发明名称
用于燃烧模式转换的凸轮轴线变换系统的自适应控制方法

摘要
本发明涉及一种用于燃烧模式转换的凸轮轴线变换系统的自适应控制方法，具体公开了一种控制气缸气门在第一气门状况和第二气门状况之间变换以在发动机的燃烧模式之间转换的方法。该方法包括基于来自机油传感器的机油劣化状况调节信号正时以在气门状况之间切换。其中所述燃烧包括火花点火和均质充气压缩点火。本发明可以很少或不发生运转效率损失地执行燃烧模式之间的转换。
1. 一种控制气缸气门在第一气门状况和第二气门状况之间变换以在发动机的燃烧模式之间转换的方法，包括：

基于来自机油传感器的机油劣化状况并进一步基于来自所述机油传感器的机油温度调节信号正时以在气门状况之间变换，其中所述燃烧模式包括火花点火和均质充气压缩点火。

2. 如权利要求1所述的方法，进一步包括：

基于所述机油劣化状况低于第一阈值劣化水准，执行所述气门状况之间的变换而不用调节信号正时。

3. 如权利要求2所述的方法，进一步包括：

基于所述机油劣化状况超过第二阈值劣化水准，防止所述气门状况之间的变换。

4. 如权利要求1所述的方法，其特征在于，所述气门状况之间的变换包括协同变换所述发动机的气缸的进气门和排气门的气门升程廓线。

5. 如权利要求1所述的方法，其特征在于，所述第一气门状况和所述第二气门状况为不同的气门升程廓线。

6. 如权利要求1所述的方法，其特征在于，在所述第一气门状况和所述第二气门状况之间的变换包括通过经由气门挺柱的驱动在共同凸轮轴的第一凸轮轴凸角和第二凸轮轴凸角之间的变换来调节气门的升程廓线，所述第一凸轮轴凸角具有高升程廓线，所述第二凸轮轴凸角具有低升程廓线。

7. 如权利要求6所述的方法，其特征在于，所述信号发送至少一个油道的机油压力的改变以改变气门挺柱的状态。

8. 如权利要求1所述的方法，其特征在于，所述第一气门状况和所述第二气门状况之间的变换包括改变包括至少两个进气门或两个排气门的气缸的升程廓线，并且改变所述气缸的升程廓线包括停止所述至少两个进气门或所述两个排气门中的一个的驱动以改变所述气缸的升程廓线。

9. 一种用于运转车辆发动机的系统，所述发动机机至少具有第一气缸，所述系统包括：

凸轮轴，其至少具有第一升程廓线和第二升程廓线，所述第一升程廓线不同于所述第二升程廓线；

经由凸轮轴驱动的气缸气门，所述气门具有配置用于在气门升程基于至少所述第一升程廓线的第一升程状态和气门升程基于至少所述第二升程廓线的第二升程状态之间变换的驱动挺柱；

测量发动机机油劣化的机油传感器；

控制器，其配置用于基于在火花点火和均质充气压缩点火燃烧模式之间转换的请求发送信号以驱动所述挺柱在所述第一升程状态和所述第二升程状态之间变换，其中响应来自所述机油传感器的信息调节发送所述信号的正时，其中来自所述机油传感器的信息进一步包括所述发动机机油的温度。

10. 如权利要求9所述的系统，其特征在于，所述机油传感器包括基于磨损或与所述发动机机油中的污染物腐蚀反应而磨损的牺牲部分，所述劣化状态基于所述牺牲部分的磨损。

11. 如权利要求10所述的系统，其特征在于，所述劣化状态基于由机油传感器测量的
牺牲部分的端部与传感器目标之间的距离。

12. 如权利要求 9 所述的系统，其特征在于，所述机油传感器包括邻近于所述凸轮轴定位的稳健的热电偶，所述机油传感器配置用于测量通过所述凸轮轴的机油薄膜的温度。

13. 如权利要求 9 所述的系统，其特征在于，所述机油传感器与车辆的加油口帽和量油尺中的至少一个集成。

14. 如权利要求 9 所述的系统，进一步包括：

经由所述凸轮轴的第三凸轮轴线驱动的第二气门；其中所述挺柱的驱动停止所述第一气门。

15. 一种用于在发动机的燃烧模式之间转换的控制气门变换的方法，所述发动机具有多个汽缸，每个汽缸至少具有第一气门升程轮廓和第二气门升程轮廓，其中通过由油路控制的变换挺柱来改变气门升程轮廓，所述方法包括：

发送信号至油路以变换挺柱来转换燃烧模式；

从机油传感器接收机油温度和机油劣化信息，并基于所述机油温度和机油劣化信息调节发送所述信号的正时。

16. 如权利要求 15 所述的方法，其特征在于，所述燃烧模式包括火花点火和均质充气压缩点火。

17. 如权利要求 16 所述的方法，进一步包括：

基于所述机油温度和机油劣化信息中的至少一个防止所述燃烧模式变换。

18. 如权利要求 15 所述的方法，其特征在于，所述调节包括随着所述机油劣化和机油温度降低提前信号正时以及随着所述机油温度增加延迟所述信号正时中的至少一个。
用于燃烧模式转换的凸轮轮廓线变换系统的自适应控制方法

【技术领域】
[0001] 本发明涉及一种用于燃烧模式转换的凸轮轮廓线变换系统的自适应控制方法。

【背景技术】
[0002] 车辆可包括配置用于运转多种不同燃烧模式的发动机系统以便在发动机的运转范围内满足速度和负荷要求时增加车辆的运转效率。在一个例子中，发动机系统可运转在受控的自动点火燃烧模式或均质充气压缩点火（HCCI）模式以相对于其他燃烧模式实现更高的热效率和降低排放从而获得燃烧经济性和减少排放的改进。仅在特定工作速度/负荷范围内需要或可能需要 HCCI 燃烧。为了满足在 HCCI 燃烧的运转范围之外的需求，发动机系统也可以配置用于以火花点火（SI）燃烧运转。通过以 HCCI 和 SI 燃烧模式运转，可满足速度/负荷需求并且可增加车辆的运转效率。

[0003] 此外，发动机系统可通过在发动机的一个或多个气缸中配合燃料和火花指令改变气门升程轮廓在燃烧模式之间转换。在一个例子中，可通过驱动气缸气门的变换挺杆调节气门升程轮廓。通过油路可控制变换挺杆的状态。具体地，可提高或降低气缸的油压以改变其状态。基于发动机运转的适当的变换范围，例如基于曲轴或凸轮轴所需的旋转位置，可将控制信号发送至油路以开始凸轮轮廓变换。

[0004] 然而，本发明的发明人已经注意到上述方法带来的一些问题。特别地，在发动机运转期间，会发生发动机油劣化并且发动机油温度会改变导致油路用于执行凸轮轮廓变换的响应时间的改变。油路的响应时间的改变可导致发生在发动机机运转适当的变换范围之外的提前的或延迟的凸轮轮廓变换。提前的或延迟的变换可导致扭矩跳跃，增加的噪声、振动和粗糙性（NVH），增加的排放及降低的燃料经济性表现以及其他运转效率惩罚。

