United States Statutory Invention Registration (9

Peterson

H472
May 3, 1988

(111 Reg. Number:
(43) Published:

[54] METHOD AND APPARATUS FOR
PROCESSING BINARY-CODED/PACKED
DECIMAL DATA

Ralph W. Peterson, 65556 Sussex
Rd., Naperville, Ill. 60540

21] Appl. No.: 2,428
22] Filed: Jan. 12, 1987

CXVRNE T o KR GOGF 1/00; GOSF 7/50
52] US. CL ... 364/200; 364/771
S

56] References Cited
U.S. PATENT DOCUMENTS
3,937,941 2/1976 Zemel et al. .cccrevciiiiinanee 235/139

FOREIGN PATENT DOCUMENTS

3303316 8/198) Fed. Rep. of Germany .
2115962 9/198) United Kingdom .

OTHER PUBLICATIONS

R. Zaks, Programming the Z80 (Sybex, 1982) pp.
107-113, 236-237.

1. A. Otto, “Predicting Potential COBOL Performance
on Low Level Machine Architectures,” SIGPLAN
Motices, vol. 20, No. 10.

R. K. Richards, Arithmetic Operations in Digital Com-
puters (D. Van Nostrand Co. 1955), pp. 209-285.

(3. Chroust, “Method of Adding Decimal Numbers by
Mecans of Binary Arithmetic”, JBM Technical Disclosure
Bulletin, vol. 23, No. 10 (3-81).

D. R. Hicks et al., “Multidigit Decimal Addition and
Subtraction”, /BM Technical Disclosure Bulletin, vol. I9,
No. 11 (4-77).

Primary Examiner—Stephen C. Buczinski

[76] Inventor:

Assistant Examiner—Linda J. Wallace
57 ABSTRACT

A system (FIG. 1; FIGS. 18-19) performs addition or
subtraction of packed, or binary-coded-decimal (BCD),
values. Each BCD digit is stored in a nibble (500) of a
register (400, 401). The least-significant bits (LSBs)
(302) of corresponding nibbles of the registers are cxciu-
sive-ORed and results are stored in a third register (402)
(FIG. 4 or 9). For addition, the registers’ binary valucs
are summed, six is added to each nibble of the sum using
binary addition, and results are stored in one register
(401) (FIG. 5). For subtraction, the registers’ binary
values are subtracted, and the results are stored in one
register (401) (FIG. 10). The LSB of each nibble of the
one register is compared with the corresponding exclu-
sive-OR value from the third register (FIG. 6 or 11).
For every comparison that indicates equality for addi-
tion, and that indicates inequality for subtraction, six is
subtracted using binary subtraction from the value of
the one register's nibble that precedes the compared
values’ corresponding nibble in the registers (FIGS. 6-7
or 11-12).

82 Claims, 15 Drawing Sheets

A statutory [nvention registration is not a patent. It has
the defensive attributes of a patent but does not have the
enforcesble attributes of a patent. No article or advertise-
ment or the like may use the term patent, or any term
suggestive of a patent, when referring to a statutory in-
vention registration. For moce specific information on the
rights associated with a statutory invention registration
see 33 US.C, 157,

&

pmmt
: 1508

1582

1382
| g0 |'
riLK

ADO/SUBTRACT
F~isos 150 _-‘, 1502
} REO0
|LFne
1 t ke I
|
1903 1308 :
o~ 211 : \
1502/ ) i
[
3
{
20 l 1
1510 Vo |




U.S. Patent  May 3, 1988 Sheet 1 of 15 H472

/'|3

PRINTER
——- [PAYCHECKS
14~

/12
/'IG

FIG.




US. Patent  May 3, 1988 Sheet 2 of 15 H472
FIG. 2 (START )~200
[20\

— RECEIVE EMPLOYEE IDENTIFICATION |

1 f202
[ RECEIVE NUMBER OF REGULAR HOURS WORKED BY EMPLOYEE |

,203
IRECE!VE NUMBER OF OVERTIME HOURS WORKED BY EMPLOYEE

7204
ACCESS EMPLOYEE FILE TO OBTAIN STANDARD HOURLY
RATE, OVERTIME RATE, AND PAYROLL DEDUCTIONS
7205
MULTIPLY REGULAR HOURS BY STANDARD RATE
TO OBTAIN STANDARD PAY
7206
MULTIPLY OVERTIME HOURS BY OVERTIME RATE
TO OBTAIN.OVERTIME PAY
r207
ADD OVERTIME PAY TO STANDARD PAY
TO OBTAIN GROSS PAY
! 208
SUBTRACT DEDUCTIONS FROM GROSS PAY
TO 0BTAIN NET PAY
208

[ SUBTRACT NET PAY FROM PAYROLL ACCOUNT BALANCE | ~

r2!0
| PRINT CHECK TO EMPLOYEE FOR NET PAY )




U.S. Patent  May 3, 1988 Sheet 3 of 15 H472

FIG. 3

(ADD VAR A, VAR B)

£301

EXCLUSIVE-OR LEAST SIGNIFICANT BIT OF EACH DIGIT
FIELD OF REGISTER A WITH LEAST SIGNIFICANT BIT OF
CORRESPONDING DIGIT FIELD OF REGISTER B;
STORE RESULT IN REGISTER C

[302
ADD & TO EACH DIGIT FIELD OF REGISTER A;
STORE RESULT IN REGISTER A
/303
ADD BINARY CONTENTS OF REGISTER A
TO BINARY CONTENTS OF REGISTER B;
STORE RESULT IN REGISTER B; SAVE CARRY
7304

COMPARE THE VALUE OF THE LEAST SIGNIFICANT BIT
OF EACH DIGIT FIELD OF REGISTER B WITH THE VALUE
OF THE CORRESPONDING BIT OF REGISTER C

7305

FOR EVERY COMPARISON INDICATING EQUALITY, SUBTRACT
6 FROM THE DIQIT FIELD THAT PRECEDES THE
CORRESPONDING DI1GIT FIELD IN REOGISTER B;

STORE RESWLT IN REGISTER B

[306

IF NO CARRY, SUBTRACT & FROM THE MOST
SIGNIFICANT DIGIT FIELD OF REGISTER B;
STORE RESULT IN RECISTER B

Ca)



U.S. Patent

REG A

REG B

REG C

REG A

REG B

REG B

May 3, 1988 Sheet 4 of 15
500
o 5% SUI_ 501 SOl
ol J Isg'l ) 1592 )]s?' ) IS()]2 R
aco o I a0 O aco O
¢ { } }
® ® ® ®
{ ¢ { ¢
[ 11 I R
go sco O o O o O
1/502 l [ l
L T T
L 1 !
FIG. 4
1 1 ofo 1 Vv oj0 1 Vv @O 1 10
509
c

FIG. 5

H472

400

401

- 402

«—400

- 40

40|



US. Patent  May 3, 1988 Sheet5of15  H472

~502

T T T
REG C -—402

] | I
{

}
c c
503 i

{502
REG B l_;_l ! ! ! -— 40!
| \ | \ | \ | \
0/ 0/ 0/ 0/

-

6 6 6 6
FIG. 6
REG B -4
0/6 0/6 0/6 0/6
REC B 401

FIG. 7



US. Patent  May 3, 1988 Sheet6of 15  H472

FIG. 8

(SUB VAR A, VAR B)

[801

EXCLUSIVE-OR LEAST SIGNIFICANT BIT OF EACH DIGIT
FIELD OF REGISTER A WITH (EAST SIGNIFICANT BIT OF
CORRESPONDING DIGIT FIELD OF REGISTER B;
STORE RESULT IN REGISTER C

802
SUBTRACT BINARY CONTENTS OF REGISTER B
FROM BINARY CONTENTS OF REGISTER A;
STORE RESULT IN REGISTER B; SAVE CARRY
803

COMPARE THE VALUE OF THE LEAST SIGNIFICANT BIT
OF EACH DIOGIT FIELD OF REGISTER B WITH THE VALUE
OF THE CORRESPONDING BIT OF REGISTER C

7804

FOR EVERY COMPARISON INDICATING INEQUALITY,

SUBTRACT 6 FROM THE D101T FIELD THAT PRECEDES

THE CORRESPONDING DIGIT FIELD IN REOISTER B;
STORE RESULT IN REGISTER 8

,805

IF CARRY, SUBTRACT 6 FROM THE MOST
SIONIFICANT DIG1T FIELD OF REOISTER B;
STORE RESUW.T IN RECISTER B

&>




U.S. Patent

REG A

REG B

REC A

REG B

REC B8

May 3, 1988 Sheet 7 of 15 H472
500
So1 S01  S01  S0I
Sa0 ) S0l ) 502 ) S0 ) 502
P | ¢ [ - ) I ) R
BCD i BCD E BCD i BCD B | =400
$ $ } $
® ® ® ®
[ ‘ IR ‘ I ‘ T ‘
BCD g BCD g BCD g BCD B l=a01
lfsuz l l 1
' J ' V02
] | ] |
FIG. 9
- 400
-—4q01
503
c 401
FIG. 10



USS. Patent

REG C

REG B

REGC B

REG B

May 3, 1988 Sheet 8 of 15 H472
502
| | |
-—402
| | |
$ $ 4
c C c
S03 "/502 ‘ ‘
c { | i 40
\ l\ l\ 1\
6/0 6/0 6/0 6/0
FIG. 11
401
6/0 6/0 6/0 6/0
-401

FIG.

