
(19) United States
US 20080215532A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0215532 A1
Arnold et al. (43) Pub. Date: Sep. 4, 2008

(54) DATABASE OPTIMIZATION THROUGH
SCHEMA MODIFICATION

Jeremy Alan Arnold, Rochester,
MN (US); Eric Lawrence
Barsness, Pine Island, MN (US);
Richard Dean Dettinger,
Rochester, MN (US); John
Matthew Santosuosso, Rochester,
MN (US)

(75) Inventors:

Correspondence Address:
MARTIN & ASSOCIATES, LLC
P.O. BOX 548
CARTHAGE, MO 64836-0548 (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 12/053,910

(22) Filed: Mar. 24, 2008

Related U.S. Application Data

(63) Continuation of application No. 1 1/277,229, filed on
Mar. 22, 2006.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/2; 707/E17.005
(57) ABSTRACT

A database optimizer collects statistics regarding applica
tions accessing a database, and makes one or more changes to
the database schema to optimize performance according to
the collected statistics. In a first embodiment, the optimizer
detects when a certain type of application accesses the data
base a percentage of time that exceeds a predefined threshold
level, and if the data in the database is stored in a less-than
optimal format for the application, the data type of one or
more columns in the database is changed to a more optimal
format for the application. In a second embodiment, the opti
mizer detects when one type of application accesses a column
a percentage of time that exceeds a first predefined threshold
level and is less than a second predefined threshold level, and
creates a new column in the database so the data is present in
both formats.

310

32O
Applications

Database/APS

CObO APS Java APS RPG APS

Database Optimizer

Database Manager

Database

Database Schema

126

127

125

123

124

330

Patent Application Publication Sep. 4, 2008 Sheet 1 of 10 US 2008/0215532 A1

100

PrOCeSSOr

Run-Time StatistiCS

150 130

Mass Storage I/F Display I/F NetWork IF

Patent Application Publication Sep. 4, 2008 Sheet 2 of 10 US 2008/0215532 A1

Select * from Table 1. Where C1 4
AND (C2>6 ORC3=8)

FIG. 2 Prior Art

310

320
Applications

DatabaseAPIs

CObO APS Java APIS RPG APS

Database Optimizer

Database Manager

126

127

125

123

Database 124

Database Schema 330

FIG. 3

Patent Application Publication Sep. 4, 2008 Sheet 3 of 10 US 2008/0215532 A1

400

Read Run-Time Statistics 410
for Database

420

Percentage of Accesses
that would Benefit from a Change in Data Type

EXCeeds a First Threshold?

No Change to Database
YES Schema

430

NO
422

End

NO Percentage of Accesses
that would Benefit from a Change in Data Type

ExCeeds a Second Threshold?

450 YES

Change Data Type of One or Create New Reflective
More Columns in Database Column(s) in Database

End

FIG. 4

Patent Application Publication Sep. 4, 2008 Sheet 4 of 10 US 2008/0215532 A1

500

Customization Settings
Off

O Advise Only
Automatic Changes

FIG. 5
600

Threshold Settings
LOWer Threshold %

Upper Threshold %

FIG. 6
700

710 72O d
char(20) name packed decimal (6,0) id
John Smith 345987

478921
Bob Johnson 157346

7OOA
FIG. 7 p

710 720 810 82O

Char(20) packed decimal (6,0) unicode(20) int
name name ref id ref id

John Smith 345987 k

Jane Jones 478921

Bob Johnson 157346 +

FIG. 8

Patent Application Publication Sep. 4, 2008 Sheet 5 of 10 US 2008/0215532 A1

810 82O 7OOB

unicode(20) int id
36

John Smith 345987
478921

Bob Johnson 157346

FIG. 9
1000

TableName|TableOwner E.
EmpSchema Employee

FIG. 1O Prior Art

1100

Column Table Schema Data Column
Name Name Name Type Size

packed id Employee EmpSchema (6,0)

FIG. 11 Prior Art

US 2008/0215532 A1 Sep. 4, 2008 Sheet 6 of 10 Patent Application Publication

×

US 2008/0215532 A1

TOE OO || Jºu ?Uueu

×

Sep. 4, 2008 Sheet 7 of 10 Patent Application Publication

TOE OO

?ZIS

| 9 || ?unOO uuun|OO

?UueN uuun|OO

US 2008/0215532 A1 Patent Application Publication

Patent Application Publication Sep. 4, 2008 Sheet 9 of 10 US 2008/0215532 A1

1800
View Metadata

D Application View
X System View

FIG. 18
1910 1900

Start - ACCeSS to Data 2.
Requested by Application

Database Manager 1920
Determines Type of Data
Preferred by Requesting

Application

1930
Retrieve Requested Data

from Database

1940
YES

Retrieved Data in
Preferred FOrmat?

NO 1950

Convert Data to Preferred Format

1960
Return Data to Requesting

Application

FIG. 19

Patent Application Publication Sep. 4, 2008 Sheet 10 of 10 US 2008/0215532 A1

127

2010
Database Optimizer

Data ACCeSS Mechanism 2012

Database MOClification Mechanism 2O2O

Metadata C 2022
Reflective Column Fields

2030

Customization Settings 2040

Data Coherency Mechanism 2050

Data Type Conversion Mechanism
2060

Run-Time Statistics Gathering
Mechanism

FIG. 20

US 2008/0215532 A1

DATABASE OPTIMIZATION THROUGH
SCHEMA MODIFICATION

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This patent application is a continuation of “Data
base Optimization Apparatus and Method’, Ser. No. 1 1/277.
229 filed on Mar. 22, 2006, which is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. This invention generally relates to computer sys
tems, and more specifically relates to apparatus and methods
for accessing data in a computer database.
0004 2. Background Art
0005 Since the dawn of the computer age, computers have
evolved and become more and more powerful. In our present
day, computers have become indispensable in many fields of
human endeavor including engineering design, machine and
process control, information storage and retrieval, and office
computing. One of the primary uses of computers is for
information storage and retrieval.
0006 Database systems have been developed that allow a
computer to store a large amount of information in a way that
allows a user to search for and retrieve specific information in
the database. For example, an insurance company may have a
database that includes all of its policy holders and their cur
rent account information, including payment history, pre
mium amount, policy number, policy type, exclusions to cov
erage, etc. A database system allows the insurance company
to retrieve the account information for a single policy holder
among the thousands and perhaps millions of policy holders
in its database.
0007. Many databases include data that has existed for
decades, often outliving the Software applications that origi
nally created the data. New applications are often developed
that need to access the data. The way that data is stored in a
database affects the performance of applications that access
the data. If the data is stored as a particular data type, but an
application requires a different data type, the data must typi
cally be read, then converted to the desired data type. This
problem arises, for example, when data that was originally
created by legacy applications in one data type now needs to
be accessed by new languages and APIs that expect a different
data type.
0008 Legacy applications often store integer data in fields
that are in a format known as PACKED DECIMAL, which is
one way to represent numeric data. Like the PACKED DECI
MAL data type, the data types SMALLINT, INTEGER, and
BIGINT are other alternative ways to represent numeric data.
In a Java and JDBC programming paradigm, it is widely
recognized that retrieval of data from database columns that
have a type of SMALLINT, INTEGER, or BIGINT will per
form significantly better than retrieval of data from a column
that has a type PACKED DECIMAL. The format of the data
stored in the database results in performance penalties for any
application that needs to access the data, but could run faster
if the data were of a different type. Changing the data type to
accommodate the new applications is generally not an accept
able option, because changing the data type would require
significant manual rework. This problem is especially appar
ent as companies with existing applications and databases

