
(19) United States
US 2002O116514A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0116514A1
Lee (43) Pub. Date: Aug. 22, 2002

(54) MESSAGE SYSTEM FOR ASYNCHRONOUS
TRANSFER MODE

(76) Inventor: Kenny Ying Theeng Lee, Duluth, GA
(US)

Correspondence Address:
DISCOVISIONASSOCATES
INTELLECTUAL PROPERTY
DEVELOPMENT
2355 MAIN STREET, SUITE 200
IRVINE, CA 92614 (US)

(21)

(22)

Appl. No.: 10/063,508

Filed: May 1, 2002

Related U.S. Application Data

(63) Continuation of application No. 09/338,935, filed on
Jun. 23, 1999.

INCOMING
CELL
252

(60) Provisional application No. 60/090,441, filed on Jun.
24, 1998.

Publication Classification

1. nt. Cl. 56; G06F 15/16; 5 Int. Cl." H04L 12/56 5
HO4L 12/28

(52) U.S. Cl. ... 709/230; 370/3951

(57) ABSTRACT

An asynchronous transfer mode System operates using Vir
tual addresses VPI and VCI. Cells including these addresses
are received. The data associated with these cells is Stored in
a table. The table contents are advantageously accessed
according to a connection number. The proper connection
number is more easily found by using two variables. A first
variable is associated with a number of active connections.
A Second variable is associated with the last-used indeX in
the table.

O 260

INFO FOR
-EEER Frcessing

DATA2

US 2002/0116514 A1 Patent Application Publication Aug. 22, 2002. Sheet 1 of 7

ETHOLLOHJLI
I OIH HOYW XIHOAALAN TWRIGHNHO

Patent Application Publication Aug. 22, 2002 Sheet 2 of 7

202

8 7 6 5 4 3 2 1) BIT
GENERICFLOW WIRTUAL PATH
CONTROL IDENTIFIER (V.P.I.)

VIRTUAL PATH
IDENTIFIER (V.P.I.)

VIRTUAL CHANNEL IDENTIFIER 200
(V.C.I.)

PAYLOAD
TYPE LOSS
206 PRIORITY

HEADER ERROR CHECK

CELL PAYLOAD (48 OCTETS)

204

FIG 2A

US 2002/0116514A1

Patent Application Publication Aug. 22, 2002 Sheet 3 of 7 US 2002/0116514 A1

O VPI VCI (16) CELLS

2
225

NUM OF CONN = 3
LAST INDEX = 3

230

FIG2B

Patent Application Publication Aug. 22, 2002. Sheet 4 of 7 US 2002/0116514 A1

s
s

c - N en r ?h

Patent Application Publication Aug. 22, 2002. Sheet 5 of 7 US 2002/0116514 A1

GET VP f VCI
EXTRACT HEADER 310

318

CONNECTION
FOR LOOP VALUE

320

ADD TO CELLS
PORTION FOR
LOOP VALVE

FIG 3A

Patent Application Publication Aug. 22, 2002 Sheet 6 of 7 US 2002/0116514A1

TABLE ENTRY (LAST INDEX = WPI/VC
LAST INDEX++
NUM CONN++ 334

336

LOOP UPTO (LAST INDEX) TIMESTOFINDA
FREE TABLE ENTRY

TABLE ENTRY (FREE) - VPI/VC
NUM CONNH
LAST INDEX++ 342

FIG 3B

US 2002/0116514 A1 Patent Application Publication Aug. 22, 2002. Sheet 7 of 7

I-NNOOTWON =NNOOTWnN {{ITVA IOA/IdA NI HOLWW W CINIH OJ. AQILN? ?TETVL RHL NI SAWIL (XEICINITILSVT) OL ån ?OOT

NOÏLOSINNOO IOA/I&A W HAOWN?TH

099

?OOT

US 2002/0116514 A1

MESSAGE SYSTEM FOR ASYNCHRONOUS
TRANSFER MODE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation Patent Applica
tion that claims priority from co-pending patent application
Ser. No. 09/338,935, filed on Jun. 23, 1999, which in turn
claims the benefit of U.S. Provisional Application No.
60/090,441, filed Jun. 24, 1998.

