Al

7567

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
11 October 2001 (11.10.2001)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 01/75679 Al

(51

21
22
(25
(26)

(30

(M)

(72)
(79)

International Patent Classification”: GO6F 17/30,
15/16, HO4L 12/28

International Application Number: PCT/US01/10943
International Filing Date: 4 April 2001 (04.04.2001)
Filing Language: English
Publication Language: English
Priority Data:

60/194,925 4 April 2000 (04.04.2000) US

Applicant (for all designated States except US): META-
MATRIX, INC. [US/US]; 17 State Street, 26th floor, New
York, NY 10004 (US).

Inventors; and

Inventors/Applicants (for US only): SCANLON, Robert
[US/US]; 506 Huntercreek Court, Des Peres, MO 63131
(US). MILLER, Alex, M. [US/US]; 7527 Buckingham
Drive #2W, Clayton, MO 63105 (US). WOLFANGEL,
Steven [US/US]; 5133 Kings Park Drive, St. Louis, MO
63129 (US). WRIGHT, Brad [US/US]; 14260 Cedar

74

31

84

Springs Drive, Town and Country, MO 63017 (US).
HAUCH, Randall [US/US]; 12 Autumn Glen Drive, Glen
Carbon, IL 63024 (US).

Agents: SOFER, Joseph et al.; Sofer & Haroun, LLP,
Suite 1921, 342 Madison Avenue, New York, NY 10173
(US).

Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CO, CR, CU, CZ, DE,
DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ,
UA, UG, US, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: A SYSTEM AND METHOD FOR ACCESSING DATA IN DISPARATE INFORMATION SOURCES

110

\

METADATA FACILITY
CONSOLE

METAMATRIX
METABASE ™

METADATA FACILITY

110C

METADATA-AWARE TOOLS

A O

o MODELING TOOLS — \MPORT

° DB ADMIN TOOLS

e @ OR MODEL
/ z \ METAMATRIX

CLIEI
AP|

110A

O O O METADATA MODELER

@\ (57) Abstract: The present invention relates to a system (10) for generating and maintaining virtual and physical metadata layers in
a MetaBase metadata repository (110b) in order to simplify and optimize the retrieval of data from a plurality of disparate informa-
tion sources (130a-130c). The system stores in a physical metadata layer of a MetaBase metadata repository a plurality of physical
metadata elements, wherein each one of the physical metadata elements corresponds to the metadata elements in the plurality of
~~ information sources. Logical metadata elements are stored in the virtual metadata layer and are linked to the physical metadata ele-
ments in order to maintain the relationships therebetween. By maintaining the relationships between the physical metadata elements,
users can initiate a data query request for data corresponding to a logical metadata element, and the system is configurated to retrieve
the desired data from the relevant information sources, even in the event that relevant information sources maintain the data in fields
having different data field names, that the information sources employ incompatible data formats, and that the relevant information
sources employ different query languages.

120
10
METAMATRIX
REPOSITORY
M El'AMATRlX
f 100 SOLE
MEI' AMATRIX

13055 130C §1300 130

DISPARATE DATA SOURCES

w0 01/75679 A1 I HID 00000 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

2

25

30

WO 01/75679 PCT/US01/10943

A SYSTEM AND METHOD FOR ACCESSING DATA

IN DISPARATE INFORMATION SOURCES

FIELD OF THE INVENTION
This invention relates to database integration, and more particularly, to software

components for logically integrating disparate information sources.

BACKGROUND OF THE INVENTION

In recent years, there has been a great deal of improvement in the sophistication
and efficiency of methods for storing and retrieving data in information sources. One
significant problem with this progression, however, is that different companies (and even
different departments within one company) each use different information systems to
support their data. It is often a very complex task to integrate data from one information
system with data from another information system. Typically, it is necessary for
companies to laboriously convert the multiple information source formats to be

compatible with each other.

Although there are an infinite number of situations in which it may be desirable to
access data stored in disparate information sources, an exemplary situation is the merging
of two companies. For instance, prior to the merger, the accounting department of each
company may have its own accounting information source, accessible by a corresponding
information system. Each accounting information source may store data such as
customer names, addresses, social security numbers, interest rates, earnings, or a myriad
of other types of data. Each type of data is stored in a data field having a data field name.

Data may be retrieved from the information sources by a user making a query request,

20

25

WO 01/75679 PCT/US01/10943

2
using a query request language compatible with the information system and recognizable

by the information source.

After the merger of the two companies, a single accounting department is likely to
exist. This accounting departmént will be required to access the data in both of the
information sources. However, because the information sources were created and
maintained before the merger, they are unlikely to be accessible simultaneously. For
instance, if the information systems of each are different, it will be necessary for the
accounting department personnel to query the first information source using a first query

languages and to query the second information source using a second query language.

However, even in the event that the two information sources employ the same
information system (and can therefore be searched using the same query language) the
disparity in field names used to store the various types of data in each information source
may prevent data from both information sources from being searched simultaneously.
For instance, similar types of data may have been stored in each information source using
different data field names (e.g.- customer’s names may be stored in a first information
source in a data field named “customer”, and may be stored in a second information
source in a data field named “cust_id”"). Regardless of the compatibility of query
languages used, a query request of customers’ names using either field name would fail
to retrieve data from the data field having the other field name. Conversely, there may be
instances when two fields in different information sources have similar data field names
but contain different types of data, thereby resulting in a single query returning two

different types of data.

One of the methods that has been employed in the prior art to solve this problem
is the employment of data warehouses. Figure 17 is a block diagram that illustrates the

main components of a system that employs data warehousing. In the diagram shown,

20

25

WO 01/75679 PCT/US01/10943

3
various information sources are represented by information sources 35a, 35b and 35c.
Each of the information sources are coupled to extraction transformation load 30.
Extraction transformation load extracts data from the disparate information sources on a

pre-determined, periodic basis, and transforms it into a common data format.

Extraction transformation load 30 is in turn coupled to data warehouse 25. Once
data is extracted from the information sources by extraction transformation load 30 and
re-formatted, it is transmitted by extraction transformation load 30 to data warehouse 25
for storage therein. Since extraction transformation load 30 is periodically extracting
new data from the information sources, new data is periodically being transmitted by
extraction transformation load 30 to data warehouse 25, and the data stored in data

warehouse 25 is periodically updated.

Client application 20 is coupled to data warehouse 25, and employs the data
stored in data warehouse 25 to perform its intended functions. However, one of the
problems that exist with a system of this kind is that the data stored in data warehouse 25,
and hence the data employed by the client when performing its intended functions, is
stale. This follows because there may be a large volume of data stored in the information
sources, requiring a significant amount of time for extraction transformation load 30 to
extract the data from the information sources and to transmit it for storage in data
warehouse 25. The client’s application does not employ data directly from the
information sources, but instead employs data which has been updated at some time in

the past which is unknown to the client, and which may be inaccurate.

Another method that has been employed in the prior art to solve this problem is
the employment of data silos. Figure 18 is a block diagram that illustrates the main
components of a system that employs data silos. In the diagram shown, various

information sources are represented by information sources 55a, 55b and 55¢. Each of

2

23

WO 01/75679 PCT/US01/10943

4
the information sources are coupled to a data accessor 50. In this case, information
sources 55a, 55b and 55¢ are coupled to data accessor 50a, 50b and 50c, respectively.

Data accessors 50 comprise code for retrieving data from the information sources.

Data accessors 50a, 50b and 50c are in turn coupled to router middleware module
45. Router middleware module 45 is coded to retrieve and consolidate data from the data
accessors. Client application 20 is coupled to router middleware module 25, and
communicates with it to request data in order to perform its intended functions.
However, one of the problems that exist with a system of this kind is that a great deal of
manual programming labor is required in order to code router middleware 45 and data
accessors 50. Specifically, this system requires that router middleware 45 have logic
which is hard-coded to the information sources. The problems of generating and

maintaining the necessary code to operate a system of this kind can be unmanageable.

Thus, there is a need for a system for logically integrating disparate information

sources.

OBJECT AND SUMMARY OF THE INVENTION

It is thus a general object of the present invention to provide software components

for integrating disparate information sources.

The present invention, in accordance with one embodiment, relates to a system
and method for generating and maintaining virtual and)physical metadata and
metamodels in a MetaBase™ metadata repository in order to simplify and optimize the
retrieval of information from a plurality of disparate information sources. The system
stores in the repository a plurality of physical metadata elements, wherein each. one of the

physical metadata elements corresponds to the metadata elements in the plurality of

20

Al

WO 01/75679 PCT/US01/10943

5
information sources. As is explained in greater detail below, “metadata” refers to the
identifying names of data tables, fields, etc. in an information source (as opposed to
“data” which refers to the information stored within the storage spaces defined by the

tables, fields, etc.).

In a preferred embodiment, physical metadata elements are stored in the physical
metadata layer and correspond directly to the metadata that is obtained from the disparate
information sources. Logical metadata elements are stored in a virtual metadata layer and
are linked to the physical metadata elements in order to maintain the relationships

therebetween.