12



U.S. Patent  May 3, 1988 Sheet 9 of 15 H472
FIG. 13

(ADD VAR A, VAR B )~1300

71301
| OBTAIN VARIABLE SIONS |

1303

GO TO F
(F16.15)

<:>"‘----—{SAVE VAR A SIGN 1310

1311

MOVE VAR A—REGS A, AND
ALIGN DECIMAL POINT POSITION

r1312
[HOVE VAR B—=REGS By AND ALIGN DECIMAL POINT POSITION]

1313
[(sET i=0_]
1914

REG Aj®@REQ B;—REG C;

1315
YES

i=0

NO 1316
REG Aj+Cy. ==REC A;
REO B+ 0x6666—~REC B
1918
REG Ay +REC B{—REC B;

,1318
SAVE C;

(E) (%)(F!o.14)




US. Patent  May 3, 1988 Sheet 100f15  H472

@cm.m FIG. 14
,1321

| REG B{®REG C;— REG Cy]

, 1323

YES[1325
REG Cj+!—REQ C;
£1326
| ROT(REG C{) RIOHT BY 3 —REG Cy  —
71327
REG B;-REG C|—REC B
£1328
REG Cy+REG C;—~REOQ C;
‘ 1328
REO By-REG C;~-REOC B

YES ,1392
| APPEND SAVED SION |
£1339
MOVE REGS Bj— VAR B

(RETURN ~1334




US. Patent  May 3, 1988 Sheet 11 0f15  H472
FIG. 15
1400
(SUB VAR A, VAR B)
71401
[ OBTAIN VARIABLE SIONS |
1403

« OBTAIN VARIABLES |

1411

YES

GO TO G
(F1G6.13)

[VAR Al Z|VAR Bl

NO 1415

SAVE OPPOSITE
OF VAR A SIGN

71416

1412
[ SAVE VAR A SION |

1413

MOVE VAR B—REOS A;

AND ALION DECIMAL
POINT POSITION

MOVE VAR A— REGS Aj

AND ALIGN DECIMAL
POINT POSITION

1417

1414

MOVE VAR A— REOS B

AND ALION DECIMAL
POINT POSITION

MOVE VAR B— REGS B;

AND ALIGN DECIMAL
POINT POSITION

[1418
SET i=0

/ (F10.186)



US. Patent  May 3, 1988 Sheet 120f15  H472

FIG. 16

i 1419

(——{ REG A{®REG B;—REC C

1420
YES

i=0

NO 142
REG Ai-l'Ci-]-.EG Aj

714209 71427
REC B REG Aj-REC B;—REGC B;

REG 51

71424 1428
REQ A,+REO B;—REGC B, | savecy |

REG B®REG C;—REO C;

1430
REG C;R0x1110~~REOC Cj

é) é(rm.m




US. Patent  May 3, 1988 Sheet 13of 15 H472
FIG. i7

E)(FI1G.18)

1432
REG Cy+|—REG C;

1439

| ROT(REG C;) RIGHT BY 3—REG Ci Jo

1434
| REG By -REG C;—REOC B |

71435
REG C;+REG Cy—=REG C;

71436
REG By{-REG C;—REG Bj

YES 1498
| APPEND SAVED SioN |

MOVE REGS By — VAR B

(RETURN F-1441

FIG. 20

F10.18 | F1G.18




H472

Sheet 14 of 15

U.S. Patent

Bl

"Old

L&E’ ‘

A s et e e i . G S —




H472

Sheet 15 of 15

May 3, 1988

U.S. Patent

ek

e oo e e S — ————

10vdians/oayv



H472

1

METHOD AND APPARATUS FOR PROCESSING
BINARY-CODED/PACKED DECIMAL DATA

TECHNICAL FIELD

The invention is directed to the field of general pur-
pose digital computers in general, and in particular
concerns the efficient processing in such computers of

data represented in binary-coded, or packed, decimal ,,

form and other non-base-2 forms.
BACKGROUND OF THE INVENTION
The COBOL programming language defines & binary

coded decimal data type, which encodes each decimal 4

digit in binary form as a separate character. The tradi-
tional decimal data type has been the “unpacked”, or
ASCII, form, wherein commonly eight bits are used to
represent each decimal digit: four bits to hold the value

of the digit, and the other four bits to hold a code identi- 20

fying the character as representing a digit.

This form of the decimal data type is inefficient. It
consumes eight bits to hold only a four-bit value, and
hence is wasteful of memory. The large number of bits

that must be moved each time a digit is moved inside a 23

processor also adversely impacts system performance.
To avoid such Inefficiency, a “packed” form of the
decimal data type had tly been developed,
which discards the code-holding bits and merely retains

the four value-holding bits of the “unpacked” form. The 30

“packed” form is also known as the “binary-coded deci-

", or BCD, form; “packed” is often used 1o refer to
signed BCD, whereas BCD is typically considered to be
unsigned, Le., a magnitude.

Because most digital computers are binary computers 33

that perform binary, as opposed to decimal, operations,
it has conveationally been necessary to convert decimal
data into binary data before processing, such as arithme-
tic operations, could be performed on that data on most
computers. But the conversion is time-consuming and

developed that allowed grithmeiic operations to be
performed on the unpacked decimal digits without con-
version. But this scheme
code-holding bits for bit and temporary
storage purposes. Hence, it is not usable with the
packed decimal form.

The prior art has attempted to develop a scheme that

2

units introduce undesirable performance-robbing delays
into the operation of the arithmetic and logic units.

In summary, then, problems in the art are the lack of
a scheme for processing packed decimal data directly,
without need for conversion to a different data type, on
computers providing no special hardware support
therefor, and the lack of a hardware-supported scheme
for directly processing packed decimal data that is effi-
cient in terms of both cost and pecformance.

SUMMARY OF THE INVENTION

‘This invention is directed to solving these and other
problems of the art. According to the invention, combi-
natorial processing of binary-coded-decimal values,
which take the form of two signals each having sequen-
tially-ordered data ficlds each of which includes a plu-
rality of bits—including a least-significant bit—that
define a BCD value, is as follows. If the desired process-
ing involves adding the BCD values defined by the two
signals, the binary values of the data fields of the same
sequential order are summed with each other and with
a value that comprises a plurality of sixes, one six for
data fields of the same sequential order. If the desired
processing involves subtracting the BCD values, the
binary values of the data fields of the same sequential
order are subtracted one from the other. Both cases
yield a resultant signal that defines 2 value which repre-
sents the result of the performed operation (addition or
subtraction). The resultant signal has a plurality of data
flelds ordered correspondingly to the data fields of the
initial two signals, and each fleld includes a plurality of
sits, including a least-significant bit. Values of least-sig-
nificant bits of data flelds of the same sequential or-
der—illustratively of all data flelds but those of the least
sequential order—of the initial two
signals and of the resultant signal are examired. For
every examination of least-significant bit values that
include an odd number of zeros in the case of the addi-
tion operation, and for every examination of least-sig-
nificant bit values that include an odd number of ones in
the case of the subtraction ‘& six s subtracted
from the value of the resultant signal's data field that

the compared values in the sequential order of

precedes
required the presence of the s data fields. The values of the data flelds of the resultant

signal now represent the BCD values that are the com-
bination—sum or difference—of the BCD values of the
initial two signals.

Furthermore, & determination is illustratively made

would allow processing of packed decimal digits di- 5 whether the summing or difference operation that pro-
rectly, without conversion to either the unpacked decl-  duced the resultant signal yielded a carry. If the desired
mal or binary form. The results have been dissppoint-  processing involves adding the BCD values of the re-
ing. The scheme requires that special hardware be pres-  celved two signals, a six is subtracted from the value of

ent in & computer for its support. Henos, the scheme is

the most significant data fleld of the resultant signal if a

not suited for use on general purpose computers that 4o ss carry is determined not to have been yielded. If the
Furthet-  desired

not provide that special hardware support.
more, the scheme is cumbersome and inefficient, and
thereby negates in large measure the benefits of im-

system performance that were sought to be

computers effectively arithmetic and

involves subtracting the BCD val-
ues, & six is subtracted from the value of the most signifi-
cant data field of the resultant signal if a carry is deter-
mined to have been

ylelded. ,
60 Thedecimal values are processed without conversion

theroof to a different data type, yet all of the operations
performed on the decimal values are operations whose
performance lies within the capability of a binary gen-
eral computer. Hence, the processing may be

provide separate purpose
logic units for the decimal and binary data types. Such 63 performed on computers having no hardware suppor

duplication is very expensive. And attempts at avoiding
complete duplication of arithmetic and logic unit hard-
ware by sharing hardware components between the

for decimal data type processing. Consequently, a sys:
tem for combinatorily processing decimal values may
be based on such computers.