Sep. 4, 2008

become internet-enabled, which is commonly done using
Java to access data in existing databases. Using Java to access
data in less-than-optimal data types in older databases results
in performance penalties that are significant. Without an
apparatus and method that allows a database to dynamically
evolve according to the applications accessing its data, the
computer industry will continue to suffer from excessive
overhead in porting existing data to new applications, such as
web-enabled applications.

BRIEF SUMMARY OF THE INVENTION

0009. According to the preferred embodiments, a database
optimizer collects statistics regarding which types of appli
cations are accessing the database, and makes one or more
changes to the database schema to optimize performance
according to the collected Statistics. In a first embodiment, the
optimizer detects when a certain type of application accesses
the database a percentage of time that exceeds a predefined
threshold level, and if the data in the database is stored in a
less-than-optimal format for the application, the data type of
one or more columns in the database is changed to a more
optimal format for the application. This means that the data
base optimizer must recognize when a different type of appli
cation requests data from any changed column, and must
potentially perform a conversion from the new data type to the
old data type before returning the requested data. In a second
embodiment, the optimizer detects when one type of appli
cation accesses a column a percentage of time that exceeds a
first predefined threshold leveland that accesses the columna
percentage of time that is less than a second predefined
threshold level. In this case, a new column is created in the
database so the data is present in both formats, thereby opti
mizing the performance of both old and new applications that
access the data. The database optimizer looks at what type of
application requested data, and returns the data in the format
optimized for that type of application.
0010. The foregoing and other features and advantages of
the invention will be apparent from the following more par
ticular description of preferred embodiments of the invention,
as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

0011. The preferred embodiments of the present invention
will hereinafter be described in conjunction with the
appended drawings, where like designations denote like ele
ments, and:
0012 FIG. 1 is a block diagram of an apparatus in accor
dance with the preferred embodiments:
0013 FIG. 2 is a sample database query in Structured
Query Language (SQL);
0014 FIG. 3 is a block diagram showing the relationship
between the database and database manager of FIG. 1, and
between the database manager and applications that need to
access the database;
0015 FIG. 4 is a flow diagram of a method in accordance
with the preferred embodiments:
0016 FIG. 5 is a sample menu display window that allows
a user to set customization settings for the database manager
of the preferred embodiments:
0017 FIG. 6 is a sample menu display window that allows
a user to set threshold levels that determine the function of the
database manager of the preferred embodiments;

US 2008/0215532 A1

0018 FIG. 7 is a sample employee table for illustrating the
function of the database manager of the preferred embodi
ments;
0019 FIG. 8 is the employee table of FIG. 7 after adding
reflective columns for each of the columns in FIG. 7:
0020 FIG.9 is the employee table of FIG.8 after deleting
the original columns in FIG. 7:
0021 FIG. 10 is a table of tables that represents prior art
metadata for the employee table of FIG. 7:
0022 FIG. 11 is a table of columns in the employee table
that represents prior art metadata for the employee table of
FIG.7;
0023 FIGS. 12 and 13 represent the table of tables and
table of columns, respectively, that make up the metadata for
the employee table in FIG. 7 in accordance with the preferred
embodiments;
0024 FIGS. 14 and 15 represent the table of tables and
table of columns, respectively, that make up the metadata for
the employee table in FIG. 8 in accordance with the preferred
embodiments;
0025 FIGS. 16 and 17 represent the table of tables and
table of columns, respectively, that make up the metadata for
the employee table in FIG. 9 in accordance with the preferred
embodiments;
0026 FIG. 18 is a sample menu display window that
allows a user to select whether the application view metadata
or system view metadata is displayed when a command to
display the metadata is executed;
0027 FIG. 19 is a flow diagram of a method for a database
manager to provide data of the correct type to a requesting
application; and
0028 FIG.20 is a block diagram of the database optimizer
in FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

1.0 Overview

0029. The present invention relates to optimizing the per
formance of accessing data in a database. For those not famil
iar with databases, this Overview section will provide back
ground information that will help to understand the present
invention.

Known Databases and Database Queries
0030 There are many different types of databases known
in the art. The most common is known as a relational database
(RDB), which organizes data in tables that have rows that
represent individual entries or records in the database, and
columns that define what is stored in each entry or record.
0031. To be useful, the data stored in databases must be
able to be efficiently retrieved. The most common way to
retrieve data from a database is to generate a database query.
A database query is an expression that is evaluated by a
database manager. The expression may contain one or more
predicate expressions that are used to retrieve data from a
database. For example, lets assume there is a database for a
company that includes a table of employees, with columns in
the table that represent the employee's name, address, phone
number, gender, and salary. With data stored in this format, a
query could be formulated that would retrieve the records for
all female employees that have a salary greater than $40,000.
Similarly, a query could beformulated that would retrieve the
records for all employees that have a particular area code or
telephone prefix.

Sep. 4, 2008

0032. One popular way to define a query uses Structured
Query Language (SQL). SQL defines a syntax for generating
and processing queries that is independent of the actual struc
ture and format of the database. One sample SQL query is
shown in FIG. 2.
0033. The “select *” statement tells the database query
processor to select all columns, the “from Table1 statement
identifies which database table to search, and the “where'
clause specifies one or more expressions that must be satisfied
for a record to be retrieved. Note that the query of FIG. 2 is
expressed in terms of columns C1, C2 and C3. Information
about the internal storage of the data is not required as long as
the query is written in terms of expressions that relate to
values in columns from tables.
0034) For the query of FIG. 2, the “where clause specifies
that the first column has a value equal to four (C1 =4) logically
ANDed with the expression that the second column is greater
than six OR the third column is not equal to eight. In the prior
art, much effort has been expended to optimize queries so
they may be executed faster, which increases system perfor
mance. However, no known efforts have been made to
dynamically change a database's Schema according to the
type of applications accessing the database, the frequency
with which the application access data in the database, and the
location of the data in the database accessed by the applica
tions.