The present invention, by abstracting the metadata of the disparate information
sources, enables the establishment of relationships between the metadata of the disparate
information sources. Generally, and as is explained in greater detail in connection with
Figure 3, the system of the present invention generates a model which provides a schema,
or structural arrangement, of the metadata in the information sources which make up the
model. A model is a first level of abstraction which is employed by the system of the

present invention.

The system also generates metamodels, or “data about models”. Each metamodel
comprises a schema which is abstracted from the schema of the various models which
make up the metamodel. At the highest level of abstraction, the system generates a meta-
metamodel, which is still another schema which is abstracted from the schema of the
various metamodels employed by the system. This highest level schema, which has been
successively abstracted from the metadata of the disparate information sources, provides
a framework which replaces the incompatible schemas of the different information
sources in order to provide uniform accessibility to the data of all the information

sources.

2

2

WO 01/75679 PCT/US01/10943

6
The present invention, according to one embodiment, enables a user to execute a
query request against a metamodel in order to retrieve data from the native information
sources. By successive abstractions of the data and metadata of various information
sources, the varying structures and organization of data in the information source (also
referred to as a “schema”), is replaced with a schema which describes the structure and

organization of all of the information.

Furthermore, by maintaining the relationships between the physical metadata
elements, users can initiate a data query request for data corresponding to a logical
metadata element, and the system is configured to retrieve the desired data from the
relevant information sources, even though the relevant information sources maintain the
data in fields having different data field names, even though the information sources
employ incompatible data formats, and even though the information in each source may
be organized substantially different that it is organized in each physical source. In
addition, and as described in further detail below, the system of the present invention is
configured to retrieve the desired data from the relevant information sources, even though

the relevant information sources employ different query languages.

Thus, by logically integrating the data from disparate information sources, the
present invention provides a system and method which enables a user to access any
information source regardless of the information system which is employed by the
individual information sources, and regardless of the format that the individual
information source employs to store its data. Furthermore, the present invention enables
a client’s application programming interface to communicate with a defined set of
metadata elements, even if the client changes the information sources from which

information is desired to be obtained.

The above description sets forth rather broadly the more important features of the

2

25

WO 01/75679 PCT/US01/10943

7
present invention in order that the detailed description thereof that follows may be
understood, and in order that the present contributions to the art may be better
appreciated. Other objects and features of the present invention will become apparent
from the following detailed description considered in conjunction with the accompanying
drawings. It is to be understood, however, that the drawings are designed solely for the
purposes of illustration and not as a definition of the limits of the invention, for which

reference should be made to the appended claims.

DETAILED DESCRIPTION OF THE DRAWINGS
In the drawings in which like reference characters denote similar elements

throughout the several views:

Figure 1 is a block diagram that illustrates some of the main components of the
metadata management system, in accordance with one embodiment of the present

invention;

Figure 2 is a block diagram that illustrates some of the processing modules of the

MetaMatrix server 100, in accordance with one embodiment of the present invention;

Figure 3 shows how data is abstracted by the system of the present invention in
order to generate models, metamodels and meta-metamodels, in accordance with one

embodiment of the present invention;

Figure 4(a) shows a metamodel comprising virtual and physical metadata layers,

in accordance with one embodiment of the present invention;

Figure 4(b) is a block diagram that illustrates an example of a virtual metadata

layer linked with a physical metadata layer, in accordance with one embodiment of the

20

2

WO 01/75679 PCT/US01/10943

present invention;

Figure 5(a) is a block diagram that illustrates the virtual metadata layer and the

physical metadata layer, in accordance with one embodiment of the present invention;

Figure 5(b) is a block diagram that illustrates the virtual metadata layer and the

physical metadata layer, in accordance with another embodiment of the present invention;

Figure 6 is a flowchart that illustrates the steps that are performed in order to
deploy the above-described metadata management system, in accordance with one

embodiment of the present invention;

Figure 7 is a flowchart that illustrates the steps that are employed by the metadata
management system in order to execute a query request entered by a user, in accordance

with one embodiment of the present invention;
Figure 8 illustrates a sample SQL-like query, as is known in the prior art.

Figure 9 is a diagram that illustrates a query request plan as a configuration of

nodes, in accordance with one embodiment of the present invention;

Figure 10 is a flowchart that illustrates the steps that are performed by a query
service module in order to execute a query request plan, in accordance with one

embodiment of the present invention;

Figure 11 is a flowchart which illustrates the steps which are performed by the

metadata management system in order to optimize the handling of identical query

WO 01/75679 PCT/US01/10943

9

requests from different users, in accordance with one embodiment of the present

invention;

Figure 12 illustrates a pair of data tables which store automobile information in a

s multi-columned format, as is well known in the prior art;

Figure 13 illustrates a data table in which the automobile information of the pair
of data tables in Figure 12 is joined into a single data table in accordance with a joining

operation, according to one embodiment of the present invention;

Figure 14 illustrates a data table which stores quarterly sales data in a multi-

columned format, as is well known in the prior art;

Figure 15 illustrates a data table in which the quarterly sales data of Figure 14 is
15 re-formatted into a single-columned format in accordance with a dimensional transform,

according to one embodiment of the present invention;

Figure 16 is a flowchart that illustrates the steps that are performed in order to
transmit, or write back, data provided by a user into the information sources, in

» accordance with one embodiment of the present invention;

Figure 17 is a block diagram that illustrates the main components of a system that

employs data warehousing, in accordance with the prior art; and

2 Figure 18 is a block diagram that illustrates the main components of a system that

employs data silos, in accordance with the prior art.

20

25

WO 01/75679 PCT/US01/10943

10

DETAILED DESCRIPTION OF THE INVENTION

The present invention, according to one embodiment thereof, relates to a system
which employs metadata to integrate data from disparate information sources. As
previously mentioned, metadata may refer to the names of the storage spaces in an
information source, such as the various data field names or data table names in an
information source. Thus, for instance, an information source may store data relating to a
customer’s name, address, social security number, etc. This data is arranged in data
fields which are identifiable to a user of the information source by the names of the
various data fields. These data field names, which identify the type of data which is

stored in the data fields of an information source, are referred to as metadata.

Figure 1 is a block diagram that illustrates some of the main components of the
system of the present invention, in accordance with one embodiment thereof. System 10
comprises client application programming interface 120, which is coupled to, and
configured to communicate with, MetaMatrix server 100. Client application
programming interface 120 refers to a set of methods that are exposed to clients of a
particular piece of software. MetaMatrix server 100 refers to the component which
obtains and processes the metadata and communicates a set of results to the user via

client application programming interface 120.

MetaMatrix server 100 is also coupled to V;trious information sources. In Figure
1, these information sources are represented by information sources 130a through 130e.
However, it is recognized that MetaMatrix server 100 may be coupled to any number of
information sources, and that the information sources may store any conceivable type of
data. MetaMatrix server 100 and information sources 130 are configured to
communicate data (as will be shown and explained in Figure 3, this data may comprises
various formats, such as data from a data storage file or Internet feed, etc.), as well as

metadata (such as the data field or data table names in which the stock prices, inventories,

2

25

WO 01/75679 PCT/US01/10943

1

etc. are stored) as requested by MetaMatrix server 100.

MetaMatrix server 100 is also coupled to metadata repository 110. Metadata
repository 110, according to one embodiment of the invention, comprises metadata
facility 110a, which is coupled to MetaMatrix server 100 in order to communicate

metadata thereto.

Metadata repository 110 also comprises MetaBase metadata repository 110D,
which stores the various metamodels. Specifically, a user méy select a run-time
metamodel from those stored in MetaBase metadata repository 110b, which is then
employed to access the information stored in the various information sources which

correspond to that metamodel.

System 10 also comprises, as discussed previously, metadata modeler 110c.
Metadata modeler 110c imports metadata from the disparate information sources and
generates metamodels. Although the metamodels may be generated automatically, they
may also be generated by a client using interface tools. In this case, the system provides
an interface to a client via which the client may create a customized metamodel or may

manipulate an existing metamodel.

Figure 2 is another block diagram that illustrates some of the logical processing
modules of MetaMatrix server 100. Specifically, MetaMatrix server 100 comprises
query service module 102. Query service module 102 is coupled to and communicates
with client application programming interface 120 for receiving the query requests
generated by the client, and for transmitting a reséonse to the query request once the
query request has been processed by MetaMatrix server 100. These steps are discussed in
greater detail below in connection with the flowchart of Figure 7. In addition,

MetaMatrix server 100 comprises security service module 104. Security service module

20

25

WO 01/75679 PCT/US01/10943

12
104 is coupled to and communicates with query service module 102 in order to determine
whether the person or system that is making the query has the required authorization to

do so.

MetaMatrix server 100 also comprises metadata services module 106. Metadata
services module 106 is coupled to and communicates with query service module 102 in
order to define metamodels, as discussed in greater detail below. In addition, MetaMatrix
server 100 comprises data access service module 108. Data access service module 108 is
coupled to and communicates with query service module 102. Furthermore, data access
service module 108 is coupled to and communicates with information sources 130. It is
noted that the modules are shown separately for the purpose of illustrating the logical
operation of each module. However, it is further noted that the present invention may
employ any number of components in order to perform the logical functions described in

connection with each logical module shown herein.