H472
3 4

Also, providing that its registers and arithmetic and  system of FIG. 1 illustratively as part of performance o
logic unit have a width, in terms of bits, greater thanthe  the function of FIG. 2;
width of a coded decimal digit, the computer is able to FIGS. 9-12 are block diagrams of register manipula
process a plurality of decimal digits in parallel. Process-  tions occurring in the system of FIG. 1 as a conse
ing of decimal digits may consequently be accomplished 5 quence of the performance of the process of FIG. 8;
much faster than if each decimal digit had to be pro- FIGS. 13-17 are flow diagrams of code for the pro
cessad sequentially. cesses of FIGS. 3 and 8 compiled by the compiler of the

Furthermore, hardware support may be providedina  system of FIG. L;
computer for performing the processing—particularly FIGS. 18-19 are a block diagram of structural addi
the comparison, carry-checking, and sixes-subtraction 10 tipnl made to the CPU of the system of FIG. 1 to pro
operations—which enables the processing to be per-  Vide hardware support therein for the processes o
formed very quickly and efficiently. The hardware  FIGS.3and 8; and
support is structurally simple, and easy to incorporate FIG. 20 is a composite showing the arrangement o
into existing computer designs. It thus avoids the com- __ FIGS. 18-19 to form a single disgram.

plexity of structure and function, and hence the cumber- 13 AILED
someness and cost, of preceding attempts at hardware- DET. DESCRIPTION
assisted BCD processing. FIG. 1 is a block disgram of & general purpose com

In an illustrative embodiment, for purposes of ease of  PUter programmed to perform business functions, in
implementation, comparing of lunl-’dgniﬁmt bits of  cluding resource allocation functions, such as payrol
the signals is replaced by exclusive-ORing of binary 20 functions. Such computers and programs thtefOl‘ art
values of the least-significant bits of data fields of the ~ Well known in the art. The computer comprises a pro
same sequential order, to obtain exclusive-OR values cessor 12 that performs data processing functions. Pro
each corresponding with data flelds of different sequen.  Sc330F 12 includes a central processing unit (CPU) 1!
tial order, and the values of least-significant bits of data which performs operations on data 19 stored in a mem

fclds of the resultant signal are compared each with tho 23 £FY 16 sccording to progran instructions 17 1140 Sorce

corresponding exclusive-OR value. Then, for every ‘
comparson ndicaing equaliy In e cas ofthe sddh: 13" proic 13 consected 1o procesor 17 b e
every com 8
incyalty i o o of e ocmcton cprson: 883 T3 o oL
issu ua tant 's '
An [lustrative example of a conventional payrol
gﬂdr&wm&mvﬂwhmm function performed by the computer of FIG. 1 is flow
Mothor charted in FIG. 2 and is described next in conjunctior
_ Method and spparatus—whether of resource allocs-  yith FIG. 1. A terminal 11 operator (not shown) direct
tion, code compilation, or computer operation—ac:'3s nrocessor 12 to execute the payroll program, and the:
cording to the invention as characterized above need  (4y0q employee time cards 10 and enters informatios
not be limited to processing of BCD values, but maybe  ¢herefrom into the computer via terminal 11. Alterna
applied to processing of values having a baseother than yively, information from the time cards may be read int
ten. Assuming that binary-coded base-(2n) values take  the computer by means of a card resder (not shown)
the form of signals each having a plurality of sequential- 49 Eqntered information includes the employee’s identifica
ly-ordered data flelds each one of which includes m bits, tion—his or her name, for example—the number o
where m and n are positive integers such that 2%>2n,  regular hours worked, and the number of overtim
the processing as described sbove holds true with the  hours worked.
exception that the sixes recited in the are The payroll program begins to execute on processo
replaced with values equal to (2™=—2n). The method 45 13, at step 200, Processor 12 receives the employe
and spparatus of the invention thus have general appli-  jdentification, the number of regular hours worked, an
cability to the processing of non-binary values, yet re-  the number of overtime hours worked that have bee
tain the full spectrum of their advantages with respect  entered on terminal 11, at steps 201-203, respectively
to non-decimal even-radix numbers. Processor 12 then identified employee's file in memor
These and other advantages and features of the pres- 50 16 to obtain information on that employee's standar.
ent invention will become spparent from the following  hourly rate of pay, the overtime rate of pay, and payro
description of an illustrative embodiment of the inven-  deductions being made for that employee, at step 20¢
tion taken together with the drawing. Pmono:yli:sucwubt;&uldplythe;egu:uhom
worked employes standard hourly rate ¢t
BRIEF DESCRIPTION OF THE DRAWING ., i ve employee’s standard pay, at step 205, Proce:
FIG. 1 s & block diagram of an illustrative computer  sor 12 similarly multiplics the overtime hours worke

system including an embodiment of the inveation; by the employee by the overtime hourly rate to obtai
FIQ. 3 is o flow diagram of a resource allocation  the employee’s overtime pay, at step 203, Processor 1
function performed by the system of FIG. L; uses CPU 13 to add the standard pay to the overtim

FIG. 3 is a flow diagram of the logical functions of & 60 pay to obtain the employee'’s gross pay, at step 20
BCD value summation process performed by the sys- gomornuuCPUmebmmeemployce
tem of FIG. 1 illustratively as part of performance of  deductions from the gross pay to obtain the employee
the function of F1Q. 2; net pay, at step 208. Processor 12 then accesses in men

FIGS. 4-7 sre block diagrams of register, manipuls-  ory 16 the employer’s payroll account balance, an
tions occurring in the system of FIG. 1 as a conse- 63 subtracts therefrom the employee’s net pay, at step 20
quence of the performance of the process of FIG. 3; Finally, processor 12 causes printer 13 to print a pa:

FIG.81sa dlagram of the logical function of a  check 14 in the employee’s name in the amount of tt
BCD difference-producing process performed by the  net pay, at step 210,



H472

5 .

The net result of the processing that processor 12 has
performed has been to reallocate the amount of net pay
from the employer’s account to the employee. Proces-
sor 12 now checks whether input on other employees is
being received, at step 211. If so, processor 12 returns to
step 201 to repeat the processing for another employee.
If ;ot. processor 12 stops executing the program, at step
212,

Business programs, like the payroll program just
described, are very often written in the COBOL pro-
gramming language. COBOL is a “high level” lan-
guage: programs written in COBOL cannot be executed
by a processor directly, but must first be converted into
machine language understandable to the processor. This
conversion, called compiling, is performed by compil-
ers, in a conventional and well-known manner. Nlustra.
tively, a compiler 18 may be a program stored in mem-
ory 16 and executing on CPU 13 of processor 12,

The COBOL pro; the

grams—such as hours worked, rate of pay, payroll bal-
ance, deductions, and net pay in the example of FIG.
2—may be expressed in processor 16 in packed decimal
form. But conventional processors perform binary

0

langusge supports
type. Data used by COBOL pro- 20

arithmetic. Hence, when compiler 18 encounters in a 23

COBOL program instructions to perform an arithmetic
operation—add, subtract, multiply, or divide, for exam-
ple—on packed decimal data, it must convert the in.
structions into one or more machine instructions. In
order to cause CPU 13 to perform an arithmetic opera-
tion on the packed decimal data directly, i.e., without
converting data types, compiler 18 generates code to
cause CPU 185 to performed the logical functions flow-
charted in FIGS. 3 and 8. Register coutent manipula-
tions that occur as
shown in FIGS. 3 and 8 are symbolical'y shown in the
block diagrams of F1GS. 4-7 and 9-12, respectively.
F1Q. 4 shows the functions necessary to add valses of
two variables, var.A and var.B, of packed BCD data

3

a consequence of the functions 33

type. It is assumed that var.A is stored in register a 40

(reg-a) 400 and var.B is stored in register b (reg.b) 401,
as shown in FIG. 4. It is also assumed that each register
400 and 401 is one 16-bit-word wide. Each reglster 400
and 401 comprises a plurality (four) of flelds 500 each of

which comprises a plurality (four) of bits 501-502. A 43

four-bit field 500 is commonly referred to as & nibble.
Fields 500 of reg.a 400 are sequentially ordered accord-
ing to their with respect to each other.
Ficlds 500 of reg.b 401 are

Each fleld 500 stores a BCD digit. To add
tents of reg.a 400 to BCD contents of reg.b 401, the least
significant bit 502 of each digit fleld 500 is exclusively-
ORed with the least bit 502 of the corre-

at step 301 of FIQ. 3, as shown in FIG. 4. A six (a binary
0110) is added to each digit field 500 of reg.a 400
the result being

formed at steps 303 is stored in carry flag 503, as shown
in FIQ. 8. The value of the least significant bit 502 of
cach digit fleld 800 of reg.b 401

the value of the corresponding bit
step 304 of F1Q, 3, as shown in
parison at step 304 that indicates equality of the com-

of reg.c 402, at

y ordered.
BCD con- 50

bits 502 of a third register ¢ 402, 53

6

pared bits, six is subtracted from the reg.b 401 digit fiel
500 that precedes the digit field 500 corresponding t
the compared bits in the ordering of digit fields 500 i
reg.b 401, at step 305 of FIG. 3, as shown in FIGS.
and 7. If there is no carry, i.e., if the carry value save(
at step 303 is zero, six is subtracted from the most signif
icant digit field 500 of reg.b 401, at step 306 of FIG. 3
also as shown in FIGS. 6 and 7. At this point, reg.b 40
holds the BCD sum of the BCD values of the variable
previously held by reg.a 400 and reg.b 401.

FIG. 8 shows the functions necessary to subtract th
BCD values of var.B from the BCD values of var.A. I
is assumed as before that var.A is stored in reg.a 400 anc
var.B is stored in reg.b 401, as shown in FIG. 9. First
the least significant bit 502 of each digit field 500 o
reg.a 400 is exclusively-ORed with the least significan
bit 502 of the corresponding digit field 500 of reg.b 401
and the results are stored in corresponding bits 501 o
reg.c 402, at step 801 of FIG. 8, as shown in FIG. 9. Th:
binary contents of reg.b 401 are then subtracted—illus
tratively through a process of 2's complement addition
as is conventional oa processors—from the binary con
tents of reg.a 400, with the results being deposited i
reg.b 401 and a carry being saved in carry flag 503, a
step 802 of FIG. 8, as shown in FIG. 10. The value o
the least significant bit 502 of each digit field 500 o
reg.b 401 is then compared with the value of the corre
sponding bit 502 of reg.c 402, at step 803 of FIG. 8, a:
shown in FIQ. 11. For every comparison at step 80:
that indicates inequality of the compared bits, six i
subtracted from the reg.b 401 digit field 500 that pre
cedes the digit fleld 500 g to'the comparec
bits in the ordering of digit ficlds 500 in reg.b 401, a
step 804 of FIG. 9, as shown ia FIGS. 11 and 12. If ther:
is a carry, Le, if the saved carry value is a one, six i
subtracted from the most significant digit field 500 o
reg.b 401, at step 808 of FIQ. 8, also as shown in FIGS
11 and 12, At this point, reg.b 401 holds the BCD difTer
ence of the BCD values of the variables previously helc
by reg.a 400 and reg.b 401.