2.0 Detailed Description
0035. The preferred embodiments provide a way to
dynamically tune a database to provide data in a format opti
mized for the type of application that most frequently
accesses the data.
0036 Referring to FIG. 1, a computer system 100 is one
Suitable implementation of an apparatus in accordance with
the preferred embodiments of the invention. Computer sys
tem 100 is an IBM iSeries computer system. However, those
skilled in the art will appreciate that the mechanisms and
apparatus of the present invention apply equally to any com
puter system, regardless of whether the computer system is a
complicated multi-user computing apparatus, a single user
workstation, or an embedded control system. As shown in
FIG. 1, computer system 100 comprises a processor 110, a
main memory 120, a mass storage interface 130, a display
interface 140, and a network interface 150. These system
components are interconnected through the use of a system
bus 160. Mass storage interface 130 is used to connect mass
storage devices (such as a direct access storage device 155) to
computer system 100. One specific type of direct access
storage device 155 is a readable and writable CD ROM drive,
which may store data to and read data from a CD ROM 195.
0037 Main memory 120 in accordance with the preferred
embodiments contains data 121, an operating system 122, a
database 123, a database manager 125, data access rules 128,
and run-time statistics 129. Data 121 represents any data that
serves as input to or output from any program in computer
system 100. Operating system 122 is a multitasking operating
system known in the industry as OS/400; however, those
skilled in the art will appreciate that the spirit and scope of the
present invention is not limited to any one operating system.
Database 123 is any suitable database, whether currently
known or developed in the future. Database 123 comprises
any suitable table or collection of tables defined by database
schema 124. Database manager 125 suitably includes one or
more database APIs 126 and a database optimizer 127. Data

US 2008/0215532 A1

base APIs 126 are the application programming interfaces
(APIs) that applications may use to access data stored within
database 123. In the preferred embodiments, each type of
programming paradigm includes its own set of APIs for
accessing data in the database 123. Data access rules 128
correlate a programming paradigm (such as COBOL or Java)
to its preferred data types. Run-time statistics 129 contain
statistics that indicate the relative frequency with which each
programming paradigm accesses data in a particular portion
of the database 123 (such as a selected column or columns).
Database optimizer 127 monitors the data access rules 128
and the run-time statistics 129, and makes one or more
changes to the database schema 124 to optimize the access of
data in the database according to the run-time statistics 129.
In some cases, the database optimizer 127 changes the data
type of one or more columns in the database 123. In other
cases, the database optimizer 127 adds reflective columns to
the database 123 so that data within the database 123 is
present in multiple data types at the same time. The database
optimizer 127 then monitors which type of application
requests access to the data (by determining which database
API 126 is invoked), and retrieves data from a column in the
database, if one exists, that stores the data in a data type that
is optimized for the type of requesting application. Note that
run-time statistics 129 may be collected by the database man
ager 125 within the scope of the preferred embodiments, or
may be separately collected yet used by the database manager
125.

0038 Computer system 100 utilizes well known virtual
addressing mechanisms that allow the programs of computer
system 100 to behave as if they only have access to a large,
single storage entity instead of access to multiple, Smaller
storage entities such as main memory 120 and DASD device
155. Therefore, while data 121, operating system 122, data
base 123, database manager 125, data access rules 128, and
run-time statistics 129 are shown to reside in main memory
120, those skilled in the art will recognize that these items are
not necessarily all completely contained in main memory 120
at the same time. It should also be noted that the term
“memory” is used herein to generically refer to the entire
virtual memory of computer system 100, and may include the
virtual memory of other computer systems coupled to com
puter system 100.
0039 Processor 110 may be constructed from one or more
microprocessors and/or integrated circuits. Processor 110
executes program instructions stored in main memory 120.
Main memory 120 stores programs and data that processor
110 may access. When computer system 100 starts up, pro
cessor 110 initially executes the program instructions that
make up operating system 122. Operating system 122 is a
Sophisticated program that manages the resources of com
puter system 100. Some of these resources are processor 110.
main memory 120, mass storage interface 130, display inter
face 140, network interface 150, and system bus 160.
0040 Although computer system 100 is shown to contain
only a single processor and a single system bus, those skilled
in the art will appreciate that the present invention may be
practiced using a computer system that has multiple proces
sors and/or multiple buses. In addition, the interfaces that are
used in the preferred embodiment each include separate, fully
programmed microprocessors that are used to off-load com
pute-intensive processing from processor 110. However,
those skilled in the art will appreciate that the present inven

Sep. 4, 2008

tion applies equally to computer systems that simply use I/O
adapters to perform similar functions.
0041 Display interface 140 is used to directly connect one
or more displays 165 to computer system 100. These displays
165, which may be non-intelligent (i.e., dumb) terminals or
fully programmable workstations, are used to allow system
administrators and users to communicate with computer sys
tem 100. Note, however, that while display interface 140 is
provided to support communication with one or more dis
plays 165, computer system 100 does not necessarily require
a display 165, because all needed interaction with users and
other processes may occur via network interface 150.
0042 Network interface 150 is used to connect other com
puter systems and/or workstations (e.g., 175 in FIG. 1) to
computer system 100 across a network 170. The present
invention applies equally no matter how computer system
100 may be connected to other computer systems and/or
workstations, regardless of whether the network connection
170 is made using present-day analog and/or digital tech
niques or via Some networking mechanism of the future. In
addition, many different network protocols can be used to
implement a network. These protocols are specialized com
puter programs that allow computers to communicate across
network 170. TCP/IP (Transmission Control Protocol/Inter
net Protocol) is an example of a suitable network protocol.
0043. At this point, it is important to note that while the
present invention has been and will continue to be described
in the context of a fully functional computer system, those
skilled in the art will appreciate that the present invention is
capable of being distributed as a program product in a variety
of forms, and that the present invention applies equally
regardless of the particular type of computer-readable signal
bearing media used to actually carry out the distribution.
Examples of Suitable computer-readable signal bearing
media include: recordable type media Such as floppy disks
and CD ROM (e.g., 195 of FIG. 1), and transmission type
media Such as digital and analog communications links.
0044) The remainder of this specification describes the
detailed function of the database optimizer 127 shown in FIG.
1. Referring now to FIG. 3, a block diagram shows the rela
tionship between the database 123, the database manager
125, and applications 320 that require access to data stored in
the database 123. Database 123 is defined by a database
schema 124 that specifies the details for each table 330 in the
database 123, including the number of columns in the table,
the width of each column, and the data type of each column.
Note that the database schema 124 includes a definition for
each and every type of table 330 stored in the database 123.
0045 Database manager 125 is a layer of code that runs
between the applications 320 that need to access data in the
database 123 and the database 123 itself Database manager
125 includes the database optimizer 127 shown in FIG.1, and
includes database APIs 126 that provide interfaces for appli
cations 320 to access data in the database 123. In FIG. 4,
examples of suitable APIs are shown to include one or more
COBOL APIs 332, one or more Java APIs 334, and one or
more RPG APIs 336. COBOL APIs 332 are application pro
gramming interfaces that provide an interface for COBOL
applications to access data stored in database 123. Java APIs
334 are application programming interfaces that provide an
interface for Java applications to access data stored in data
base 123. RPG APIs 336 are application programming inter
faces that provide an interface for RPG applications to access
data stored in database 123. Of course, these specific APIs