Generally, query service module 108 requests data from data access service
module 108 using a query plan which has been generated using metadata services module
106. Once data access service module 108 has retrieved the desired data from
information sources 130, data access service module 108 transmits the data to query
service module 102 for delivery to a user employing the client application programming
interface 120. As previously mentioned, MetaMatrix server 100 is coupled to and

communicates with metadata repository 110, which stores the metadata and metamodels.

Figure 3 is a diagram that illustrates the different levels of abstraction which are
employed by the system of the present invention, in order to logically integrate different
types of information. A first level, identified as level 300, comprises data. This data may
comprise various formats received from various types of information sources. For

instance, Figure 3 shows that, for an XML model, the data may be received from an

2

25

WO 01/75679 PCT/US01/10943

13
Internet feed, while for a file model, the data may be received from a data file. Similarly,
for a relational model, the data may be received from a relational database management
system, while for an object model, the data may be received from an object-oriented

database management system.

At a higher level of abstraction, identified as level 310, a model is illustrated.
Each model comprises the arrangement of the metadata elements which are employed to
describe the format of the data. For instance, in the XML model, model 310 illustrates
that the data has a format which comprises a document name, a document header, and
text stored in a particular font and size. Each box of level 310 corresponds to metadata,
while the arrangement of the metadata corresponds to a model. As shown, a model exists
for each of the different data types. However, each model differs substantially from other

models, thus rendering the models incompatible.

At a next higher level of abstraction, identified as level 320, a metamodel is
illustrated. Each metamodel comprises the arrangement of the models which are shown
in level 310. For instance, in the XML model, metamodel 320 illustrates that the
metadata has a format which comprises a “tag” (e.g.- the identification of the metadata,
such as the document name and the header name), “data” (e.g.- the text of the data) and
“attributes” (e.g.- the font and size in which the text is written). Each box of level 320
corresponds to meta-metadata, while the arrangement of the model corresponds to a

metamodel. As shown, a metamodel exists for each of the different data types.

At the highest level of abstraction, identified as level 330, a meta-metamodel is
illustrated. The meta-metamodel comprises several elements in a format which can be
employed to access any of the different data models. Thus, even though the data and
metadata formats shown in level 310 are incompatible relative to each other, they may be

accessed by the system of the present invention, which has abstracted them to a point at

2

25

WO 01/75679 PCT/US01/10943

14
which they are compatible. In other words, by abstracting the data and metadata in
successive levels, a framework has been generated which replaces the different schemas
of the different information sources with a single schema which provides uniform

accessibility to all of the information sources.

Figure 4(a) is a block diagram that shows an example of a metamodel 112,
Generally, metamodel 112 is a model of various metadata elements and the relationships
therebetween. As shown in the diagram, metamodel 112 may comprise a pair of
metadata layers. A first layer is referred to as a physical metadata layer 116. A second

layer is referred to as a virtual metadata layer 114.

Physical metadata layer 116 comprises the actual metadata elements (e.g.- the
data field names, data table names, etc.) that are employed in the information sources. If
the information sources that are employed by the system are changed, the metadata
elements in physical metadata layer 116 are also changed, since the metadata elements in
physical metadata layer 116 correspond directly to the metadata elements in the new
information sources. As will be explained in greater detail below, MetaMatrix server 100
is configured to discern, from each new information source which is connected thereto, a
description of the new information source’s metadata, so that MetaMatrix server 100 can
integrate it with the same metadata information from the other connected information

sources.

The metadata elements that are stored in physical metadata layer 116 are linked to
logical metadata elements that are stored in virtual metadata layer 114. Logical metadata
elements are a second set of metadata elements which have been generated in order to
represent the metadata elements of the disparate information sources to the client’s
application programming interface 120 as is explained below. The linking between each

logical metadata element stored in virtual metadata layer 114 and its corresponding

20

25

WO 01/75679 PCT/US01/10943

15
physical metadata element stored in physical metadata layer 116 is performed, according
to one embodiment of the invention, by a programmer that manually links the elements
during the process of configuring the metadata management system. However, the
present invention also contemplates that the linking may be performed automatically or
electronically. Again, it is noted that, while these layers are shown as existing separate
and distinct from each other, this is merely to illustrate that the layers are separate in the

logical sense described herein.

Figure 4(b) is a block diagram that illustrates virtual metadata layer 114 and
physical metadata layer 116 is more detail. Specifically, the diagram illustrates one
example of layers 114 and 116 in which virtual metadata layer 114 comprises three
logical metadata elements. Of course, virtual metadata layer 114 may comprise any
number of logical metadata elements. In the example shown, logical metadata element
114a has a metadata field name “cust_id”, logical metadata element 114b has a metadata
field name “cust_address” and logical metadata element 114c has a metadata field name
“cust_telno”. Each of these metadata elements may also comprise explanatory text,
inserted by a manual programmer, which provides a more detailed description of the type
of data which the logical metadata element refers to. This explanatory text enables a
manual programmer to subsequently employ the metadata element with the assurance
that the type of data which it refers to is not linked to physical metadata elements in

physical metadata layer 116 that stores a different type of data.

In the example illustrated by the diagram, physical metadata layer 116 comprises
two sets of physical metadata elements. Each set of physical metadata elements
corresponds to an information source, such that physical metadata elements 116a through
116d directly correspond to the data field names stored in information source 130a, while
physical metadata elements 116e through 116g directly correspond to the data field

names stored in information source 130b. Of course, physical metadata layer 116 may

2

25

WO 01/75679 PCT/US01/10943

16
comprise any number of physical metadata elements which correspond to any number of
information sources. In the first set of elements, physical metadata element 116a has a
metadata field name “customer”, physical metadata element 116b has a metadata field
name “accounttype”, physical metadata element 116¢ has a metadata field name
“address”, and physical metadata element 116d has a metadata field name “balance.” In
the second set of elements, physical metadata element 116e has a metadata field name
“cust_id”, physical metadata element 116f has a metadata field name “telephone” and

physical metadata element 116g has a metadata field name “password.”

Each of the logical metadata elements in virtual metadata layer 114 corresponds
to one or more physical metadata elements in physical metadata layer 116. According to
one embodiment, a programmer establishes the correspondence between the elements by
linking each of the logical metadata elements in virtual metadata layer 114 to one or more
physical metadata elements in physical metadata layer 116. These links are illustrated in

Figure 4(b) as links 115a through 115d.

For instance, in the example shown, logical metadata element 114a is linked to
physical metadata elements 116a and 116e. Thus, when a user of client application
programming interface 120 initiates a query request for the social security number of a
customer (the manner in which the system of the present invention processes a query
request is described below), it may be performed by making a single query request, using

the logical metadata field name “cust_ss”. Because the virtual metadata element 114a is

linked to physical metadata elements 116a and 116e, the system will convert the client’s

request for a single query into a query request of the physical metadata elements
“customer” and “cust_id” of information sources 130a and 130b, respectively. Thus, the
present invention, in accordance with one embodiment, enables a user to employ a single
known metadata element regardless of which (and how many) information sources that

type of data is stored in, and regardless of the metadata element names in which the

20

25

WO 01/75679 PCT/US01/10943

17

information sources store the data.

In addition to metadata information relating to the disparate information sources,
the physical metadata layer 116 in Metamodel 112 is configured, according to one
embodiment of the invention, to store information relating to the attributes of the data
tables stored therein. The metamodeler may also discern and store in the physical
metadata layer 116 data corresponding to the attributes of various metadata elements
which have been retrieved from the disparate information sources, as well as key
information (e.g.- in the event that an information source employs representational
symbols or characters, the key information provides a translation of what the

representational symbols or characters represent).

Similarly, the virtual metadata layer 114 of Metamodel 112 advantageously
permits the metadata of disparate information sources to be manipulated in various ways.
For instance, according to one embodiment, the employment of the virtual metadata layer
permits metadata elements from disparate information sources to be re-named. The
employment of the virtual metadata layer also permits metadata elements from disparate
information sources to also be grouped in ways which are advantageous to a user, as will

be explained below.

Most significantly, the virtual metadata layer may be employed to create new
relationships between data in disparate information sources. Thus, the semantic
equivalence of differently named data elements in different information sources is
exposed to viewers of the metadata. Once exposed, a viewer may implicitly join the
different data tables in the disparate information sources and perform a variety of

operation thereon, such as sorting or joining the data from the information sources.

As previously mentioned, each of the logical metadata elements in virtual

20

25

WO 01/75679 PCT/US01/10943

18
metadata layer 114 may comprise explanatory text which provides a more detailed
description of the type of data which the logical metadata element refers to. In addition,
each logical metadata element may also be linked to other logical metadata elements in
virtual metadata layer 114 which define operations to transform the information that is
received from the physical metadata elements. According to one embodiment, a logical
metadata element which transforms the data it receives is referred to as a transformation
logical metadata element, while the logical metadata element that stores the rule which

governs how the information is to be transformed is referred to as a logical rule element.

