the same order, to obtain in a thi
register a plurality of bits each having an exclusiv
OR value corresponding with nibbles of a differe
order

Subtracting binary values represented by the bits
the two registers, to obtain in one register a rest
tant value represented by the bits of the one reg:
ter

comparing the values of the least-significant bits
nibbles of the one register each with the value
the corresponding bit of the third register;

for every comparison indicating inequality, subtrac
ing six from the value of the nibble of the one regi
ter preceding the compared values in the orde
and

allocating to the user a portion of the resource repr
sented by binary-coded-decimal values contain
in the one register.

16. The method of claim 15 further comprising ti
steps of

determining whether the step of subtracting the tw
registers' binary values yielded a carry; and

Subtracting six from the value of the mostsignifica
nibble of the one register if a carry is determined
have been yielded.

17. A method of operating a digital computer f
combining two received digital signals, each having

contents of a different register, each register in- 30 plurality of sequentially-ordered data fields each
cluding a plurality of sequentially-ordered nibbles

exclusive-ORing the values of the least-significant 35
bit of nibbles of the same order, to obtain in a third

gnificant bits of 43
th the value of

the corresponding bit of the third register
for every comparison indicating equality, subtracting

six from the value of the nibble of the one register

14 feet of claim 13 further comprising the

which includes a bits including a least-significant t
and a value defined by the bits representing a binar
coded base-(2n) value, an and n being positive intege
such that 2">2a, the method comprising the steps o
Summing binary values of the data fields of the san

equential order and a plurality of values eac
equal to (2-2n), one value for data fields of til
same sequential order, to get a resultant sign
defining a value iepresenting the result of the sur
ning and having a plurality of data fields order

y to the data fields of the receiv
signals and each including n bits including a les
significant bit

comparing values of least-significant bits of data
the same sequential order of the received signs
and the resultant signal; and

for each comparison of least-significant bit values th
include an odd number of zeros, subtracting a val
equal to (2-2n) from the value of the data field
the resultant signal preceding the compared valu
in the sequential order of data fields, to obtain
the data fields of the resultant signal binary-cod
base-02a) values representing the combination
the received binary-coded base-(2n) values.

steps of SS of claim 17 wherein in equals fo deteraining whether the of adding yielded a and aequals five.
carry and step method of claim 17 further comprising t.

subtracting six from the value of the most-significant step
nibble of the one register if a carry is determined determining whether the step of summing yielded
not to have been yielded. O carry and

15. A method of Cource to a reorce a value equal to (2-2n) from the val
user comprising the step of of the nost tdata field the resultant sigr

of the resource each by
contents of a different register, each register ine
cluding a plurality of sequentially-ordered nibbles 63 combining

plurality of
which includes n bits including a least-significant

each having a plurality of bits, including a least-sis
nificant bit, and defining a binary-coded-decimal

if a carry is determined not to have been yielde
20. A method of operating a digital computer f

two received digital signals, each having
sequentially-ordered data fields each

value; and a value defined by the bits representing a bina

H472
17

coded base-(2n) value, m and n being positive integers
such that 2">2n, the method comprising the steps of

binary values of the data fields of the same sequential
order, to get a resultant signal defining a value
representing the result of the subtracting and hav
ing a plurality of data fields ordered correspond
ingly to the data fields of the received signals and

h including n bits including a least-significant
it; W

comparing values of least-significant bits of data 10
fields of the same sequential order of the received
signals and the resultant signal; and

for each corn of least-significant bit values that
include an odd number of ones, subtracting a value
equato (2-2n) from the value of the data field of 15
the resultant signal the compared values
in the sequential order of data fields, to obtain in
the data fields of the resultant signal binary-coded
base-(2n) values representing the combination of
the received

