

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 September 2006 (21.09.2006)

PCT

(10) International Publication Number
WO 2006/097421 A1

(51) International Patent Classification:

C07C 213/06 (2006.01) *C07C 303/44* (2006.01)
C07C 213/08 (2006.01) *C07C 305/08* (2006.01)
C07C 219/06 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2006/060545

(22) International Filing Date: 8 March 2006 (08.03.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/661,366 14 March 2005 (14.03.2005) US

(71) Applicant (for all designated States except US): Akzo Nobel N.V. [NL/NL]; Velperweg 76, NL-6824 BM Arnhem (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JOYCE, William Francis [US/US]; 111 Wilmont Ct., Hopewell Junction, New York 12533 (US). TELSCHOW, Jeffrey Earl [US/US]; 47 Sunset Lane, Croton-on-Hudson, New York 10520 (US).

(74) Agent: SCHALKWIJK, Pieter Cornelis; Akzo Nobel N.V., Intellectual Property Department (AIP), P.O. Box 9300, NL-6800 SB Arnhem (NL).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/097421 A1

(54) Title: REMOVAL OF RESIDUAL SULFUR DIOXIDE FROM DIMETHYL SULFATE

(57) Abstract: The present invention relates to a method of removing SO₂ contaminants from dimethyl sulfate (DMS) by treatment with an oxidizing agent, and to a process for the preparation of odour free fatty acid trialkanolamine esters quaternized with DMS which is substantially free of SO₂ contaminants.

Removal of Residual Sulfur Dioxide from Dimethyl Sulfate

5 Field of the Invention

The present invention generally relates to a process for the minimization and/or removal of sulfur dioxide from dimethyl sulfate.

Background of the Invention

10 Quaternized fatty acid triethanolamine ester salts are cationic surfactants that are excellent fabric softeners that have high ecotoxicological compatibility. Ester quats are typically produced in a two-stage process in which triethanolamine is first partly esterified with fatty acids and the reaction product is subsequently quaternized with an alkylating agent. Hypophosphorous acid
15 and sodium hypophosphite are preferred catalysts for the esterification step. However, during working up, particularly at relatively high temperatures, certain by-products are formed, resulting in an adverse effect on the odor of the dimethyl sulfate (DMS) quaternized product. Many of these odor-related problems can be traced to sulfur dioxide contaminants in the dimethyl sulfate.
20 Accordingly, it is desirable to minimize and/or remove all of the sulfur dioxide from dimethyl sulfate prior to quaternization.

Accordingly, the invention provides a process for the minimization and/or removal of sulfur dioxide from dimethyl sulfate. When used in the quaternization of amines made with hypophosphorous acid, dimethyl sulfate
25 having little to no sulfur dioxide leads to the formation of a product substantially free of malodors.

Detailed Description of the Invention

The invention relates to a method of removing SO₂ contaminants from DMS, to an SO₂-free DMS and to odor-free products produced by said SO₂-free DMS.

Quaternized fatty acid triethanolamine ester salts are cationic surfactants that
5 are excellent fabric-softeners that have high ecotoxicological compatibility. Ester quats are typically produced in a two-stage process in which triethanolamine is first partly esterified with fatty acids, and the reaction product is subsequently quaternized with an alkylating agent. Hypophosphorous acid and sodium hypophosphite are preferred catalysts for
10 the esterification step. However, during working up, particularly at relatively high temperatures, certain by-products are formed, resulting in an adverse effect on the odor of the dimethyl sulfate-quaternized product. Many of these odor-related problems can be traced to sulfur dioxide contaminants in the dimethyl sulfate. Sulfur dioxide is a contaminant in commercial dimethyl sulfate
15 in quantities ranging from a few tens of ppm to about 1000 ppm, and it is believed that malodor is due to methylated sulfur compounds produced in complex chemistry involving residues of reactive ingredients interacting in the final quaternization step. Since the methylated sulfur compounds are detectable by smell in quantities down to about 1 ppb, prevention of their
20 formation is the most practical way to insure that DMS-quaternized esterquats are free of objectionable odors.