【发明内容】
[0005] 在至少一个本文描述的方法中，通过控制气缸气门在第一气门状况和第二气门状况之间变换以在发动机的燃烧模式之间变换的方法可解决上述问题中至少一些，其包括基于来自机油传感器的机油劣化状况调节信号正时以在所述气门状况之间变换，其中所述燃烧模式包括火花点火和均质充气压缩点火。

[0006] 通过基于使用机油传感器的机油劣化情况相对于曲轴和/或凸轮轴旋转的凸轮轮廓线变换信号正时，可在整个发动机运行中维持凸轮轮廓线变换同步，甚至在发动机油劣化时。特别地，由于机油传感器可测量发动机机油实时状况，机油传感器可相对于预测算法提供具有改善的精确度的机油劣化读数。这样，可在适当的运转范围内执行凸轮轮廓线变换，并且可降低扭矩跳跃、NVH、排放、燃料消耗和其他运转效率的惩罚。

[0007] 此外，由于发动机机油的粘性会在不同温度下改变导致油路响应时间的改变，可基于由机油传感器测量的发动机机油温度调节凸轮轮廓线变换的信号正时。在一个具体的例子中，机油传感器可配置用于直接从发动机的旋转部件例如旋转凸轮轴的机油薄膜测量发动机机油的温度。由于基于瞬时动力学的发动机机油温度相较于基于一般冷却剂的发动机
温度更快速地发生，发动机冷却剂和发动机机油之间可能存在温度差，所以机油传感器可以提供较发动机冷却剂的温度测量更精确的读数。通过使用机油传感器测量发动机机油温度并基于机油温度调节凸轮廓线变换信号可改善控制精确性。这样，可以少或不发生运转效率损失而执行燃烧方式之间的转换。

【附图说明】
[0008] 图 1 显示了示例发动机系统的一个气缸。
[0009] 图 2 显示了可以使用在图 1 中的发动机系统的凸轮廓线变换系统装置结构的例子。
[0010] 图 3 显示了可变换挺杆总成的例子。
[0011] 图 4 显示了用于控制发动机系统的气缸气门的可变换挺杆的驱动的油路的例子。
[0012] 图 5 显示了相应于基于机油劣化状态控制凸轮廓线变换正时的示例控制程序的流程图。
[0013] 图 6 显示了相应于基于机油温度控制凸轮廓线变换正时的示例控制程序的流程图。
[0014] 图 7 显示了相应于用于接近机油劣化状态的示例控制程序的流程图。

【具体实施方式】
[0015] 图 1 为显示多缸发动机 10 的一个气缸的示意图，其可包括在车辆的推进系统中。
发动机 10 可至少部分由包括控制器 12 的控制系统和由车辆操作者 132 经过输入装置 130 的输入控制。在这个例子中，输入装置 130 包括加速踏板和用于成比例地产生踏板位置信号 PP 的踏板位置传感器 134。发动机 10 的燃烧室（例如气缸）30 可包括带有定位于其内的活塞 36 的燃烧室壁 32。活塞 36 可连接至曲轴 40 以便使活塞的往复运动转换成曲轴的旋转运动。曲轴 40 可经由中间传动系统连接至车辆的至少一个驱动轮。而且，启动马达可经由飞轮连接至曲轴 40 以驱动发动机 10 的运转。
[0016] 燃烧室 30 可经由进气道 42 从进气歧管 44 接收进气并且可经由排气道 48 排出燃烧气体。进气歧管 44 和排气道 48 可经由各自的进气门 52 和排气门 54 选择性地与燃烧室 30 连通。在一些实施例中，燃烧室 30 可包括两个或更多的进气门和 / 或两个或更多的排气门。
[0017] 在这个例子中，可经由各自的凸轮驱动系统 51 和 53 通过凸轮驱动控制进气门 52 和排气门 54。凸轮驱动系统 51 和 53 均可包括一个或更多的凸轮。在一个例子中可通过凸轮廓线变换系统 (CPS) 实现可变气门升程。凸轮驱动系统 51 和 53 均可包括用于基于驱动凸轮轴在各自气门不同的升程将气门之间的变换的凸轮廓线变换系统装置 58 和 59。可通过控制器 12 运转凸轮驱动系统 51 和 53 以改变气门运转。更具体的，控制器 12 可控制凸轮廓线变换系统装置的运转以调节气门升程和 / 或正时。进气门 52 和排气门 54 的位置可分别由位置传感器 55 和 57 确定。凸轮驱动和凸轮廓线变换系统将在下面参考图 2 更详细地讨论。
[0018] 在可替代实施例中，进气门 52 和 / 或排气门 54 可通过电动气门驱动控制。例如，气缸 30 可替代地包括经由凸轮驱动控制的进气门和经由电动气门驱动控制的排气门。
此外，发动机系统可包括可变凸轮正时（VCT）、可变气门正时（VVT）和/或可变气门升程（VVL）系统以在整个车辆运转过程中控制气门正时和/或气门升程。

在一些实施例中，排气再循环（EGR）系统可将所需部分的排气从排气道48经由EGR通道发送到进气道44中。可通过控制器12经由EGR气门改变提供至进气道48的EGR的量。此外，EGR传感器可设置在EGR通道内并可提供排气的一个或多个压力、温度和浓度的指示。在一些情况下，EGR系统可用于调节燃烧室内的空气和燃料混合物的温度，从而提供了在一些燃烧模式下控制点火正时的方法。此外，在一些情况期间，通过控制排气门正时可将一部分燃烧气体留在或捕捉在燃烧室内。

在一些实施例中，发动机10可进一步包括压缩装置，例如包括沿进气歧管44设置的至少一个压缩机的涡轮增压器或机械增压器。对于涡轮增压器，压缩机可至少部分由沿排气道48设置的涡轮（例如经由轴）驱动。对于机械增压器，压缩机可至少部分由发动机和/或电机驱动，并且可能不包括涡轮。因此，可通过控制器12改变经由涡轮增压器或机械增压器提供至发动机的一个或多个汽缸的压缩量。

燃料喷射器66显示为设置在进气道44内的配置，其将燃料以称为燃料进气道喷射的方式提供至燃烧室30上游的进气道。燃料喷射器66可以经由电子驱动器68从控制器12接收到FPW信号的脉冲宽度成比例地喷射燃料。可通过包括燃料箱、燃料泵和燃料管道的燃料系统（未显示）将燃料输送至燃料喷射器66。在一些实施例中，燃烧室30可替代地或附加地包括直接连接至燃烧室30的燃料喷射器用于将燃料以称为直接喷射的方式直接喷射到那里。

进气道42可包括具有节流板64的节气门62。在这个具体例子中，控制器12经由提供至包括有节气门62的电动马达或电动驱动器的信号改变节流板64的位置（一种通常称之为电子节气门控制（ETC）的配置）。以这种方法，可运转节气门62以改变提供至其他发动机汽缸中的燃烧室30内的进气。通过节气门位置信号TP可将节流板64的位置提供至控制器12。进气道42可包括质量空气流量传感器120和歧管空气压力传感器122用于提供各自的MAF和MAP信号至控制器12。