21. The method of claim 20 wherein in equals four
and n equals five.

binary-coded base-(2n) values. 2O

- 18

binary-coded-decimal value, the method comprising the
steps of
exclusive-ORing the values of the least-significant

bits of nibbles of the same order, to obtain in a third
register a plurality of bits each having an exclusive.
OR value corresponding with data fields of a dif.
ferent order

subtracting binary values represented by the bits of
the two registers, to obtain in one register a resul
tant value represented by the bits of the one regis
ter,

Comparing the values of the least-significant bits of
nibbles of the one register each with the value of
the corresponding bit of the third register; and

for every com in indicating inequality, subtract
ing a six from the value of the nibble of the one
register preceding the compared values in the or
der, to obtain in the nibbles of the one register
binary-coded-decimal values representing the dif
ference of the binary-coded-decimal values initially
held by the two registers,

26. The method of claim 25 further comprising the
22. The method of claim 20 further comprising the steps of

steps of
determining whether the step of subtracting data field 23

values yielded a carry and
subtracting a value equal to (2-2n) from the value
of the most-significant data field of the resultant
signal if a carry is determined to have been yielded.

23. A method of operating
bine contents of two each including a plurality
of sequentially-ordered nibbles each having a plurality
of bits including a least-significant bit, the values of the
plurality of bits of each nibble together representing a
binary-coded-decimal value, the method comprising the 33
steps of

exclusive-ORin the values of the least-significant

order
adding binary values represented by the bits of the
two resisters and a value comprising a plurality of
sixes, one six for each abble of one register

representing
nary-coded-decinal values initially held by the two 33
registers.

a method of claim as further compring the steps
determining whether the step of adding yielded a

six from the value of the most-significant
nibble of the one if a carry is determined

idlataloon operating Sir

fbits including E. ot t
plurality of bits of each nibble together representias a

to coin
a plurality 63

determining whether the step of subtracting the two
registers' binary values yielded a carry; and

subtracting six from the value of the most-significant
nibble of the one register if a carry is determined to
have been yielded.

27. An arrangement for generating object-program
a digital computer to come 30 code from source-program code, comprising:

first means, responsive to receipt of source code spec
ifying an operation on two binary-coded-decimal
operands, for generating object code for obtaining
two signals each representing a different one of the

and each having a plurality of sequential
ly-ordered data fields each of which includes a
plurality of bits, including a least-significant bit,
defining a binary-coded-decimal value;

Second means, we with the first means, for
generating object code for summing binary values
of the data fields of the Sane sequential order and a
value comprising a plurality of sixes, one six for
data fields of the same sequential order, to get a
resultant signal defining a value representing the
result of the summing and having a plurality of data
fields ordered gly to the data fields of
the obtained signals and each including. A plurality
of bits including a least-significant bit;

third means, cooperative with the first and the second
Eneans, for object code for examining
values of least-significant bits of data fields of the
same equential order of the obtained signals and
the resultant signal; and

fourth aeans, We with the third means, for
generating object Code for subtracting, for each
examination of least-significant values that include
an odd number of eros, six from the value of the
data field of the resultant signal preceding the com
pared values in the sequential order of data fields,
to obtaia R modified resultant signal;

whereby an object program comprising the object
code generated by the first through fourth means
yields the modified resultant signal defining binary

decimal values representing the result of the
On the two

28, he arrangement of claim 27 further comprising:
fifth means, cooperative with the econd means, for

generating object code for determining whether

H472
19

execution of the Sunning object code yielded a
carry; and

sixth means, cooperative with the fifth means, for
generating object code for subtracting six from the
value of the most-significant data field of the resul- 5
tant signal if a carry is determined not to have been
yielded.