The invention provides a process for the minimization and/or removal of sulfur dioxide contaminants from dimethyl sulfate. The method involves addition of one or more oxidizing agents to convert the SO₂ contaminants in DMS effectively to SO₃ (or sulfuric acid derivatives). More specifically, the present inventors have demonstrated that DMS containing high levels of SO₂ produced high concentrations of methyl-S compounds as analyzed by GC. After treatment of the DMS by addition of one or more oxidizing agents such as t-butyl hydroperoxide and/or hydrogen peroxide in calculated quantities down to about an 18% excess, or less, in order to remove SO₂ contaminants from DMS the methyl-S compounds were no longer detectable by GC after
25
30

The oxidizing agents employable in the process of the present invention include, but are not limited by agents of the formula: ROOR where R = H or R'[O]_m[CO]_n⁻, wherein R'=alkyl or aryl and m and n = 0 or 1, with m = 0 if n = 0. Preferred oxidizing agents are peroxides, including but not limited to hydrogen 5 peroxide, hydroperoxides, peroxides, peresters, percarbonates and the like. Specific examples of preferred oxidizing agents include, but are not limited to O₂, O₃, Cl₂, KMnO₄, K₂Cr₂O₇, KClO₃, NaClO₂, HNO₃, H₂O₂, t-butyl hydroperoxide, and the like.

10 The oxidizing agent(s) are added to the SO₂-containing DMS in quantities of from about 5 ppm to about 1000 ppm; in most cases in an amount of from about 10% to about 100% molar excess versus the analyzed molar amount of SO₂ will suffice. In another embodiment, an amount of from about 10% to about 100% molar excess versus the analyzed molar amount of SO₂ is employed. This treatment step is typically performed at room temperature, 15 and subsequent to adding the oxidizing agent to the DMS, the DMS is allowed to stand from a few minutes up to a few hours.

20 The present inventors have also discovered a process for the production of products free of malodors when prepared from the dimethyl sulfate quaternization of amines made with hypophosphorous acid. In such products the volatile organic sulfur by-products that lead to the formation of objectionable odors are minimized. In this regard the invention comprises quaternizing said amines with a dimethyl sulfate quaternization agent wherein said dimethyl sulfate has a sulfur dioxide content of less than 10 parts per 25 million (ppm), preferably less than 8 ppm, and still more preferably less than 5 ppm. Minimizing the sulfur dioxide content in the dimethyl sulfate quaternization agent reduces or eliminates the formation of undesirable odor-causing by-products such as hydrogen sulfide, methyl mercaptan, dimethyl sulfide and dimethyl disulfide, resulting in a greatly improved odor profile of the 30 final product. The present invention is not limited to processes for the preparation of ester quats but rather, is applicable to any dimethyl sulfate

quaternization process of amines made with esterification catalyst/reductive bleaching agents.

The esterification catalyst/reductive bleaching agents employed in the context of the present invention are characterized in that they typically have a standard reduction potential of at least 0.5 volts. Nonlimiting examples of such esterification catalyst/reductive bleaching agents are hypophosphorous acid, sodium hypophosphite and mixtures thereof.

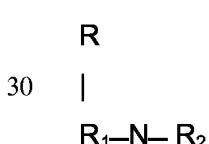
In another embodiment, the present invention relates to quaternary ammonium compounds having particularly good performance and stability profiles obtained by reaction of C₁₂ - C₂₂ fatty acids or the hydrogenation products thereof, or a mixture of such acids, with an alkanolamine in the presence of an acid catalyst, wherein the ratio of fatty acid to alkanolamine is from about 1.40 -2.0. The resultant esteramine reaction products are subsequently quaternized to obtain the quaternary ammonium salts of the present invention.

15

The fatty acid is preferably a C₁₂ - C₂₂ acid containing a degree of unsaturation such that the iodine value ("IV") is in the range of from about 0-140, preferably, from about 3-90, more preferably in the range of 40-60 and still more preferably, in a range of from about 45-55. Preferably, the fatty acid source is selected from C₁₂-C₂₂ fatty acids represented by the formula:

wherein, R_x is a straight or branched chain C₁₁-C₂₁ alkyl group.

Preferred sources of C₁₂-C₂₂ fatty acids are selected from the group consisting of: lauric acid, tridecyclic acid, myristic acid, pentadecyclic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, phytanic acid, behenic acid, anionic derivatives thereof, salts thereof, and combinations thereof.