在选定运转模式下，点火系统88可响应来自控制器12的火花提前信号SA经由火花塞92将点火火花提供至燃烧室30。尽管显示了火花点火部件，在一些实施例中，无论有无点火火花，燃烧室30或发动机10的一个或多个其他燃烧室可以压缩点火模式运转。

排气传感器126显示为连接至排放控制装置70上游的排气道48。传感器126可为用于提供排气空燃比指示的任何适合的传感器，例如线性氧传感器或UEGO（通用或宽域排气氧传感器）、双态氧传感器或EGO（排气氧传感器）、HEGO（加热型EGO）、NOx（氮氧化物）、HC（碳氢化合物）或CO（一氧化碳）传感器。排放控制装置70显示为沿排气传感器126下游的排气道48设置。装置70可为三元催化器（TWC）、NOx捕集器、多种其他排放控制装置或其组合。在一些实施例中，在发动机10运转期间，可通过以特定的空燃比操作发动机的至少一个汽缸周期性地重设排放控制装置70。

图1中控制器（或控制系统）12显示为微型计算机，包括微处理器单元102、输入/输出端口104、用于可执行的程序和检定值的电子存储介质（在本具体例子中显示为只读存储器芯片106）、随机存取存储器108、保活存储器110和数据总线。控制器12可从连接至发动机10的传感器接收多种信号，除了之前论述的那些信号，还包括：来自质量空气
流量传感器 120 的引入质量空气流量 (MAF) 测量值，来自连接至冷却套筒 114 的温度传感器 112 的发动机冷却套筒温度 (ECT)，来自连接至曲轴 40 的霍尔效应传感器 118（或其他类型）的脉冲点火感应器信号 (PIP)。来自气门位置传感器 120 的气门位置 TP 和来自传感器 122 的绝对压力传感器 MAP。发动机转速传感器 RPM 可由控制装置 12 从脉冲点火感应器 PIP 信号生成。来自气门位置传感器的气门位置信号 MAP 可用于提供进气气门内的真空或压力指示。注意的是，控制上述传感器的多种组合，例如不具有 MAP 传感器的 MAF 传感器，反之亦然。在化学计量运行期间，MAP 传感器可给出发动机转速的指示。此外，该传感器与检测到的发动机转速一起可提供进入汽缸内的充气（包括空气）的估算。在一个例子中，也可用作为发动机转速传感器的传感器 118 及在曲轴每转产生预定数目的等距脉冲。

【0027】此外，控制系统 12 可与气门传感器 136 连通。在一个例子中，机油传感器 136 可为牺牲磨损传感器以直接地测量发动机机油的磨损特性从而确定发动机机油的劣化水准。该传感器可包括相应于发动机机油的劣化阶段在机油中形成的金属或机械杂质部分 138。机油传感器 136 可配置以基于机油的磨损改变发送至控制系统的电信号（例如电压水平）以便将机油劣化水准的指示提供至控制系统。此外，可以定期的服务间隔（例如以计划的机油更换服务）替换机油传感器的牺牲部分以维持发动机机油的精确的磨损测量，甚至在将发动机机油替换清洁的发动机机油时。为了便于容易更换机油传感器的牺牲部分，该机油传感器可定位在发动机油箱内以利于容易进入机油传感器内，例如，可将发动机系统内的加油帽以包括灵活的热电偶 140，该热电偶可包括机油传感器 136 以便可通过移除加油帽来接近并替换牺牲部分 138。热电偶 140 可保护机油传感器不受发动机和机油系统高温情况的影响。

【0028】作为另一个例子，机油传感器可在完成由质点的热电偶邻近凸轮轴固定，且磨损传感器的牺牲部分可和与旋转凸轮轴集成的传感器目标接触。此外，传感器目标或牺牲部分可包括不同材料段（金属和 / 或非金属），并且配置以不同的间隙的物理接触的水平交替与发动机机油劣化相关联的磨损和磨损机理模拟不同类型的磨损行为。机油传感器的牺牲部分的不同材料可以不同磨损（其一般为发动机机油劣化程度）磨损。在一个例子中，牺牲部分的磨损可基于发动机机油内的污染物，该污染物可与牺牲部分相互影响并经由磨损和磨损反应引起磨损。具体的，随着牺牲部分磨损，传感器目标和牺牲部分之间的距离会增加并且该传感器会测量传感器目标和牺牲部分之间的距离以产生发动机机油劣化读数。

【0029】替代的机油传感器或牺牲部分的放置可包括但不限于在机油滤清器内、邻近机油系统的放油塞、邻近加油口帽或与机油量油尺集成。机油传感器装置可具体设计为以大于特定发动机部件的速度磨损以提供发动机机油劣化的指示。此外，机油传感器可设置在有利于容易更换牺牲部分的位置，这种，可以及时收集机油质量并可以修改或限制发动机运转以考虑到发动机机油的状况和 / 或可以提醒车辆操作者。应该明白的是可将可测量发动机机油劣化和 / 或发动机机油温度的多个机油传感器遍布发动机系统，并且传感器的读数可用于控制发动机运转。