BACKGROUND OF INVENTION

0002 The disclosed system teaches a way of simplifying
messages in asynchronous transfer mode. The present Sys
tem specifically teaches Specifying connection ranges
among various information to Simplify the connection.
0.003 Asynchronous transfer mode or ATM is a telecom
munications protocol that allows packet based transfer of
information. Cells of information are Sent acroSS an infor
mation network defined by a number of nodes. The infor
mation is Sent from node-to-node.

0004 An ATM transport network (i.e., a communication
network, which transmits information using ATM cell pack
ets) is known to include an ATM layer and a physical layer.
The ATM layer is based on the virtual path/virtual channel
(VP/VC) concept. The VC identifies a unidirectional com
munication capability through which ATM cells are trans
ported. One or more virtual channels (VCs) can be used in
a particular virtual path (VP), which also identifies another
level of the communication capability through which the
ATM cells are transported.
0005) An ATM cell is the smallest information unit. It
includes a header field of 5 bytes or octets, and a payload
field of 48 bytes or octets. The header field includes VP and
VC identifiers. These identifiers are used for routing the
information to an intended destination.

0006 Communication in known ATM networks is initi
ated during a connection Setup, after which cells belonging
to one connection follow a predetermined path defined by
the VPI and VCI on a particular link. The connection control
information transferred during Setup utilizes a unique Sig
naling VC (SVC) which is included in the VP. The SVC is
identified by the virtual path ID (VPI) and virtual channel ID
(VCI).
0007 Cells destined for many different end points are
Sent over a single physical communications circuit. The
header of each cell includes a channel identifier which is
used to control the routing of the cell through the ATM
System. The channel identifier determines routing of the cell.
0008. In a typical ATM system there are 256 possible
VPIs and 65,536 possible VCls; thus, there are 16,777,216
possible channel identifiers (VPI/VCIs). One of the many
challenges in designing an ATM network is how to handle
this huge number of corrections.
0009 Specified traffic control protocols are used to deter
mine the routing of the information. The routing is con
trolled using conventional addressing techniques.
0010 Further details of ATM are well known in the art.
In addition, different flavors and sub-types of ATM are

Aug. 22, 2002

known, including digital Subscriber line (DSL), asSymetric
digital subscriber line(ADSL), and other flavors of digital
subscriber line (XDSL).
0011. In all of these communication modes, a message is
broken into multiple portions or cells. A conventional ATM
system breaks the total message to be sent over ATM into 48
byte data portions. A typical data message might be, for
example, 1500 bytes in length. Hence, the 1500 byte mes
sage is divided up into 31 of the 48 byte cells.
0012. The ATM message is sent into the ATM environ
ment with 48 byte increments, each addressed by 24 bits of
VPI/VCI to instruct where the package is going.
0013 The recipient node needs to form this data together
into the original size. That original recipient receives a
mixed message within multiple cells, typically having mul
tiple VPIs and VCIs.
0014. One way to handle the mixed message is to place
each of the messages into a buffer as received, and remove
the different cells from the buffer to form one total message.
0015 This system includes certain limitations. For
instance, if the VPI is used as an index to the buffer, the
amount of memory for the addressing Scheme can increase,
and make it difficult to review the contents. Searching the
array can take large amounts of processing power and
memory. As the number of VPI/VCI connections increases,
the array size can grow exponentially.
0016. The present system teaches a simplified system.

