(21) 申请号 200910221861.1
(22) 申请日 2004.07.01
(30) 优先权数据
60/484,299 2003.07.03 US
(62) 分案的申请数据
200480019112.6 2004.07.01
(71) 申请人 宾夕法尼亚大学理事会
地址 美国宾夕法尼亚州
(72) 发明人 艾伦・D・施赖伯 扎娜・因迪克
金武庆
(74) 专利代理机构 北京三友知识产权代理有限公司
代理人 丁香兰
(51) Int.Cl.
A61K 48/00(2006.01)
A61P 29/00(2006.01)
A61P 11/00(2006.01)
A61P 13/10(2006.01)
A61P 17/00(2006.01)

(54) 发明名称
对Syk激酶表达的抑制
(57) 摘要
本发明采用siRNA抑制Syk激酶来抑制Syk激酶表达。
1. 小干扰 RNA 分子在制备用于抑制 Syk 激酶在细胞中的表达的制剂中的应用，所述小干扰 RNA 分子指导所述细胞中存在的靶 Syk 激酶 mRNA 序列的剪切，从而实现所述的抑制。
2. 如权利要求 1 所述的应用，其中所述的小干扰 RNA 分子的长度为大约 20 ~ 23 个核苷酸。
3. 如权利要求 1 所述的应用，其中所述的小干扰 RNA 分子被直接导入所述细胞中。
4. 如权利要求 1 所述的应用，其中所述的小干扰 RNA 分子是在编码该小干扰 RNA 分子的核苷酸序列导入所述细胞后在细胞内产生的。
5. 如权利要求 1 所述的应用，其中所述的小干扰 RNA 分子包含 2 条链，且所述小干扰 RNA 分子的至少一条链具有长度为大约 1 ~ 大约 6 个核苷酸的 3’ 突出端。
6. 如权利要求 5 所述的应用，其中所述小干扰 RNA 分子的两条链都具有长度为大约 2 ~ 3 个核苷酸的 3’ 突出端。
7. 如权利要求 6 所述的应用，其中所述的 3’ 突出端包含尿苷或胸苷。
8. 如权利要求 1 所述的应用，其中所述的小干扰 RNA 分子具有茎环结构。
9. 如权利要求 8 所述的应用，其中所述茎环结构的 3’ 末端具有长度为大约 1 ~ 大约 6 个核苷酸的 3’ 突出端。
10. 如权利要求 9 所述的应用，其中所述 3’ 突出端的长度为大约 2 ~ 大约 3 个核苷酸。
11. 如权利要求 1 所述的应用，其中所述的靶序列是 Syk 激酶 mRNA 特有的序列。
12. 如权利要求 11 所述的应用，其中用 cDNA 表示的所述靶序列包含选自以下组的核苷酸序列：
 AATATGTGAAGCAGACATGGA,
 AATCAAATCATACACTCCC,
 AAGAGATGACTGTGTCATTCA,
 AAGAAAACCCTCATCAGGAAA,
 AATCATACCTTCCCAGAAACG,
 AATTCTGAGGGCGGTCCACAA,
 AAGACTGGGGCTTTTGAGGAT,
 AAGCCAGATGGAACCTGAGC,
 AACTCCAGGTTCCACATCCTG,
 AAGCTGGCCACAGAAAGTCC,
 AAGCCCTACCATGGAACACAG,
 AACCTGACAGGTCAAGCTCTG,
 AAGGGGTGACGCCCCGAGACTG,
 AACTTGACCGCTGGGCTGACG,
 AAGTCCTCGCCTGCCCCAGGGG,
 AAGGCCGCCAGAGAGAGCCCG,
 AATCTCAAGAATCAAATCATA,
 AATGTATATTTGAGGGCGGTT,
 AAAGCTATTAGCCAGAATTTT,
 AATGGCACCACAGGAAAATGT,
AACGGCAAGAGATCTGTG，
AAGGAGGTTCCTGACGGGA，和
AACCTATACGGGAATATGTG。
13. 如权利要求 1 所述的应用，其中所述的细胞是哺乳动物细胞。
14. 如权利要求 13 所述的应用，其中所述的细胞是人类细胞。
15. 如权利要求 14 所述的应用，其中所述的细胞存在于人体中。
16. 如权利要求 15 所述的应用，其中所述的人体是患有炎性症状的患者，并且所述小干
扰 RNA 分子被施用足够的量以实现对所述症状的治疗。
17. 如权利要求 16 所述的应用，其中所述的炎性症状是所述患者的支气管、肺部、眼
睛、膀胱或皮肤的症状。
18. 如权利要求 17 所述的应用，其中所述的炎性症状是支气管或肺部的症状，并且所
述小干扰 RNA 分子通过吸入被导入支气管或肺部细胞中。
19. 一种小干扰 RNA 分子，其指导细胞中存在的靶 Syk 激酶 mRNA 序列的剪切，从而实现
对 Syk 激酶表达的抑制。该小干扰 RNA 分子包含与选自以下组的序列互补的序列：
 AATATGTGAAACGACAGATGGA，
 AATCAAATCATACTCTTCCC，
 AAGAGATTACTGTGATCTTCCA，
 AAGGCCAACCTCATCAGGGAA，
 AATCTAACTCCTCCTCCAAGGC，
 AATTTTGGAGGGCCGTCCACAA，
 AAGACTGCGGCTTCTTAGGAT，
 AAGCAGACATGGAACCTGACG，
 AACTTCAGGGTCCCATACCTG，
 AAGGCTGGGACAGAAGTCC，
 AAGCCCTACCATGGACACAG，
 AACTGCAGGTCAGGCTCCTG，
 AAGGGTGCAAGCCCAAGCTCG，
 AACTGCACCTGCGGTGCAAG，
 AAGTCCGCTCCCTGGGCAAGG，
 AAGGCCCGACAGAGAGAGCC，
 AATCTCAAGATCATAATCTA，
 AATGTGAAAATTTGGAGGCCGT，
 AATCGTATAGCCAGAATT，
 AATCGGCACAGGGAAATGT，
 AACCGCAAGAGATCTGTG，
 AAGGAGGTTCCTGACGGGA，和
 AACCTATACGGGAATATGTG。
20. 一种包含如权利要求 19 所述的小干扰 RNA 分子和载体的组合物。
21. 一种包含如权利要求 19 所述的小干扰 RNA 分子和脂质体或聚合物的组合物。
对 Syk 激酶表达的抑制