【0030】此外，应该明白的是发动机系统 10 可运转于多种模式，其中一些可基于发动机温度或发动机机油自身温度开始。例如，为了让 HCCI 燃烧发生，发动机必须足够热。可使用发动机温度传感器用于最优化发动机模式选择，例如 HCCI 运转，并且这些传感器通常可设置在汽缸盖上（例如恒温器壳体）以直接测量发动机冷却剂。然而，应该明白的是发动机冷却剂和发动机机油温度之间可能存在温度差。此外，应该明白的是发动机机油温度的瞬
态动力学相较于基于一般冷却剂的发动机温度可快速地发生。因此，在一些情况下，相对于
基于发动机机油温度的控制，严格地基于发动机冷却剂温度的发动机运转的控制可能会不
精确。
[0031] 因此，在一些实施例中，机油传感器 136 可配置以测量并发送发动机机油的温
度读数至控制系统 12。如上所述，机油传感器 136 可合并有可对发动机机油温度的稳定热
电偶 140，因此该机油传感器可邻近旋转部件放置，在该位置机油温度的测量可能是最精确
的。在一个具体实施例中，机油传感器可邻近旋转轴设置，并且可测量通过旋转轴内的机
油膜温度以提供发动机机油温度的精确测量。取决于精确的发动机机油温度（范围从冷机
油至热机油），适合的发动机机油传感器可发送不同的电信号至控制系统，其可用于在完整
的行驶周期中控制发动机运转。
[0032] 在一些实施例中，机油传感器可不包括牺牲部分，而是可包括更长持久传感装置。
此外，在一些实施例中，机油传感器可包含在独立的稳定热电偶内，该热电偶可与加油口
帽、量油尺或其他可替代的机油系统部件分离。
[0033] 应该明白的是在一些实施例中，可配置机油传感器以测量机油温度和机油劣化。
此外，在一些实施例中，稳定的热电偶可包括机油温度测量传感器，并且机油传感器可用于
测量机油劣化，并将指示两个测量的信号发送至控制系统。
[0034] 应该明白的是机油传感器以及以上描述的其他传感器可经由有线和/or 无线电
讯与控制器通信。
[0035] 如上所述，图 1 仅显示多缸发动机的一个缸，每个气缸可类似地包括其自己的
进气门/排气门组、燃料喷射器、火花塞等。
[0036] 取决于运转状况，发动机 10 内的燃烧可为多种类型/模式。在一个例子中，在发
动机利用火花装置（例如连接在燃烧室内的火花塞）以在膨胀冲程的上止点之后的预定时间
调节燃烧室气体的正时的情况下，可采用火花点火（SI）模式。在一个例子中，在火花点
火运转期间，进入燃烧室内的空气的温度比自动点火所需要的温度低很多。尽管在发动机
扭矩和速度较宽范围内可利用 SI 燃烧，与其他类型的燃烧相比，其会产生增加的 NOx 水准
以及较低的燃料效率。
[0037] 在燃烧室气体的自动点火发生在燃烧循环的压缩冲程之后或接近压缩冲程的
上止点的预定点的情况下，发动机 10 可采用的另一种燃烧模式使用均质充气压缩点火
(HCCI) 或受控自动点火（CAI）。通常，当利用预混空气和燃料充气的压缩点火时，燃料通
常与空气均匀地预混，如在进气冲程期间在进气道喷射火花点火发动机或直接喷射燃料一样，
但是具有高的空燃比。由于空燃比混合物被空气或残留的排气高度稀释，其导致较低的
峰值燃烧气体温度，相较于 SI 燃烧中的水准可减小的 NOx 的产生。此外，可通过减小发动
机泵气损失，增加空气比热比和提高较高的压缩比增加在运转于压缩燃烧模式下的燃料效
率。
[0038] 在压缩点火运转模式下，可能需要经过自动点火正时进行闭环控制。初始进料
(charge) 温度直接地影响自动点火的正时。点火的开始并非直接地由事件（例如在标准柴
油发动机内喷射燃料或在火花点火发动机内的火花塞点火）控制。此外，放热率不是由在
如柴油发动机内的燃料喷射过程的速度或持续时间或如火花点火发动机内的湍流火焰传
播时间控制。
【0039】注意的是自动点火也是一种可能在火花点火发动机内导致爆震的现象。不希望在火花点火发动机内发生爆震，因为其提高了汽缸内燃烧压力并且会烧伤或损害活塞。在具有高热的受控压缩点火运转中，因为稀释的燃料保持压力上升的速率较低并且燃烧废气的最高温度相对低，爆震总体上不会导致发动机恶化。较低的压力上升速率减轻了火花点火爆震的破坏性压力振荡特性。

【0040】相较于火花点火发动机，通常可增加压缩冲程开始时的进料温度以在压缩冲程的终点或接近压缩冲程的终点时满足自动点火条件。本领域技术人员应该明白的是多种其他方法可用于提升初始进料温度。其中一些包括加热进气（热交换机）、通过调节进气门和/或排气门正时将部分热燃烧产物保持在汽缸内（内部 EGR）、压缩进口进料（涡轮增压和机械增压）、改变提供至发动机的燃料的自动点火特性、和加热进气（外部 EGR）。

【0041】在 HCCI 燃烧期间，可控制燃烧室气体的自动点火发生在活塞或曲轴的所需位置以产生所需的发动机扭矩，因此不需要从点火装置发出火花以实现燃烧。然而，在应该已经达到自动点火温度之后的火花的延迟正时可用作为在自动点火没有发生的情况下后的点火源。

【0042】当燃烧室气体的温度接近自动点火温度时（例如达到基本上接近自动点火面没有实现燃烧的水准），可由发动机 10 执行的第三类型的燃烧（例如在包括火花装置的情况下）利用火花装置发动（或辅助）燃烧。这种火花辅助类型的燃烧可呈现出相对于 SI 燃烧模式的较高的燃料效率并降低 NOx 产生，并且可在 HCCI 燃烧更高的扭矩下运转。火花辅助也可提供在其中较大的燃烧效率用于控制温度在发动机循环的指定正时。换句话说，没有火花辅助的火花，温度小的变化会导致燃烧正时相当大的变化，从而影响发动机输出和性能。在火花辅助模式，在仍然依赖于火花正时以提供获得自动点火所需的最低能量以便更精确地控制燃烧正时的同时，有可能获得 HCCI 燃烧的多个优点。因此，在一个例子中，在一些情况下，在 SI 燃烧和 HCCI 之间转换期间也可以使用火花辅助。

【0043】在一个实施例中，在将少量的燃料提供至接近火花塞的气体时，可运转火花辅助模式。该小块燃料云可用于允许火焰更好地传播并在汽缸内产生提高的压力从而发动残余空气/燃料混合物的自动点火。因此，可使用局部访问火花塞的相对小的较富燃料气体云，其也可以为均质的、分层的、或稍微分层的。一个提供这种运转的方法可为利用压缩冲程内的第二直接燃料喷射。

【0044】涉及至少上述三个燃烧模式的应用的一个例子可包括使用 SI 启动和/或在发动机启动之后发动机暖机期间使用 SI。在这种发动机启动和发动机暖机之后，为了改进燃料经济性和排放，燃烧过程可通过火花辅助燃烧转换至 HCCI 燃烧。在需要高的发动机扭矩期间，可激活火花辅助以确保适当的燃烧正时。随着发动机返回至低的或适中的扭矩需求，可停止火花辅助的插入以便实现 HCCI 的最大益处。

【0045】注意的是多个其他参数可影响峰值燃烧温度和高效 HCCI 燃烧所需的温度。这些和任何其他可用的参数可在植入在发动机控制器 12 内的程序中得以说明并且可用于确定最优运转状态。例如，随着燃料的辛烷值增加，所需的峰值压缩温度可能会随着增加，因为燃料需要更高的峰值压缩温度以实现点火。尽管在一些例子中可用一个或多个上述燃烧模式，然而也可使用其他燃烧模式，例如具有或不具有火花点火燃烧的分层运转。

【0046】如本文提到的，在能压缩点火或自动点火的发动机的一个例子中，取决于选择的
燃烧模式可通过升高凸轮廓线或降低凸轮廓线驱动进气门。降低凸轮廓线可用于在气缸内捕捉高水的残留（排出）气体。在一些例子中，捕捉的气体通过增加初始进料温度促进压缩点火或自动点火。然而，在火花点火模式（无论高负载或低负载）中可使用升高凸轮廓线。通过例如在内外部之间变换的二个凸轮和挺柱系统实现这种可变换凸轮廓线。可通过机油流量液压驱动器实现该变换。作为另一个例子，这种系统可以涉及增加数目的挺柱。