Multiplication Iis performed by means of repeatec
additions and fleld shifts, while division is performed by
means of repeated subtractions and field shifts, as i
conventional in processors.

Code for performing activities corresponding to the
logical functions of FIGS. 3 and 8 is generated by ¢
compller 18 in compiling a packed decimal data ADLC
or SUBTRACT operation for a processor 12 that ha:
no hardware support for packed decimal data opera
dom.u_ 11‘hh code is flowcharted in FIGS. 13-14 anc

l .

While complling a source code program, compiler 1§
may encounter an instruction “ADD var.A, var.B"”, al
step 1300, where “var.A"” is the name of a first variable
of the packed decimal data type and “var.B" is the name¢
of a second variable of the same type. Compiler 1f
knows the data type of the variables from their declara.
tions. In compiler 18 first generates objec
code to perform processing of the positive or negative
signs of the varisbles. Sign processing code is conven:
tional. For example, compiler 13 generates code tc
obtain the signs, at step 1301, and to compare the signs.
at step 1302. Illustratively, the sign of a variable i:

compared with 65 stored as the least significant nibble of the one or mor

memory words storing the packed decimal variablc

FIQ. 6 For every com-  value, and compiler 18 generates code to retrieve anc

compare the values of these nibbles.



7 H472 8

For the case of the two variables being found to have  subtract contents of reg.c; from contents of reg.bsand 1
different signs when the object code generated at step  store the result in reg.b; at step 1327, :
1302 is executed, compiler 18 {llustratively generates Compiler 18 generates code to add contents of reg.
object code to perform a subtraction of variables of the | - to itself, and store the result in reg.c;, at step 1328. Con
same sign, as suggested at step 1303, as if the encoun- 5 piler 18 next generates code to subtract contents «
tered instruction had been “SUB var.A, var.B”. This  reg.c; from reg.b; and store the result in reg.b;, at ste
code is shown in FIGS. 15-17 and is discussed below. 1329, Compiler 18 again generates code to check tl

For the casé of the two variables being found to have - value of 1, at step 1330. For the case when the value
the same sign when the object code generated at step - | is not the maximum, which is one less than the numb.
1302 is executed, compiler 18 illustratively generates 10 of registers holding each of the variables A and B, cor
code to save the sign of var.A, at step 1310. .- =" piler 18 generates code to increment the value of i t

Compiler 18 then generates codé to move the varl-  one and to return to code generated at step 1314 fi
ables into logical or physical registers of CPU 1Sand to  gnother execution of that and subsequent code, at st
align the variables in the registers by their decimal point 1331,
position, at steps 1311 and 1312. The code generated t0 15 For the case when the value of i is maximum, t]
accomplish these functions is likewise conventional.  g4dition of var.A and var.B is completed, with 1l
For eumple. compﬂu 18 accesses the declarations of result stored in wb,. compuet 18 therefore generat
the varisbles to determine how many registers are re-  onventional code to append the saved positive or neg
quired to hold their composite, determines the differ- v gign to the result, at step 1332, and to move U
ence in dectmal point alignment between the composits 20 reqi1t from reg.s by back into var.B in memory, at st
and the individual variables, stuffs the vaciables with - . 3333 Compller 18 then returns, at step 1334, to proce
zeros 50 that their decimal point positions become prop- - and compile another source program instruction.
erly aligned with that of the composite, and then gener- "When compiler 18 encounters an Instruction “SU
or more registers. For ease of reference, registers hold- 25 data type var.B be subtracted from the value of li
ing var.A are referred 0 a8 reg.a a, and reglaters hold-  p gy gtep 400, compiler 18 agan fint generat
ing var.B are referred to as reg s b; where lisanlnteger g 04q to perform processing of the signs of t
taking values from O to one-less than the maximum varisbles. The sign processing is, again, convention

number of registers tobold & “"“"“‘@"‘,“cﬂ,‘; but for the sake of completeness of description, i
comp ption, it
3’1%.".5’;?&3"‘?‘ , of the . % briefly described. Compiler 18 generates code to obu

generate operation the signs, at step 1401, and to compare the signs, at st
.iu;rl? mm?ijm.fmﬁ dw‘ﬁch will be 1402 For the case of the two variables being found
used to count repeated execution of code that follows,  bave different signs, compiler 18 gencrates code
and generates code to set its initial value to O, at step 33 pafmnaddldonofvadnblaofthes:mesign.m
1313. Next, compiler 18 generates code to perform an mmwmmmmﬂohm
exclusive-OR operstion on reg a;a0d reg.b;, and to store m.v.uwnmm e shown
e st sep 1314, (The - P 13-14?3:0 varisbles being found to hs
-mum'mamuyou'morcw' 18 For the case two g fo
through this code are, of courss, determined by the 40 the same sign when the code of step 1402 is perform
value of | during that recursion.) compiler 18 code to obtain the variable +
Compiler 18 generstes code to check the value of 1, at ves, &t step 1410, and to compare their absolute valt
step 1315, For the cass when | is determined to be noa- at step 1411, This test is done as if var.A and var.B w
zero, compiler 18 generates code t0 add the value of & binary sumbers. For the case of var.A being greate:
carry cyl, generated during the preceding execution of 43 magnitude, compiler 18 generates code to save the s

enerated code, reg.ay storethe  Of Var.A, at step 1412, to move var.A Into reg.s a;1
ifu{tlnmuu:ﬁ?u“ sadto align the decimal point position, at step 1413, and

generates code, move var.B into reg.s b; and align the decimal pc
e L et e o o v horethe real st ntep 1414, Steps 1413 and 1414 duplic
in reg.by, at step 1317, Compiler 18 next generates code 30 steps 1311 and 1312 of FIG. 13 described above. l-;?r
to add contents of reg.a t0 conteats of reg.b;and store case of var.B being grester in magnitude, compiler

thevalueof  Senerstes code to save the opposite of the sign of vac
mm‘“"’“"'ﬂmzﬁ 1319, Nu;'. at step 1415, to move var.B intq reg.s & and align

carry ¢; generated by

generates perform point at step 1416, and to move ve
zommpuax:‘ roc.bn:‘.mh umn the result in $3 lﬁﬁ:‘,wwndnﬂtnthadedmﬂpompoﬁﬁomn
?iﬁ“.'mmaﬂuha@mm ""An altemative 10 performing steps 1411
the multhmudtpim 18 generates ~ 1415-1417 is to always perform steps 1412-1414
code to next nmmwmmh' which cese the subsequently-generated code may re
butmumwmofmuhmm‘n in generation of the 10's complement of the des
store the results in reg.cpatstep 1323, . . .. . answer, [a that case, compiler 18 must generate cod
Compiler 18 generstes code to thea check the value - carry, values that may be produced at steps |

N b » rl
of carry s 8t m«rmhanwmmmon,“,mmunm.m,orm_wmpo
cils m'feomcil’u rode t0'add one w.,ﬁ*ﬁoplm_munhommmmzwode. foll
reg.ci and store the fesult in reg.cs at step 1328, For all 63 ing. the below-described code, to check for the

alues of ¢, compiler 18 ooduorouuoon-‘l',boﬂphmntmult(lnmdvdybyemunarom
tvcms of reg.ciright 3pmwm theresultin  belng mln those data fleids of the result that
reg.cj at step 1326, Cot piler 18 next generates code to 1



H472

9
var.A and var.B) and to 10's complement such a result
to obtain the correct result.
. To generate object code for the subtraction operation
itself, compiler 18 creates a variable 1, which will be
used to count repeated execution of code that follows,
and generates object code to set its initial value to 0, at
step 1418, Next, compiler 18 generates code to perform
an exclusive-OR operation oa reg.a; and reg.by and to
store the result In reg.cy, at step 1419,

Compiler 18 then generates code to check the value
of i, at step 1420 For the case when | s determined to
be non-zero, compiler generates code to add the value
of a carry c/~, generated during the preceding recur-
sion through the code, to conteats of reg.a;and to store
the result in reg.a; at step 1421; to complement contents
of reg.b; and store the result in reg.b;, at step 1423; to
sdd contents of reg.asto contents of reg.b;and stoce the
result in reg.by at step 1424; and to save the value of
carry ¢; generated by this addidon, at step 1428,

For the case when i is determined to be zero by exe- 20

cution of code generated at step 1420, compller 18 gen-
crates code to subtract contents of reg.b; from contents
of reg.asand store the result in reg.b;, at step 1427, and
to save the value of carry ¢ generated by this subtrac-
tion, at step 1428, : ‘

Next, for all values of |, compiler 18 genecates code to
perform an exclusive-OR operation on reg.byand reg.cq
and to store the result in reg.c, st step 1429, Compiler
18 generates code to then perform an AND