SUMMARY OF INVENTION

0017. The present specification, in recognition of the
above, defines an improved way of handling a message from
a System which divides total messages into divided cells.
Each of the cells is associated with an address. In a disclosed
mode, that address can be a virtual address. A table is Stored
in memory which includes a list of connection number,
address, and data for each of the connection number. Each
of the cells is Stripped of its address, asSociated with the
connection number, and the data associated with that cell is
put into the table. The table stores a plurality of information
pieces about a number of Simultaneous connections.
0018. Access to the table is simplified by defining at least
one variable associated with all of the Simultaneous mes
sages in the table. This variable is a variable that facilitates
Searching the table. One possible variable is a variable
asSociated with the number of connections. Another variable
is associated with the length of the table, e.g., the last-used
index. In one disclosed mode, two variables are used, one of
which is related to the last index, and the other which is
related to the number of connections. If the two variables are
equal, then the table is full, and the next entry in the table can
be used for a new connection. Otherwise, the System can
Search to a value no higher than the last-used index, and by
So doing, Search less than all of the total number of values
in the table.

BRIEF DESCRIPTION OF DRAWINGS

0019. These and other aspects will be described in detail
with respect to the accompanying drawings, wherein:
0020 FIG. 1 shows a general network architecture of an
ATM network;

US 2002/0116514 A1

0021 FIGS. 2A-2C show a VPI/VCI header according to
an embodiment of the present invention; and
0022 FIGS. 3A-3C show flowcharts of software opera
tions performed by one or more embodiments of the present
invention.

DETAILED DESCRIPTION

0023 The overall block diagram of the general network
architecture is shown in FIG.1. The embodiments described
herein can operate as part of an ATM system. An ADSL
interface card for communicating with an ADSL network is
described. More generally, however, this System can operate
within any System that carries out data communication by
dividing a total message into Separate addressed packets, or
more Specifically in an asynchronous transfer mode System.

0024. A PC 125 is, for example, an Internet service
provider that provides Internet Service to a number of users
98, 99, and others that are not shown. PC 125 includes an
ADSL network interface card or NIC 110. NIC 110 connects
to the telephone line 112 via a plain old telephone System
(POTS) splitter 114. Other POTS equipment 17 can include
conventional telephone equipment.

0.025 A conventional ATM Subscriber access multiplexer
or ASAM 120 connects from telephone line 112 to ATM
network 115. The ASAM 120 multiplexes a number of
communications via the ATM network 115. In this system,
the NIC 110 becomes a node connecting to the ATM network
115 which allows routing to other nodes, such as Second
node 150. While only one second node 150 is shown, the
ATM network is typically connected to literally thousands of
other nodes shown generally in FIG. 1. Any of the multiple
nodes can Send or receive a message. The connection among
these nodes are based on their VCI/VPI identifiers.

0.026 Node 1 receives a number of cells that will form
ATM messages.

0027) Each cell is of the general form shown in FIG. 2A.
A 5 byte (Octet) header 200 includes the virtual path
identifier 202, virtual channel identifier 204, payload type
206, and other conventional ATM control data.

0028. When the cells arrive at the NIC 110, the 5 bytes of
header information are used to determine how to reconstruct
the entire message among the multiple messages that are
Sent at Once.

0029. A typical way to operate is to put the entire
information, including the 5 byte header information, into a
buffer in memory, e.g., an array. The array could be
addressed using the VPI and VCI as addresses to the array.
0030 The disclosed system uses a special memory table
225 shown in FIG. 2B. Two additional variables are also
maintained, related to all of the entries in the table 225. A
first variable is related to the number of active messages, and
defines the total current number of connections (num
of conn). A second variable defines the last used index in the
table (last index).
0031. A connection number is defined for each message.
The connection number can be, for example, between 0-31,
thereby allowing 32 Simultaneous connections. This con
nection number can be expressed as one byte of information.

Aug. 22, 2002

0032) The remainder of the table entry includes the 8 bit
VPI and the 16 bit VCI corresponding to the connection
number. The cell contents from the multiple cells of the
message are filled into the table entry field 230.
0033. The num of conn variable represents the number
of current active connections within the table. FIG. 2B
shows three connections, and therefore num of conn=3.
0034) The last index variable represents the last free
indeX in the table entries, here again 3.
0035) An alternative table form is shown in FIG. 2C. In
this system, there are two tables. A first table part 250
translates between the VPI/VCI of an incoming cell 252, and
its connection number. A Second table part 260 arranges each
of the data1, data2, data of the cells into a table arranged
by connection numbers.
0036) This table and variables are kept up-to-date with
each new connection and each dropped connection as
described herein. The ADSL NIC includes an internal con
troller that operates according to the flowcharts described
herein to process the cells. The detailed operation is shown
with respect to the flowcharts of FIGS. 3A-3C.
0037. A cell arrives at step 304, having the general form
shown in FIG. 2A.