[0047] 在另一个实施例中，可以使用具有至少两个进气门的气缸，其中每个气门具有不同的升程轮廓线（至少对于某气缸），而非使用具有在不同轮廓之间改变的两个进气门（或者多个可变换的进气门）的气缸。在压缩点火或自动点火期间，当更低的和/或更短的升程进气门保持活动时，可以通过使用可折叠的挺柱来停止更高和/或更长升程的进气门。在火花点火期间，当更低的/更短的升程继续运转时，可运转更高/更长升程的进气门以增加进入发动机的气流。换句话说，第一进气门可以具有更低的升程轮廓线，可以以其自身的流进一步的空气以将发动机运转在压缩点火或自动点火下。此外，第二进气门可具有设置用于压缩点火或自动点火的气门正时（固定的或可调节的）。除了压缩点火或自动点火所需空气外，第二进气门还具有可提供用于火花点火的空气平衡的气门升程和/或气门正时（固定的或可调节的）。

[0048] 活动的气门运转可指在气缸循环期间气门开启和气门关闭，其中将不活动的气门在闭合位置保持在燃烧一个循环（或在循环期间保持在固定位置）。应该明白的是上面的结构只是例子，本文讨论的方法可应用于多种不同的可变气门升程轮廓系统和控制，例如应用于排气系统，以及每个气缸具有多个两个进气门或两个排气门的系统。

[0049] 现参考图 2，显示了用于与发动机系统 10 一起使用的凸轮廓线转变装置结构的一个例子。凸轮轴 212 可包括可设定不同升程轮廓线的凸轮轮廓 214, 216 和 218。具体地，在这个例子中凸轮轮廓 214 和 218 可具有相同的升程轮廓线，凸轮轮廓 216 可具有不同的轮廓线。特别地，凸轮轮廓 214 和 218 可包括在高升程轮廓线并且凸轮轮廓 216 可具有低升程轮廓线。凸轮轮廓转换装置 58, 59 可包括图 3 描述的可变换挺柱 210，其可与凸轮轴 212 的多个凸轮轮廓接触。具体的，凸轮轮廓 214 和 218 可与可变换挺柱 210 的外侧 222 的外表面接触，凸轮轮廓 216 可与可变换挺柱 210 的中央部 224 的中央上表面接触。在气门运转期间，凸轮轮廓 214 和 218 可将可变换挺柱 210 作为一个整体驱动以产生高气门升程轮廓线。可替代的，如图 3 所描述，外侧 222 可从中央部 224 分离并且通过凸轮轮廓 216 驱动可变换挺柱 210 以产生低气门升程轮廓。在一些情况下，基于从 SI 转运到 HCCI 转运的模式转换可产生变换气缸气门的升程轮廓线的请求，反之亦然。

[0050] 尽管这个例子显示了具有连接至气门杆的挺柱的顶置凸轮发动机，挺柱也与气门杆发动机一起使用，这样可将可折叠挺柱连接至推杆。

[0051] 此外，图 2 中的图表只显示了发动机 10 的一个气缸气门，该发动机可为带有均配置与图 2 中所示的相同的相似气门（进气和/或排气）的气缸的多缸发动机。此外，尽管上述的气门系统可在具有压缩点火或自动点火的发动机提供优点，但也可使用在其他发动机的燃烧系统中。

[0052] 图 3 显示了可变换挺柱 210 的一个例子，其中使用锁紧销 254 连接或分离中央部 224 与外侧 222。这样，当锁紧销处于锁紧位置时，由气门与气门杆 214 和 218 的接触导致的
运动使得内部跟着运动并且从而驱动连接至内部的气门杆和气门。可替代的，当锁紧销处于非锁紧位置时，在内部区域 256 内的弹簧（lost motion spring）会导致外部的 222 与中央部 224 分离地运行。这样，中央部可驱动连接至内部的气门杆和气门。此外，由于与中央部 224 接触的轮廓线 216 具有降低的升程轮廓线，气门升程可低于经由圆凸轮凸角 214 和 218 的驱动期间的气门升程。这样，可使用可变换挺柱，其中在仍然保持所设置的动作的同时可增加挺柱的可制造性。应该明白的是如果需要可使用其他例子的气门驱动。例如，可变换挺柱可用于通过在产生的气门升程的第一升程轮廓线和几乎不产生或不产生气门升程的第二升程轮廓线之间变换来停止气门的运转。此外，气门可用于与其他可变气门升程组合以产生所需的进气门升程轮廓线或排气门升程轮廓线。

[0053] 在一个例子中，可通过由与控制器连通的液压阀控制的液压驱动锁紧销 254 在在锁紧位置和非锁紧位置之间转换可变换的挺柱。此外，可执行油路结构以控制不同气缸气门的挺柱变换。图 4 显示了四缸发动机应用，其中可执行油路以控制每个气缸的气门的挺柱变换。在该说明的例子中，油路结构可包括控制至如所示的气缸一至气缸四内的驱动器的各自油压的第一液压驱动器 410 和第二液压驱动器 412。在这个例子中，发动机点火顺序为 1-3-4-2，尽管这只是一个例子。继续参考图 4，两个驱动器均利用用于每个进气挺柱和排气挺柱的分离的油道。这种结构允许独立地控制每组进气门和排气门并且使进气门和排气门两者的预定的气缸变换顺序的充足的变换范围（基于响应时间和变换速度）得以实现。如所说明，这种系统是可以实现对于进气挺柱和排气挺柱两者是相同的气缸变换顺序。换句话说，由于用于以预定气缸变换顺序实现可接受的和稳健的变换的凸轮事件变换范围不会在进气侧和排气侧之间重复，用于每个气缸的进气门和排气门的独立控制可用于获得所需的变换顺序。

[0054] 在一些实施例中，油路包括额外的驱动器以控制在额外油道内或特定组可变换挺柱的或独立的可变换挺柱的油压。例如，油路结构包括四个驱动器以控制四个独立的油道内的油压。

[0055] 注意的是上述的方法适合任何/或修改以适应可替代点火顺序。例如，可改装油道以实现相同的或另一个所需的结果，例如通过将点火顺序中的任两个后续气缸连接至相同的油道。上面的例子注意的是，图显示了带有单组四缸的发动机。然而，该方法可延伸至 V 型 8 缸发动机，例如带有两个发动机组，每组具有四个气缸。在这个例子中，具体组气缸的点火顺序可用于配置油道，即使全部的发动机点火顺序可在组之间周期性地变换。换句话说，在显示的具体组内的气缸之间，气缸 3 可在气缸 1 之后连续地点火，即使在另一组的气缸可在气缸 1 和 3 之间点火。

[0056] 上面描述的油道结构在为系统提供充分的可重复性和稳健性以及充分的可变性以处理多种运转状况的同时可降低复杂性，其中气缸变换顺序可预定和稳健地实现。此外，应该明白的是上面描述的凸轮轮廓线变换结构为一个非限制性例子，且可在发动机系统中执行其他适合的凸轮轮廓线变换结构。

