LONG-ACTING POLYPEPTIDES AND METHODS OF PRODUCING AND ADMINISTERING SAME

Applicant: PROLOR BIOTECH LTD., Nes Ziona (IL)

Inventors: Udi Eyal FIMA, Beer-Sheva (IL); Gili Hart, Shoham (IL)

Appl. No.: 14/059,134

Filed: Oct. 21, 2013

Related U.S. Application Data
Continuation-in-part of application No. 13/804,354, filed on Mar. 14, 2013, which is a continuation-in-part of application No. 13/192,542, filed on Jul. 28, 2011, now Pat. No. 8,465,948, which is a division of application No. 12/401,755, filed on Mar. 11, 2009, now Pat. No. 8,114,836, which is a continuation of application No. 11/702,156, filed on Feb. 5, 2007, now abandoned, Continuation-in-part of application No. 13/195,931, filed on Aug. 2, 2011, now Pat. No. 8,450,269, which is a continuation-in-part of application No. 12/509,188, filed on Jul. 24, 2009, now Pat. No. 8,304,386, which is a continuation-in-part of application No. 12/476,916, filed on Jun. 2, 2009, now Pat. No. 8,048,849, which is a continuation-in-part of application No. 12/401,746, filed on Mar. 11, 2009, now Pat. No. 8,097,435, which is a continuation of application No. 11/700,911, filed on Feb. 1, 2007, now Pat. No. 7,553,941.

Provisional application No. 60/764,761, filed on Feb. 3, 2006, provisional application No. 60/764,761, filed on Feb. 3, 2006.

Publication Classification
Int. Cl.
C07K 14/61 (2006.01)

U.S. Cl.
CPC C07K 14/61 (2013.01)
USPC 514/8.6; 514/11.4

ABSTRACT
A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also disclosed.
FIG. 3 EPO-CTP Activity Analysis

FIG. 4 EPO-CTP Activity Analysis
Figure 16

- Biotropin 0.35 mg/kg
- Biotropin 1.05 mg/kg
- CTP-hGh-CTP-CTP 0.6mg/kg
- CTP-hGh-CTP-CTP 1.8mg/kg
Stage I (4 weeks treatment)

MOD-4023

Daily hGH

Dose finding Stage: 3 Doses

Stage II (4 months treatment)

MOD-4023 Treatment-

4 months study

Dose Confirmatory Stage

Figure 18
28/33 male patients have an Average IGF-1 SDS within the normal range (±2 SDS) after only one month of treatment.
Figure 21
LONG-ACTING POLYPEPTIDES AND METHODS OF PRODUCING AND ADMINISTERING SAME

CROSS REFERENCE TO RELATED APPLICATIONS

FIELD OF INVENTION

[0002] A polypeptide and polynucleotides encoding same comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a peptide-of-interest are disclosed. Pharmaceutical compositions comprising the polypeptide and polynucleotides of the invention and methods of using same are also disclosed.

BACKGROUND OF THE INVENTION

[0003] Polypeptides are susceptible to denaturation or enzymatic degradation in the blood, liver or kidney. Accordingly, polypeptides typically have short circulatory half-lives of several hours. Because of their low stability, peptide drugs are usually delivered in a sustained frequency so as to maintain an effective plasma concentration of the active peptide. Moreover, since peptide drugs are usually administered by infusion, frequent injection of peptide drugs causes considerable discomfort to a subject.

[0004] Unfavorable pharmacokinetics, such as a short serum half-life, can prevent the pharmaceutical development of many otherwise promising drug candidates. Serum half-life is an empirical characteristic of a molecule, and must be determined experimentally for each new potential drug. For example, with lower molecular weight polypeptide drugs, physiological clearance mechanisms such as renal filtration can make the maintenance of therapeutic levels of a drug unfeasible because of cost or frequency of the required dosing regimen. Conversely, a long serum half-life is undesirable where a drug or its metabolites have toxic side effects.

[0005] Thus, there is a need for technologies that will prolong the half-lives of therapeutic polypeptides while maintaining a high pharmacological efficacy thereof. Such desired peptide drugs should also meet the requirements of enhanced serum stability, high activity and a low probability of inducing an undesired immune response when injected into a subject. The present invention addresses this need by providing CTP-modified peptides having prolonged half-lives while maintaining a high pharmaceutical efficacy, and while having enhanced serum stability, high activity and low probability of inducing undesired immune responses in a subject.