0038. At step 310, the cell header 200 is extracted, which
provides the addressing information from its VPI/VCI. At
this time, error checking can be carried out in conventional
ways, and the VPI and VCI values are removed. The VPI and
VCI values are used as addressing information and trans
lated into connection numbers.

0039. At step 315, a loop is formed from 0 up to the value
of last index value. Step 316 compares each VPI/VCI in the
table against the current VPI/VCI from the received cell at
316. If there is a match, flow passes to step 320 where the
current cell is added to the cells 230 for the current con
nection number. If not, the loop is compared against last in
dex at 317. If the loop value is greater than or equal to
last-index, the current VPI/VCI is not in the table. The
add connection routine is called at 321. Otherwise, the loop
value is incremented at 318, and the next value is tested.
0040. Therefore, each VPI/VCI is handled as a connec
tion number of 0-N, where N is the maximum allowed
number of Simultaneous messages. A typical value for N
might be 32.
0041) Importantly, the total allowed number of simulta
neous messages does not increase the length of the Search.
Instead, the maximum search ends at the last index value,
which represents the last-indeX that is used. The Search
length is increased only by the number of existing active
connections instead of the numbers of allowed connections.

0042. The add connection writes new VPI/VCI values to
the table index. This is carried out according to the routine
shown in FIG. 3B.

0043 Step 330 first determines if the number of connec
tions variable (num conn) is equal to the last-index variable
(last index). If so, then the table is currently full. The system
then uses the next consecutive entry after last indeX as
shown in step 332. The table entry corresponding to the
last index is set to the current VPI/VCI address at 332, and
both the last index and num conn are incremented.

US 2002/0116514 A1

0044 As described herein, when a connection is termi
nated, a value will be removed from the table, leaving a
space in the table. The space is noted by setting the VPI/VCI
value to all 0's. In that case, num conn will not be equal to
last index at 330.
004.5 The flowchart passes to step 334, which carries out
an error checking routine to first determine if num conn is
less than last index. If not, an error is established at Step
336.

0046) If the num conn is less than last index, however,
step 338 illustrates a loop from 0 up to the last index value,
to find a free table entry. That free table entry is then set to
the current VPI/VCI at 340. Num conn and last index are
both incremented at step 342.
0047 A VPI/VCI connection can also be removed as
illustrated in FIG. 3C. Termination of an ATM message is
known in the art. When a message is complete, the message
being terminated passes its VPI/VCI address to the routine
of FIG.3C. This is received at step 350. Step 352 loops up
to the value of last index to find a match to the current
VPI/VCI value. This is similar to steps 315, 316, 317 in
FIG. 3A.

0.048. At step 354, the determined table entry is marked
as being free by setting the VPI/VCI to all Zeros. The
number of connections is also decremented. However,
last index is not decremented unless the last entry in the
table is being removed. Step 356 shows determining if the
current loop value =last index. If So, last index is decre
mented at 358. In either case, num conn is decremented at
360.

0049 Hence, this addressing becomes relatively simpli
fied. The data from the cells is stored in an improved way.
Moreover, the inherent way in which the information is
Stored automatically Sorts the information into a more logi
cal order.

0050. The use of the two variables, including one that
indicates the number of connections, and another that indi
cates the last information that is free, enables Searching
fewer than the total number of connections each time a cell
is received. When the entire used part of the table is full, no
searching needs to be done at all to add a new VPI/VCI.
When the table is not full, the search continues only until the
first empty point is reached. Even though a connection may
be removed anywhere in the table, the Search need not
always Search every entry. In fact, this Search technique will
never Search the entire array, Since if the array were full,
num conn would equal last index.
0051. Another routine, not shown, could periodically
crunch the table 225 to remove blanks therein. This could be
done on a timed basis, or when the activity gets below a
certain level.