【0001】本申请是分案申请，其原申请的申请号为 200480019112.6，申请日为 2004 年 7 月 1 日，发明名称为“对 Syk 激酶表达的抑制”。

【0002】本申请要求申请日为 2003 年 7 月 3 日的临时申请 60/484,299 的优先权，该临时申请的全部内容以参考的方式引入本文。

技术领域

【0003】本发明大体上涉及 Syk 激酶，特别涉及一种使用小干扰 RNA (siRNA) 抑制 Syk 激酶表达的方法。

背景技术

【0006】反义 DNA 也被广泛地用于抑制基因表达（Roth 等，Annu. Rev. Biomed. Eng. 1：265～297 (1999)）。一旦在细胞内部，反义寡核苷酸 (ASO) 识别并紧紧地结合于互补的 mRNA，从而阻止 mRNA 与细胞的蛋白质翻译组件的相互作用。

【0008】至少在某些系统中，siRNA 比 ASO 作为基因表达的抑制剂更加有效和可靠。本发
发明内容
[0009] 本发明大体上涉及 Syk 激酶。在一个优选实施方案中，本发明涉及一种使用小干扰 RNA (siRNA) 抑制 Syk 激酶表达的方法和基于该方法的治疗性策略。
[0010] 从以下描述中，会清楚本发明的目的和优点。

附图说明
[0011] 图 1. 除了起始模板的腺嘌呤二聚体和末端突出的尿苷二聚体以外，各 Syk 激酶的 siRNA 的有义链是与靶序列相同的序列。siRNA 的反义链是靶序列的反向互补体。
[0012] 图 2. 用靶向于 Syk 激酶 mRNA 的 siRNA 转染的 RBL-2H3 细胞中 Syk 激酶的表达。RBL-2H3 细胞是用 siRNA-1（第 2 泳道）、siRNA-2（第 3 泳道）或脂转染胺（lipofectamine）转染对照（第 1 泳道）转染的。细胞溶解物中的蛋白质通过 SDS-PAGE（十二烷基磺酸钠 - 聚丙烯酰胺凝胶电泳）分离并转移至硝酸纤维素上。上面为 Syk 激酶的免疫印迹；下为是肌动蛋白的免疫印迹。
[0013] 图 3. 用靶向于 Syk 激酶 mRNA 的 siRNA 转染的人单核细胞中 Syk 激酶的表达。单核细胞是用 siRNA（第 2 泳道）或脂转染胺转染对照（第 1 泳道）转染的。细胞溶解物中的蛋白质通过 SDS-PAGE 分离，转移至硝酸纤维素上，并用抗 Syk 激酶抗体进行免疫印迹。
[0015] 图 5A 和 5B. (图 5A) 经 siRNA 处理后将 HS-24 细胞溶解，等量的 HS-24 细胞溶解物中的总蛋白用 10% SDS 凝胶电泳分离，使用 Syk 或肌动蛋白的单克隆抗体通过蛋白质印迹进行分析。第 1 泳道：未处理；第 2 泳道：siRNA-1（对照）处理 24 小时；第 3 泳道：siRNA-1 处理 48 小时；第 4 泳道：siRNA-2 处理 24 小时；第 5 泳道：siRNA-2 处理 48 小时。
（图 5B）分离 RNA 并对 Syk 和 β- 肌动蛋白进行 RT-PCR（反转录 - 聚合酶链式反应）。第 1 泳道：未处理；第 2 泳道：siRNA-1（对照）处理 48 小时；第 3 泳道：siRNA-2 处理 48 小时。
[0016] 图 6A 和 6B. 将在包被有聚赖氨酸的平板上涂布的 HS-24 细胞（非刺激的、静息的）或包被有纤连蛋白的平板上涂布的 HS-24 细胞（刺激的）用 siRNA-2 或 siRNA-1（对照）或四羟反式芪（piceatannol）处理。过夜培养期间用 10ng/ml 的 TNF（肿瘤坏死因子）处理细胞。（图 6A）用 siRNA（48h）或四羟反式芪（16h）处理后，除去细胞，用抗 CD54（ICAM-1）免疫染色，通过流式细胞计数器进行分析。图 6B）用 IL-6ELISA（酶联免疫吸附测定）试剂盒分析细胞培养上清液的 IL-6 释放。用与 TNF 刺激的未处理细胞（例如未用 siRNA 处理）相比较，**P < 0.05, ***P < 0.005。结果代表了 3 至 5 个独立的实验。该数据显示通过 siRNA-2 抑制了 Syk 的表达，下调调节了 TNF 诱导的 ICAM-1（细胞间黏着分子 -1）的表达和 IL-6 的释放，这在炎症反应中是重要的。
[0017] 图 7A 和 7B. 三次处理后，靶向于 Syk 激酶的 siRNA（经气溶胶传递）对 OA 致敏并攻击的 Brown Norway 大鼠的支气管肺泡灌洗（BAL）液中全部细胞数目的影响。（图 7A 提供了柱状图数据，图 7B 显示了单个体数据点（单个动物）。
[0018] 图 8A ～ 8D. 三次处理后，靶向于 Syk 激酶的 siRNA（经气溶胶传递）对 OA 致敏并攻击的 Brown Norway 大鼠的 BAL 液中的巨噬细胞、嗜中性粒细胞、淋巴细胞和嗜酸红细胞...
说明书