[0057] 本车辆运转期间，运转模式变换，更为具体的是凸轮轮廓线变换可受限于操作范围，在该操作范围中变换可具有降低的或最小的与发动机运转的干扰。在一个例子中，凸轮轮廓线变换范围的特征在于曲轴转角范围，超过该范围可将信号发送至驱动器以开始气门运转的变换。范围的开始和结束区域可由点火顺序、气门开启持续时间等限定。参考图 4 中
所示的四缸发动机结构那样，对于示例模式变换开始于气缸编号 1，气缸 1 和 3 的排气信号范围的开始可界定为在气缸 3 的排气门的开启角之后并且结束可在气缸 1 的高升程凸轮的排气门开启角之前。在这个例子中，控制变换以便于上 HCCI 模式的燃烧事件排气升程轮廓线为 HCCI 类型的那样升程轮廓线，而 HCCI 模式的第二次燃烧事件使用 HCCI 类型的进气升程轮廓线。

[0058] 此外，对于开始于气缸编号 1 的示例模式变换，汽缸 1 和 3 的进气信号范围的开始可限定为在气缸 3 的进气门的开启角之后并且结束可在气缸 1 的高升程凸轮的进气门开启角之前。类似的分析适应于气缸 2 和 4 的范围，除了气缸 2 和 4 的排气信号 / 进气信号范围可被转变以适应气缸 2 和 4 的气门角。

[0059] 注意的是范围开始、结束角和 / 或持续时间可不同于 HCCI 至 S1 的转换。这可能是由于与不同升程轮廓线之间的不同气门开启正时和持续时间。作为另一例子，通过可变凸轮正时 (VCT) 控制器或控制系统的控制部件，变换范围基于凸轮正时的改变（例如提前或延迟）或设置上的其它合适改变而改变。

[0060] 凸轮轮廓变换范围的特征在于曲轴转角的范围，在该范围内经由油道发生液压变换。然而，如上面所述，多个因素可影响挺柱变换正时和变换顺序的稳健控制。在一个例子中，当使用具有油道的挺柱变换技术时，每个油道作用于多个汽缸，当达到油压阈值时会发生挺柱变换。因此，每个挺柱变换的位置取决于油道的力学。而且，如果当达到油压阈值时凸轮凸角下压挺柱，挺柱将不会变换直到凸轮轴的下一转。

[0061] 此外，本文的发明人已经认识到发动机机油在粘性和温度两个方面的状况，当运转偏离普通运转状态例如偏离温度状况和 / 或偏离机油粘性状况（由于污染）时，可影响凸轮轴轮廓线变换反应时间，如果未考虑到该情况可导致凸轮轮廓线变换不会与燃料或火花同步导致扭矩跳跃，增加的 NVH，增加的排放和 / 或降低的燃料经济性表现。具体的，发动机机油品质可影响相对于发送信号以开始在包括运行在发动机内或从发动机至机油传感器或可变换挺柱和可变换挺柱自身的低压线和高压线的两个或多个区域内的变换的正时的气门运转中变换的正时。也就是说，具有不同的粘性的劣化机油可降低或加速机油在管道中的传输以及降低或加速可变换挺柱的内部锁紧销的运转。例如，发动机机油粘性，粘性添加剂可由于油变在油内分解而从导致机油变得更浓，此外随着机油继续劣化，产生的油会氧化并变得更稀。因此，经过机油劣化的过程，机油粘性会改变，其中会顺次影响凸轮轮廓线变换的信号正时。而且，电磁阀的延迟和外部状况会影响相对于发送信号以开始变换的正时的气门运转中变换的正时。由于气门轮廓线的变换的精确控制影响燃烧模式的转换（例如从 HCCI 至 S1 或反之），并可影响压缩点火燃烧或自动点火燃烧的运转，在本文描述的多个控制策略中可考虑到至少一些影响变换的因素。

[0062] 在一个方法中，基于发动机机油的状况或基于从发动机机油传感器的读数确定的发动机机油劣化可调节凸轮轮廓线（或挺柱）变换正时。如上所述，发动机机油传感器可配置以提供根据发动机机油的状况改变的电信号。特别的，发动机机油传感器的电信号可表现从新的清洁机油至脏的或碳黑机油的机油劣化范围的状态。此外，作为一个例子，劣化的每个电压水平可适应于在信号正时调节中考虑的机油粘性水准。

[0063] 现参考图 5，显示了相应于基于发动机机油的劣化状况自适应控制气门升程挺柱变换的控制程序的流程图的例子。程序在 510 处开始，在该处其可确定是否请求燃烧模式
变换。作为一个例子，该请求可以发 S1 燃烧变换至 HCCI 燃烧。作为另一个例子，该请求可以发 HCCI 燃烧变换至 S1 燃烧。另外，该请求可包括变换至其他合适的燃烧模式或发动机运转模式。如上所述，响应满足多种运转状况发起该请求。例如，响应达到所需发动机转速、负载和温度状况可发起变换至 HCCI 燃烧的请求。如果确定请求燃烧模式变换，则程序移至 512 处；否则，程序返回或结束。

[0064]在 512 处，程序可包括评估发动机的运转状况，包括当前、过去和 / 或未来运转状况。如上所述，运转状况可包括但不限于：发动机油劣化状态、发动机油温度、在一个或多个发动机管道中的发动机油压、发动机转速、发动机负载、发动机温度、曲轴位置、凸轮位置、燃料喷射量和 / 或燃料喷射正时、火花正时、例如空气温度和气压的环境状况以及发动机的其他运转状态中的一个或多个。在一个具体例子中，评估运转状况可包括从发动机油劣化状态的发动机油传感器接收电压水平，该发动机油劣化状态可从存储在控制系统的存储器中的查询表检索得到。应该明白的是发动机油劣化状态可具有相应于传感器信号电压的任何实际的粒度或范围水准以便于调节用于凸轮廓线变换的信号正时。

[0065]随后在 514 处，程序可包括确定发动机油是否已经劣化超过第一阈值水平。该确定可包括将来自发动机油传感器的读数与发动机油劣化水准的范围比较。在一个例子中，第一阈值可代表没有由于污染（如劣化）带来的显著变化的发动机油。如果确定发动机油没有恶化超过第一阈值，或者在这个例子中发动机油基本上是清洁的，则程序移至 522 处，并且不需要基于发动机油的状况调节信号正时就可执行凸轮廓线变换或燃烧模式变换。否则，如果确定发动机油劣化已经超过第一阈值，则程序移至 516。

[0066]在 516 处，程序可包括基于发动机油劣化水准调节凸轮廓线变换信号正时。在一个例子中，可考虑到由于整个油道和其它可影响销售移动和挺柱变换的管道的劣化造成的与机油行进有关的延迟提前信号正时。具体的，劣化机油内的污染物可改变机油的粘性导致更快的或更慢的响应时间以提高或降低油压。因此，信号正时可相应于发动机油劣化水准提前。应该明白的是调节凸轮廓线变换信号正时可包括基于发动机油的状况将信号正时提前或延迟至适当的正时。此外，调节凸轮廓线变换信号正时可包括调节可发生在凸轮廓线变换的变换范围。这样，即使在燃烧模式转换期间凸轮廓线变换也可与指令燃料和火花同步。在一个例子中，变换范围和相应的信号正时调节可根据机油状态（例如，随着机油劣化范围和 / 或信号正时可重新映射或者考虑到由劣化造成的延迟可校准或变换映射）。此外，重定义映射可编程至控制系统存储器内并且可从在一定范围的老化和粘性油上测试的功率计产生。