0.052 The previous discussion has referred to flowcharts,
and it should be understood that these operations could be
carried out by executing code in processors, in dedicated
hardware that is formed using hardware definition language
to effect these flowcharts, in firmware, or in any other form.
0.053 Although only a few embodiments have been
described in detail above, other embodiments are contem
plated by the inventor and are intended to be encompassed

Aug. 22, 2002

within the following claims. In addition, other modifications
are contemplated and are also intended to be covered.

1. A method of transferring a plurality of messages,
comprising: dividing Said message into cells of a Specified
length; obtaining an address on each of Said cells which
identifies its message; receiving Said cells at a receiving
node, receiving other cells, from other messages at Said
receiving node, and at Said receiving node, defining at least
one variable related to Said addresses of at least a plurality
of Said messages.

2. A method as in claim 1, further comprising forming a
message table for Said plurality of messages.

3. A method of claim 2, wherein said variable is a number
of a last-indeX in Said message table.

4. A method as in claim 2, wherein Said variable is a
number of active connections in Said message table.

5. A method as in claim 2, wherein there are two of Said
variables, and Said variables include a number of active
connections in Said message table and a last-indeX which is
used by said table.

6. A method as in claim 2, wherein Said variable is related
to entries in the message table.

7. A method as in claim 2, wherein said variable is related
to a number of active messages.

8. A method as in claim 2, further comprising, at the
receiving node, receiving a cell, and comparing and address
of the cell with Said message table by Searching Said
message table only between a lowest possible indeX and a
value based on Said variable.

9. A method as in claim 8, further comprising defining a
Second variable related to Said message table.

10. A method as in claim 9, wherein said second variable
is related to a fill State of Said message table.

11. A method as in claim 10, further comprising compar
ing Said Second variable to Said number of active messages
variable to determine blank entries in Said message table.

12. A method as in claim 2, further comprising determin
ing if there are blank Spaces in the message table by using
Said variable, Searching Said table for Said blank entries if So,
and using Said variable to determine a location for a new
message to be added, if not.

13. A method as in claim 1, wherein Said communication
is via Asynchronous Transfer Mode.

14. A method as in claim 13, wherein said addresses of
said cells include a virtual channel identifier (VCI) and
virtual path identifier (VPI).

15. A method as in claim 1, wherein Said communication
is via a digital subscriber line (DSL).

16. A method as in claim 5, wherein Said message table
further comprises a cell Storage area and a connection
number entry area, further comprising: associating a con
nection number with each new address associated with Said
messages; Storing Said connection number in Said connec
tion number entry area; extracting Said cells from Said
messages and Storing Said cells in Said cell Storage area
asSociated with Said connection number in Said message
table.

17. A method as in claim 16, further comprising: receiving
a next message having a next address, determining if Said
next address is associated with a connection number in Said
message table; extracting a cell from Said next message and
Storing Said cell in Said cell Storage area associated with Said
connection number, if Said next address is associated with a
connection number in Said message table; and adding a new

US 2002/0116514 A1

connection number to Said message table and Storing Said
cell in a cell Storage area associated with Said new connec
tion number in Said message table, if Said next address is not
asSociated with a connection number in Said message table.

18. A network interface card device for communicating
with a plurality of Simultaneous communications, compris
ing: a register, Storing a table including a plurality of
Simultaneous data transmissions, at least a plurality of Said
data transmissions formed by a plurality of Separated cells of
information, where each of the cells have a shorter total
length than the data transmission, and each data transmis
Sion and each cell of the data transmission are represented by
an address, Said table Storing contents of Said cells and an
address, Such that each cell contents is added to an entry in
Said table which represents the address associated with Said
each cell, and Said memory also storing a first variable
related to contents of at least a plurality of Said Simultaneous
data transmissions in Said table; and a controller, operating
based on a Stored instruction Set, to receive a cell, to use Said
variable to Search Said table in a way that enables Searching
less than all of Said table, to add said cell to a desired entry
in said table if an address of said cell is found in said table
and to add a new address to Said table if Said address of Said
cell is not found in said table.