如图 8A 提供了柱状图数据，图 8B 显示了巨噬细胞数目的单个体数量点（个体动物），图 8C 显示了嗜中性粒细胞数目的单个体数据点，图 8D 显示了嗜酸性红细胞数目的单个体数据点。

具体实施方式

[0019] 本发明涉及靶向于 Syk 激酶 mRNA 的 RNA 分子。例如，本发明涉及长度为大约 19、20 或 21 至大约 23 个核苷酸的 RNA 分子，其指导 Syk 激酶 mRNA 的剪切和 / 或降解。

[0020] 在一个优选的实施方案中，本发明涉及 siRNA 分子的用途，该 siRNA 分子为典型地包含 2 条 20 个核苷酸～23 个核苷酸（nt）的链的双链 RNA 分子。适用于本发明的 siRNA 能使用各种方法中的任一方法产生。可在体外制备 siRNA，然后将其直接导入细胞中（例如通过转染）。可选择地，通过转染到细胞内表达 siRNA 的细胞构建体（例如基于 DNA 的载体或表达盒）可实现细胞内的表达。

[0022] 可利用各种方法提高本发明的 RNA 的稳定性（见例如美国申请 20020086356、20020177570 和 20020055162 和美国专利 6,197,944,659,093,6,399,307,6,057,134,5,939,262 和 5,256,555 和它们引用的参考文献）。

[0024] 在化学合成的 siRNA 中，双链分子的至少 1 条链可具有长度为大约 1 至大约 6 个核苷酸（例如嘧啶和 / 或嘌呤核苷酸）的 3’ 突出端。优选长度为大约 1 至大约 5 个核苷酸（例如胸苷或尿苷），更优选大约 1 至大约 4 个核苷酸，最优选 2 或 3 个核苷酸的 3’ 突出端。有利地，每一条链均具有突出端。各条链突出端的长度可以相同的或不同。典型地，两条链具有相同长度的突出端。在一个特别的实施方案中，本发明的 RNA 包含 21 或 22 个核苷酸的链，其是成对的且在两条 RNA 链的 3’ 末端具有大约 1 至 3，特别是大约 2 个核苷酸的突出端。

[0025] 如上所述，适用于本发明的 siRNA 可通过使用核酸酶 III 型酶（例如切割酶）酶解较长的 dsRNA 而制备。（见上述引用的参考文献和网址。）例如，可以使用商购可获得的切
酶 siRNA 产生试剂盒,其允许由全长靶基因产生大量的 siRNA (Gene Therapy Systems, Inc., MV062603)。使用基于 PCR 的克隆,可由靶 DNA 和 T7RNA 聚合酶启动子序列产生 siRNA。在靶序列的 RNA 转录后,重组切酶可以将转录的 RNAi (干扰 RNA) 剪切成 22bp 的 siRNA。

[0026] 也如上所述,也可使用本领域已知的方法重组产生适用于本发明的 siRNA 分子。(见上述引用的参考文献和网址。) 重组技术允许在哺乳动物细胞中体内转录 siRNA。根据该方法,可以使用包含例如 RNA 聚合酶 III 或 U6 启动子序列的载体。这样的载体 (包括病毒载体和质粒载体 (如 pSTREN)) 可用作与病毒系统 (例如腺病毒或逆转录病毒系统) 联合的表达载体或穿梭载体,以将 siRNA 导入哺乳动物细胞中。载体可被工程化以表达 siRNA 的有义链和反义链,它们在体内退火以产生功能性 siRNA。可选择地,可通过将靶的有义链 (例如大约 20nt), 接着将短的间隔 (例如大约 4 至大约 10nt), 然后将靶的反义链 (例如大约 20nt), 和例如作为转录终子的大约 5~6 个 U 插入到载体中, 来表达发夹 RNA。所得 RNA 转录物回折, 以形成包含例如大约 20bp 的茎和大约 10nt 的环以及 3′ 末端的 2~3 个 U 的茎环结构。(亦见 Paddison 等 (Proc. Natl. Acad. Sci. 99:1443-1448(2002)。) 本领域的技术人员能容易地设计适用于细胞内生产的构建体 (包括载体和启动子的选择), 其将根据例如细胞 / 组织靶和所需功效而改变。