29. An arrangement for generating object-program
code from source-program code, comprising:

first means, responsive to receipt of source code spec
ifying an operation on two binary-coded-decimal
operands, for generating object code for obtaining
two signals each representing a different one of the
operands and each having a plurality of sequential
ly-ordered data fields each of which includes a
plurality of bits, including a least-significant bit,
defining a binary-coded-decimal value;

second means, we with the first means for
gen object code for subtracting binary vals
ues of the data fields of the same sequential order,
to get a resultant signal defining a value o
ing the result of the subtracting and having a plus
rality of data fields ordered co y to the
data fields of the obtained signals and each include
ing a plurality of bits including a least-significant 23
bit;

third means, we with the first and the second
means, for generating object code for examining
values of least-significant bits of data fields of the
same sequential order of the obtained signals and 30
the resultant signal; and

fourth means, we with the third means, for
generating object code for subtracting for each
examination of least-significant bit values that in
clude an odd number of ones, six from the value of 33
the data field of the resultant signal preceding the
compared values in the sequential order of data
fields, to obtaia a modified resultant signal;

whereby an object program comprising the object
code generated by the first through fourth means 40
yields the modified resultant signal defining binarye
code-decimal values representing the result of the
operation on the two operands.

30. The arrangement of claim 29 further con prising
fifth means,

O

S

Cooperative with the Second means, for 43
generating object code for determining whether
execution of the object code for subtracting data
field values yielded a carry and

sixth means, cooperative with the fifth means, for
generating object code for subtracting six from the 30
value of the data field of the resula
tant signal if a carry is deterained to have been

31. Aa for generating object-program
code from Code, Cocaprising SS

ifying addition of two blay-Oodod-decimal oper
ands for identifyin two resisters each having
conteats representing a different one of the opers
ands and each including a of sequentially 60
ordered nibbles each having a plurality of bits line
cluding a t bit, the values of the
plurality of bits of each abble together represent
ing a binary-coded-decimal value;

second neans with the first means, for 63
generating object code for exclusive-ORing the
values of least-significant bits of nibbles of the same
order, to obtainia a third register a plurality of bits

2O
each having an exclusive-OR value corresponding
with nibbles of a different order

third means, cooperative with the first means, for
generating object code for adding binary values
represented by the bits of the two registers and a
value comprising a plurality of sixes, one six for
each nibble of one register, to obtain in the one
register a resultant value represented by the bits of
the one register

forth means, cooperative with the first and the second
means, for generating object code for comparing
the values of the least-significant bits of nibbles of
the one register each with the value of the corre.
sponding bit of the third register; and

fifth means, cooperative with the fourth means, for
generating object code for subtracting, for every
comparison indicating equality, six from the value
of the nibble of the bne registerpreceding the com:
pared values in the order

whereby an object program comprising the object
code generated by the first through fifth means is
for obtaining in the nibbles of the one register bi
nary-coded-decimal values representing the sum of
the binary-coded-decimal values initially held by
the two registers,

3. The arrangement of claim 31 further comptising
sixth means, cooperative with the third means, fo

generating object code for determining whethe
ution of the code for adding yielded a carry

seventh means, cooperative with the sixth means, fo
generating object code for subtracting six from th
value of the most-significant nibble of the one reg
ister if a carry is determined not to have bee
yielded.

33. An arrangement for generating object-program
code from source-program code, comprising:

first means, responsive to receipt of source code spec
ifying subtraction of two binary-coded-decima
operands, for identifying two registers each havin
Contests ting a different one of the ope
ands and each including a plurality of sequentially
ordered abbles each having a plurality of bits if
cluding a least-significant bit, the values of th
plurality of bits of each nibble together represen
ling a binary-coded-decimal value;

second means, we with the first means, fc
generating object code for exclusive-ORing th
values of least-significant bits of nibbles of the sam
order, to obtain in a third register a plurality of bi
each having an exclusive-OR value correspondir
with abbles of a different order

third means, cooperative with the first means, f for subtracting binary ve
of the two registers,

of the one register
with the first and the se

generating object code for comps
ling the values of the least-significant bits of nibbl
of the one register each with the value of the corn

bit of the third and
fifth means, we with the fourth means, f

generating object code for subtracting, for eve
indicating inequality, six from t

value of the nibble of the one register preceding t
compared values in the Order

472
2.

whereby an object program comprising the object
code generated by the first through fifth means is
for obtaining in the nibbles of the one register bi
nary-coded-decimal values representing the differ
ence of the binary-coded-decimal values initially
held by the two registers.