US 2008/0215532 A1

332,334 and 336 in FIG.3 are shown by way of example, and
the preferred embodiments expressly extend to any suitable
API or other type of interface that allows an application to
access data stored within database 123.
0046. Applications 320 include all applications that may
access data within the database 123. From the specific APIs
332, 334 and 336 shown in FIG. 3, we assume that applica
tions 320 would include COBOL applications, Java applica
tions, and RPG applications. In the preferred embodiment,
each type of application will have its own set of APIs that is
uses to access data in the database 123. Note, however, that an
application of a particular type may access data in the data
base 123 using an API intended for a different application, so
long as the application itself includes the logic to performany
needed conversion between the data returned by the API.
0047 Referring now to FIG. 4, a method 400 in accor
dance with the preferred embodiments shows how the data
base optimizer 127 may dynamically make changes to a data
base to tune the performance of the database according to the
type of applications that are accessing its data. First, the
run-time statistics for the database are read (step 410). Note
that the run-time statistics are preferably collected by the
database optimizer 127, but may also be collected by a sepa
rate software tool or application as well. Method 400 deter
mines from the statistics if the percentage of accesses by a
particular type of application that would benefit a change of
data type exceeds a first threshold (step 420). If not (step
420-NO), no change is made to the database (step 422). If so
(step 420=YES), method 400 checks to see if the percentage
of accesses by a particular type of application that would
benefit from a change of data type exceeds a second threshold
(step 430). If not (step 430-NO), one or more new reflective
columns are created in the database (step 450). If so (step
430 YES), the data type of one or more columns in the
database is changed (step 440). In this manner, method 400
makes appropriate changes to the database in steps 440 and
450 that will make accesses to the data stored in the database
perform better according to the percentage of accesses by
different types of applications. Note that the changes are
determined by the first and second thresholds levels, which
may be fixed, but are preferably variable and can be set by the
database administrator.
0048. Note that the changes to the database performed by
the database optimizer 127 in method 400 of FIG. 4 are
changes to data types for columns in the database (in step
440), and the addition of columns in the database (step 450).
Note also that the database optimizer 127 may also delete
reflective columns once they are no longer needed. These
types of changes to the database are describe herein in two
different ways. First, these are describe as changes to the
database (as in FIG. 4). Alternatively, these changes are
described as changes to the database schema (as in the
claims). Note that these are different ways of saying the same
thing, since the database schema dictates the physical struc
ture and organization of the database. Columns can only be
added to a table by changing the schema for the table. The
data type of a column can only be changed by changing the
schema that specifies the data type for the column. For this
reason, the terms “changing the database' and “changing the
database schema' are considered equivalent, and no differ
ence between these terms exists for the purposes of describing
the preferred embodiments or claims herein.
0049. In the preferred embodiments, the database admin
istrator has the ability to dictate how the database optimizer

Sep. 4, 2008

127 functions. Referring to FIG. 5, a menu display window
500 allows the database administrator to select whether the
database optimizer is turned off, is put in an “advise only'
mode, or is enabled to make changes to the database auto
matically. If turned off, the database optimizer 127 does not
performany of the optimization functions described hereinas
part of the preferred embodiments. If in “advise only” mode,
the database optimizer 127 shows to the database administra
tor what changes the database optimizer 127 would have
made to optimize performance of the database if automatic
changes were enabled. If automatic changes are enabled (as
shown by the check in the box in FIG. 5), the database opti
mizer 127 automatically makes the changes to the database to
optimize its performance according to the applications
accessing its data, as shown by method 400 in FIG. 4. In
addition to setting the database optimizer 127 to “off”.
“advise only', or “automatic changes” as shown in FIG. 5, the
database administrator may also select the lower and upper
threshold levels that control how the database optimizer 127
performs its functions, as shown in FIG. 6. The lower thresh
old determines when the database optimizer 127 can first take
action to optimize the database for accesses by a particular
type of application. The upper threshold determines when the
accesses by a particular type of application become so domi
nant that it justifies changing the data type of one or more
columns in the database to accommodate the dominant type
of application. For the specific example of FIG. 6, the lower
threshold is set to 20%, while the upper threshold is set to
80%. The fact that these two threshold levels in FIG. 6 Sum to
100% is coincidental; any suitable values may be indepen
dently selected for the first and second threshold values so
long as the upper threshold value is equal to or greater than the
lower threshold value.

0050. Once a type of application that would benefit from a
change of data type exceeds 20% of the accesses to data
within a particular column, the database optimizer may take
action to optimize the database. If the type of application has
a number of accesses between the lower and upper thresholds
(between 20% and 80% for the example in FIG. 6), reflective
columns will be added to the database to provide data in
multiple data types for multiple application types. Once the
number of accesses for a particular application type exceeds
the upper threshold, the data type of the columns in the
database are changed to be optimized for the particular appli
cation. Note that the data access rules 128 in FIG. 1 correlate
a type of application to its preferred data types that will
optimize performance for that particular type of application.
0051. It is important to note what happens when data is
stored in a less-than-optimal format in the database, and no
reflective columns are present to provide an alternative data
type for the data. This happens when the number of accesses
by an application type is lower than the lower threshold, or is
greater than the upper threshold. When an application type
has a percentage of accesses lower than the lower threshold,
the database optimizer 127 will not perform optimizations to
the database 123. Note, however, that the database manager
125 will still return data in a format expected by a requesting
application by detecting which database API 126 was
invoked, and by either returning the data (if already of the
desired data type), or automatically converting the data to the
desired data type before returning the data to the requesting
application. Note that the correlation between a particular
type of application and its preferred data types is stored in the
data access rules 128. When an application type has a per