10
in FIGS. 18-19 by the four-lead connection between
the output port of cach ALU 1500 and the input port of
the associated slice of register file 1502,

A carry output terminal of each ALU 1500 is con-
nected by a 1-bit-wide connection to & carry input ter-
minal of each “subsequent”™ ALU 1500. A “subsequent”
ALU 1500 is one respoasible for processing the next
most significant nibble 500 of a register, whereas a “pre-
ceding™ ALU 1500 is one responsible for processing the
next Jeast significant nibble 500 of each register. The
carry output terminal of the last ALU 1500 is connected
;%; carry latch 1504, Latch 1504 implements carry flag

The modification to the conventional CPU 15 is as
follows. The least significant bit 502 leads of cach of the
two output ports of a glice of register file 1502 are con-
nected to fnputs of an exclusive-OR gate 1505. Output
of gate 1505 and an ADD/SUB INDICATOR control
lead are connected to the inputs of an exclusive-OR gate
1506, whose output Is conaected to the SELect input of
a two-to-one multiplexer 1507, Input ports of multi-
plexer 1507 are each connected to a different one of two
registers 1508 and 1509, Register 1308 permanently
stores a binary 6 value, while register 1509 stores a zero

25 value, Output port of multiplexer 1507 Is connected by

four leads to an input port of a two-to-one multiplexer
1510, The other input port and the output port of multi-
plexer 1510 fatercepts a formerly-direct . connection
between aa output port of a slice of register file 1502

operation
between each but the least significeat data fleld 500 of 30 and an Input port of ALU 1500,

reg.c;and & one sad store the results in reg.ci at step When compiling

1430. Compiler 18 code to then check the
value of carry c;, at step 1431 For the case where the
value of c;ls one, compiler 18 generates code to add one

programs for a processor 12 having
8 CPU 13 modified as shown in FIGS. 18-19, compiler
18 replaces all code generated at steps 1321-1329 with a
single new machine instruction, {llustratively named

to reg.ciand store the result in reg.cy, at step 1432. For 35 decimal adjust add. Similarly, compiler 18 replaces all

all values of c; compiler
1433-1439 that duplicates code generated at steps
tlg“-m of F1Q. m:‘d described mm Compiler 18
en feturns, at 1441, to compile sn-
othetmum.:fmwmm pile
A program, complled

execution on & 12 that

provides no special

code st steps  code genersted at steps 1429-1436 with a single new

machine insteuction, lusteatively named decimal adjust

subtract, _
In to the decimal adjust add instruction, a

response
] 40 controller (aot shown) of CPU 15 which directs actions
ss described sbove, lsulted for  of elements of CPU 15 in performing operations sets to

a logical “1™ level the ADD/SUBTRACT INDICA-

hardware support for perfocming packed BCD opers.  TOR line, asserts the SEL lead.of esch multiplexer 1510

tions. Speed and
proved by providing hardware support therefor,
suitable modification to the CPU 185 of processor
provide such support dashed
lines in F1IGS. 18-19. Only those conventional portions
of the CPU 15 for an understanding of the

)
B
8

|

eﬂidencyoﬂhonopendommytz o to connect

necessary
structure and functioa of the modification are shown in %0

the output of multiplexer 1507 to the
port of multiplexer 1510, causes cach slice ol
file 1502 to output contents of the nibble 500 ol

reg.c; that it is holding at the output port connected tc
multiplexer 1510 and to output at the other output port
contents of the aibble 500 of reg.b; that it is hold-
m‘md causes esch ALU 1500 to perform a subtract

FIGS. 18-19, The controller then causes the output of cach
CPU 15 is assumed to be the CPU of a 16-bit proces- ALU 1500 to be stored In the nibble 800 of reg.b; held
sor 12: CPU 15 procosses in paralle] the bits of & 16-bit . by the connected register flle 1802. . .
wide word, CPU 185 *slices™ each word fato fourbit FmﬂomgfomedwmerCPUlsoonmucrin
albbles: CPU 18 compcises four identical stages, each 55 response to decimal adjust subtract fnstruction are
one of which processes in perallel four bits of a word, ideatical to those performed for the decimal adjust sdd
and the four om'dmuluneomlyudp«fom instruction, except that the ADD/SUBTRACT INDI
ldcndeal:gm stage is effectively aseparate  CATOR line Is set to a logical “0” level.
CPU, stege comprises a conveational Coatents of latch 1504 are combined with cither the
snd logic unit (ALU) 1500, each input port of which is €0 «1* add signal ot “0" subtract signal from ADD/SUB-
connected by four leads to a different output port of a TRACT INDICATOR line by exclusive-OR gate 1506

1302  Output of gate 1506 is thus 1" if there Is no carry anc

0 If there is a carry.on the addition operation, and L
reversed on the subtract A *1" output of gat¢

65 1506 causes multiplexer 1507 to channel contents o

register 1508 to multiplexer 1510, A “0” output of gat«
1506 causes multiplexer 1507 to channel conteats o
reglster 1509 to multiplexer 1510, Assertion of SEL lind



11 H472

of multiplexer 1510 causes it to couple output of multi-
plexer 1507 to an input port of ALU 1500,

The lesst significant bits 502 of two aibbles 500 are
combined by exclusive-OR gate 1508, Output of gate
1508 is therefore a *1” only if one input is & “1" and the §
otyerhputhu“O".OutputofgnwwOSIscombhed
with the ADD/SUBTRACT INDICATOR line signal
by exclusive-OR gate 1506, in the manner described
sbove for latch 1504 conteats. ' -

Of course, it should be understood that various 10
changes and modifications to the illustrative embodi-
ment described above will be apparent to those skilled
in the art. For example, implementation of the CPU
hardware modifications may differ with the design of
the particular CPU and the technology used to imple- 13
ment the modifications. Or, the sixes may be sdded toan
operand before the exclusive-OR of the operands’ least
significant bits is performed. Or, this exclusive-OR op-
erstion may be replaced by an exclusive-NOR opers-
ﬁoaotmymofouormopmdomthup?iduu 20

ts O

equal; the subtraction of sizes may then be based on a

mmhdblﬂnzh:gudlqhthemohddmon

and equality in the case of subtraction if the indication 23

of the results of the fint-mentioned comparison pro-
values opposite to those produced by a

operation. Also, the com-

i
results of this comparison and the least significant bits

%

whereby sa object

12
data fields each of which includes a plurality of
bits, Including & least-significant bit, defining a
binary-coded-decimal value;
object code for symming binary values of
the fields of the same sequential order and a value
comprising & plurality of sixes, one six for data
ficlds of the same sequential order, to get a resul-
tant signal defining a value representing the result
of the summing and having a plurality of data ficlds
ordered co y to the data fields of the
obtained signals and each including a plurality of
bits including a least-significant bit;
g object code for examining values of least-
significant bits of data flelds of the same sequential
order of the two obtained signals and the resultant

signal; and
generating object code for subtracting, for each ex-

aminstion of least-significant bit values that include
an odd number of zeros, six from the value of the
data field of the resultant signat preceding the com-
pared values in the sequential order of data fields,
to obtain a modified resultant wﬁs;

program comprising the gener-
ated object code yields the modified resultant sig-
nal defining binsry-coded-decimal values repre-
senting the result of the operation on the two oper-

ands.
2. The method of claim 1 further comprising the steps
between the least  ofs .
the 30  generating object code for determining whether exe-

:ﬁonoﬂhe summing object code yielded a carry;

generating object code for subtracting six from the v

of the most-sigaificant data field of the resultant
signal if a carry #s determined not to have been

3. A method of generating object-program code from

code, comprising the steps of:

S0UICe-Program cods
receiving source code specifying an operation on two

object coda for obtaining two signals cach
o et O O eoenaly-ordered
a y-orde

%lfwlﬂch hc'l?du: a plurality of

-coded ue;
object code for subtracting binary valucs
fields of the same sequeantial order, to
signal defining & value representing
the subtracting and having a plurality
ordered y to the data
obtained signals and each including a
bits including a least-significant bit;
ject code for examining values of least-
bits of data felds of the same sequential
obtained signals and the resultant sig-

code for subtracting, for ecach ex-
of least-significant bit values that include
gumber of ones, six from the value of the
of the resultant signal peeceding the com-
sequential order of data fields,
& modified resultant signal;

gram comprising the gener-
the modified resultant sig-
ed-decimal values repre-
operation on the two oper-

2
£
§

n
+

e

;

e
i
%



H472

13
f4. The method of claim 3 further comprising the steps
o1
generating object code for determining whether exe-
cution of the object code for subtracting data field
values yielded a carry; and s
generating object code for subtracting six from the
value of the most-significant data field of the resul-
tant signal if a carry is determined to have been
yielded.
5. A method of generating object-program code from
source-program code, comprising the steps of:
receiving source code specifying addition of two
binary-coded-decimal operands;
identifying two registers each having contents repre-
senting a different one of the operands and cach
including a plurality of sequentially-ordered nib-
bles each having a plurality of bits including a
least-significant bit, the values of the plurality of
bits of each nibble together representing a binary-
coded-decimal value;
generating object code for exclusive-ORing the val-
ues tne least-significant bits of nibbles of the same
order, to obtain in a third register a plurality of bits
cach having an exclusive-OR value corresponding
with nibbles of a different order;
generating object code for adding binary values rep-
reseated by the bits of the two registers and a value
comprising a plurality of sixes, one six for each
nibble of one register, to obtain in the one register
a resultant value represented by the bits of the one 30

register;

generating object code for comparing the values of
the least-significant bits of nibbles of the one regis-
ter each with the value of the corresponding bit of
the third register; and

generating object code for subtracting, for every
comparison {ndicating equality, six from the value

of the nibble of the one register preceding the com-

20

25

H]

generating object code for determining whether exe-
cution of the object code for adding ylelded a

carry; and
generating object code foc subtracting six from the 50
most nibble of the one register if a carry
is determined not to have been yielded.