[0067]此外，调节信号正时可包括调节多个气门的信号正时。例如，燃烧模式转换之前的上个 S1 循环可采用与 HCCI 燃烧模式的第一循环不同的燃料和火花策略，从而可一致地变换进气门和排气门以 S1 燃烧或 HCCI 燃烧提供正确的环境。在一些情况下，多个进气门可以协同的方式变换。此外，在一些情况下，多个排气门可以协同的方式变换。进气门或排气门二者的协同的方式变换。在一些例子中，协同气门变换可包括同时变换。

[0068]在 518 处，控制程序可包括确定发动机油劣化是否已经超过第二阈值水准。该
确定可包括将来自发动机机油传感器的读数与机油劣化水平的范围比较。第二阈值水平可相应于严重的机油劣化的水平，这样燃烧模式的改变可导致扭矩输出跳动，增加的 NVH，增加的排放和/或增加的燃料消耗。相应地，如果确定发动机机油劣化已经超出第二阈值，则程序移到 520，在该处程序可包括防止凸轮廓线变换和/或燃烧模式变换这样可以避免不同步的换挡。否则，如果确定发动机机油劣化没有超过第二阈值水平，则程序移到 522，再在该处程序可包括使用调节的信号正时执行凸轮廓线变换或燃烧模式变换。通过基于机油劣化状态调节凸轮廓线变换信号正时，燃烧模式变换可适合在发动机运转中始终保持（甚至是机油劣化）同步和精确度。这样，可降低扭矩跳动，NVH，排放和/或燃料消耗。[0069] 应该明白的是上面描述的阈值可表现为多种形式，其他预定水平的机油劣化而未上面已经讨论的那些。而且，在一些实施例中，程序可包括额外的阈值，在达到该阈值情况下，可作出预定信号正时调节以维持凸轮廓线变换精确性和同步。在一些实施例中，可基于传感器电压的变化动态在控制系统处更新发动机机油劣化状态，从而可相应地调节发动机运转。

[0070] 在另一个方法中，可基于由发动机机油传感器测量的发动机机油温度调节凸轮廓线（或挺柱）变换正时。应该明白的是发动机机油温度的变化状态可导致预定的凸轮廓线变换范围移动。作为一个具体例子，随着发动机机油的温度改变，机油的粘性会发生变化，在温度有大变化或者偏移发动机机油行为区域温度的情况下，也就是转速或响应正时可影响运转模式变换（更具体的是凸轮廓线变换）的正时。如上所述，发动机机油传感器可配置以提供根据发动机机油温度改变的电信号。此外，发动机机油传感器可邻近机油系统的旋转部件（例如凸轮轴）定位，以使得可将精确的机油温度发送至控制系统。来自机油传感器的发动机机油温度读数可相对于发动机冷却剂读数具有改进的精确度，并因此有利于 HCCI 和 SI 运转之间更精确的变换。

[0071] 现参考图 6，显示了相应于基于发动机机油温度状况自适应控制气门升程挺柱变换的控制程序的流程图的例子。程序开始于 610 处，在该处可确定是否请求燃烧模式变换。作为一个例子，该请求可以从 SI 燃烧变换至 HCCI 燃烧。作为另一个例子，该请求可以从 HCCI 燃烧变换至 SI 燃烧。另外，该请求可包括变换至其他合适的燃烧模式或发动机运转模式。如上所述，可响应满足多种运转状况发起该请求。例如，可响应达到所需发动机转速、负载和温度状况发起变换至 HCCI 燃烧的请求。如果确定请求燃烧模式变换，则程序移到 612 处。否则，程序返回或结束。

[0072] 在 612 处，程序可包括评估发动机的运转状况，包括当前、过去和/或未来运转状况。如上所述，运转状况可包括但不限于：发动机机油劣化状态、发动机机油温度、在一个或多个发动机油压、发动机转速、发动机负载、发动机温度、曲轴位置、凸轮位置，燃料喷射量和/或燃料喷射正时、火花正时、空气温度和气压的环境状况以及发动机的其他运转状态中的一个或多个。在一个具体例子中，评估运转状况可包括从相应于可直接从旋转凸轮轴的发动机机油膜层测量的发动机机油的温度的发动机机油传感器接收电压。

[0073] 随后在 614 处，程序可包括确定发动机机油是否已经降低超过第一阈值温度。基于发动机机油的粘性亲和机油温度的机油传输行为设定阈值。例如，阈值温度可设定至机油粘性延迟响应时间的点。该阈值是可校准的和/或基于通过发动机运转的不同温度
的机油响应行为的测试可预定的并且可储存在控制系统的存储器内的查询表内。此外，阈值可基于HCCI燃烧的运转温度范围设定。如果机油温度低于可发生HCCI燃烧的运转范围，则可调节或防止模式变换。如果确定来自机油传感器的机油温度不高于阈值温度，则程序移至622处。否则，如果确定为发动机机油温度已经低于第一阈值温度，则程序移至616。

[0074] 在616处，程序可包括基于来自机油传感器的发动机机油温度调节凸轮廓线变换信号正时。换句话说，可考虑到由于整个油道和其他可影响锁紧销移动和挺柱变换的管道的不良造成的与机油行进有关的延迟调节信号正时。该延迟可由于导致更慢的以提高或降低油压的响应时间的降低的温度造成更低的机油的粘性导致。调节凸轮廓线变换信号正时可包括基于温度前提或延迟信号正时至适当的正时。特别的，随着发动机机油温度降低可提前信号正时以考虑到延迟，以及由于发动机机油因其粘性由于发动机机油温度增加而降低可能会导致更快地通过油道，可随着发动机机油温度增加延迟信号正时。此外，调节凸轮廓线变换信号正时可包括调节可发生凸轮廓线变换的变换范围。这样，凸轮廓线变换可与指令核算和火花同步，甚至在燃烧模式转换期间。在一个例子中，变换范围和相应的信号正时延迟可根据油温状态映射，并且随着机油温度降低，该范围和/或信号正时可重新映射或者考虑到由机油温度造成的延迟可校准或变换映射。此外，重定义映射可编程至控制系统存储器内并且可从在一定范围的粘性油在不同温度下测试的功率计产生。

[0075] 此外，调节信号正时可包括调节仅一个气门或多个气门的信号正时。例如，燃烧模式变换之前的上个SI循环可采用与HCCI燃烧模式的第一循环不同的燃料和火花策略，从而可一致地变换进气门和排气门以为SI燃烧或HCCI燃烧提供正确的环境。在一些情况下，多个进气门可以协同的方式变换。此外，在一些情况下，多个排气门可以协同的方式变换。进一步，在一些情况下，进气门和排气门二者可以协同的方式变换。在一些例子中，协同气门变换可包括同时变换。