Preferred sources of acid are C₁₂-C₂₂ fatty acids comprising a saturated alkyl group. Other preferred sources of acids are C₁₂-C₂₂ fatty acids comprising an unsaturated group, typically having an iodine value of from 15 to 25,

5 The source of acid may be selected from the group consisting of palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, cis-eleostearic acid, trans-eleostearic acid, linolenic acid, arachidonic acid, anionic derivatives thereof, salts thereof, and combinations thereof.

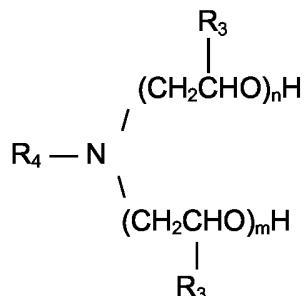
10 Preferred sources of fatty acids are selected from the group consisting of coconut, soybean, tallow, palm, palm kernel, rapeseed, lard, sunflower, corn, safflower, canola, olive, peanut, and combinations thereof. A preferred source of acid is hard tallow fatty acid and/or partially hydrogenated tallow fatty acid.

15 Preferred fatty acids include but are not limited to oleic, palmitic, erucic, eicosanoic and mixtures thereof. Soy, tallow, palm, palm kernel, rape seed, lard, mixtures thereof and the like are typical sources for fatty acid which can be employed in the present invention. The fatty acid(s) employed in the present process optionally have a cis to trans isomer ratio of from about 80:20 to about 95:5. In another embodiment, the trans isomer content of said fatty acid(s) is less than about 10%. A typical trans-isomer content is between 20 about 0.5 - 9.9%. A preferred fatty acid is a mixture of tallow/distilled tallow having a cis:trans isomer ratio of greater than 9:1. Partial or fully hydrogenated fatty acids can be employed in the process of the present invention.

25 The alkanolamines employable in the present invention generally correspond to the formula:

herein R, R₁ and R₂ are independently selected from C₂ - C₆ hydroxyalkyl

$$\begin{array}{c}
 R_3 \\
 | \\
 (CH_2CHO)_z \text{ where } R_3 \text{ is independently H or a C}_1 \\
 \text{to C}_4 \text{ alkyl and } z \text{ is 1 to 10.}
 \end{array}$$


5

Alternatively, the alkanolamines can be of the formula:

10

15

20

Where R_4 is a linear or branched, substituted or unsubstituted alkyl group, amidoalkyl group, etheralkyl group, or polyoxyalkylene group, n and m = 1-10, and R_3 has the meanings defined above.

25

Examples of alkanolamines useful in the context of the present invention include, but are not limited to, triethanolamine, isopropanoldiethanolamine, ethanoldiisopropanolamine, triisopropanolamine, diethanolisopropanolamine, diethanolisobutanolamine, methyldiethanolamine and mixtures thereof.

30

The molar ratio of fatty acid to alkanolamine is generally in the range of from about 1.4 to 2.0, preferably from about 1.55 - 1.90, and more preferably, in the range of from about 1.65-1.75. Best results are usually obtained when the molar ratio is between about 1.68-1.72. The acid catalyst employable in the present process includes, but is not limited to, acid catalysts such as sulfuric acid, phosphorous acid, α -toluenesulfonic acid, methanesulfonic acid, oxalic

3000 ppm based on the amount of fatty acid charge. A preferred acid catalyst is hypophosphorous acid. Typically, 0.02 - 0.2 % by weight, and more preferably 0.1 to 0.15 % by weight of acid catalyst, based on the weight of fatty acid, is employed in the present process.

5

The esterification of fatty acids with alkanolamines is carried out at a temperature of from about 150° - 250°C until the reaction product has an acid value of below 5. After the esterification, the crude product is reacted with alkylating agents in order to obtain the quaternary ammonium product. The 10 alkylating agent employed in the present invention is dimethyl sulfate having a sulfur dioxide content of less than about 10 ppm. Typically, 0.7 to 1.0, preferably 0.75 to 0.98 mole of dimethyl sulfate per mole of esteramine is satisfactory in yielding the quaternized product.

15 The quaternization may be carried out in bulk or in solvent, at temperatures ranging from 60° - 120°C. If a solvent is employed, then the starting materials and/or product must be soluble in the solvent to the extent necessary for the reaction. Solvents of this type are generally known in the art. Suitable examples include polar solvents such as, for example, lower alcohols, i.e., C₁ - 20 C₆ alcohols. Other solvents which can be employed include, but are not limited to mono-, di-, and tri-glycerides, fatty acids, glycols and mixtures thereof.