An example of this is shown in Figure 5(a). Figure 5(a) is a block diagram that
illustrates virtual metadata layer 114 and physical metadata layer 116, in which a logical
metadata element is configured to transform the information that it receives from physical
metadata element 116. In the embodiment shown, logical metadata element 114a is
named “PE_ RATIO”, and refers to a commonly employed financial measurement called
“price-to-earnings ratio” (which is equal to a ratio of a company’s stock price divided by
the company’s earnings). In the embodiment shown, logical metadata element 114a is
linked to physical metadata elements 116b and 116¢. Physical metadata element 116b
refers to a data field called “earnings”, corresponding to an identical data field name in
information source 130b, while physical metadata element 116¢ refers to a data field

called “price”, corresponding to an identical data field name in information source 130c.

As shown, logical metadata element 114a is also linked to logical rule element
114b. Logical rule element 114b comprises a pre-defined operation, or rule, by which the
information in physical metadata elements 116a and 116b are to be transformed when
received by logical metadata element 114a. Therefore, logical metadata element 114
comprises a transformation logical metadata element, while logical metadata element

114b comprises a logical rule element.

20

25

WO 01/75679 PCT/US01/10943

19
In this instance, logical metadata element 114b provides that the rule-based
transformation to be performed by logical metadata element is to divide the price data
received from physical metadata element 116¢ by the earnings data received from
physical metadata element 116b. Once the logic is employed to transform the data, the
price-to-earnings information may be transmitted to the client. Of course, the present
invention contemplates that any type of predefined operation may be employed, including

but not limited to multiplication, division, addition, subtraction, etc.

One of the principal advantages of the virtual metadata layer is that the linking
between its various elements can be modified without changing the metadata elements
which are employed by the user. For instance, in the previous example, if the system was
re-configured to be connected to a different information source which already calculated
the “price-to-earnings ratio”, logical metadata element 114a would be linked to the P/E
data directly, and would not need o be linked to physical metadata elements 116b or
116¢, or to logical metadata element 114b. Despite the alterations that are made to these
linkings, a user would still query the system using the same search field “PE_RATIO” as
before, inserting a predictable communication via the client’s application programming

interface 120.

In addition to employing transformation and rule elements, the present invention,
according to one embodiment thereof, may also employ select logical data elements.
According to this embodiment, a first logical metadata element may be linked to several
physical metadata elements. In addition, the first logical metadata element may be linked
to a second logical metadata element which provides a pre-defined selection criteria for
determining which of the several physical metadata elements are to be employed by the
first logical metadata element. In such a case, the first logical metadata element is
referred to as a select logical metadata element, while the second logical metadata

element is again referred to as a logical rule element.

20

2

WO 01/75679 PCT/US01/10943

20

An example of this is shown in Figure 5(b). Figure 5(b) is a block diagram that
illustrates virtual metadata layer 114 and physical metadata layer 116. This figure
provides an example of a situation in which a logical metadata element must select which
of several physical metadata elements that are linked to it should be employed to provide
data thereto. In the embodiment shown, logical metadata element 114a is named
“PRICE” (e.g.- a company’s stock price). Logical metadata element 114a is linked to
physical metadata elements 116a and 116b. Physical metadata element 116a refers to a
data field called “DAILY PRICE” (e.g.- the price of a stock at any time during normal
business hours), corresponding to an identical data field name in information source
130a, while physical metadata element 116b refers to a data field called “CLOSING
PRICE” (e.g.- the last price of the stock upon the close of the business day),

corresponding to an identical data field name in information source 130b.

As shown, logical metadata element 114a is also linked to logical metadata
element 114b. Logical metadata element 114b comprises a selection criteria, or rule,
which determines whether the information in physical metadata elements 116a will be
employed by logical metadata element 114a, or whether the information in physical
metadata elements 116b will be employed by logical metadata element 114a instead. In
this instance, logical metadata element 114b provides a selection criteria in which logical
metadata element 114a will employ the information in physical metadata element 116a
(e.g.- the “DAILY PRICE”) if the time of day is earlier than 4:00 p.m., and will employ
the information in physical metadata element 116a (e.g.- the “CLOSE PRICE”) if the
time of day is later than 4:00 p.m. Once the logic is employed to select the appropriate
information source, the “PRICE” information may be transmitted to the client. Of
course, the present invention contemplates that any type of selection criteria may be

employed.

Again, it is emphasized that the employment by the present invention of the

20

25

WO 01/75679 PCT/US01/10943

21
virtual and logical metadata layers insures a predictable communication with a user via
client application programming interface 120. Thus, even if the system was re-
configured to retrieve the price data from different information sources, or to use a
different selection criteria for determining which price data to employ, the present

invention provides that a user may still employ the “PRICE” element in a query request.

As mentioned previously, prior to using the metadata management system of the
present invention to execute query requests, the system must be configured so that data
and metadata stored in the information sources can be employed by the system. Figure 6
is a flowchart that illustrates the steps that are performed, in accordance with one
embodiment thereof, in order to deploy the above-described metadata management
system. At step 602 of the flowchart, metadata management system 100 is installed and
configured by a user. In one embodiment, this includes installing a server which houses
the metadata management system. In doing so, the user specifies basic server properties,
such as determining administrative definitions and selecting a machine port which the '
server is connected to. This may also include specifying storage locations and defining
internal information sources. Step 602 may also include the use of client tools in order to

configure the system.

At step 604, metamodels are defined by using a modeller. As previously
mentioned, while models provide a structural framework or arrangement of the metadata
of an information source, a metamodel is a model of these first level metadata models.
As such, they are a higher level abstraction of the metadata, providing a uniform structure
to otherwise incompatible data formats. Advantageously, more than one metamodel is

defined.

At step 606, a metamodel is defined to the server console. Specifically, a user

selects a run-time metamodel against which query requests shall be executed. This run-

2

25

WO 01/75679 PCT/US01/10943

22
time metamodel comprises one of the metamodels which were defined in step 604. At
step 608, connectors are attached to the information sources. Advantageously, steps 602
through 608 are performed by a technician trained to operate the metadata management

system,

At step 610, the application code is written. At step 612, the query requests
entered by a user are executed. The execution of the query requests is explained in
greater detail in connection with the flowchart illustrated in Figure 7. Generally, the
system executes the query requests by converting the client’s original query request into a
source-specific data query request, accessing the disparate information sources using the

source-specific data query request, and delivering the data results to the user.

As stated above, Figure 7 is a flowchart that illustrates the general steps that are
employed by the metadata management system of the present invention in order to
execute a query request entered by a user. Generally, these steps involve the generation
and execution of a query plan, which is a method by which a query is to be executed. An
example of a query plan is shown in Figure 9, which explains the query plan in greater

detail.

Referring now to Figure 7, at step 702, a user inspects a selected metamodel to
find elements that can be retrieved. At step 704, the user selects the elements from the
metamodel. At step 706, a user enters a query request for the selected element. Although
there afe numerous query languages or formats which may be employed for this purpose,
a query request format which is commonly employed is referred to as SQL. An example
of a SQL-like query request is illustrated in Figure 8. Specifically, a SQL-like query
comprises a “select” field listing the name of the element desired to be queried (as shown
in line 801). According to the present invention, the “select” field of the SQL-like query

request lists the name of a logical metadata element stored in virtual metadata layer 114.

2

2

WO 01/75679 PCT/US01/10943

23
The SQL-like query request also comprises a “from” field listing the information source
in which the selected element is stored (as shown in line 802), and a “where” field listing
the conditions or restrictions that the user desires to impose upon the query (as shown in
line 803). As described herein, the present invention, by abstracting the metadata of an
information source into models, metamodels, etc.enables the employment by user of a
single query request language or format, vastly simplifying the retrieval of information

from disparate information sources.

Returning to the flowchart of Figure 7, at step 708, the query request entered by
the user isparsed. According to one embodiment of the invention, the query request is
parsed by processing the user’s original query so as to generate a global query object.
This parsing step may be performed by a parser module located in MetaMatrix server

100.

At step 710, the global query object that was generated in step 708 is converted
into information source-specific query requests by checking the metadata descriptions of
those data sources. Information source-specific query requests are query requests that are
configured to access the particular information sources that store data desired by the user.
The information sources and data fields that are required to be accessed in order to obtain
the requested information are determined by the linkings of the logical metadata elements
to the physical metadata elements in the MetaBase metadata repository. For example,
referring to Figure 4, a global query object which comprises a query request for “cust_ss”
is converted into information source-specific query requests for “customer” in

information source 130a and “cust_id” in information source 130b.

At step 712, the information source-specific query requests are employed by
MetaMatrix server 100 to retrieve data from the disparate information sources.

Specifically, data access service module 108 of MetaMatrix server 100 accesses each of

20

2%

WO 01/75679 PCT/US01/10943

%
the disparate information sources to retrieve the desired information. At step 714, the
system generates a set of information source-specific results. In other words, the system
generates a set of results from each of the disparate information sources that were

accessed by MetaMatrix server 100 at step 712.