[0027] 倘若 dsRNA 与靶向的 Syk 激酶的 mRNA 具有足够的同源性, 则 dsRNA 可以用于本发明的方法中。可以例如通过查找 Syk 激酶 cDNA 中的靶基因序 “AA(N)19” 来设计 siRNA 双链体, 其中 N 是任意核苷酸, 优选 G/C 含量大约为 30% 至 70% 的基序, 更优选 G/C 含量大约为 50% 的基序。siRNA 双链体的有义链可对应于所选择的 AA(N)19 基序的核苷酸 3 至核苷酸 21。siRNA 双链体的反义链可具有所选择的 AA(N)19 基序的核苷酸 1 至核苷酸 21 的互补序列。进一步的设计细节提供于 http://www.mpiibpc.gwdg.de/abteilungen/100/105/sirna.html。

[0028] 优选的靶序列包括 Syk 激酶 mRNA 特有的序列。例如, 靶序列可以选自介于 Syk 激酶的 2 个 SH2 结构域之间的序列或介于第二个 SH2 结构域和激酶结构域之间的序列。某些特殊的 DNA 靶序列描述在以下非限制性的实施例中。另外的靶包括但不限于如下的靶:

<table>
<thead>
<tr>
<th>序列</th>
<th>% GC</th>
<th>经鉴定的 16 ~ 18/19 个核苷酸的同源性</th>
</tr>
</thead>
<tbody>
<tr>
<td>AATATGTAGCAGACATGGA</td>
<td>42</td>
<td>5’ 线粒体核糖体 prot15</td>
</tr>
<tr>
<td>AATCAATCATACTCCTTCCC</td>
<td>42</td>
<td>5’ 未知</td>
</tr>
<tr>
<td>AAGGAGATCTGTGTACATCAA</td>
<td>42</td>
<td>5’ 未知</td>
</tr>
<tr>
<td>AAGGAAAACCTCATCAGGGA</td>
<td>47</td>
<td>肌醇六磷酸激酶, Chrl 上的 β 球蛋白</td>
</tr>
<tr>
<td>AACTCATCT CCTCCTCCCAAAGC</td>
<td>47</td>
<td>未知</td>
</tr>
<tr>
<td>AATTTTGGAGCCGCTCCACA</td>
<td>53</td>
<td>未知</td>
</tr>
<tr>
<td>AAGACTGGGCCTTCCTGAGAT</td>
<td>53</td>
<td>未知</td>
</tr>
<tr>
<td>AAGCAGACATGGAACCTCGAG</td>
<td>58</td>
<td>组胺受体 H3, GTP 结合蛋白</td>
</tr>
<tr>
<td>AACTCCAGGTTCCTCATCCTG</td>
<td>58</td>
<td>未知</td>
</tr>
<tr>
<td>AACCTGACGGTCAGGGGCTTG</td>
<td>63</td>
<td>未知</td>
</tr>
<tr>
<td>AAGGAGTTGAGCAGACAGACTG</td>
<td>68</td>
<td>未知</td>
</tr>
<tr>
<td>Y 谷氨酰转移酶, rb prot L27a</td>
<td>68</td>
<td>未知</td>
</tr>
<tr>
<td>序号</td>
<td>核苷酸序列</td>
<td>说明</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>0043</td>
<td>AACTTGCACCTGGGCTGCAG</td>
<td>钙通道 a1E 亚单位</td>
</tr>
<tr>
<td>0044</td>
<td>AAGTCTCCCCGTCGCAAGGG</td>
<td>NADH-泛醌氧化还原酶 MLQR 亚单位</td>
</tr>
<tr>
<td>0045</td>
<td>AAGGCCCCAGAGAGAGCCG</td>
<td>74</td>
</tr>
<tr>
<td>0046</td>
<td>AATCTCAAGATCAATCTA</td>
<td>26</td>
</tr>
<tr>
<td>0047</td>
<td>AATGTGATTTTGAGGGCGGT</td>
<td>42</td>
</tr>
<tr>
<td>0048</td>
<td>AATCCGTATGAGCCAGAACTTT</td>
<td>47</td>
</tr>
<tr>
<td>0049</td>
<td>AATCCGCACACAGGAAATGT</td>
<td>53</td>
</tr>
<tr>
<td>0050</td>
<td>AACCGGAAGAAGTACTTG</td>
<td>58</td>
</tr>
<tr>
<td>0051</td>
<td>AAGGAGGTACCTGGACGGA</td>
<td>58</td>
</tr>
</tbody>
</table>