34. The arrangement of claim 33 further comprising:
sixth means, cooperative with the third means, for

generating object code for determining whether
execution of the code for subtracting the two regis
ters' binary values yielded a carry; and

seventh means, cooperative with the sixth means, for
generating object code for subtracting six from the
value of the most-significant nibble of the one reg
ister if a carry is determined to have been yielded.

35. A system for allocating a resource to a resource
user, comprising:

first means, for representing two portions of the re
source each by a different signal, each signal have
ing a plurality of Sequentially-ordered data fields
each of which includes a plurality of bits, including
a least-significant bit, defining a binary-coded-deci
nal value;

second means, cooperative with the first means, for
summing binary values of the data fields of the
same sequential order and a value comprising a
plurality of sixes, one six for data fields of the same
sequential order, to get a resultant signal defining a
value representing the the result of the sunning
and having a plurality of data fields ordered corres
spondingly to the data fields of the representing
signals and each including a plurality of bits includ
ing a least-significant bit;

third means, cooperative with the first and second
means for examining values of least-significant bits
of data fields of the same sequential order of the
representing signals and the resultant signal;

fourth means, cooperative with the third means, for
subtracting, for each examination of least-signif

s

O

s

22
subtracting and having a plurality of data fields
ordered correspondingly to the data fields of the
representing signals and each including a plurality
of bits including a least-significant bit;

third means, cooperative with the first and second
means, for examining values of least-significant bits
of data fields of the same sequential order of the
representing signals and the resultant signal;

fourth means, cooperative with the third means, for
subtracting, for each examination of least-signifi
cant bit values that include an odd number of ones,
six from the value of the data field of the resultant
signal preceding the compared values in the se
quential order of data fields, to obtain a modified
resultant signal; and

fifth means, cooperative with the fourth means, for
allocating to the user a portion of the resource
represented by binary-coded-decimal values de
fined by the modified resultant signal.

38. The system of claim 37 further comprising:
sixth means, cooperative with the second means, for
determining whether the subtracting performed by
the second means yielded a carry; and

seventh means, cooperative with the sixth means, for
subtracting six from the value of the most-signifi
cant data field of the resultant signal, if a carry is
determined to have been yielded.

39. A system for allocating a resource to a resource
so use comprising:

cant bit values that include an odd number of zero, 40
six from the value of the data field of the resultant
signal preceding the compared values in the see
quential order of data fields, to obtain a modified
resultant signal; and

fifth means, with the fourth means, for 43
allocating to the user a of the resource portion
represented by binary-coded-decimal values dea
fined by the modified resultant signal.

36. The system of claim 39 further comprising:
sixth means, cooperative with the second means, for

determining whether the summing performed by
the second means yielded a carry and

seventh means, with the sixth means, for
subtracting six from the value of the most-signifie
cant data field of the resultant signal, if a carry is
determined not to have been yielded.

37. A system for allocating a resource to a resource
user, comprising:

first means, for representing two portions of the ree
source each by a different sign, each signal have
ing a plurality of sequentially-ordered data fields
each of which includes a plurality of bits, including
a least significant bit, defining a binary-coded-decis
mal value;

second means, cooperative with the first means, for
subtracting binary values of the data fields of the
same sequential order, to get a resultant signal
defining a value representing the the result of the