At step 716, the metadata management system converts the set of information
source-specific results into a global result object. Specifically, the system aggregates the
various sets of information source-specific results that were generated from each of the
disparate information sources at step 714. At step 718, MetaMatrix server 100 delivers

the global result object to the user that initiated the query.

As mentioned in connection with Figure 2, query service module 102 is coupled
to and communicates with client application programming interface 120 for receiving the
query requests generated by the client, and for transmitting a response to the query
request once the query request has been brooessed by MetaMatrix server 100. In order to
facilitate the processing of a query request, query service module 102, according to one
embodiment of the iﬁvention, generates and executes a query plan. A query plan is an

executable set of operations which optimizes the processing of a query request.

In a preferred embodiment of the invention, query service module 102 is
configured to generate a query plan which asynchronously processes the steps involved in
the execution of a query request. An asynchronous operation is typically characterized
by the simultaneous performance of several processes. In the present invention, and as
will be explained in further detail below, query service module 102 operates
asynchronously by performing a first query operation, then performing a second query

operation prior to receiving the results of the first query operation.

Figure 9 is a diagram that illustrates a query plan as a configuration of nodes.

2

Pa)

WO 01/75679 PCT/US01/10943

25
Each node of the query plan relates to a specific query request function or operation. The
last node of each branch of the query plan, namely nodes 901, 904, 905 and 907,
corresponds to an operation which directly accesses data from an information source.
The intermediate nodes connecting these end nodes correspond to other processing steps
in the handling of the query requests. For instance, node 903 or 906 may correspond to
an operation whereby a global query object is converted into an information source-
specific query, such as is explained in connection with step 706 of the flowchart in Figure
7, or may correspond to operations such as joining or sorting the query results, pivotably

transforming the query results (as is explained below) or any other type of operation.

Thus, in a preferred embodiment, once a query plan has been generated, the
lowest nodes of the plan are processed first and the-results of the query operation
performed at these lowest nodes are transmitted to the next highest nodes of the plan.
These next highest nodes in turn process the information they have received and transmit

the results of their query operation to the next highest nodes of the plan, and so on.

Generally, in order to operate asynchronously, query service module 102
maintains each of the nodes in one of several operational states, and keeps track of each
node’s operatiqnal state as the query plan is executed. For instance, a first node may be
maintained in a “ready” state, in which the node is ready to process a query request and to
transmit the query results to a second node. In order to receive the query results
transmitted by the first node, the second nodé is preferably maintained in an “awaiting”
state, so as to be sure that the second node is not simultaneously processing a query

request when the first node is prepared to transmit its results thereto.

Once the first node is in the “ready” state and the second node is in the “awaiting”
state, the system may modify the operation state of the first node to a “process” state. In

the “process” state, the node processes the query in order to transmit the results to the

2

25

WO 01/75679 PCT/US01/10943

26
second node. Once the first node has processed the query and has transmitted the results
to the second node, the first node has completed its operation, and may be maintained in a

“finished” state.

Figure 10 is a flowchart that illustrates an example of the steps that may be
performed by query service module 102 in order to execute a query plan. For the
purposes of illustration only, Figure 10 shows the steps that are performed in order to
execute the query plan shown in Figure 9. At step 1000, the system is initialized.
According to one embodiment, the initialization step involves the system discerning the
operational states that each node is in. In this query plan, the nodes at the end of the
branches, namely nodes 901, 904, 905 and 907, are maintained in a “ready” state at this
step since, as explained previously, the lowest nodes are processed first. Likewise, nodes
of the query plan which are connected above these lowest nodes, namely nodes 900, 902,

903 and 906, are maintained in an “awaiting” state.

At step 1010, query service module 102 determines which nodes are ready to be
processed and proceeds to process all nodes that are ready to be processed. Specifically,
since nodes 901, 904, 905 and 907 are all ready to process at the previous step, these
nodes are therefore processed at this step. Thus, each of these nodes processes its
respective query operation, such as to access an information source with an information

source-specific query.

At step 1020, query service module 102 transmits the query results of node 901 to
node 900. As previously discussed, the query results of node 901 can be transmitted to
node 900 because the system is cognizant that node 900 is in an “awaiting” state of
operation. Once the query results of node 901 have been transmitted to node 900, node

901 is maintained in a “finished” state.

2

WO 01/75679 PCT/US01/10943

2
At step 1030, query service module 102 transmits the query results of node 904 to
node 903. The query results of node 904 can be transmitted to node 903 because the
system is cognizant that node 903 is in an “awaiting” state of operation. Once the query
results of node 904 have been transmitted to node 903, node 904 is maintained in a

“finished” state.

At step 1040, query service module 102 transmits the query results of node 907 to
node 906. The query results of node 907 can be transmitted to node 906 because the
system is cognizant that node 906 is in an “awaiting” state of operation. Once the query
results of node 907 have been transmitted to node 906, node 907 is maintained in a

“finished” state.

At step 1050, query seryice module 102 again determines which nodes are ready
to be processed and proceeds to process all such nodes. In this example, the system
determines that node 906 is ready to process, because node 906 is in a “ready” state, and
the node located directly above it, namely node 902, is in an “awaiting” state. Thus, node
906 processes its respective query operation, such as to convert an information source-

specific query result into a global result object, or to perform any other type of operation.

At step 1060, query service module 102 transmits the query results of node 905 to
node 903. The query results of node 904 can be transmitted to node 903 because the
system is again cognizant that node 903 is in an “awaiting” state of operation. Once the
query results of node 905 have been transmitted to node 903, node 905 is maintained in a

“finished” state.

At step 1070, query service module 102 again determines which nodes are ready
to be processed and proceeds to process all such nodes. In this example, the system

determines that node 903 is ready to process, because node 903 is in a “ready” state, and

0

25

WO 01/75679 PCT/US01/10943

28
the node located directly above it, namely node 902, is in an “awaiting” state. Thus, node
903 processes its respective query operation, such as to convert an information source-

specific query result into a global result object.

At step 1080, query service module 102 transmits the query results of node 903 to
node 902. The query results of node 903 can be transmitted to node 902 because the
system is cognizant that node 902 is in an “awaiting” state of operation. Once the query
results of node 903 have been transmitted to node 902, node 903 is maintained in a

“finished” state.

At step 1090, query service module 102 transmits the query results of node 906 to
node 902. The query results of node 906 can be transmitted to node 902 because the
system is cognizant that node 902 is in an “awaiting” state of operation. Once the query
results of node 906 have been transmitted to node 902, node 906 is maintained in a

“finished” state.

At step 1100, query service module 102 again determines which nodes are ready
to be processed and processes these nodes. In this example, the system determines that
node 902 is ready to process, because node 902 is in a “ready” state, and the node located
directly above it, namely node 900, is in an “awaiting” state. Thus, node 902 processes

its respective query operation.

At step 1110, query service module 102 transmits the query results of node 902 to
node 900. The query results of node 902 can be transmitted to node 900 because the
system is cognizant that node 900 is in an “awaiting” state of operation. Once the query
results of node 902 have been transmitted to node 900, node 902 is maintained in a
“finished” state. Furthermore, since this step comprises the completion of the query plan

(e.g.- the query plan is fully executed), once the query results have been received by node

20

A

WO 01/75679 PCT/US01/10943

29

900, node 900 is also maintained in a “finished” state.

Thus, the present invention is configured to generate and execute a query plan in
order to efficiently process a query request from a user. By generating a query plan that
can be executed in an asynchronous manner, the present invention thereby optimizes the

processing of the various query operations.

One of the advantages of generating and executing a query plan as just described
is that, by separating a query request into several atomic query operations, each separate
atomic query operation can be performed in the most advantageous location. For
instance, one of the query operations that might be performed at a particular node is the
joining of various query results. Similarly, another of the query operations that might be
performed at a particular node is the sorting of various query results. The efficiency of
the system is improved if these joining or sorting steps can be performed in an
information source, instead of in the MetaMatrix server 100. If a particular information
source has the capability of performing the joining or sorting operations (the
metamodeler maintains data regarding the capabilities of the various information sources
connected to the MetaMatrix server 100), the query plan may provide that these functions

be performed in the information sources, rather than by MetaMatrix server 100.

According to one embodiment of the present invention, the metadata management
system may also be configured to simultaneously process the query requests of several
different users. For instance, query service module 102 may aggregate the query requests
of several different users into a single query plan. In this manner, certain operations
which would ordinarily be required to be performed in separate query plans for each user
request, may instead be performed a single time, thereby increasing the efficiency of the

system and eliminating redundant operations.

10

2

2%

WO 01/75679 PCT/US01/10943

30

For instance, two separate users may request, for different purposes, the same data
from the same information source. Because the data will be employed for different
purposes by the two users, a separate query plan for each user will comprise a different
set of query operaﬁons. However, at least one operation, namely the retrieval of the
similar data from the information source, will be the same. Thus, query service module
102 may consolidate that operation of the two separate query plans so as to only retrieve
the data once. Once retrieved, the differing query operations may be subsequently

performed and the data employed by the respective users for their desired purposes.