可以采用各种方式使用本文描述的 siRNA。例如，siRNA 分子在细胞或生物体中可用于靶向 Syk 激酶 mRNA。在一个具体的实施方案中，可将 siRNA 导入人细胞或人体内以诱导所表达的 RNAi 从而预防或治疗疾病或与 Syk 激酶表达有关的不良症状（例如肺部、关节、眼睛或皮肤的炎症）。siRNA 也可用于治疗血细胞的免疫损伤，例如自身免疫性溶血性贫血症中的红细胞和免疫性紫癜性血小板减少症（ITP）中的血小板。例如通过在巨噬细胞、脾和肝细胞中靶向 Syk 激酶 mRNA。根据该方法，靶向 Syk 激酶基因并通过 RNAi 降解相应的 mRNA（靶向的 Syk 激酶基因的转录产物）。当细胞为靶时，可将包含 siRNA 的组合物雾化给药，例如经过吸入给药。对于关节的给药可以通过注射包含 siRNA 的溶液而实现。对于眼睛的给药可以通过注射或使用容器中装有包含 siRNA 的溶液而实现。对于肝脏等的给药，可以通过例如用包含 siRNA 的组合物清洗或冲洗靶组织而实现。对于皮肤的给药可通过局部给药（例如作为液体、乳剂或凝胶剂）。

根据本发明，个体的细胞（例如血单核细胞、嗜碱性细胞或肥大细胞）可进行离体（ex vivo）处理以实现 Syk 激酶 mRNA 的降解。待处理的细胞可使用已知方法获自所述个体，可将介导相应 Syk 激酶 mRNA 降解的 siRNA 导入细胞中，然后所述细胞再导入该个体中。

在一个具体的实施方案中，本发明涉及使用上述 siRNA 来抑制中介体（例如组胺）从具有 Fcε 受体的细胞如肥大细胞中释放。在哮喘的治疗方面，例如抑制组胺（一种肥大细胞中介体）的释放具有重要的疗效。

本发明的 siRNA（或适用于实现细胞内生产 siRNA 的构建体）可以全身给药（例如通过 IV（静脉注射））或直接施用于靶组织（例如通过气溶胶给药至肺）。使用这里描述的技术（包括脂质体制剂）可实现传递。除了脂质体制剂外，可使用聚合物制剂。聚乙烯亚胺 (PEI) 是合适的阳离子聚合物的例子。可使用不同大小的 PEI，包括线性的 22kDa 和分支的 25kDa 的 PEI（也可使用其它大小的、修饰和未修饰的，以及生物可降解形式的 PEI）。使用例如无毒性的病毒传递系统（例如腺相关病毒传递系统）也可以实现传递。最佳的剂量要根据患者、siRNA、给药方式和所需功效而定。本领域的技术人员不需要进行过度的试验就可确定最佳的条件。

本发明的某些方面可在以下非限制性的实施例中进行更加详细的描述。（参见美国 20030084471、20030108923 和 20020086356）。

实施例 1

实验详述

试剂
[0060] 脂转染胺 2000 和 Opti-Mem 购自 Invitrogen (San Diego, CA)。Eagle's MEM (MEM)、FCS、青霉素和链霉素购自 Life Technologies (Grand Island, NY)。兔抗鼠 Syk 激酶多克隆抗体 (Ab) 和抗肌动蛋白 Ab 购自 Santa Cruz Biotechnology (Santa Cruz, CA)。F(ab')2 山羊抗兔 Ab 由 Jackson 实验室 (Bar Harbor, ME) 提供。化学发光试剂购自 DuPont NEN (Boston, MA)。

[0061] 细胞和细胞系

[0063] 在 37℃下于预先用 FCS 包被的组织培养板 30 min。45 min ~ 90 min 之后，通过 Hank's 平衡盐溶液大量清洗而

[0064] siRNA 双链构建体

[0065] Syk 激酶的 siRNA 由 Dharmaco Research Inc. (Lafayette, Co) 制备。在根据生产者提供的指南来设计 siRNA 时，首次鉴定出人 Syk 激酶 RNA 中潜在的 siRNA 靶点 (位于 AA

[0066] 1) siRNA-1: 人, bp 296 至 bp 316; 小鼠和大鼠, bp 307 至 bp 327。

[0067] 有义 5’ - gangccuucaacggcccc 3’

[0068] 反义 3’ -UU cuucgaggauggccccgg 5’

[0069] 2) siRNA-2: 人, bp 364 至 bp 382; 小鼠和大鼠, bp 375 至 bp 393

[0070] 有义 5’ - cguauccagggaaaaug 3’

[0071] 反义 3’ -UU gguaguuccuuauacac 5’

[0072] 转染

[0073] 通过转染将 siRNA 导入到 RBL-2H3 细胞和单核细胞中。对于转染，24 孔板的每一孔中接种 5×10^4 RBL-2H3 细胞或 1×10^5 单核细胞。24 小时后，用 400 μl 缺血清和抗生素

[0074] 新鲜培养基替换完全培养基，将 siRNA/脂转染胺 2000 复合物加入到每孔中。对于 RBL 细胞，根据生产商规定，将 3 μl siRNA 双链体 (20 μM) 和 3 μl 脂转染胺 2000 加入到 100 μl

[0075] 无血清或抗生素的 Opti-mem 中形成 siRNA/脂转染胺 2000 复合物。对于单核细胞，将 3 μl siRNA 双链体 (20 μM) 和 1 μl 脂转染胺 2000 加入到 100 μl 无血清或抗生素的 Opti-mem