US 2008/0215532 A1

centage of accesses greater than the upper threshold, the data
type of one or more columns in the database will be changed
to the preferred data types for that type of application. Other
types of applications that now request data from these col
umns expect a different data type. Again, the database man
ager 125 accounts for this mismatch between data types, and
performs a conversion between data types before returning
the data to the requesting application. In this manner, the data
type preferred by the type of requesting application is always
returned, and when no conversion is necessary, the perfor
mance of the API returning the data is significantly increased.
Note that the data conversion may be performed by the data
base optimizer 127, or may be performed by a different por
tion of code within the database manager 125.
0052. Note that the lower and upper thresholds discussed
herein can be either inclusive or exclusive of their boundary
limits within the scope of the preferred embodiments. Thus,
we discuss the function of the database optimizer 127 in
method 400 of FIG. 4 as taking certain actions based on
whether the percentage of accesses exceeds a first threshold
(step 420) or exceeds a second threshold (step 430). Note that
these steps could have alternatively been specified to evaluate
whether the percentage of accesses is greater than or equal to
the first and second thresholds. There is no specific impor
tance regarding where the lines are drawn and whether the
conditions are true when the percentage of accesses is equal to
the set threshold levels. The preferred embodiments expressly
extends to any manner of defining a lower threshold and an
upper threshold, and for taking appropriate steps according to
those defined threshold levels, regardless of whether the
boundary limits defined by the threshold levels are included
or excluded in the ranges.
0053 A very simple example is now presented to illustrate
the function of the database optimizer 127. Referring to FIG.
7, a table 700 is a very simple database table referred to as an
Employee table that stores the name of a company's employ
ees and their corresponding employee identification num
bers. The employee table 700 includes a first column 710 that
has a data type of char(20) and a label of “name', and a second
column 720 that has a data type of packed decimal (6,0) and
a label of “id'. These data types are the preferred data types
for a COBOL application, and we assume that table 700 was
originally created using a COBOL application. Now, let's
assume that the company wants to make the employee and
identification numbers available to Java applications as well
as COBOL applications. In the prior art, when a Java appli
cation accesses the data in table 700, the database manager
125 would convert the data from its stored data type to data
types that Java expects. In the preferred embodiments, the
database manager 125 also performs the conversion between
data types by knowing what kind of application is requesting
the data by determining which database API 126 was invoked,
and by looking at the data access rules 128 that correlate a
type of application to its preferred data types. With this infor
mation, the database manager 125 returns the preferred data
type to the requesting application. It has been shown by
extensive experience that Java processes unicode much more
efficiently than character text, and processes integers much
more efficiently than packed decimals. We therefore assume
that the data access rules 128 list char and packed decimal as
preferred data types for COBOL applications, while unicode
and int are preferred data types for Java applications. We
assume for this example that the lower and upper threshold
levels are set at 20% and 80%, respectively, as shown in FIG.

Sep. 4, 2008

6. For these threshold levels, for any percentage of accesses to
a column by Java applications that are less than 20%, the
database manager simply retrieves the data as stored in the
table of FIG. 7, and performs the conversion between the
retrieved data types and the preferred data types for Java
(namely, unicode and int). For the table 700 of FIG. 7, a
COBOL application requests access to the “name column in
table 700 by invoking a COBOL API (e.g., COBOL API 332
of FIG.3). The database manager 125 detects that a COBOL
API was invoked, and looks at the data access rules 128 to
determine that the preferred data type for text is char. The
database manager 125 then looks at the database schema 124
to determine if a column in table 700 has the “name infor
mation in “char” format. Column 710 has the “name infor
mation in "char” format, so data from column 710 is returned.
In similar fashion, a Java application requests access to the
“name' column in table 700 by invoking a Java API (e.g., Java
API334 of FIG.3). The database manager 125 detects that a
Java API was invoked, and looks at the data access rules 128
to determine that the preferred data type for text is unicode.
The database manager 125 then looks at the database schema
124 to determine if a column in table 700 has the “name’
information in “unicode” format. There is no column in table
700 that has the “name' information in “unicode” format, so
the database manager 125 retrieves the char(20) data from
column 710, converts the char(20) data to unicode(20) data,
and returns the unicode(20) data to the requesting Java appli
cation. In this manner, the database manager 125 automati
cally converts from a stored data type to data type desired by
the requesting application, when needed. However, the most
significant advantage of the preferred embodiments is the
reduction in the percentage of times a conversion is needed by
changing the database schema to store data in one or more
formats compatible with the type of applications that access
the data most frequently.
0054 Referring back to FIG. 4, once the percentage of
accesses for a particular type of application that would benefit
from a change in data type exceeds a first threshold (e.g., the
lower threshold of 20%), the database optimizer 127 may take
action to optimize the database by changing the database. If
the percentage of accesses for the type of application lies
between the first and second threshold levels (e.g., between
the lower threshold of 20% and the upper threshold of 80%),
reflective columns are created in the database (step 450 of
FIG. 4). Once the percentage of accesses for the type of
application exceeds the second threshold (e.g., is greater than
80%), some of the reflective columns are deleted, leaving
only the columns that contain the data type for the dominant
type of application accessing the data.
0055 Let's say that the percentage of accesses for Java
applications for both the name and id columns in table 700 is
30%. This lies between the lower threshold of 20% and the
upper threshold of 80%, so the database optimizer 127 creates
reflective columns (step 450 in FIG. 4), as shown in table
700A of FIG. 8. Note that the first two columns are the same
columns 710 and 720 in FIG. 7. However, two new columns
810 and 820 are added that have different names and data
types. Column 810 of table 700A has a data type of unicode
(20), and has a label of “name ref. The data in column 810
is represented by asterisks “*” to indicate that the data in this
column is identical to the data in the “name' column 710,
only it is stored in unicode(20) format rather than char(20)
format. Similarly, the fourth column 820 of table 700A has a
data type of int, and has a label of “id ref. The data in column

US 2008/0215532 A1

820 is represented by plus signs “+” to indicate that the data
in this column is identical to the data in the “id column, only
it is stored in int format rather than packed decimal (60)
format. Note that columns 710 and 810 are said to be “reflec
tive' columns because they reflect the same data in different
data types (or formats). Similarly, columns 720 and 820 are
reflective columns.

0056. A COBOL application requests access to the
“name” column in table 700A by invoking a COBOL API
(e.g., COBOL API332 of FIG.3). The database manager 125
detects that a COBOL API was invoked, and looks at the data
access rules 128 to determine that the preferred data type for
text is char. The database manager 125 then looks at the
database schema 124 to determine which column in table
700A has the “name' information in “char” format. Column
710 is the appropriate column, so data from column 710 is
returned. In similar fashion, a Java application requests
access to the “name column in table 700A by invoking a Java
API (e.g., Java API334 of FIG.3). The database manager 125
detects that a Java API was invoked, and looks at the data
access rules 128 to determine that the preferred data type for
text is unicode. The database manager 125 then looks at the
database schema 124 to determine which column in table
700A has the “name' information in “unicode” format. Col
umn 810 is the appropriate column, so data from column 810
is returned. In this manner, data may be stored in multiple data
types (or formats) in the preferred embodiments to allow
efficiently returning data in a format that the requesting appli
cation expects.
0057 We now assume for our example that the percentage
of accesses by Java applications to one or more columns in
table 700A of FIG. 8 rises above the upper threshold level of
80%. In this case, the database manager deletes the original
columns 710 and 720 from table 700A, and renames the
columns 810 and 820 to the names of the original columns
(i.e., “name” and “id'), as shown in table 700B in FIG. 9.
Now, when a COBOL application requests access to the
“name' column in table 700 by invoking a COBOL API (e.g.,
COBOL API 332 of FIG. 3), the database manager 125
detects that a COBOL API was invoked, and looks at the data
access rules 128 to determine that the preferred data type for
text is char. The database manager 125 then looks at the
database schema 124 to determine if a column in table 700B
has the “name' information in “char” format. There is no
column intable 700 that has the “name' information in "char’
format, so the database manager 125 retrieves the unicode
(20) data from column 810, converts the unicode(20) data to
char(20) data, and returns the char(20) data to the requesting
COBOL application. In similar fashion, a Java application
requests access to the “name column in table 700B by invok
ing a Java API (e.g., Java API 334 of FIG. 3). The database
manager 125 detects that a Java API was invoked, and looks
at the data access rules 128 to determine that the preferred
data type for text for a Java request is unicode. The database
manager 125 then looks at the database schema 124 to deter
mine if a column in table 700B has the “name' information in
“unicode” format. Column 810 has the “name' information in
“unicode” format, so data from column 810 is returned. In this
manner, the database optimizer 127 causes the database 123
to automatically evolve according to the types of applications
requesting data from the database. Note that the data opti
mizer 127 may operate on the column level, which means that
accesses may be tracked to particular columns, and appropri
ate changes as described in method 400 of FIG. 4 may be