19. A device as in claim 18, further comprising a Second
variable related to Said plurality of Simultaneous data trans
missions, wherein Said controller also uses Said Second
variable to search said table.

20. A device as in claim 18, wherein said controller also
detects an end of message, and removes an entry corre
sponding to the ended message from Said table.

21. A device as in claim 20, wherein there is a Second
variable related to a number of connections, and wherein
Said controller is operative to determine whether a blank
Space exists in Said table by comparing Said first variable to
Said Second variable.

22. A device as in claim 21, wherein Said controller
compares Said first variable to Said Second variable, adds a
new entry at the end of the table if said first variable equals
Said Second variable, and Searches from a lowest value to a
value of Said first variable if said first and second variables
are not equal.

23. A device as in claim 18, wherein said first variable
represents a last indeX in Said table that is used, and Said
Second variable represents a number of active connections in
said table.

24. A method of operating a Synchronous transfer mode
(ATM) system, comprising: receiving a plurality of simul
taneous messages, each of Said Simultaneous messages
being formed of a plurality of Separated cells with addresses
which cells collectively have data forming the Simultaneous
messages, maintaining a table in memory which Stores said
data associated with Said addresses, detecting a new mes
Sage, which does not have a previous entry in Said table; and
finding a new location in Said table by Searching fewer than
all locations in Said table.

25. A method as in claim 24 further comprising Storing a
variable associated with Said plurality of messages.

26. A method as in claim 24 further comprising Storing
two variables associated with Said plurality of Simultaneous
messages, one of Said variables relating to a number of
active messages, another of Said variables related to a size of
the table.

Aug. 22, 2002

27. A method as in claim 26 wherein said finding com
prises comparing Said variables to one another.

28. A method as in claim 26 wherein if said variables are
equal, establishing a new value at the end of the table.

29. A method as in claim 27 wherein if said variables are
not equal, Searching less than all of Said table to find a blank
Space in the table.

30. A method as in claim 24 further comprising assigning
a connection number to Said cells based on Said addresses,
and Storing Said connection number are along with other
portions with the same connection number.

31. A method as in claim 24, further comprising removing
an inactive message from the table.

32. A method as in claim 31 wherein said inactive
message is removed by Setting its address to all Zeros.

33. A method as in claim 32 further comprising changing
values of Said variables after removing Said inactive mes
Sage.

34. A method of operating in an asynchronous transfer
mode, comprising: receiving a plurality of Simultaneous
messages, each of Said Simultaneous messages received as a
plurality of Separated cells which are addressed with an
address, maintaining a table of information from Said cells
in memory; maintaining a variable associated with Said table
in memory; and using Said variable to Search Said table in
way that enables Searching less than all of Said table.

35. A method as in claim 34 wherein said variable is
related to a number of active connections.

36. A method as in claim 35 wherein said variable is
related to a last entry in the table.

37. A method as in claim 34 wherein there are two
variables, one related to a number of active connections,
another related to an ending point of the table.

38. A method as in claim 37 further comprising adding a
new connection by comparing Said variables, taking a first
action if Said variables are equal and a Second action if Said
variables are unequal.

39. A method as in claim 38 wherein said first action
comprises adding a new value at the end of the table, and
incrementing a first variable.

40. A method as in claim 38 wherein said second action
comprises Searching between a minimum value and a value
of Said Second variable to look for a blank Space in Said
table, Said Searching comprising Searching less than all
values in Said table.

41. A method as in claim 40 wherein Said Second action
comprises Searching between a minimum value and a value
of Said Second variable to look for a blank Space in Said
table, Said Searching comprising Searching less than all
values in Said table.

42. A method as in claim 34, wherein said table further
comprises a cell Storage area and a connection number entry
area, further comprising: associating a connection number
with each new address associated with Said Simultaneous
messages; Storing Said connection number in Said connec
tion number entry area; extracting Said cells from Said
Simultaneous messages and Storing Said cells in Said cell
Storage area associated with Said connection number in Said
table.