The present invention, according to one embodiment thereof, may also employ a
particular query plan in order to provide the same data from the same information sources
to different users, wherein the different users have made the same query request. Again,
the system seeks to optimize its performance by eliminating redundant operations. For
instance, Figure 11 is a flowchart which illustrates the steps which are performed by the

system in order to optimize the handling of identical query requests from different users.

At step 1100, MetaMatrix server 100 receives a first query request for a particular
metadata element from a first user. At step 1110, MMS receives a second query request
for the same metadata element from a second user. Rather than generating a separate
query plan for each query request, query service module 102 may instead, at step 1120 of
the flowchart, generate a single query plan to retrieve data corresponding to the request

metadata element,

At step 1130, the metadata management system executes the query plan generated
in step 1120. Finally, at step 1140, the metadata management system transmits the data
corresponding to the metadata element to both the first and the second users. According
to one embodiment of the invention, the data is transmitted to both users in a point-to-

point fashion. In this manner, multiple requests for the same data may be handled

20

2

WO 01/75679 PCT/US01/10943

31

simultaneously, greatly improving the efficiency of the system.

As previously discussed, the query plans that are generated and executed by query
service module 102 may comprise a variety of individual operations. One such operation
is to join, or unify, groups of data from disparate information sources. An example of

this is shown in Figures 12 and 13.

Figure 12 illustrate two separate data tables 130a and 130b. Data table 130a
comprises a table of data corresponding to Ford cars. Specifically, the data table shows
data field 131a, which identifies the “make” of the automobiles to which the data pertains
as “Ford”. Similarly, the data table shows data field 132a, which identifies the “type” of
automobiles to which the data pertains as “cars”. Within the table, three columns of data
are identified as data fields 133a, which stores data relating to the “ record number”, data
field 134a which stores data relating to “color”, and data field 135a, which stores data

relating to “model.”

Similarly, data table 130b comprises a table of data corresponding to Chevy
trucks. Specifically, the data table shows data field 131b, which identifies the “make” of
the automobiles to which the data pertains as “Chevy”. Similarly, the data table shows
data field 132b, which identifies the “type” of automobiles to which the data pertains as
“trucks”. Within the table, three columns of data are identified as data fields 133b, which
stores data relating to the “record number”, data field 134b which stores data relating to

“color”, and data field 135b, which stores data relating to “model.”

According to one embodiment, the metadata management system of the present
invention allows the creation of single “logical” data group comprised of aggregation
elements that present the data from the different information sources as a single

aggregated data group. For instance, in the example explained above in connection with

2

25

WO 01/75679 PCT/US01/10943

32
Figure 12, the present invention may be employed to combine the data of data tables 130a
and 130D into a single data table accessible to a user. Figure 13 illustrates a data table
which joins, or unifies, the data of data tables 1k3 Oa and 130b. Specifically, the metadata
management system of the present invention employs the metadata elements of the two
disparate information sources in order to provide a data table which stores the
information in a single table, with additional columns of data corresponding to the

original data table names.

For instance, joined data table 130c comprises data field names 133c¢, 134¢ and
135c¢, which correspond to the data field names of the original two data tables. Thus, data
field 133c in data table 130c stores data relating to a record number, similar to data fields
133a and 133D in data tables 130a and 130D, fespectively. Likewise, data field 134¢ in
data table 130c stores data relating to the color of an automobile, similar to data fields
134a and 134b in data tables 130a and 130b, respectively. Finally, data field 135¢ in data
table 130c stores data relating to the model of an automobile, similar to data field 135a

and 135b in data tables 130a and 130b, respectively.

Data table 130c also comprises two additional columns of data, identified herein
as data fields 131c and 132¢. Data field 131c corresponds to data fields 131a and 131b in
data tables 130a and 130b, respectively. Similarly, data field 132¢ corresponds to data
fields 132a and 132b in data tables 130a and 130Db, respectively. However, the metadata
management system of the present invention has converted the data table names of the
original data tables into columns of data. Thus, in data table 130c, data field name 131c
is referred to as “Make” and identifies the make of the automobiles for each data record.
The data stored in the data column identified as data field name 131c may be either
“Ford” or “Chevy”, depending in which of the original data tables the record originated.
Similarly, data field name 132c¢ is referred to as “Type” and identifies the type of the

automobile for each data record. The data stored in the data column identified as data

2

2

WO 01/75679 PCT/US01/10943

3
field name 132c¢ may be either “Car” or “Truck”, depending in which of the original data

tables the record originated.

Another operation which may be performed during the execution of a query plan
by query service module 102 is referred to as a dimensional transform. Dimensional
transforms (which are also referred to as pivots) alter the format in which data is stored.
For instance, according to one embodiment of the invention, a dimensional transform of
data may allow for elements stored in rows in a first data format to be transformed and
stored in columns in a second data format. An example of this is shown in Figures 14

and 15.

Figure 14 illustrates data table 140a. Data table 140a comprises a table of data
corresponding to quarterly sales figures. Specifically, the data table shows data field
141a, which identifies a “record number” (in this example, each record may pertain to a
calendar or fiscal year). In addition, the data table shows data fields 142a, 143a, 144a
and 145a, which are labeled as “SQ1", “SQ2", “SQ3" and “SQ4", respectively. Each of
these data field names corresponds to a column of data in which is stored the sales figures
for the respective quarter of the record (e.g.- year). Of course, this is just one of many

different formats that may be employed to store quarterly sales figures.

For any number of reasons, a user of the system may desire that the quarterly
sales data be stored in a format which is different than the format illustrated in Figure 14.
One such reason may be that, in order to obtain the quarterly sales data from the data
format discussed above, it is necessary to make a query request using four different query
terms, namely, “SQ1", “SQ2", “SQ3" and “SQ4". In order to simplify the use of the
system, it would be advantageous if a user was able to make a query request using a
single query term in order to obtain the same quarterly sales data. The employment of a

dimensional transform operation, according to one embodiment of the present invention,

20

25

WO 01/75679 PCT/US01/10943

34

allows this to occur.

For instance, Figure 15 illustrates data table 140b. Data table 140b also comﬁrises
a table of data corresponding to quarterly sales figures. However, in this case, the
metadata management system has pivoted the data so as to be arranged in a format which
helps to simplifies the query request process. Specifically, the data table shows data field
141b, which identifies a “record number”. In addition, the data table shows data field
146a, which is labeled as “Sales” and which corresponds to a column of data in which is
stored the sales figures. Furthermore, the data table shows data field 147a, which is
labeled as “Quarter” and which corresponds to a column of data in which is stored the

quarter for which each of the sales figures pertains.

As mentioned above, the re-formatting of data from the format shown in Figure

14 to the format shown in Figure 15 provides the advantage of eliminating the necessity

of making a query request using four different query terms, namely, “SQ1", “SQ2",

“SQ3" and “SQ4" in order to obtain the same quarterly sales figures. Specifically, with
the data re-formatted as illustrated in Figure 15, a user can make a query request using a
single query term in order to obtain quarterly sales data. In this case, a user can obtain

quartterly sales data by making a query request using the single query term “Sales”.

According to one embodiment, the present invention may also be employed to
write data, provided by a user, back into the storage spaces of disparate information
sources in order to update the information sources. Advantageously, the metadata
management system of the present invention employs the two metadata layers of the
MetaBase metadata repository to determine which data fields of the disparate information
sources are to be updated. However, instead of retrieving data from the disparate
information sources as has been described previously, data is transmitted to the

information sources for storage therein. The employment of the multiple metadata layers

2

2

WO 01/75679 PCT/US01/10943

35
in the metadata repository enables this to be performed, even in the event that the relevant
information sources maintain the data in fields having different data field names, that the
information sources employ incompatible data formats, and that the relevant information

sources employ different information system languages.

Figure 16 is a flowchart that illustrates the steps that are performed, according to
one embodiment of the present invention, in o'rder to transmit, or write back, data
provided by a user to the disparate information sources. At step 1600, a user provides
data corresponding to a logical metadata element in virtual metadata layer 114. Thus,
using the system shown in Figure 4 as an example, a user may provide data
corresponding to the logical metadata element 114a, identified as “cust_ss”, in virtual

metadata layer 114,

At step 1610, the metadata management system determines which physical
metadata elements of physical metadata layer 116 are linked to the logical metadata
element discussed in step 1600. In the system shown in Figure 4, the metadata
management system will determine that the physical metadata elements of physical
metadata layer 116 which are linked to logical metadata element 114a are physical
metadata elements 116a and 116e. These physical metadata elements are identified as

“customer” and “cust_id”, respectively.

At step 1620, the metadata management system determines from which of the
disparate information sources these physical metadata elements are derived. In the
system shown in Figure 4, the metadata management system will determine that physical
metadata elements 116a, identified as “customer”, is derived from information source
130a. Similarly, the metadata management system will determine that physical metadata
elements 116e, identified as “cust_id”, is derived from information source 130b. In other

words, and as explained previously, the physical metadata elements “customer” and

WO 01/75679 PCT/US01/10943

36

“cust_id” refer to data storage spaces in information sources 130a and 130b, respectively.