wu}oe-pmmoodo.mptﬂnnhampldx
receiving source code specifying subtraction of two 53

. binary-coded-decimal operands;
identifying two registers each having contents repre-
different and each

least
bits of each
coded-decimal value;

generating object code for exclusive-ORing the val-
ues of the t bits of nibbles of the 63
same order, to obtain in a third register a plurality
of bits each having an exclusive-OR value corre-
sponding with nibbles of & different order;

14
generating object code for subtracting binary values
represented by the bits of the two registers, to
obtain in one register a resultant value represented
by the bits of the one register;
generating object code for comparing the values of
the least-significant bits of nibbles of the one regis-
ter each with the value of the corresponding bit of
the third register; and .
generating object code for subtracting, for every
comparison indicating inequality, six from the
value of the nibble of the one register preceding the
compared values in the order;
whereby an object program comprising the gener-
ated object code is for obtaining in the nibbles of
the one register binary-coded-decimal values rep-
resenting the difference of the binary-coded-deci-
mal values initially held by the two registers.
fl. The method of claim 7 further comprising the steps
of:
generating object code for determining whether exe-
cution of the object code for subtracting the two
registers’ binary values yielded a carry; and
geaerating object code for subtracting six from the
most-significant nibble of the one register if a carry
is determined to have been yielded.
9. A method of allocating & resource to a resource
user com the steps of:
two portions of the resource each by a
different signal, each signal having a plurality of
sequentially-ordered data fields each of which in-
cludes a plurality of bits, including a least-signifi-
. cant bit, defining & binary-coded-decimal value;
summing binary values of the data fields of the same
sequential order and a value comprising a plurality
of sixes, one six for data fields of the same sequen-
tial order, to get a resultant signal defining a value
representing the result of the summing and having
s plurality of data fields ordered correspondingly
to the data fields of the representing signals and
each including a plurality of bits including s least-

significant bit;
examining values of least-significant bits of data fields
of the same sequential order of the representing

signals and the resultant signal;
for each examination of least-significant bit values
that include sn odd number of zeros, subtracting six
from the value of the data field of the resultant
preceding the compared values in the se-
tial order of data flelds, to obtain a modificd
resultant signal; and
to the user a portion of the resource repre-
seated by binary-coded-decimal values defined by
the modified resultant signal.
10. The method of claim 9 further comprising the
steps of:
determining whether the step of summing yiclded a
carry; and
six from the value of the mostsignificant
data fleld of the resultant signal if a carry is deter-
mined not to have been yielded.
11. A method of allocating a resource to a resource

represen two portions of the resource each by #
different signal, each signal having a plurality of
sequentially-ordered data fields each of which in-
cludes a plurality of bits, including a least-signifi:
cant bit, defining a binary-coded-decimal value;



£ onn o e h s st e e e 5 A SRR, A, Skt

H472

15

subtracting binary values of the data fields of the
same sequential order, to get a resultant signal
defining a value representing the result of the sub-
tracting and having a plurality of data fields or-
dered correspondingly to the data fields of the $§
representing signals and each including a plurality
of bits including a least-significant bit;

examining values of least-significant bits of data fields
of the same sequential order of the representing
signals and the resultant signal: 10

for each examination of least-significant bit values
that include an odd number of ones, subtracting six
from the value of the data field of the resultant
signal preceding the compared values in the se-
quential order of data flelds, to obtain a modified 15
resultant signal; and

allocating to the user a portion of the resource repre-
sented by binary-coded-decimal values defined by
the modified resultant signal.

12. The method of claim 11 further comprising the 20

steps oft

determining whether the step of subtracting data field
values yielded a carry; and

subtracting six from the value of the most-significant
data fleld of the resultant signal if a carry is deter- 25
mined to have been yielded.

13. A method of allocating a resource to a resource

user comprising the steps of:

representing two portions of the resource each by

niﬁmt“ bit, and deflning a binary-coded-decimal

value;

exclusive-ORing the values of the least-significant 33
bits of nibbles of the same order, to obtain in a third -
register a plurality of bits each having an exclusive-
oowucoﬂapoudh;wkh nibbles of a different

16

exclusive-ORing the values of the least-significa
bits of nibbles of the same order, to obtain in a thi
register a plurality of bits each having an exclusiv
OR value corresponding with nibbles of a differe
order;

subtracting binary values represented by the bits
the two registers, to obtain in one register a rest
tant value represented by the bits of the one reg;
ter;

comparing the values of the least-significant bits
nibbles of the one register each with the value
the corresponding bit of the third register;

for every comparison indicating inequality, subtrac
ing six from the value of the nibble of the one regi
::d preceding the compared values in the orde

allocating to the user a portion of the resource repr
seated by binary-coded-decimal values containe
in the one register.

16. The method of claim 15 further comprising tl

.steps of:

determining whether the step of subtracting the tvw
registers’ binary values yielded a carry; and

subtracting six from the value of the mostsignifica
nibble of the one register if a carry is determined
have been

17. A method of operating a digital computer fi

combining two received digital signals, each having
plurality of sequentially-ordered data fields each -
which includes m bits including a least-significant t
and a value defined by the bits representing a binar
coded base-(2n) value, m and n being positive intege
such that 2™> 2n, the method comprising the steps o

summing binary values of the data fields of the san
sequential order and a plunality of values eac
equal to (2™ —2n), one value for data fields of t!
same sequential order, to get a resultant sign
defining a value fepresenting the result of the sur
ming and having a plurality of data fields order
correspondingly to the data fields of the receivi
signals and each including m bits including a les
significant bit:

comparing values of least-significant bits of data
the same sequential ocder of the received sign:
and the resultant signal; and

for each comparison of least-significant bit values th
include an odd number of zeros, subtracting a val

10 (2™ —2n) from the value of the data field

the resultant signal preceding the compared valu
in the sequential order of data flelds, to obtain
the data flelds of the resultant signal binary-cod:
base(2n) values representing the combination
the received binary-coded base-(2n) values.

18. The method of claim 17 wherein m equals fo

and a equals five.

19. The method of claim 17 further comprising t

mbmcﬂudx&omthcvduoﬂhomdsnlm steps oft
nibble of the one register if a carry is determined amhﬂn.wbawmcmpofsummmzyieldcd

not to have been yielded. €0
18. A method of allocating a resource to a resource

user comprising the steps of:

rcprucndn;twopordomo“homoumuchb
contents of a different regicter, each register in-

lubtrlcdn' a value equal to (2™ —2n) from the val
of the most-significant data fleld the resultant sigr

if & carry is determined not to have been yielde:
20. A method of operating a digital computer f

cluding s plurality of sequentially-ordered nibbles 63 combining two recelved digital signals, each having

each having a plurality of bits, including a least-sig-
nl‘fliunz bit. and defining a binary-coded-decimal
value;

plurality of
which includes m bits Including a least-significant !
and a value defined by the bits representing a binai

sequentially-ordered data fields each



H472
17 ' 18
coded base-(2n) value, m and n being positive integers  binary-coded-decimal value, the method comprising the
such that 2m>2n, the method comprising the steps of: steps of:
binary values of the data fields of the same sequential exclusive-ORing the values of the least-significant

order, to get a resuitant signal defining a value bits of nibbles of the same order, to obtain in a third
repn:enting the result of the subtracting and hav- $§ register a plurality of bits each having an exclusive-
ing a plurality of data fields ordered correspond- OR value corresponding with data fields of a dif-
ingly to the data fields of the received signals and ferent order;
cach including m bits including a least-significant subtracting bunry values represented by the bits of
bit; the two registers, to obtain in one register a resul-

comparing vnlua of least-significant bits of data 10 - tant value represented by the bits of the one regis-
fields of the same sequential order of the received ter;
signals and the resultant signal; and comparing the values of the least-significant bits of

for each comparison of least-significant bit values that nibbles of the one register each with the value of
include an odd number of ones, subtracting a value the corresponding bit of the third register; and
equal to (2™~ 2n) from the value of the data fleld of 15 for every comparison indicating inequality, subtract-
the resultant signal preceding the compared values ing a six from the. value of the nibble of the one
in the sequential order of data fields, to obtain in register preceding the compared values in the or-
the data flelds of the resultant signal binary-coded der, to obtain in the nibbles of the one register
base(2n) values representing the combination of binary-coded-decimal values representing the dif-
the recelved binary-coded base-(2n) values. 20 ference of the binary-coded-decimal values initially

21. The method of claim 20 wherein m equals four held by the two registers,

and o equals five. 26, The method of claim 28 further comprising the
22, The method of claim 20 further comprising the  steps of:
steps of: determining whether the step of subtracting the two

determining whether the step of subtracting data field 23 registers’ binary values yielded a carry; and
values yielded a carry; and subtracting six from the value of the most-significant

subtracting a value equal to (2™ —2n) from the value nibble of the one register if a carry is determined to
of the most-significant data fleld of the resultant have been yielded.