25 The products of the invention can beneficially be employed in textile softening and/or personal care compositions and in other applications typical for cationic surfactants.

The invention will now be illustrated by the following nonlimiting examples.

30 Example 1

In small vials, 5 mL portions of commercial DMS were treated with 50 µL portions of either water or an oxidizing agent, stirred 30 min and then sampled.

The SO₂ content was measured before and after treatment, as shown in the table.

DMS Treatments to Remove SO₂

Additive	Mol/mol SO ₂	SO ₂ Conc. µg/mL
none	-	445
water	80	310
30% H ₂ O ₂	14	<3 (ND)
70% t-BuOOH	5.9	<3 (ND)

5 ND = not detected

Example 2

10 13.2 g of DMS containing roughly 2460 ppm SO₂ (0.51 mmol) was treated with 26 µL (~33 mg, 0.69 mmol, ~35% excess) of 71.1% H₂O₂ (d 1.285). The colorless solution had no detectable remaining SO₂.

15 Example 3

Hardened tallow triethanol ester methyl amine (HT TEEMA) was prepared using 1660 ppm (vs. fatty acid) of 50% hypophosphorous acid. Three 250-lb batches of hardened tallow triethanolamine ester quaternary (HT TEQ) were 20 made by quaternization of the HT TEEMA with the following DMS feedstocks:

1. Commercial DMS containing ~80 ppm of SO₂.
2. Thirty-six pounds of DMS doped with 0.054 lb of sulfur dioxide to ~1500 ppm of SO₂.
- 25 3. Thirty-six pounds of DMS doped with ~1500 ppm of SO₂ and then treated with 0.086 lb, a 45-55% molar excess, of 50% hydrogen peroxide (~2400 ppm) to reduce the SO₂ to ~1 ppm (as analyzed after 4.5 hr). The excess peroxide corresponds to stoichiometry for the reaction: H₂O₂ + SO₂ → H₂SO₄.

The reactor was washed thoroughly between batches to avoid potential cross-contamination. All of the HT TEQ samples were kept in a freezer to preserve the odor characteristics of each of the batches until all of the runs were completed. The HT TEQ samples were then evaluated by a formal, 6-person odor panel.

Both HT TEQ batches 3256 and 3257, made from DMS with 80 ppm and 1500 ppm of SO₂, respectively, had typical sulfur compound odors, with the latter batch having an exceptionally foul odor. The odor panel verified that the HT TEQ made from batch 3258 of treated DMS containing ~ 1 ppm SO₂ did not have any detectable sulfur type odors.

Analysis of HT TEQ Made on 250-lb Scale

Sample (Batch #)	DMS Used #	CH ₃ SH SO ₂ Conc.	(CH ₃) ₂ S Nanograms/gram or ppb	(CH ₃) ₂ S ₂	Unk. ¹
3256	1	80 ppm	3	<2	<2
3257	2	1500 ppm	29	32	1423
3258	3	1 ppm	<2	<2	<2

We claim:

5 1. A process for removing residual SO₂ from dimethyl sulfate that comprises treating said dimethyl sulfate with an SO₂-removing effective amount of at least one oxidizing agent for a time and at a temperature effective to remove substantially all residual SO₂ from the dimethyl sulfate.

10 2. The process of claim 1 wherein said oxidizing agent is represented by the formula: ROOR where R = H or R'[O]_m[CO]_n⁻, wherein R'=alkyl or aryl and m and n = 0 or 1, with m = 0 if n = 0.

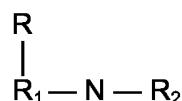
15 3. The process of claim 2 wherein said oxidizing agent is selected from the group consisting essentially of hydrogen peroxide, hydroperoxides, peroxides, peresters, percarbonates and mixtures thereof.

20 4. The process of claim 3 wherein said oxidizing agent is selected from the group consisting essentially of O₂, O₃, Cl₂, KMnO₄, K₂Cr₂O₇, KClO₃, NaClO₂, HNO₃, H₂O₂, t-butyl hydroperoxide, and mixtures thereof.

25 5. The process of claim 1 wherein said oxidizing agent(s) are added to the SO₂-containing DMS in quantities of from about 5 ppm to about 1000 ppm.