[0076] 中形成 siRNA/脂转染胺 2000 复合物。在用蛋白质印迹检测激酶蛋白的表达前，将细胞在
37℃孵育 48 小时。

[0074] Syk 激酶蛋白的蛋白质印迹分析

[0075] 通过在 Laemmli 样品缓冲液（2% SDS, 10% 甘油, 100mM DTT（二硫苏糖醇）和 60mM Tris（pH 6.8））中将细胞煮沸 5 分钟来制备溶解物。用 SDS-PAGE（10% 聚丙烯酰胺）分离所述溶解物中的蛋白质并转移至样品缓冲液（25mM Tris, 190mM 甘氨酸和 20% 甲醇）中的硝酸纤维素膜。在用山羊抗兔 HRP（辣根过氧化物酶）孵育（室温 1.5h）之前，将硝酸纤维素膜在 4℃用 1μL/mL 的兔抗鼠 Syk 激酶多克隆抗体 (Ab) 孵育过夜。根据生产商规定，用化学发光试剂使膜上的蛋白质条带显现。检测 Syk 激酶蛋白之后，将膜在含有 100mM 2-ME（2-巯基乙醇）、2% SDS 和 6.25mM Tris-HCl（pH 6.7）的脱脂缓冲液中于 50℃孵育 30 分钟并偶尔摇动，以除去抗 Syk 激酶抗体。然后用抗肌动蛋白抗体再次探查该膜并用化学发光试剂使膜上的条带显现。通过密度测定法定量 Syk 激酶的蛋白水平 (Personal Densitometer, Molecular Dynamics)。

[0076] 结果

[0077] siRNA 对 Syk 激酶的表达的作用

[0078] 用定性于大鼠、小鼠和人 Syk 激酶 RNA 的共有序列的 siRNA 转染大鼠嗜碱性细胞（RBL-2H3 细胞）和人单核细胞。用抗 Syk 激酶抗体通过蛋白质印迹来分析 Syk 激酶蛋白的表达（图 2 和 3）。用 siRNA 处理的 RBL 细胞中 Syk 激酶表达的抑制示于图 2, 表 1 中提供了 Syk 激酶蛋白的水平，该水平用肌动蛋白的水平进行标准化。肌动蛋白是用作检测蛋白表达的基准的通用蛋白。相对于未处理的 RBL 细胞（第 1 涌道），siRNA 处理的 RBL 细胞中 Syk 激酶蛋白的表达被抑制了 45%～51%（图 2, 第 2 和 3 涌道）。在培养细胞中用 siRNA 抑制 Syk 激酶基因表达的量是鼓舞人心的，因为先前采用 Syk 激酶 mRNAAS0 的实验显示在体外培养的非增殖性细胞如单核细胞与在增殖性细胞相比可达到更高的 Syk 激酶抑制水平。还观察到保持培养状态的单核细胞中 siRNA 对 Syk 激酶表达的抑制（图 3）。siRNA 处理的单核细胞中 Syk 激酶的表达被抑制（图 3, 第 2 涌道）。此外，siRNA 处理的 U937 细胞和 siRNA 处理的 THP-1 细胞中 Syk 激酶的表达被抑制 (U937 和 THP-1 是巨噬细胞样细胞系)。由此这些数据证明了针对 Syk 激酶 RNA 的 siRNA 有效抑制该基因的表达，并显示针对 Syk 激酶 RNA 的 siRNA 可用作有效的抗炎症治疗工具。

[0079] 表 1. RBL 细胞中 Syk 激酶表达的密度测定法定量

<table>
<thead>
<tr>
<th></th>
<th>转染对照</th>
<th>Syk 激酶 siRNA1</th>
<th>Syk 激酶 siRNA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syk*</td>
<td>2040</td>
<td>953</td>
<td>627</td>
</tr>
<tr>
<td>Syk 修正**</td>
<td>-</td>
<td>1114</td>
<td>997</td>
</tr>
<tr>
<td>%Syk 抑制</td>
<td>0</td>
<td>45</td>
<td>51</td>
</tr>
</tbody>
</table>

[0081] * 密度测定单位
[0082] ** 每涌道中经%肌动蛋白表达量修正的 Syk 密度测定单位
[0083] 讨论
[0084] 这些研究中所使用的 siRNA 是化学合成的 (Dharmacon Research Inc.,
Lafayette, CO), 但也可通过重组技术制备 siRNA。siRNA 双链体可包含 21 个核苷酸的有义链和 21 个核苷酸的反义链，以及具有 2 个核苷酸 (dF) 的 3′ 突出端的方式配对。

[0085] SiRNA 的靶向的区域可以是自所设计的开始于 5′ 处的基因下游 50 至 100 个核苷酸的 cDNA 序列中的序列 AA(N19) (N 为任意核苷酸)。优选 G/C 含量大约为 50%。由于只在第一个转录的核苷酸是嘌呤时，从 Pol III 启动子表达 RNA 才有效，因此优选有义和反义 siRNA 起始于嘌呤核苷酸，从而不改变靶向位点它就能从 Pol III 表达载体进行表达。

[0086] 在上述研究中，选择人 Syk 激酶 mRNA 中的 siRNA 靶，然后扫描大鼠和小鼠 Syk 激酶 mRNA 中的序列，以鉴定这些物种中共有的 Syk 激酶 mRNA 靶序列。鉴定了 2 个合适的靶序列：