43. A method as in claim 42, further comprising: receiving
a next message having a next address, determining if Said
next address is associated with a connection number in Said
table; extracting a cell from Said next message and Storing
Said cell in Said cell Storage area associated with Said

US 2002/0116514 A1

connection number, if Said next address is associated with a
connection number in Said table; and adding a new connec
tion number to Said table and Storing Said cell in a cell
Storage area associated with Said new connection number in
Said table, if Said next address is not associated with a
connection number in Said table.

44. A method of operating in asynchronous transfer mode,
comprising: maintaining a table in memory having a plu
rality of Simultaneously-transmitted messages, each mes
Sage transmitted as a plurality of Separated cells, Said table
asSociating cells that are related to one another, receiving a
new cell; receiving an address of Said new cell from the new
cell; removing the address from Said new cell to leave
information without Said address, forming a first variable
asSociated with Said table which represents a last value in
Said table which is active; forming a loop from a minimum
value to Said first variable; at each point in Said loop,
comparing Said removed address to a current loop value; and
adding Said information from Said cell to the current loop
position if the removed address matches the current loop
position.

45. A method as in claim 44 further comprising detecting
no matches, and adding a new connection.

46. A method as in claim 44 further comprising a Second
variable related to a number of active connections, and
wherein Said Second variable is incremented when a new
connection is added.

47. A method for Supporting a flexible addressing Scheme
for an ADSL interface using a VPI/VCI value in a header of
a cell, said VPI/VCI value being within a range of connec
tion values, said method comprising the Steps of Setting a
num of conn variable equal to Zero; Setting a last variable
equal to Zero; determining a first entry of a table for Storage
of a value, Said table having a number of entries, said
number of entries being less than the number of connection
values in Said range, including, Setting Said first entry equal
to said last incrementing said last incrementing said num
of conn; Storing a predetermined one of Said connection
values in Said first entry; receiving Said cell; extracting Said
VPI/VCI value from said cell; comparing said VPI/VCI
value to entries in Said table in a Sequential manner Starting
with Said first entry and ending at Said last determining a
match when said VPI/VCI value is present in one of said
entries, and passing the contents of Said one of Said entries
and Said cell to a processor for further processing when said
match is determined.

48. The method as in claim 47 including the steps of:
determining an additional entry of Said table for Storage of
a connection, including, Setting Said additional entry equal
to said last incrementing said last incrementing said num
of conn; Storing an additional predetermined one of Said
connection values in Said additional entry.

49. The method as in claim 48 further including the steps
of recognizing a delete connection value; comparing Said
delete connection delete connection value to entries in Said
table in a Sequential manner Starting with Said first entry and
ending at Said last determining a match when Said delete
connection value is present in one of Said entries, and Storing
a null value in Said one of Said entries, Said null value being
outside Said range of connection values, decrementing Said
num of conn.

50. The method as in claim 49 including the steps of:
recognizing a Second additional connection value; determin
ing a Second additional entry of Said table for Storage of a

Aug. 22, 2002

connection value, Said Step of determining a Second addi
tional entry including, Setting Said Second additional entry
equal to Said last incrementing Said last and incrementing
said num of conn; comparing said null value to entries in
Said table in a Sequential manner Starting with Said first entry
and ending at Said last determining a match when said null
value is present in one of Said entries; Setting Said Second
additional entry equal to Said one of Said entries when Said
match is determined, decrementing Said last when Said
match is determined; and Storing Said Second additional
connection value in Said Second additional entry.

51. The method as in claim 47 wherein said number of
table entries is equal to 32.

52. The method as in claim 47 wherein said number of
table entries is equal to 64.

53. An System for Supporting a flexible addressing Scheme
for an ADSL interface using a VPI/VCI value in a header of
a cell, said VPI/VCI value being within a range of connec
tion values, said System comprising, first means for deter
mining a first entry of a table for storage of a value, said
table having a number of table entries, said number of table
entries being less than the number of connection values in
Said range, Second means for Storing a predetermined one of
Said connection values in Said first entry; third means for
receiving Said cell; fourth means for extracting Said VPI/
VCI value from said cell; fifth means for comparing said
VPI/VCI value to entries in said table in a sequential
manner; Sixth means for determining a match when Said
VPI/VCI value is present in one of said entries, and seventh
means for passing the contents of Said one of Said entries and
Said cell to a processor for further processing when Said
match is determined.