90

SS

O

three registers;
first nearis, for representing two portions of the re

Source each by contents of a different register, each
register including a plurality of sequentially
ordered nibbles each having a plurality of bits,
including a least significant bit, defining a binary
coded-decimal value;

second means, cooperative with the first means, for
exclusive-ORing the values of the least-significant
bits of nibbles of the same order, to obtain in a third
register a plurality of bits each having an exclusive
OR value cor sponding with nibbles of a different
order

third means, cooperative with the first means, for
adding binary values represented by the bits of the
two registers and a value comprising a plurality of
sixes, one six for each nibble of one register, to
obtain in the one register a resultant value repre
sented by the bits of the one register;

fourth means, cooperative with the first and second
means, for comparing the values of the least-signifi
cant bits of nibbles of the one register each with the
value of the corresponding bit of the third register;

fifth means, cooperative with the fourth means, for
subtracting for every comparison indicating equal
ity, six from the value of the nibble of the one
register preceding the compared values in the or
der and

sixth means, cooperative with the fifth means, for
allocating to the user a portion of the resource
represented by binary-coded-decimal values con
tained in the one register,

40, The system of claim 39 further comprising:
eventh means, we with the third means, for
determining whether the adding performed by the
third means yielded a carry; and

eighth means, cooperative with the seventh means,
for subtracting six from the value of the most sig

H.472
23

nificant nibble of the one register, if a carry is de
termined not to have been yielded.

41. A system for allocating a resource to a resource
user, comprising:

three registers; s
first means, for representing two portions of the re

source each by contents of a different register, each
register including a plurality of sequentiallyord
ered nibbles each having a plurality of bits, includ
ing a least significant bit, defining a binary-coded- 10
decinal value;

second means, cooperative with the first means, for
exclusive-ORing the values of the least-significant
bits of nibbles of the same order, to obtain in a third
register a plurality of bits each having an exclusive

value corresponding with nibbles of a different
order

third means, cooperative with the first means, for

24
means, cooperative with the signal-representing

means, for comparing values of least-significant
bits of data fields of the same sequential order of
the two signals' representing means and the resul
tant signal-representing means; and

means, cooperative with the comparing means and
the signal-representing means, for subtracting, for
each comparison of least-significant bit values that
include an odd number of zeros, a value equal to
(2-2n) from the value of the data field of the
resultant signal-representing means preceding the
compared values in the sequential order of data
fields, to obtain in the data fields of the resultant
signal-representing means binary-coded base-(2n)
values representing the combination of the binary
coded (2n) values initially represented by the two
signals' representing means.

44. The computer of claim 43 wherein m equals four
- and n equals five.

sing 20 45. The computer of claim 43 further comprising:
resultant value represented by the bits of the one
register

fourth means, cooperative with the first and second
means, for comparing the values of the leastsignif- 29
cant bits of nibbles of the one register each with the
value of the corresponding bit of the third register

fifth means, Cooperative with the fourth means, for

means, Cooperative with the summing means, for
mining whether the summing yielded a carry;

means, cooperative with the determining means and
the signal-representing means, for subtracting a
value equal to (2-2n) from the value of the most
significant data field resultant signal-representing
means, if a carry is determined not to have been

a plurality of means f representing signals, each of
.." the two signals being represented by different sig al to the user a portion of the resource inal-representing means, each of the two signals'

by laysided decimal values coars. representing menhaving aplurality of sequential
tired in the Orsists...} ::, . ' ' 'ily-ordered data fields each of which includes m bits 42. The systern of clan 41 further comprisia including a least-significant bit and a 'value defined

seventh s the with the by the bits representing a binary-coded base-(2n)
the third ins ormed O s and a being positive integers such that

eighth means, cooperative with the seventh means . near cooperative with the signal-representing

uding
the bits

e integers
w SS

E.
Compared

neas, of subtracting binary values of the data
... fields of the same sequential order of the two sig

inals representing means, to obtain a resultant sig
inal represented by one of the plurality of signal

... representing means, the resultant signal-represent
in means defining a value representing the result

and having a plurality of data of the subtracting
fields ordered correspondingly to data fields of the
two signals' representing means and each including
'a bit including a least-significant bit; 'cooperative with the signal-representing

, compiring values of least-significan
fields of the same sequential order ol

signals representing mean and the resul
cooperative with the comparing means anc
WO

signal-representing means, for Subtracting, fo
of least-significant bit values in

an odd number of ones, a value equal to
w-2N) from the value of the data field of thi

resultant signal- ting means preceding th
values in the equential order of dat

to obtaia in the data fields of the resultan

(2.

fields,
signal-representing means binary-coded base (2n
values representing the combination of the binary
coded base (2n) values initially represented by th

2. two signals' representins means. . . .