Finally, at step 1630, the metadata management system stores the data provided
by the user in the storage spaces of the information sources. Thus, even though the (user
provided the client application programming interface with an instruction to write data to
an element named “cust_ss”, the system of the present invention permits the data to be

written to storage spaces in disparate information sources having different field names.

Thus, while there have been shown and described and pointed out fundamental
novel features of the invention as applied to alternative embodiments thereof, it will be
understood that various omissions and substitutions and changes in the form and details
of the disclosed invention may be made by those skilled in the art without departing from
the spirit of the invention. It is the intention, therefore, to be limited only as indicated by
the scope of the claims appended hereto. It is to be understood that the drawings are not

necessarily drawn to scale, but that they are merely conceptual in nature.

20

25

WO 01/75679 PCT/US01/10943

31

What is claimed is:
1. A system for accessing data in an information source, said system comprising:

an information source having storage spaces, each said storage space configured

to store types of data defined by physical metadata elements;

a metadata repository configured to store two sets of metadata elements, wherein
a first set of said metadata elements comprises said physical metadata elements of said
information source, and wherein said second set of metadata elements comprises logical
metadata elements, each of which correspond to at least one physical metadata element of

said first set; and

a MetaMatrix server coupled to said metadata repository and to said information
source, wherein said MetaMatrix server is configured to receive a query request for a
logical metadata element from a user via an application programming interface, and to
retrieve from said information source the data defined by the corresponding physical

metadata element.
2. The system according to claim 1, further comprising:

a second information source having storage spaces configured to store data
defined by physical metadata elements, wherein said physical metadata elements of said
second information source are also stored in said first set of metadata elements in said
metadata repository,

and wherein, upon receiving from a user said query request for a logical metadata
element, said MetaMatrix server is configured to retrieve from both the first and second

information sources the data defined by the corresponding physical metadata element.

2

25

WO 01/75679 PCT/US01/10943

38
3. The system according to claim 2, wherein said second set of said metadata
repository further comprises a logical rule, element comprising a rule and which
corresponds to one of said logical metadata elements of said second set, and wherein said

data retrieved by said MetaMatrix server is transformed in accordance with said rule.

4. The system according to claim 2, wherein a logical metadata element of said
second set corresponds to at least two physical metadata elements of said first set,

and wherein said second set of said metadata repository also comprises a logical
rule element comprising a rule and which also corresponds to said logical metadata
element, and wherein said data retrieved by said MetaMatrix server is selected from one

of said at least two physical metadata elements in accordance with said rule.

5. A method for accessing data in an information source, said method comprising
the steps of:

storing, in storage spaces defined by an information source, types of data defined
by physical metadata elements;

storing, in a metadata repository, two sets of metadata elements, wherein a first
set of said metadata elements comprises said physical metadata elements of said
information source, and wherein said second set of metadata eleme(nts comprises logical

metadata elements, each of which correspond to at least one physical metadata element of

said first set; and

receiving, at a MetaMatrix server coupled to said metadata repository and to said
information source, a query request for a logical metadata element from a user via an
application programming interface; and

retrieving from said information source the data defined by the corresponding

physical metadata element.

0

2

WO 01/75679 PCT/US01/10943

39
6. The method according to claim 5, further comprising the steps of:
storing, in storage spaces defined by a second information source, data defined by
physical metadata elements; ‘
storing said physical metadata elements of said second information source in said
first set of metadata elements in said metadata repository; and
upon receiving from said user said query request for a logical metadata element,

said MetaMatrix server retrieving from both the first and second information sources the

data defined by the corresponding physical metadata element.

7. The method according to claim 6, further comprising the steps of:

storing in said second set of said metadata repository a logical rule element
comprising a rule;

linking said logical rule element to one of said logical metadata elements of said
second set; and

transforming said data retrieved by said MetaMatrix server in accordance with

said rule.

8. The method according to claim 6, further comprising the steps of:

corresponding a logical metadata element of said second set to at least two
physical metadata elements of said first set;

storing in said second set of said metadata repository a logical rule element
comprising a rule;

linking said logical rule element to said logical metadata element; and

selecting the data from one of said at least two physical metadata elements in

accordance with said rule.

9. The method according to claim 5, further comprising the step of:

upon receiving said query request for a logical metadata element from a user,

0

2

WO 01/75679 PCT/US01/10943

40

generating a query plan for retrieving said data from said information source.

10. The method according to claim 9, wherein said query plan comprises a

plurality of operations to be performed by said MetaMatrix server.

11. The method according to claim 10, wherein one of said plurality of operations
to be performed by said MetaMatrix server comprises joining data from a first and a

second information source to form a single new information source.

12. The method according to claim 11, wherein said step of joining data from a
first and a second information source further comprises the step of generating said new
information source as a data table with a plurality of data columns, said plurality of data
columns comprising data columns in said first and second information sources, and
further comprising data columns corresponding to a data table name of said first and

second information sources.

13. The method according to claim 10, wherein one of said plurality of operations
to be performed by said MetaMatrix server comprises pivoting data in first information
source storing data in a first format to form a second information source storing said data

in a second format.

14. The method according to claim 13, wherein a query request for data in said
first data format requires multiple query terms, while said query request for data in said

second data format requires a single query term.

15. A method for accessing data in an information source, said method
comprising the steps of:

a user providing, to a MetaMatrix server via a client application programming

20

Al

WO 01/75679 PCT/US01/10943

41

interface, a query request;

parsing said query request provided by said user so as to generate a global query
object;

converting said global query object into a plurality of information source-specific
query requests;

retrieving, with said information source-specific query requests, data from a
plurality of disparate information sources;

generating a set of information source-specific results;

converting said set of information source-specific results into a global result
object;

delivering said global result object to said user.

16. A system for accessing data in at least two information sources, said system

comprising:

a first information source having storage spaces, each said storage space
configured to store types of data defined by physical metadata elements, said first data
base employing a first information system using a first query language for processing

requests for data stored therein;

a second information source having storage spaces, each said storage space
configured to store types of data defined by physical metadata elements, said second data
base employing a second information system using a second query language for

processing requests for data stored therein;

a metadata repository configured to store two sets of metadata elements, wherein
a first set of said metadata elements comprises said physical metadata elements of said

first and second information sources, and wherein said second set of metadata elements

2

25

WO 01/75679 PCT/US01/10943

4
comprises logical metadata elements, each of which correspond to at least one physical

metadata element of said first set; and

a MetaMatrix server coupled to said metadata repository and to said first and
second information sources, wherein said MetaMatrix server is configured to receive a
query request for a logical metadata element from a user usiﬁg a third query language via
an application programming interface, and to retrieve from said first and second

information sources the data defined by the corresponding physical metadata element.
17. A system for storing data in an information source, said system comprising:

an information source having storage spaces, each said storage space configured

to store a type of data defined by a physical metadata element;

a metadata repository configured to store two sets of metadata elements, wherein
a first set of said metadata elements comprises said physical metadata elements of said
information source, and wherein said second set of metadata elements comprises logical
metadata elements, each of which correspond to at least one physical metadata element of

said first set; and

a MetaMatrix server coupled to said metadata repository and to said information
source, wherein said MetaMatrix server is configured to receive data corresponding to a
logical metadata element from a user via an application programming interface, and to
store the data in said storage space of said information source which is identified by said

physical metadata element.

PCT/US01/10943

WO 01/75679

1/18

L "Ol4
gl b O/mv \O
. SHIHIO ©

SIDMNOS VIVA 3LVAVdSIa
N Wx| S100L NINQV €0 e
— S700L ONITAQON °

20¢1 2[0}
30¢1 aogl \\\\\\\\\L\. ST7001 3SVO »
ST00L RVMV—V.IVAVIIN
o011
vOog1L

MIANAS |
XIMLYAVLIN ALMIOVA V1VAVLIW

osnoo o/ o~
AITIOV4 ViVAVLI3N
g0l
ANO1ISOd3d w JSVEVLIINW
XIMIVAYLIN XIMIVAVLIIN
ol oLl

ocl

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

2/18
120
AP]
|
100
\
UERY METADATA
gERVlCE — —— SERVICES
106
102 _
SECURITY DATA
SERVICE ACCESS
SERVICE
108
104 —_—
)