signal if a carry is determined to have been yielded. 27. An arrangement for generating object-program
23. A method of operating a digital computer to com- 30 code from source-program code, comprising:
bine contents of two registers, each including a plurality first means, responsive to receipt of source code spec-

of sequentially-ordered nibbles each having a plurality ifying an operation on two binary-coded-decimal
of bits including a least-significant bit, the vatues of the operands, for generating object code for obtaining
plurality of bits of each nibble together representing a two signals each representing a different one of the
binary-coded-decimal value, the method comprising the 33 operands and each having a plurality of sequential-
steps of: ly-ordered data flelds each of which includes a

exclusive-ORing the values of the least-significant plurality of bits, including a least-significant bit,

bits of nibbles of the same order, to obtain in a third *  defining a binary-coded-decimal value;
regimtlplnnlhyotbtuuchhwh;mmludvo- second means, cooperative with the first means, for
value corresponding with aibbles of a different 40 generating object code for summing binary values

°fd¢!' of the data fields of the same sequential order and a
Addlngbhnryvaluurepmemedbythcbluoﬂhe value comprising a plurality of sixes, one six for
two registers and a value comprising a plurality of data fields of the same sequential order, to get a
sixes, one six for each nibble of one register, to resultant signal defining a value representing the
obtain in the one regimr a resultant value repre- 43 result of the summing and having a plurality of data
scnted by the bits of the one register; fields ordered correspondingly to the data fields of
comparing the values of the least-significant bits of the obtained signals and each including a plurality
nibbles of the one register each with the value of of bits including a least-significant bit;
the corresponding bit of the third register; and third means, cooperative with the first and the second
for every comparison indicating equality, subtracting 50 means, for generating object code for examining
six from the value of the nibble of the one register values of least-significant bits of data flelds of the
. preceding the compared values in the order, to same sequential order of the obtained signals and
obtain in the ribbies of the one register binary-cod- the resultant signal; and

ed-decimal values representing the sum of the bi- fomhmau.eoopmdvewiththethirdmeam,for
nary-coded-decimal values initlally held by the two 53 nneudn; objecc code for subtracting, for each

registers, : t values that include

24. The method of claim 23 further comprising the uoddmbuofmdxfromthevnlueorthe

'“&’:&"mm hether the of adding ylelded 2:«%“'?3"’"" thlord ;n:theffol:in-

w a ues uen er of data flelds,
mm?ﬁmmmm«mm « hcreby .object %ﬂm‘d‘nri‘sli the obj

ue program comprising the object

nibble of the one lnarrylsdcmmhed code generated by the first through fourth means

not to have been ykldlthcmodlﬂedmulhntlignddeﬁningbmary-

zs.Anmhodofopmﬁngld!duloomm oom- .coded-decimal values representing the result of the

binceomauofm sach including & Iunmyos on the two
sequentiall nibbles each having a plunllty 28 arrangement of claim 27 further comprising:

of blu including a least-significant bit, the values of the fith means, cooperative with the second means, for
plurality of bits of each nibble together representing a generating object code for determining whether



H472

execution of the summing object code yielded a
carry; and

sixth means, cooperative with the fifth means, for
generating object code for subtracting six from the
value of the most-significant data field of the resul- 5
tant signal if a carry is determined not to have been
yielded,

29. An arrangement for generating object-program

code from source-program code, comprising:

first means, responsive to receipt of source code spec- 10
ifying an operation on two binary-coded-decimal
operands, for generating object code for obtaining
two signals each representing a different one of the
operands and each having a plurality of sequential-
ly-ordered data fields each of which includes a 13
plurality of bits, including a least-significant bit,
defining a binary-coded-decimal value;

second means, cooperative with the first means for
gmmdnzobjecteodeformbmdnzbinmvd-
ues of the data fields of the same sequential order,
to get a resultant signal defining a value represent-
ing the result of the subtracting and having a plu-
rality of data fields ordered co y to the
data fields of the obtained signals and each includ-
Lr;g a plurality of bits including a least-significant 23

G

third means, cooperative with the first and the second
means, for generating object code for examining
values of least-significant bits of data fields of the
same sequential order of the obtained signals and 30
the resultant signal; and

fourth means, cooperative with the third means, for
generating object code for subtracting, for esch
examination of least-si bit values that in-
clude an odd number of ones, six from the value of 33
the data field of the resultant signal preceding the
compared values in the sequential order of data
fields, to obtain a modified resultant signal;

whereby an object program comprising the object
code generated by the first through fourth means 40
yields the modified resultant signal defining binary-
code-decimal values representing the result of the

cooperative

8 object code for determining whether
execution of the object code for subtracting data
field values yielded a carry; and

sixth means, cooperative with the fifth means, for
generating objoct code for subtracting six from the 30
value of the most-significant data field of the resul-
tant signal if & carry is determined to have been

value;
means, with the first means, for 63
generating object code for exclusive-ORing the
values of least-sl t bits of nibbles of the same
order, to obtaln in a third register a plurality of bits

20
each having an exclusive-OR value corresponding
with nibbles of a different order;
third means, cooperative with the first means, for
generating object code for adding binary values
represented by the bits of the two registers and a
value comprising a plurality of sixes, one six for
each nibble of one register, to obtain in the one
register a resultant value represented by the bits of
the one register;
forth means, cooperative with the first and the second
means, for generating object code for comparing
the values of the least-significant bits of nibbles of
the one register each with the value of the corre-
sponding bit of the third register; and
fifth means, tive with the fourth means, for
" generating object code for subtracting, for every
com indicating equality, six from the value
of the nibble of the one register preceding the com:
pared values in the order; .
whereby an object program comprising the object
code generated by the first through fifth means it
for obtaining in the nibbles of the one register bi:
nary-coded-decimal values representing the sum o
the binary-coded-decimal values initiaily held by
the two registers,
32. The arrangement of claim 31 further comptising
sixth means, cooperative with the third means, fo
generating object code for determining whethe
:ﬁcuﬁon of the code for adding yielded a carry
seventh means, cooperative with the sixth means, fo
generating object code for subtracting six from th
value of the most-significant nibble of the one reg
ister if & carry Is determined not to have bee

yielded.
33. An arrangement for generating object-progran

code from source-program code, comprising:

first means, responsive to receipt of source code spec
ifying subtraction of two binary-coded-decim:
operands, for identifying two registers each havin
contents representing a different one of the ope
ands and each including a plurality of sequentially
ordered nibbles each having a plurality of bits ir
cluding a least-significant bit, the values of th
plurality of bits of each nibble together represen
ing a binary-coded-decimal value;

second mesns, cooperative with the first means, fc
md:tlz object code for exclusive-ORing t!

ol

one register a resultant value repr
bits of the one register;

means, cooperative with the first and the 3¢
ond means, for generating object code for comps
ing the values of the lesst-significant bits of nibbl
of the one register each with the value of the con

sponding bit of the third register; and
fifth means, ve with the fourth means, {
generating object code for subtracting, for eve

indicating inequality, six from t
value of the nibble of the one register preceding t
compared values in the order;



H472
21

whereby an object program comprising the object
code generated by the first through fifth means is
for obtaining in the nibbles of the one register bi-
nary-coded-decima! values representing the differ-
ence of the binary-coded-decimal values initially $
held by the two registers.

34. The arrangement of claim 33 further comprising:

sixth means, cooperative with the third means, for
generating object code for determining whether
execution of the code for subtracting the two regis- 10
ters’ binary values yielded a carry; and

seventh means, cooperative with the sixth means, for
generating object code for subtracting six from the
value of the most-significant nibble of the one reg-
ister if & carry is determined to have been yielded. 15

35. A system for allocating a resource to a resource

user, comprising:

first means, for representing two portions of the re-
source each by a different signal, each signal hav-
ing a plurality of sequentially-ordered data fields 20
cach of which includes a plurality of bits, including
a least-gignificant bit, defining a binary-coded-deci-
mal value;

second means, cooperative with the first means, for
summing binary values of the data flelds of the 25
same sequential order and a value comprising a
plurality of sixes, one six for data fields of the same
sequential order, to get a resultant signal defining a
value representing the the result of the summing

22

subtracting and having a plurality of data fields
ordered correspondingly to the data fields of the
representing signals and each including a plurality
of bits including a least-significant bit;

third means, cooperative with the first and second
means, for examining values of least-significant bits
of data fields of the same sequential order of the
representing signals and the resultant signal;

fourth means, cooperative with the third means, for
subtracting, for each examination of least-signifi-
cant bit values that include an odd number of ones,
six from the value of the data field of the resultant
signal preceding the compared values in the se-
quential order of data fields, to obtain a modified
resultant signal; and

fith means, cooperative with the fourth means, for
allocating to the user a portion of the resource
represented by binary-coded-decimal values de-
fined by the modified resultant signal.

38. The system of claim 37 further comprising:

sixth means, cooperative with the second means, for
determining whether the subtracting performed by
the second means yielded a carry; and

seventh means, cooperative with the sixth means, for
subtracting six from the value of the most-signifi-
cant data field of the resultant signal, if a carry is
determined to have been yielded.

39. A system for allocating a resource to a resource

and having a plurality of data flelds ordered corre. 30 US¢T comprising:

spondingly to the data fields of the representing
signals and each including a plurality of bits includ-
ing a least-significant bit;

third means, cooperative with the first and second
means for examining values of least-significant bits 35
of data fields of the same sequential order of the
representing signals and the resultant signal;

fourth means, cooperative with the third means, for
subtracting, for esch examination of least-signifi-
cant bit values that include an 0dd number of zeros, 40
six from the value of the data field of the resultant
signal preceding the compared values in the se-
quential order of data flelds, to obtain a modified
resultant signal; and

fith means, cooperative with the fourth means, for 45
allocating to the user a portion of the resource
represented by binarycoded-decimal values de-
fined by the modified resultant signal.