Sep. 4, 2008

performed on individual columns in a table without affecting
other columns in the table. This allows the optimizer 127 to
only build a reflective column if the run-time statistics 129
indicate a percentage of accesses to that particular column
exceeds the first threshold level.
0058. One significant advantage of the preferred embodi
ments is the definition of different levels of metadata. In the
prior art, the database administrator may review metadata that
shows how data is stored in the database. The metadata is
representative of the database schema. In the prior art, meta
data for a database is typically stored in two tables, one to
track the tables in the database, and another to track columns
in the tables. Referring to FIG. 10, table 1000 is table that
shows a very simplified representation of metadata for tables
in a simple database. Each entry in table 1000 represents a
different table in the database. The SchemaName column
references the schema for that particular table. The Table
Name column contains the name of the table. The Table
Owner column identifies who the owner is for the table. The
ColumnCount column indicates how many columns are in the
table. For the simple table 1000 in FIG. 10, two tables are
shown, the first being the Employee table 700 of FIG. 7, and
the second being a table called Table3. Of course, other tables
can also exist within the database represented by the metadata
in table 1000. The Employee table is assumed to have a
schema labeled “EmpSchema', and its owner is specified by
the user profile of the owner. As shown in table 700 of FIG. 7,
the Employee table has two columns.
0059 Referring now to FIG. 11, a table 1100 represents a
table of columns that shows metadata for the columns in the
Employee table, but could also include metadata for columns
in other tables as well. As shown in FIG. 11, the “name’
column in the Employee table 700 has a data type of charand
a size of 20. The “id” column in the Employee table 700 has
a data type of packed decimal and a size of (6.0). The table of
tables 1000 in FIG. 10 and the table of columns 1100 in FIG.
11 together make up metadata as known in the prior art that
describes the employee table of FIG. 7.
0060. In the preferred embodiments, the metadata is
changed to accommodate the possibility of adding reflective
columns. For table 700 of FIG. 7, the preferred embodiments
have a table of tables 1200 shown in FIG. 12 and a table of
columns 1300 shown in FIG. 13. The table of tables 1200
includes an additional column 1210 when compared to the
prior art table of tables 1000 in FIG. 10 that contains a flag to
indicate whether or not the table contains reflective columns.
Table 700 of FIG. 7 does not contain reflective columns, so
this flag is set to FALSE for the Employee table. The table of
columns 1300 in FIG. 13 contains three new columns 1310,
1320 and 1330. Column 1310 contains a flag that indicates
whether the column is a reflective column. Column 1320
contains the name of the column for which this column is
reflective, or contains “null” if the column is not a reflective
column. Column 1330 contains the name of a paradigm for
which this column is optimized. Because table 700 in FIG. 7
was created by a COBOL application that prefers char(20)
and packed decimal(6.0) format, the column was optimized
for the COBOL programming paradigm. Note that for both
the name and id columns in table 700 of FIG. 7, the metadata
in the table of columns 1300 of FIG. 13 specifies that neither
of these columns is reflective, and that they are optimized for
COBOL.

0061. Now we examine how the metadata changes when
reflective columns are added. Table 700A in FIG. 8 contains

US 2008/0215532 A1

reflective columns. The table of tables 1400 in FIG. 14 and the
table of columns 1500 in FIG. 15 represent metadata that
describes the table 700A in FIG.8. Thus, column 1210 in the
table of tables 1400 of FIG. 14 is set to TRUE for the
Employee table to indicate that the Employee table includes
reflective columns. Now we analyze the differences in the
metadata in the table of columns 1500 shown in FIG. 15,
which represents table 700A of FIG.8. Because the “name'
and “id' columns both have reflective columns “name ref
and “id ref, respectively, column 1310 in table 1500 of FIG.
15 are true for all columns in the Employee table. Column
1320 specifies which column in the table is the reflective
column, and column 1330 specifies which paradigm the col
umn is optimized for. Note that the names “name ref and
“id ref are shown herein as examples of suitable names that
would easily correlate reflective columns by the addition of a
“ref suffix. However, the actual names of reflective columns
would preferably be assigned by the database optimizer 127
in a way that would minimize the likelihood that such a name
would be explicitly created by a user. For example, a suffix of
“#Silif could be assigned by the database optimizer for
reflective columns, which would minimize the likelihood of a
user creating a column of this name. By providing metadata
as shown in the table of tables 1400 and table of columns
1500, the database optimizer 127 may easily keep track of
when reflective columns are present in a table, and which
columns contain data in which data types. This allows the
database optimizer to return the data type that matches the
requesting application, when possible, when reflective col
umns exist.

0062. The table of tables 1600 in FIG.16 and the table of
columns 1700 in FIG. 17 represent metadata that describes
the table 700B in FIG.9. Note that in table 700B the original
columns 710 and 720 have been deleted, and the newer,
Java-optimized columns 810 and 820 have been renamed to
the names of the original columns. These changes are
reflected in the metadata for this table. First, column 1210 in
table 1600 that corresponds to the Employee table is set to
False to indicate that no reflective columns are present in the
Employee table. Next, the two entries in the table of columns
1700 relating to the COBOL data types have been deleted,
and the column name of the remaining Java data types have
been renamed to the original column names. Column 1310 for
each of the remaining columns is False because there are no
longer reflective columns in the table. Column 1320 for each
of the remaining columns is Null, and column 1330 specifies
that these columns are optimized for the Java programming
paradigm.
0063. The simple example presented herein that shows the
evolution of table 700 in FIG. 7 to table 700A of FIG. 8 to
table 700B of FIG.9, along with the associated metadata and
its changes in FIGS. 12-17, shows how the database optimizer
127 may cause a database to dynamically evolve according to
which applications are accessing columns in the database and
with what frequency. A database table optimized for COBOL
(e.g., table 700 in FIG. 7) may be transformed to include
reflective columns that provide increased performance for
Java applications that need to access data in the table. Note
that this increase in performance comes at the expense of
additional storage space in the database. This is another fea
ture that is Subject to potential customization by a database
administrator. For example, the database administrator could
specify a maximum database size, or percent of database
growth, that could be used for reflective columns. The data

Sep. 4, 2008

base optimizer 127 could then create reflective columns so
long as the maximum is not exceeded. In the case that creating
additional reflective columns would exceed the specified
maximum, the database optimizer 127 could also include
heuristics to determine whether the current optimization of
potentially adding reflective columns outweighs the benefits
of reflective columns that currently exist, and can therefore
delete some current reflective columns to make room for new
reflective columns.