H472
25

47. The computer of claim 46 wherein m equals four
and n equals five.

48. The computer of claim 46 further comprising:
means, cooperative with the data field binary value
subtracting means, for determining whether the
subtracting of data field values yielded a carry; and

means, cooperative with the determining means and
signal-representing means, for subtracting a value
equal to (2-2n) from the value of the most-sig
nificant data field resultant signal-representing
means, if a carry is determined to have been
yielded.

49. A programmed digital computer comprising:
a first and a second register, each including a plurality is
of sequentially-ordered nibbles each having a plus
rality of bits including a least-significant bit, the
values of the plurality of bits of each nibble to
gether representing a binary-coded-decimal value;

a third register 20
means, cooperative with the three registers, for exclue
sive-ORing the values of the least-significant bits of
nibble of the same order of the first and the second .

O

resister, to obtainia the third register a plurality of
bits each having an exclusive-OR value corres 25
sponding with nibbles of a different order

means, cooperative with the first and the second
register, for adding binary values represented by
the bits of the two registers and a value comprising
a plurality of sixes, one six for each nibble of one
register, to obtaia in the first register a resultant
value represented by the bits of the first register

ne with the first and the third regise
ter, for coaparing the values of the least-significant s
bits of nibbles of the first register each with the

of the corresponding biofibe thirdressen
means, cooperative with the comparing means and
with the first resister, for subtracting for every
comparison indicating equality, six from the value
of the nibble of the first register precedipg the . .

values in the order, to obtain in the aiba
bles of the first register binary-coded-decimal vale
ues repreneating the sum of the binary-coded-decks 43
mal values initially held by the first and the second
register,

50. The computer of claim 49 further comprising

SS

yielded a
means, cooperative with the

26
means, cooperative with the adding means, for deter

mining whether the addition yielded a carry; and
means, cooperative with the first register and with
determining means, for subtracting six from the
value of the most-significant nibble of the first reg
ister if a carry is determined not to have been
yielded.

51. A programmed digital computer comprising:
a first and a second register, each including a plurality
of sequentially-ordered nibbles each having a plu
rality of bits including a least-significant bit, the
values of the plurality of bits of each nibble to
gether representing a binary-coded-decimal value;

a third register
Dean tive with the three registers, for exclu
sive-ORing the values of the least-significant bits of
nibbles of the same order of the first and the second
register, to obtain in the third register a plurality of
bits each having an exclusive-OR value corre
sponding with nibbles of a different order;

means, cooperative with the first and the second
register, for subtracting binary values represented
by the bits of the two registers, to obtain in the first
register a resultant value represented by the bits of
the first register

means, cooperative with the first and the third regis
ter, for comparing the values of the least-significant
bits of nibbles of the first register each with the
e of the corresponding bit of the third register;

means, cooperative with the comparing means and
with the first register, for subtracting, for every
comparison indicating inequality, six from the
value of the nibble of the first register preceding
the compared values in the order, to obtain in the
nibbles of the first register binary-coded-decimal
values ting the difference of the binary represen
coded-decimal values initially held by the first and
the econd

92. The computer of claim 51 further comprising:
means, cooperative with the register binary value

subtracting means, for determining whether the

register and with
the deterraining means, for Subtracting six from the
value of the tnibble of the first reg
ister if a carry is determined have been yielded.