36. The system of claim 33 further comprising:

sixth means, cooperative with the second means, for %0
determining whether the summing performed by
the second means yielded a carry; and

scventh means, cooperative with the sixth means, for
subtracting six from the value of the most-signifi-
cant data fleld of the resultant signal, if a carry is 35
determined not to have boen yielded.

37. A system for allocating a resource to a resource

user, comprising:

first means, for representing two portions of the re-
source each by a different signil, each signal hav. 60
ing a plurality of sequentially-ordered data fields
each of which includes a plurality of bits, including
a least significant bit, defining a binary-coded-deci-
mal value;

second means, cooperative with the first means, for 63
subtracting binary values of the data fields of the
same sequential order, to get a resultant signal
defining a value representing the the result of the

three registers;

first means, for representing two portions of the re-
source each by contents of a different register, each
register including a plurality of sequentially-
ordered nibbles each having a plurality of bits,
including a least significant bit, defining a binary-
coded-decimal value;

second means, cooperative with the first means, for
exclusive-ORIng the values of the least-significant
bits of nibbles of the same order, to obtain in a third
register a plurality of bits each having an exclusive-
OR value cor sponding with nibbles of a different
order;

third means, cooperative with the first means, for
adding binary values represented by the bits of the
two registers and a value comprising a plurality of
sixes, one six for each nibble of one register, to
obtaln in the one register a resultant value repre-
sented by the bits of the one register;

fourth means, cooperative with the first and second
means, for comparing the values of the least-signifi-
cant bits of nibbles of the one register each with the
value of the corresponding bit of the third register;

fith means, cooperative with the fourth means, for
subtracting, for every comparison indicating equal-
ity, six from the value of the nibble of the one
register preceding the compared values in the or-
der; and

sixth means, cooperative with the fifth means, for
allocating to the user a portion of the resource
represented by binary-coded-decimal values con-
tained in the one register.

40. The system of claim 39 further comprising:

seventh means, cooperative with the third means, for
determining whether the adding performed by the
third means yielded a carry; and

eighth means, cooperative with the seventh means,
for subtracting six from the value of the mostsig-



Ha472

' 23
nificant nibble of the one register, if a carry is de-
termined not to have been yielded.
41. A system for allocating a resource to a resource
user, comprising:
three registers; _ 3
first means, for representing two portions of the re-
source each by contents of a different register, each
register including a plurality of sequentiallyord-
ered nibbles each having & plurality of bits, includ-
ing a least significant bit, defining a binary-coded- 10
decimal value; -
second means, cooperative with the first means, for
exclusive-ORing the values of the least-significant
bits of aibbles of the same order, to obtain in a third

register a plurality of bits each having an exclusive- 13

Or% value corresponding with nibbles of a different

order; .

third means, cooperative with the first means, for
subtracting binary values represented by the bits of
memommwobwnhmemuﬁmam
resultant value represented by the bits of the one
register; B

fourth means, cooperative with the first and second
means, for comparing the values of the leastsignifi-
cant bits of nibbles of the one register each with the
value of the ' bit of the third register;

subtracting, for every comparison indicating in-
equality, six from the value of the nibble of the one 4,
re Mpreeedln;theeon;pnedvdwhtheor-

der;

13

tained in the One regieter, =« 7 ox - i
42. The system of claim 41 further comprising:
; with the third means, for

24

means, cooperative with the signal-representing
means, for comparing values of least-significant
bits of data fields of the same sequential order of
the two signals’ representing means and the resul-
tant signal-representing means; and

means, cooperative with the comparing means and
the signal-representing means, for subtracting, for
each comparison of least-significant bit values that
include an-odd number of zeros, a value equal to
(2™ —2n) from the value of the data field of the
resultant signal-representing means preceding the
compared values in the sequential order of data
fields, to obtain in the data fields of the resultant

. signal-representing means binary-coded base-(2n)

- values representing the combination of the binary-
coded (2n) values initially represented by the two
signals’ representing means. ‘

44. The computer of claim 43 wherein m equals four

-uudnequnhﬂve.

48. The computer of claim 43 further comprising:
means, cooperative with the summing means, for
c.l:tdeminlnz whether the summing yielded & carry;

mesns, cooperative with the determining means and
the signal-representing means, for subtracting a
value equal t0 (2™ ~2n) from the value of the most-
significant data fleld resultant signal-representing
means, if & carry is determined not to have been

46, A digital computer arranged for combining two

; lplmntyofmgﬁsfc)‘rrepiéénﬂnﬁ"dmls.“ h of
- each o
sixth means, cooperative with the fifth means, for ', . the two signals being fepresented by different sig-

ting ‘means, ‘each of the two signals’

i
0

«.nal-representing, _ g
L ;,?wdn:mmhmnnplnnnty of sequential-

B data fields each of which includes m bits
* including a least-significant bit and a'value defined

. by the bits representing & binary-coded base<(2n)
;d“i: and n being positive integers such that

"> o T

" mesns,- cooperative: with the signal-representing
' means, for values of the data
fields of the same sequential order of the two sig-
nals’ representing means, to obtain a resultant sig-

- nal tepresented by one of the plurality of signal-
.. representing means, the resultant signal-represent-
ing means defining a value representing the result
of the subtracting and having a plurality of data

e

"+ " flelds ordered correspondingly to data fields of the
0. . two signals’ representing means and each including

- with the  signal-representing
_ means, for, comparing values of least-significan
" bits of data flelds of the same sequential order o
tht::ndm mem and and the resul
means, cooperative with the comparing means anc
. the signal-representing means, for subtracting, fo
- each comparison of least-significant bit values in
cluding an 0dd number of ones, & value equal

~ (2m=2N) from the value of the data field of th
resultant signal- ting means preceding th:

. compered values in the sequential order of dat
fields, t0 obtain in the data flelds of the resultan

" signal-representing means binary-coded base-(2n
* values representing the combination of the binary
... coded base<(2n) values initially represented by th




H472

47. The computer of claim 46 wherein m equals four:

25

and n equals five.

48. The computer of claim 46 further comprising:

means, cooperative with the data field binary value
subtracting means, for determining whether the
subtracting of data field values yielded a carry; and

means, cooperative with the determining means and
signal-representing means, for subtracting a value
equal to (2™—2n) from the value of the most-sig-
nificant data fleld resultant signal-representing
means, if a carry is determined to have been
yiclded.

49. A programmed digital computer comprising:

a first and a second register, each including a plurality
of sequentially-ordered nibbles each having a plu-
rality of bits including a least-significant bit, the
values of the plurality of bits of each nibble to-
gether representing a binary-coded-decimal value;

a third register;

means, cooperative with the three registers, for exclu.
sive-ORing the values of the least-significant bits of

10

13

20

nibbles of the same order of the first and the second .
register, to obtain in the third register a plurality of -

bits each having an exclusive-OR value corre-
sponding with nibbles of a different order;
means, cooperative with the first and the second
register, for adding binary values represented by
the bits of the two registers and a value comprising
a plurality of sixes, one six for each nibble of one
register, to obtain in the first register a resultant
value represented by the bits of the first register;
means, cooperative with the first and the third regis-
ter.foteompudnsthcvduuoﬂhcl&ut-dpmmt
biuofnibblaotth.ﬂmndmruchwkhm
mueoﬂheoomspondhgbito!thethirdm
means, cooperative with the comparing means and
wimunmm for subtracting, for every
comparison indicating equality, six from the value
of the nibble of the first precedipg the -
values in the order, to obtain in the aib-
bles of the first register -decimal vale
ues the sum of the bdinary-coded-decl- 43
mal values initially heid by the first and the second

register.
m.mmmdcthMMmm

2’ .

30

40

L)

63

26

means, cooperative with the adding means, for deter-
mining whether the addition yielded a carry; and

means, cooperative with the first register and with
determining means, for subtracting six from the
value of the most-significant nibble of the first reg-
ister if a carry is determined not to have been
yielded.

51. A programmed digital computer comprising:

a first and a second register, each including a plurality
of sequentially-ordered nibbles each having a plu-
rality of bits including a least-significant bit, the
values of the plurality of bits of each nibble to-
gether representing a binary-coded-decimal value;

a third register;

means, coopentive with the three regxsters, for exclu-
sive-ORing the values of the least-significant bits of
nibbles of the same order of the first and the second
register, to obtain in the third register a plurality of
bits each having an exclusive-OR value corre-
sponding with nibbles of a different order;

means, cooperative with the first and the second
register, for subtracting binary values represented
by the bits of the two registers, to obtain in the first
reginer a resultant value represented by the bits of

melns. eoopemive with the flrst and the third regis-
ter, for comparing the values of the least-significant
bits of nibbles of the first register each with the
mue of the corresponding bit of the third register;

means, cooperative with the comparing means and
with the first register, for subtracting, for every
comparison Indicating inequality, six from the

value of the nibble of the first register preceding
the compared values in the order, to obtain in the
nibbles of the first register binary-coded-decimal
values representing the difference of the binary-
coded-decimal values initially held by the first and
the second registers.

82, The computer of claim 51 further comprising:

means, cooperative with the register binary value
mbmcdnz means, for detemlnlng whether the

subtraction yielded a carry; and -

' neun. cooperative with the first register and with

the determining means, for subtracting six from the
value of the most-significant nibble of the first reg-
ister if a carry is determined have been yielded.