54. The system as in claim 53 wherein said first means
includes: a comparing means for comparing a null value to
entries in Said table in a Sequential manner, Said null value
being outside Said range of connection values, a determining
means for determining a null match when Said null value is
present in one of Said entries, and a Setting means for Setting
Said first entry as Said one of Said entries.

55.The system as in claim 53 including: an additional
determining means for determining an additional entry of
Said table for Storage of a connection value, Said Second
means Storing an additional predetermined one of Said
connection values in Said additional entry.

56. The system as in claim 54 wherein said additional
determining means includes: a comparing means for com
paring a null value to entries in Said table in a Sequential
manner, Said null value being outside Said range of connec
tion values, a determining means for determining a null
match when said null value is present in one of Said entries,
and a Setting means for Setting Said additional, entry as Said
one of Said entries.

57. The system as in claim 56 further including: a
recognizing means for recognizing a delete connection
value, Said comparing means comparing Said delete connec
tion delete connection value to entries in Said table in a
Sequential manner, Said determining means determining a
match when said delete connection value is present in one of
Said entries, and Said Second means Storing Said null value
in Said one of Said entries.

58. The system as in claim 57 wherein said recognizing
means recognizing an additional connection value and Said
additional determining means determining Said additional
entry of said table.

US 2002/0116514 A1

59. The system as in claims 53 wherein said number of
table entries is equal to 32.

60. The system as in claims 53 wherein said number of
table entries is equal to 64.

61. A method for Supporting a flexible addressing Scheme
for an ADSL interface using a VPI/VCI value in a header of
a cell, said VPI/VCI value being within a range of connec
tion values, said System comprising: Setting a num of conn
variable equal to Zero; Setting a last variable equal to Zero;
determining a first entry of a table for Storage of a value Said
table having a number of entries, Said number of entries
being less than the number of connection values in Said
range, including, Setting Said first entry equal to Said last
incrementing said last incrementing Said num of conn, Stor
ing a predetermined one of Said connection values in Said
first entry; receiving said cell; extracting said VPI/VCI value
from said cell; comparing said VPI/VCI value to entries in
Said table in a Sequential manner Starting with Said first entry
and ending at Said last determining a match when said
VPI/VCI value is present in one of said entries; and passing
the contents of Said one of Said entries and Said cell to a
processor for further processing when Said match is deter
mined.

62. The method as in claim 61 including the steps of:
determining an additional entry of Said table for Storage of
a connection, including, Setting Said additional entry equal
to said last incrementing said last incrementing said num

Aug. 22, 2002

of conn; Storing an additional predetermined one of Said
connection values in Said additional entry.

63. The method as in claim 62 further including the steps
of recognizing a delete connection value, comparing Said
delete connection delete connection value to entries in Said
table in a Sequential manner Starting with Said first entry and
ending at Said last determining a match when Said delete
connection value is present in one of Said entries, and Storing
a null value in Said one of Said entries, Said null value being
outside Said range of connection values, decrementing Said
num of conn.

64. The method as in claim 63 including the steps of:
recognizing a Second additional connection value; determin
ing a Second additional entry of Said table for Storage of a
connection value, Said Step of determining a Second addi
tional entry including, Setting Said Second additional entry
equal to Said last incrementing Said last incrementing Said
num of conn; comparing said null value to entries in Said
table in a Sequential manner Starting with Said first entry and
ending at Said last determining a match when Said null value
is present in one of Said entries, Setting Said Second addi
tional entry equal to Said one of Said entries when Said match
is determined; decrementing Said last when said match is
determined; and Storing Said Second additional connection
value in Said Second additional entry.