0064. Once the percentage of accesses by Java applica
tions exceeds a second threshold level, it is deemed that the
benefit of the reflective columns is outweighed by the cost of
the additional required storage, so the original columns are
deleted, and the remaining columns are renamed to the names
of the original columns. Now Java applications can directly
access the data in the format they prefer, while COBOL
applications will Suffer the performance penalty of having the
database manager perform the conversion between the Java
optimized data types and the COBOL-optimized data types.
Note also that this evolution can work in both directions. If the
database table evolves from table 700 in FIG. 7 to table 700A
to FIG. 8 to table 700B in FIG.9, this is not necessarily the
end of the evolution. Let's assume that there are more
COBOL applications added that access the data. In the alter
native, let's assume that fewer Java applications access the
data, perhaps because the data is available in a different table.
Whatever the reason, if the percentage of accesses by
COBOL applications exceeds the first threshold level (e.g., of
20%), reflective columns can be added to the table, and if the
percentage of accesses by COBOL applications exceeds the
second threshold level, the reflective columns could be
deleted and the table would devolve back to its original state,
as shown in table 700 in FIG. 7. The database optimizer of the
preferred embodiments thus provides a way to dynamically
tune a database according to the applications accessing data
in the database.

0065. The presence of reflective columns in a database
table presents some interesting issues. First of all, reflective
columns give rise to two different levels of metadata not know
in the prior art. In the prior art, a database user is able to view
metadata for a database that shows the user the structure of the
database. The present invention includes the concept of mul
tiple layers of metadata. The two levels of metadata that may
be viewed according to the preferred embodiments are
referred to herein as “application view' and “system view”.
The system view metadata shows all of the data stored in the
database, similar to the display of metadata known in the prior
art. However, a new level of metadata referred to herein as
“application view metadata' is a presentation of metadata
from the point of view of a particular type of application. As
discussed in detail above, the database optimizer 127 may add
reflective columns to a database to improve the performance
of applications that access data in the database. The presence
of the reflective columns may not be terribly important to an
application developer, because it represents changes made to
the database by the database manager 125 to enhance the
performance of accessing data in the database, but does not
affect the logic within the application. When the application
developer requests to see metadata for the database, the meta
data he or she may really be interested in may be the metadata
that applies to the application view. In other words, the meta
data that is specific to the type of application may be dis
played, while the metadata that is specific to other types of
applications may be hidden from view. In the preferred

US 2008/0215532 A1

embodiments, a database administrator may determine
whether the application view metadata or the system view
metadata is displayed when the user requests the display of
metadata for the database by specifying a customization set
ting. One example of such a customization setting is shown in
the menu display window 1800 of FIG. 18, which gives the
database administrator the ability to check either the Appli
cation View” box or the “System View' box. With the “Sys
temView’’ box checked as shown in FIG. 18, the system view
metadata is displayed to the database administrator when the
function to display the metadata is invoked. If the Applica
tion View’’ box is checked, only the metadata relating to a
specific type of application is displayed, and any reflective
columns for other types of applications will remain hidden.
0066. Another interesting issue that arises due to the pres
ence of reflective columns is the issue of data coherency
between reflective columns. How can we assure that the data
in two reflective columns are in Sync? There are many ways to
assure the data coherency between reflective columns. The
first is to simply perform a write to both reflective columns
when data in either is changed. Because read operations in a
database typically far outnumber write operations, the per
formance penalty for having to write to two columns instead
of one will be small. Another way to assure data coherency is
to allow for one column to be marginally out of date while a
background process copies the data from one reflective col
umn to the other. Another way to assure data coherency is to
define a “master column', which would ensure that one col
umn would always be up to date, while the other could be
marginally out of date. This is really a combination of the first
two methods discussed above. If a write to the database
changes a column that is not the master column, an immediate
write to the master column will be performed to keep the
master column up to date. If a write to the database changes
the master column, other reflective column(s) may be mar
ginally out of date and updated by a background process.
Finally, another way to assure data coherency between reflec
tive columns is to flag a column as dirty if its data is out of
date. This allows for only a single update to happen immedi
ately to one column, and the update to the reflective column
may be done separately. However, if an application reads a
column that has its dirty flag set (indicating it is out of date
with the other column), the column will be immediately
updated and the dirty bit cleared before doing the read. Of
course, there are other methods that could also be used to
assure data coherency between reflective columns in a data
base. The preferred embodiments expressly extend to any and
all methods for maintaining data coherency between reflec
tive columns in a database.

0067. One significant advantage of the preferred embodi
ments is that the database manager 125 returns data from the
database in a format (i.e., of a data type) that matches the type
of the requesting application, as determined by the API
invoked to access the data, without performing as many con
versions between data types as is required by the prior art. In
the prior art, conversion between different data types is
required whenever the data is stored in a format that is differ
ent than the format preferred by the requesting application.
Referring to FIG. 19, a method 1900 in accordance with the
preferred embodiments begins when access to data is
requested by an application (step 1910). The database man
ager then determines the type of data preferred by the request
ing application (step 1920). In one Suitable implementation,
this step is broken down into the steps of determining which