6. The process of claim 5 wherein said oxidizing agent is added to said SO₂-containing DMS in an amount of from about 10% to about 100% molar excess versus the analyzed molar amount of SO₂.

7. The process of claim 1 wherein said treatment is conducted at ambient temperature.
8. The process of claim 1 wherein said dimethyl sulfate contains less than 20 ppm sulfur dioxide subsequent to said treatment.


5

9. The process of claim 8 wherein said dimethyl sulfate contains less than 8 ppm sulfur dioxide subsequent to said treatment.
10. The process of claim 9 wherein said dimethyl sulfate contains less than 5 ppm sulfur dioxide subsequent to said treatment.
11. A process for preparing an ester quaternary having improved odor profile that comprises esterifying an alkanolamine with fatty acid in the presence of a esterification catalyst/reductive bleaching agent having a standard reduction potential of at least 0.5 volts in order to form an esteramine and thereafter quaternizing said esteramine with dimethyl sulfate, wherein said dimethyl sulfate is treated in accordance with the process of claim 1.
12. The process of claim 11 wherein said esterification catalyst/reductive bleaching agent is selected from the group consisting of hypophosphorous acid, sodium hypophosphite and mixtures thereof.
13. The process of claim 12 wherein said fatty acid is a C₁₂ - C₂₂ acid containing a degree of unsaturation such that the iodine value ("IV") is in the range of from about 0-140

14. The process of claim 13 wherein said fatty acid is selected from the group consisting of oleic, palmitic, erucic, eicosanoic and mixtures thereof.

5

15. The process of claim 11 wherein said alkanolamine is of the formula:

10

wherein R, R₁ and R₂ are independently selected from C₂ - C₆ hydroxyalkyl groups.

16. The process of claim 15 wherein said alkanolamine is selected from the group consisting essentially of triethanolamine, isopropanoldiethanolamine, triisopropanolamine, diethanolisopropanolamine, diethanolisobutanolamine, methyldiethanolamine and mixtures thereof.

20

17. The process of claim 11 wherein said dimethyl sulfate contains less than 8 ppm sulfur dioxide.

18. The process of claim 17 wherein said dimethyl sulfate contains less than 5 ppm sulfur dioxide.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2006/060545

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07C213/06 C07C213/08 C07C219/06 C07C303/44 C07C305/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2004/060854 A (AKZO NOBEL N.V.) 22 July 2004 (2004-07-22) abstract; claims page 7; examples -----	1-18
A	US 4 830 771 A (RUBACK ET AL) 16 May 1989 (1989-05-16) claims 12,14; example 1 -----	1-18
A	US 5 670 677 A (PONSATI OBIOLS ET AL) 23 September 1997 (1997-09-23) abstract; claims 1,17; examples column 1, lines 27-40 -----	1-18
A	GB 119 250 A (EDMOND JOHNSON BOAKE; THOMAS HAROLD DURRANS) 20 September 1918 (1918-09-20) claims -----	1-18
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the International search report
18 August 2006	25/08/2006
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Kiernan, A

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2006/060545

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 41 21 409 A1 (CHEMIE AG) 14 January 1993 (1993-01-14) abstract; claims; examples -----	1-18
A	DE 101 32 526 A1 (RUHRGAS AKTIENGESELLSCHAFT) 30 January 2003 (2003-01-30) page 4, lines 6,7; claim 19 -----	1-18

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No	
PCT/EP2006/060545	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2004060854	A	22-07-2004	AU	2003296735 A1		29-07-2004
			BR	0317914 A		29-11-2005
			CN	1745060 A		08-03-2006
			EP	1578718 A1		28-09-2005
			MX	PA05007254 A		08-09-2005
US 4830771	A	16-05-1989	AU	1813188 A		22-12-1988
			DE	3720332 A1		29-12-1988
			EP	0295385 A1		21-12-1988
US 5670677	A	23-09-1997	DE	4308792 C1		21-04-1994
			WO	9421596 A1		29-09-1994
			EP	0689533 A1		03-01-1996
			ES	2108437 T3		16-12-1997
			JP	8507756 T		20-08-1996
GB 119250	A	20-09-1918		NONE		
DE 4121409	A1	14-01-1993		NONE		
DE 10132526	A1	30-01-2003		NONE		