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US01/10943

WO 01/75679

3/18

¢ Ol

(OW) viva
0o¢ —

(S3DONVLISNI ‘SAILIING)
V1VAVLIN
JyV S3IXod

(LW) T3CaON
olg —~

(STILINI-VLIN)
VIVAVLIIN-VIIN
JuV S3IXod

(zZW) T3IAOWY.LIN
ozs —

VIVAVIEAN-VIMIN-VLIIN
v S3X0d

(EW) TICONVLIN-VLIN
oge —/

a334
al
LINYAINI _m@_ d .._j SNaay @ ms_mooom
SNLVLS |~ =
- 9 NNNT0D | |
1X3L -
8 NANT0D — 2240 1N
37/} _ al Y30 |~
NSS |-
INOA v _NANMO9 M4 ¥INOLSNO (=
NN~
<MIAVIAH> = .
MOY 139X3 [yaworsnol== ¥3axo NOSY3d
<ININND0a> =
NN102
N A | | NANT0O ALNEINLLY
%* %*
AUNENLLY | | Viva 3dAL » [.
> 10 SR | 31avl SSY10
ov1 dIHSNOILY 13 5
qUHD 300N 314
[. // 3a0oN TwNOLLyTZy |NOUVIOOSSY
TIOON WX e DN 130ON 1D3rE0
\\\V/\ JLNgiyLyY \\\ I,/V«\
e ey = NOILYIDOSSY| ™
]

* / N
SSY10

-
.\\\‘
—

ST3ATT VIVAVIIN

SUBSTITUTE SHEET (RULE 26)

WO 01/75679

4/18

PCT/US01/10943

110

VIRTUAL LAYER

—
—

i
Y

PHYSICAL LAYER

11

METAMODEL

112

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

PCT/US01/10943

WO 01/75679

5/18

d¥ Ol

«JHOMSSVd,,

o9L1

JINOHdIT3L,|.ai ¥3INoLSNI,

911 asit

«S5340av,,

911

«JdAL INNODJV,, | ¥INOLISND,

goll 9l

gaGli

oclL

NOILYOINddY LIN3IMO

SUBSTITUTE SHEET (RULE 26)

PCT/US01/10943

WO 01/75679

6/18

Ol

SUBSTITUTE SHEET (RULE 26)

PCT/US01/10943

WO 01/75679

7/18

«301¥d

Y
\

30Rd Alivd
is1d

3o1Md 3SOTD
§0091>3NILE 4l

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

8/18

602

INSTALL AND CONFIGURE METADATA
_/ MANAGEMENT SYSTEM

)

604
DEFINE META—MODEL USING A MODELER

(

\

606
DEFINE A RUN-TIME META—-MODEL

TO SERVER CONSOLE

(

\

608
ATTACH CONNECTORS TO DATA SOURCES

(

610 !

(

WRITE APPLICATION CODE

!

612
_/ EXECUTE APPLICATION QUERIES

FIG. ©

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

9/18

702 .
\ USER INSPECTS METAMODEL TO FIND ELEMENTS
THAT CAN BE RETRIEVED

707 |
USER SELECTS THE ELEMENTS FROM THE METAMODEL

[

i
706
USER ENTERS A QUERY REQUEST

[

Y

QUERY IS PARSED TO FORM A GLOBAL
QUERY OBJECT

708

(

Y

710 | GLOBAL QUERY OBJECT IS CONVERTED INTO

__| DATA—SOURCE SPECIFIC QUERY REQUESTS BY
CHECKING THE METADATA DESCRIPTIONS OF
THESE DATA SOURCES

|

72 DATA SOURCE-SPECIFIC QUERY REQUESTS ARE
\—| EMPLOYED TO RETRIEVE DATA FROM DATA SOURCES

|

714 ' SYSTEM GENERATES A SET OF SOURCE—SPECIFIC
\——_| RESULTS

|

716
SYSTEM CONVERTS THE SET OF DATA SOURCE-SPECIFIC
\—| RESULTS INTO A GLOBAL RESULT OBJECT WHICH
CONFORMS TO THE SCHEMA OF THE METAMODEL

718 |
\ SYSTEM DELIVERS THE GLOBAL RESULT OBJECT

| TO THE USER
FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

10/18

801
__— SELECT § C. CUSTOMER ACCOUNT ID,
C. CUSTOMER ACCOUNT NAME}

802
__~ FROM § CUSTOMER C.}

803
A__~ WHERE {C. CUSTOMER ACCOUNT ID < 100}

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

11/18

900

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

12/18

1000
N——— INITIALIZATION

1010 ‘
~__| PROCESS ALL NODES THAT ARE READY TO PROCESS

\
1020
~___{ TRANSMIT THE RESULTS OF NODE 901 TO NODE 900

\

1030
TRANSMIT THE RESULTS OF NODE 904 TO NODE 903
1040 |
TRANSMIT THE RESULTS OF NODE 907 TO NODE 906
1050 :
._|PROCESS ALL NODES THAT ARE READY TO PROCESS
1060 ! ‘
S [TRANSMIT THE RESULTS OF NODE 905 TO NODE 903

\
1070
~___| PROCESS ALL NODES THAT ARE READY TO PROCESS

\
1080
~___| TRANSMIT THE RESULTS OF NODE 903 TO NODE 902

1090 Y :
——{ TRANSMIT THE RESULTS OF NODE 906 TO NODE 902

1100 !
~_| PROCESS ALL NODES THAT ARE READY TO PROCESS

Y
1110
~— TRANSMIT THE RESULTS OF NODE 902 TO NODE 900

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

13/18

1100

| RECEIVE FIRST QUERY FOR METADATA ELEMENT
FROM USER A

!

1110

. RECEIVE SECOND QUERY FOR METADATA ELEMENT
FROM USER B

Y

1120
_/1 GENERATE QUERY PLAN FOR METADATA ELEMENT

Y

1130
___| EXECUTE QUERY PLAN FOR METADATA ELEMENT

1140 ’

] TRANSMIT DATA CORRESPONDING TO METADATA
ELEMENT TO USERS A AND B

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

14/18

130A \ / 1308
131A 134p 135A 133B 1348 (3B
) N) N ([
1324 7 Foro | /| [\ cHEWY | ' |1328
RN cArs (\ | TRucks| +
v a 1 T
RECORD# [COLOR[MODEL | {rECORD# | coLoR | MODEL 14—
[T RED [TAURUS 1 BLUE [TRACKER| 135B
133A | 2 BLUE | — 2 RED |-
3 I 3 - |-
4 - | - 4 - -
100 50
FIG. 12
130C

\ 133C 135C
(<34c S &131c (1320

RECORD# | COLOR | MODEL | MAKE' | TYPE

BLUE | TRACKER| CHEVY | TRUCK
RED TAURUS | FORD CAR

—

1L PWEN=

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

15/18

140A

\ 141A 143A
(<42A S <44A (145A

I \

RECORD# | sa1 | sSQ2 sQ3 ' | sq4
A B c D
E F G H

LN

FIG. 14
1408

\ 1418 1478
(<468 ﬁ

RECORD# | SALES QUARTER
11

PUN=BRWN =
|] | TOTMMOOm>
PULN=BWN

FIG. 19

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

16/18

1600

L USER PROVIDES DATA CORRESPONDING TO A LOGICAL
METADATA ELEMENT IN THE VIRTUAL METADATA LAYER

1610 !

\x METADATA MANAGEMENT SYSTEM DETERMINES WHICH

PHYSICAL METADATA ELEMENT IN THE PHYSICAL
METADATA LAYER CORRESPONDS THERETO

1620 !
\ METADATA MANAGEMENT SYSTEM DETERMINES FROM

WHICH DATA SOURCES THE PHYSICAL METADATA
ELEMENTS ARE DERIVED

|
1630
SYSTEM STORES THE DATA PROVIDED INTO
\ CORRESPONDING STORAGE SPACES OF THE
DATA SOURCES

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 01/75679 PCT/US01/10943

17/18

7N\
|__
Z 3 e
& <
&%
5 e
1%2)
2o S
SES s
4 n_
| ~—
\ ™~
i
N
o™
O
L

DATA
WAREHOUSE

APP

SUBSTITUTE SHEET (RULE 26)

PCT/US01/10943

WO 01/75679

18/18

o lo1e]

SLeie)

vas

(18V ¥0I¥d) 81 "9l

A

o008

JOSS300V
v1ivQ

Y

g0s

40SS303V
viva

Y

YOS

40SS300V

viva

Y

JHVM
—3104IN
d31N0Y

A

a0v
"ddV
INAMD

Vo
"dd¥
N3O

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT In

mal application No.
PCT/US01/10943

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :GO6F 17/30, 15/16; HO4L 12/28
US CL :707/4, 10; 709/236; 370/400

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 707/4, 10; 709/236; 370/400

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,966,707 A (VAN HUBEN et al.) 12 October 1999, 1-17
the entire paper is relevant
Y US 5,734,887 A (KINGBERG et al.) 31 March 1998, 1-17
the entire paper is relevant
Y US 5,790,546 A (DOBBINS et al.) 04 August 1998, 1-17
the entire paper is relevant
Y US 5,862,343 A (LANDGUTH et al.) 19 January 1999, 1-17
the entire paper is relevant
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents; T later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered
to be of particular relevance

"B" earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason (as specified)

Q" document referring to an oral disclosure, use, exhibition or other
means
"p* document published prior to the international filing date but later than

the priority date claimed

date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

"X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

'y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 MAY 2001

Date of mailing of ge Afélternaﬁonal search report

JUN 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

THOMAS BLAC
(A03) 305-9707

R Nothes

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