Sep. 4, 2008

API was invoked, and referring to the data access rules 128 to
determine which data type is preferred for the type of API that
was invoked. Once the preferred data type is determined in
step 1920, the requested data is retrieved from the database
(step 1930). If the retrieved data is in the preferred format
(step 1940-YES), the data is returned to the requesting appli
cation without modification (step 1960). If the retrieved data
is not in the preferred format (step 1940-NO), the data is
converted to the preferred format (step 1950), and is returned
to the requesting application (step 1960). A significant advan
tage of the preferred embodiments is to decrease the number
of times conversion between data types is needed by changing
the database to store data in a format optimized for the type of
application that most frequently accesses the data. Thus,
using the apparatus and method of the preferred embodi
ments, the performance of a database is increased by chang
ing the database to reduce the number of times conversion is
required between data types (e.g., in step 1950 of FIG. 19).
0068. The database optimizer 127 has been described
extensively above. Many of its features may be summarized
by the block diagram shown in FIG. 20. Database optimizer
127 includes a data access mechanism 2010 that performs the
function of method 400 of FIG. 4, which allows a database to
evolve according to the type of applications that access it.
Data access mechanism 2010 includes a database modifica
tion mechanism 2012 that modifies the database schema to
provide better performance. Database optimizer 127 also
writes metadata 2020 (as shown in FIGS. 12-17) that includes
reflective column fields 2022 that account for reflective col
umns, when present. Database optimizer 127 also includes
customization settings 2030 that allow a system administrator
to customize the function of the database optimizer 127.
Several examples of suitable customization are described
above, including those illustrated in FIGS. 5, 6, and 18. Data
coherency mechanism 2040 is a mechanism that maintains
coherency of data between reflective columns, as explained in
detail above. Data type conversion mechanism 2050 is a
mechanism that performs required conversions between data
types before delivering data to the requesting applications, as
described in method 1900 of FIG. 19. Run-time Statistics
gathering mechanism 2060 is a mechanism that tracks the
frequency of accesses to columns in a database by different
types of applications, and stores this information in run-time
statistics 129 in FIG.1. The block diagram of FIG. 20 shows
that the database optimizer of the preferred embodiments
includes many features not known in the prior art that provide
significant performance advantages when compared to prior
art techniques for accessing data in a database.
0069. The preferred embodiments described herein allow
a database to dynamically change over time to accommodate
the applications accessing it. As shown by the simple example
presented in FIGS. 7-9, a database table may be created with
columns that are of data types that are optimized for a
COBOL application. When other applications, such as Java
applications, access a column, the data in the COBOL-opti
mized data type is converted to data in the Java-optimized
data type before returning the data to the requesting Java
application. This allows the Java applications to know they
will receive data of the proper type, relieving the application
of the chore of performing conversion between data types. As
the number of accesses by Java applications passes a first
threshold level, the database schema may be changed to add
reflective columns that provide data in multiple data types. At
the point in time when the number of accesses by Java appli

US 2008/0215532 A1

cations exceeds a second threshold level, the original columns
that contain the COBOL-optimized data types may be deleted
from the database, and only the columns with the Java-opti
mized data type. When COBOL applications access a column
in this evolved database, the data in the Java-optimized data
type is converted to data in the COBOL-optimized data type
before returning the data to the requesting COBOL applica
tion. The first and second threshold may be set at variable
levels according to the needs of the database customer. In this
manner, the database may be dynamically tuned to optimize
the performance of applications that access the database most
frequently. By changing the first and second threshold levels,
the database designer may trade off the performance penalty
of converting data between data types with the space required
to store reflective columns in the database.
0070. One skilled in the art will appreciate that many
variations are possible within the scope of the present inven
tion. Thus, while the invention has been particularly shown
and described with reference to preferred embodiments
thereof, it will be understood by those skilled in the art that
these and other changes in form and details may be made
therein without departing from the spirit and scope of the
invention.
What is claimed is:
1. An apparatus comprising:
at least one processor;
a memory coupled to the at least one processor, and
a database optimizer residing in the memory and executed
by the at least one processor, the database optimizer
using statistics regarding the type of applications access
ing data in a database, the frequency with which the
applications access the data, and the location of the data
being accessed by the applications to make at least one
change to the database schema to optimize the perfor
mance of accessing data in the database.

2. The apparatus of claim 1 wherein the database optimizer
makes the change to the database schema according to a set of
rules that specify a preferred data type for each type of appli
cation accessing data in the database.

3. The apparatus of claim 1 wherein the change to the
database schema comprises changing the data type of at least
one column in the database.

4. The apparatus of claim 1 wherein the change to the
database schema comprises adding a new column of a second
data type to the database that contains the same data in an
existing column of a first data type in the database.

5. The apparatus of claim 1 wherein the database optimizer
receives requests from at least one application to access data
in the database, and returns data from the database of a data
type that is expected by the requesting application.

6. The apparatus of claim 1 wherein the database optimizer
further comprises a run-time statistics gathering mechanism
to gather the statistics.

7. The apparatus of claim 1 wherein the database optimizer
operates according to customization settings set by a human
USC.

8. The apparatus of claim 1 wherein the database optimizer
further comprises a data type conversion mechanism that
converts data in a first data type retrieved from the database to
a second data type that is preferred by an application request
ing the data.

9. A computer-readable program product comprising:
(A) a database optimizer that uses statistics regarding the

type of applications accessing data in a database, the

Sep. 4, 2008

frequency with which the applications access the data,
and the location of the data being accessed by the appli
cations to make at least one change to the database
Schemato optimize the performance of accessing data in
the database; and

(B) recordable media bearing the database optimizer.
10. The program product of claim 9 wherein the database

optimizer makes the change to the database schema accord
ing to a set of rules that specify a preferred data type for each
type of application accessing data in the database.

11. The program product of claim 9 wherein the change to
the database schema comprises changing the data type of at
least one column in the database.

12. The program product of claim 9 wherein the change to
the database schema comprises adding a new column of a
second data type to the database that contains the same data in
an existing column of a first data type in the database.

13. The program product of claim 12 wherein the database
optimizer further comprises a data coherency mechanism for
maintaining coherency between the existing column and the
new column.

14. The program product of claim 9 wherein the database
optimizer receives requests from at least one application to
access data in the database, and returns data from the database
of a data type that is expected by the requesting application.

15. The program product of claim 9 wherein the database
optimizer further comprises a run-time statistics gathering
mechanism to gather the statistics.

16. The program product of claim 9 wherein the database
optimizer operates according to customization settings set by
a human user.

17. The program product of claim 9 wherein the database
optimizer further comprises a data type conversion mecha
nism that converts data in a first data type retrieved from the
database to a second data type that is preferred by an appli
cation requesting the data.

18. An apparatus comprising:
at least one processor,
a memory coupled to the at least one processor; and
a database optimizer residing in the memory and executed
by the at least one processor, the database optimizer
using statistics regarding the type of applications access
ing data in a database, the frequency with which the
applications access the data, and the location of the data
being accessed by the applications to make at least one
change to the database schema to optimize the perfor
mance of accessing data in the database, wherein the
database optimizer makes the change to the database
Schema according to a set of rules that specify a pre
ferred data type for each type of application accessing
data in the database, wherein the change to the database
Schema comprises adding a new column of a second data
type to the database that contains the same data in an
existing column of a first data type in the database,
wherein the database optimizer further comprises a data
coherency mechanism for maintaining coherency
between the existing column and the new column,
wherein the database optimizer receives requests from at
least one application to access data in the database, and
returns data from the database of a data type that is
expected by the requesting application, wherein the
database optimizer further comprises a run-time statis
tics gathering mechanism to gather the statistics,

US 2008/0215532 A1 Sep. 4, 2008
10

wherein the database optimizer operates according to retrieved from the database to a second data type that is
customization settings set by a human user, wherein the preferred by an application requesting the data.
database optimizer further comprises a data type con
version mechanism that converts data in a first data type ck