[0076] 在618处，控制程序可包括确定发动机机油温度是否低于第二阈值温度。该确定可包括将来自发动机机油传感器的读数与HCCI运转的温度范围比较。第二阈值水准可相应于在HCCI燃烧的运转范围之下的机油温度，这样燃烧模式的变换可导致扭矩输出跳跃、增加的NVH、增加的排放和/或增加的燃料消耗。相应地，如果确定发动机机油温度低于第二阈值温度，则程序移至620，在该处程序可包括防止凸轮廓线变换和/或燃烧模式变换，这样可以避免非同步变换的惩罚。否则，如果确定发动机机油温度不高于第二阈值温度，则程序移至624处，在该处程序可包括使用调节的信号正时执行凸轮廓线变换或燃烧模式变换。

[0077] 返回至614处，如果发动机机油温度没有降低至低于第一阈值，则程序移动至622处。在622处，程序可包括确定发动机机油温度是否在高于第一阈值温度和第二阈值温度的第三阈值温度之上。在一个例子中，第三阈值温度可为自动点火燃烧或HCCI燃烧不可能或不需要发生的温度。如果确定发动机机油温度为第三阈值温度或在其之上，则程序移动至620，在该处程序可包括防止凸轮廓线变换和/或燃烧模式变换，这样可以避免不适当自动点火相联的惩罚。否则，如果确定发动机机油温度低于第三阈值温度，则程序移至624处，在该处程序可包括执行凸轮廓线变换或燃烧模式变换而不基于发动机机油温度调节信号正时。通过基于机油温度调节凸轮廓线变换信号正时，燃烧模式变换可适合在发动机运转过程中始终维持同步和精确性，具有比仅基于发动机冷却剂温度更大的精确性。这样，可
降低和/或有可能消除扭矩输出跳跃、NVH、排放和/或燃料消耗。

0078 应该明白的是上面描述的阈值可表现为多种其他预定的温度而非上面已经讨论的那些。而且，在一些实施例中，程序可包含额外的阈值，在达到该阈值情况下，可作出预定信号正时调节以维持轮廓线变换精确性和同步。

0079 在另一个方法中，利用更新修正的轮廓线变换或运算模式变换请求的计数循环算法可预测发动机机油劣化。现参考图7，显示了由于预测的机油劣化自适应控制气门升程挺柱变换的控制程序的流程图的例程。程序开始于710处，在该处程序可包括基于发动机转速和发动机负载增加计数器值。基于曲轴位置传感器可驱动或停止计数循环。在一些实施例子中，基于可替代的或额外的运转参数可增加计数器值。

0080 随后在712处，程序可包括确定计数器值是否大于第一阈值。可根据从关于粘性机油和老化范围的功率计试验产生的预定复核阶段设定第一阈值。第一阈值可表示发动机机油变质影响信号正时的预定点，因此导致轮廓线变换正时被调节。如果计数器值大于第一阈值，则程序移至714处，否则，程序循环至开始并且不会调节轮廓线变换信号正时。

0081 在714处，程序可包括确定计数器值是否大于第二阈值。根据预测点设定第二阈值，在该预测点处机油劣化足够严重至运转模式变化可能导致显著的操作惩罚，例如失火、NVH（例如发动机爆震）、增加的排放等。如果计数器值大于第二阈值，则程序移至716，在该处程序可包括防止轮廓线变换或燃烧模式变换，例如从SI至HCC运转的变换。否则，计数器值不大于第二阈值，则程序移至718，在该处程序可包括调节轮廓线变换信号正时以适应预测的机油劣化。在一些实施例中，通过从预映射的校正选择修正的轮廓线变换请求可调节轮廓线正时。

0082 在720处，程序可包括确定机油是否已经改变并且从机油劣化状况已经改善。在一些实施例中，在机油更换服务期间例如由技术员，可在控制器中手动设定发动机机油（或计数器）的状态。此外，在一些实施例中，发动机机油更换可由点火钥匙打开/关闭程序指示。此外，通过发动机机油系统传感器响应探测混合油更换服务相关的部件（例如机油底壳油位口或机油滤清器）可产生机油更换的指示。如果确定机油已经更换，则程序移至722处，在该处程序可包括设计数器。否则，可确定机油还没有更换并且程序结束。

0083 上述程序可基于预测的发动机机油劣化而不用使用发动机机油传感器在发动机运转过程中提供适合的运转模式变换控制调节。具体的，程序可通过提前或延迟信号调节轮廓线变换的信号正时。此外，基于预测的发动机机油劣化严重水平防止轮廓线变换。基于预测的机油劣化通过调节轮廓线变换信号，在发动机运转的范围和模式整个过程中气门升程和/或气门正时可与燃料和火花同步。这样，可降低扭矩跳跃、NVH、排放和/或燃料消耗。

0084 应该明白的是上面描述的控制程序的多个部分可组合或省略以提供合适的发动机运转控制。例如，基于机油劣化状况和机油温度状况调节轮廓线变换的信号正时。此外，根据来自状况可增加和/或减小信号正时的提前或延迟量。在一个例子中，通过由于发动机机油劣化情况造成的预定延迟可延迟信号正时，然而基于发动机机油温度为高时通过设定提前调节或偏置该延迟。通过考虑二者可改善机油劣化和机油温度信号正时精确。这样，在通过发动机的运转范围的燃烧模式之间转换的期间，轮廓线变换可与燃料和火花
同步。
[0085] 注意的是本文包括的示例控制和判断程序可与多种发动机和/或车辆系统结构使用。本文描述的具体程序可代表任何数目的处理策略中的一个或多个，例如事件驱动、中断驱动、多任务、多线程等。这样，可以描述的顺序并行执行多种说明的行为、操作或功能，或在一些例子中省略。同样地，处理的顺序并非是实现本文描述的示例实施例的特征和优点所必需的，而是用于说明和描述的方便。取决于使用的具体策略，可重复地执行一个或多个说明的行为或功能。此外，描述的行为可图像化表示为可编程至发动机控制系统中的计算机只读存储介质中的代码。

[0086] 应了解，此处公开的配置与程序实际上为示例性，且这些具体实施例不可认定为限制，因为可能存在多种变形。例如，上述技术可应用于 V-6、1-4、1-6、V-12、对置 4 缸、和其他发动机类型。本发明的主旨包括所有多种系统与配置以及其它特征、功能和/或此处公开的性质的新颖且非显而易见的组合与子组合。

[0087] 本申请的权利要求具体地指出某些被认为是新颖的和非显而易见的组合和次组合。这些权利要求可提到“一个”元素或“第一”元素或其等同物。这些权利要求应该理解为包括一个或多个这种元素的结合，既不要求也不排除两个或多个这种元素。揭示所公开的特征、功能、元件和/或特性的其他组合和次组合可通过修改现有权利要求或通过在这个或关联申请中提出新的权利要求得到主张。这些权利要求，与原始权利要求范围相比无论更宽的、更窄的、相同或不相同，也被认为包括在本发明主题内。
图 2
图 5
图6

开始

请求转换燃烧模式？

是

评估运转状态

从机油传感器发动机机油温度

否

发动机机油温度＜阈值1？

是

调节CPS信号正时

否

发动机机油温度＞阈值3？

是

防止CPS/燃烧模式变换

否

执行CPS/燃烧模式变换

返回