[0087] 靶向的区域 (1) (cDNA) 5′ aagaaccccctcaacggccccc；
[0088] 靶向的区域 (2) (cDNA) 5′ aacctcatacaggaatatgtg。

[0089] 靶序列和 Syk 激酶 siRNA 反义于图 1。双链体的 RNA 非常不容易受到核酸酶的降解，使用脱氧核苷酸 (胸苷 T) 而不是尿苷 (U) 可影响 3′ 突出端的稳定性。

[0090] 实施例 2

[0091] 用 3 μ l siRNA-1（对照）

[0092] DNA 靶： 5′ AAGAAGCCCTCAACCGGCCCC

[0093] 有义 siRNA 5′ - gaaaccccctcaacggccccc UU 3′

[0094] 反义 siRNA 3′ -UU cuucgggaagugccgggg 5′

[0095] 或 siRNA-2

[0096] DNA 靶： 5′ AACCTCATACGGGAATATGTG

[0097] 有义 5′ - ccuacaagggaa-agug 3′

[0098] 反义 3′ -UU ggaguaguccuuauac 5′

[0099] 或 Syk 反义链，和脂转染胺 2000 在 12 孔板中预处理 HS-24 细胞 (2×10^6) 24 或 48hr, 用 10ng/ml 的 TNF 刺激过夜。读取 上清液中的 IL-6 (ELISA) 和 ICAM-1 的细胞表面表达（流式细胞技术）。如蛋白质印迹分析所示（见图 4），48hr 处理后，siRNA-2 引起 Syk 蛋白表达的减少。

[0100] 更具体地，用 siRNA-2 或 siRNA-1（对照）瞬时转染 HS-24 细胞。然后检测 ICAM-1 的细胞表面表达，以及 IL-6 的释放。用 siRNA-2 但不用 siRNA-1 处理 HS-24 细胞 48 小时，同时显著地抑制了 Syk 蛋白（图 5A）和 mRNA（图 5B）的表达。

[0101] HS-24 细胞组成性表达的低水平 ICAM-1（图 6A）不受 siRNA-2 处理的影响（未显示）。过夜培养期间用 10ng/ml 的 TNF 刺激 HS-24 细胞，同时引起了在静息细胞（置予聚 L- 赖氨酸上）和粘附于纤连蛋白的细胞中 ICAM-1 表达的显著增加（图 6A）。在用 TNF 刺激后，粘附于纤连蛋白的细胞相对于粘附于聚 L- 赖氨酸的细胞显示出更高的 ICAM-1 的表达 (P < 0.05)。但是在辅有纤连蛋白的 HS-24 细胞中用 siRNA-2 进行的转染向下调节 TNF 诱导的 ICAM-1 的表达 (P < 0.005)，但是对于辅有聚 L- 赖氨酸的细胞中的 ICAM-1 没有显著的影响。用药理学上的 Syk 抑制剂四羟反式芪 (10 μ M) 过夜处理，则聚 L- 赖氨酸和纤连蛋白粘附条件下，TNF 刺激的细胞中都引起了显著的 ICAM-1 的向下调节（图 6A）。正如雏虫篮染料排除测定，用 siRNA 或四羟反式芪处理细胞对于存活率没有显著影响（在所有实验中，存活率为 ≥ 96%）。
[0102] 虽然无 TNF 刺激的 HS-24 细胞释放的 IL-6 是最小的，但在粘附于纤连蛋白的细胞的培养上清液中存在较高的 IL-6 水平的趋势（图 6B）。如所预测的，在两种培养条件下，TNF 刺激后观察到 IL-6 水平的巨大上升，而在纤连蛋白粘附的细胞中具有更高的水平（P < 0.05）。siRNA-2 处理引起 IL-6 释放的向下调节（55% ~ 58%），其在纤连蛋白粘附的培养物中达到了统计学上的显著性（P < 0.05）。四羟反式芪几乎完全抑制 TNF 诱导的 IL-6 释放（图 6B）。

[0103] 因此，对 Syk 激酶的抑制向下调节了 TNF 诱导的 ICAM-1 表达和 IL-6 释放，它们为气道上皮中炎症反应的显著特点。该作用在粘附于纤连蛋白的细胞中是显著的，显示了 Syk 在参与这些有关的促炎事件中至少部分依赖于 β1 整联蛋白。

[0104] 实施例 3

[0105] 在用卵清蛋白 (OA) 诱导哮喘的 Brown Norway 大鼠模型中体内研究靶向于 Syk 激酶的 siRNA 的作用。

[0107] 该实施例中所使用的 siRNA 如下所示：

[0108] DNA 靶 5’ AACCTCATCAGGGAATATGTG 3’

[0109] 有义 5’- ccucuacgggauaugug uu 3’

[0110] 反义 3’-uu ggauaguuccuuauacac 5’

[0111] 关于图 7 和 8 中所使用的 siRNA 2M 的描述，参照上述，用 Dharmaco 修饰以提供额外的稳定性。关于图 7 和 8 中所使用的 siRNA-2 的设计，参照上述未修饰形式的序列。

[0115] 对所分离的 BAL 细胞进行计数并用 Cytospin 制备细胞涂片。用 HEMA-3 试剂染色后以盲检的方式对细胞差异进行计数 (Biochemical Sciences, Swedesboro, NJ)。

[0116] 总之，在上述研究中使用 OA 诱导的过敏性哮喘和肺部炎症的 Brown Norway 大鼠模型。根据将细胞募集到 BAL 液来确定的肺部炎症，显著地受到的靶向于 Syk 激酶的 siRNA（存在或不存在脂质体）的抑制。

[0117] * * *

[0118] 将上面引用的所有文献和其它信息来源的全部内容以参考的方式引入本文。
序列表

<110> 宾夕法尼亚大学理事会
<120> 对 Syk 激酶表达的抑制
<130> FC105US3140
<140> 200480019112.6
<141> 2004-07-01
<150> 60/484,299
<151> 2003-07-03
<160> 30
<170> PatentIn Ver. 3.2
<210> 1
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述：合成的寡核苷酸
<400> 1
aattatgtaa gcagacatgg a
 21
<210> 2
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述：合成的寡核苷酸
<400> 2
aatcaaatca tactctctcc c
 21
<210> 3
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述：合成的寡核苷酸
<400> 3
aagagagtac tgtgtcatcc a
 21
<210> 4
<211> 21
<223> 人工序列的描述：合成的寡核苷酸

[0002]
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 4
aaggaacc tcacggga a

<210> 5
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 5
aatcatactc tttccaaag c

<210> 6
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 6
aattttgag gccgtcaca a

<210> 7
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 7
aagactgggc ctttgagga t

<210> 8
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 8

[0003]
序列表

aagcagacat ggaacctgca g 21

<210> 9
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 9
aacttccagg ttccatcct g 21

<210> 10
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 10
aagcctggcc acagaaagtcc 21

<210> 11
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 11
aagccctacc catggacaca g 21

<210> 12
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 12
aacctgcagg gtcaggtctct g 21

<210> 13
<211> 21
<212> DNA
<213> 人工序列

[0004]
人工序列的描述：合成的寡核苷酸

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 13
aaggggtgca gccaagact g

<210> 14
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 14
aacctgcacc ctgggctgca g

<210> 15
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 15
aagtcctcc ccctgccc aagg g

<210> 16
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 16
aagggccca gagagaagcc c

<210> 17
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 17
aatctcaaga atcaatcat a

<210> 18

[0005]
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 18
aatgttaatt ttgaggccg t

<210> 19
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 19
aatccgtag t gcgcagacact t

<210> 20
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 20
aatcggcaca caggaatag t

<210> 21
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 21
aaccggcaag agagactgt g

<210> 22
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述：合成的寡核苷酸

[0006]
<400> 22
aaggaggttt acctgaccg a

<210> 23
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 联合的 DNA/RNA 分子的描述：合成的寡核苷酸

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 23
gaagcccuuc aaccgcccu u

<210> 24
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 联合的 DNA/RNA 分子的描述：合成的寡核苷酸

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 24
gggccguugu aagggcuucu u

<210> 25
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 联合的 DNA/RNA 分子的描述：合成的寡核苷酸

<220>
<223> 人工序列的描述：合成的寡核苷酸

<400> 25
ccucaucagg gaauaugugu u

<210> 26
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 联合的 DNA/RNA 分子的描述：合成的寡核苷酸

[0007]
<220>
人工序列的描述：合成的寡核苷酸

<400> 26
cacauauucc cugaugaggu u

<210> 27
<211> 21
<212> DNA
<213> 人工序列

<220>
人工序列的描述：合成的寡核苷酸

<400> 27
aagaagcccctaaccggccc c

<210> 28
<211> 21
<212> DNA
<213> 人工序列

<220>
人工序列的描述：合成的寡核苷酸

<400> 28
aacctcatca gggaatgt g

<210> 29
<211> 21
<212> RNA
<213> 人工序列

<220>
人工序列的描述：合成的寡核苷酸

<400> 29
ccucaucagg gaauaugugu u

<210> 30
<211> 21
<212> RNA
<213> 人工序列

<220>
人工序列的描述：合成的寡核苷酸

<400> 30
cacauauucc cugaugaggu u
siRNA-1: 人，bp 296 至 bp 316；小鼠和大鼠，bp 307 至 bp 327

靶向的区域 (cDNA): 5’ aagaagcccttcaacgccgccc 3’

有义 siRNA 5’- gaagccuccucaacgcggccc UU 3’
反义 siRNA 3’-UU cuucgggaaguuuggccgg 5’

siRNA-2: 人，bp 364 至 bp 382；小鼠和大鼠，bp 375 至 bp 393

靶向的区域 (cDNA) 5’ aacctcatcagggatatgtg 3’

有义 5’- ccucacagggauaug UU 3’
反义 3’-UU ggaguaguccuuauacac 5’

图 1

图 2

图 3
<table>
<thead>
<tr>
<th>密度测定单位</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>对照</td>
<td>136288</td>
</tr>
<tr>
<td>siRNA-1</td>
<td>24hrs</td>
</tr>
<tr>
<td>siRNA-1</td>
<td>48hrs</td>
</tr>
<tr>
<td>siRNA-2</td>
<td>24hrs</td>
</tr>
<tr>
<td>siRNA-2</td>
<td>48hrs</td>
</tr>
</tbody>
</table>

图 4