SUMMARY OF THE INVENTION

[0006] In one embodiment, the invention relates to a method of reducing the dosing frequency of a growth hormone in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTNs attached to the carboxy terminus of said growth hormone, wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

[0007] In another embodiment, the invention relates to a method of improving the area under the curve (AUC) of a growth hormone in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTNs attached to the carboxy terminus of said growth hormone, wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

[0008] In one embodiment, the invention relates to a method of treating a subject in need of GH therapy, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTNs attached to the carboxy terminus of said growth hormone, wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

[0009] In another embodiment, the invention relates to a method of increasing insulin-like growth factor (IGF-1) levels in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTNs attached to the carboxy terminus of said growth hormone, wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby increasing insulin-like growth factor (IGF-1) levels in a subject.

[0010] Other features and advantages of the present invention will become apparent from the following detailed description examples and figures. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure, the inventions of which can be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0012] FIGS. 1A-1F are diagrams illustrating six EPO-CTP constructs.

[0013] FIG. 1A— is a diagram of the polypeptide of SEQ ID NO: 1.

[0014] FIG. 1B is a diagram of the polypeptide of SEQ ID NO: 2.

[0015] FIG. 1C is a diagram of the polypeptide of SEQ ID NO: 3.

[0016] FIG. 1D is a diagram of the polypeptide of SEQ ID NO: 4.

[0017] FIG. 1E is a diagram of the polypeptide of SEQ ID NO: 5.

[0018] FIG. 1F is a diagram of the polypeptide of SEQ ID NO: 6.

[0019] FIG. 2 is a photograph illustrating the expression of the EPO-CTP variants from transfected DG44 cells. Final test samples from transfected cells were prepared as described under “sample preparation” and run on SDS/PAGE. Proteins were detected by Western blot.

[0020] FIG. 3 is a graph illustrating the in vivo bioactivity of recombinant hEPO derivatives and EPO-3 (SEQ ID NO: 3). ICR mice (n=7/group) received a single i.v. injection/week (15 mg/kg) for three weeks of EPO-3, rhEPO-WT (SEQ ID NO: 16), Recombin® (Commercial EPO) or Recombin® (5 mg/kg) 3 times a week. Control animals were injected i.v. with PBS. Blood samples were collected three times a week and haematocrit levels were detected. Each point represents the group average of haematocrit (±SEM).

[0021] FIG. 4 is a graph illustrating the in vivo bioactivity of recombinant hEPO derivatives and EPO-1 (SEQ ID NO: 1). ICR mice (n=7/group) received a single i.v. injection/week (15 mg/kg) for three weeks of EPO-1, rhEPO-WT (SEQ ID NO: 16), Recombin® or Recombin® (5 mg/kg) 3 times a week. Control animals were injected i.v. with PBS. Blood samples were collected three times a week and haematocrit levels were detected. Each point represents the group average of haematocrit (±SEM).

[0022] FIG. 5 is a graph illustrating the in vivo bioactivity of recombinant hEPO derivatives and EPO-2 (SEQ ID NO: 2). ICR mice (n=7/group) received a single i.v. injection/week (15 mg/kg) for three weeks of EPO-2 (SEQ ID NO: 2), rhEPO-WT (SEQ ID NO: 16), Recombin® or Recombin® (5 mg/kg) 3 times a week. Control animals were injected i.v. with PBS. Blood samples were collected three times a week and haematocrit levels were detected. Each point represents the group average of haematocrit (±SEM).

[0023] FIG. 6 is a time graph illustrating the change in reticulocyte level following a single bolus dose of EPO-0 (SEQ ID NO: 16), EPO-3 (SEQ ID NO: 3) and Aranesp®.

[0024] FIG. 7 is a time graph illustrating the change in hemoglobin level (presented as change from baseline) following a single bolus dose of EPO-0 (SEQ ID NO: 16), EPO-3 (SEQ ID NO: 3) and Aranesp®.

[0025] FIG. 8 is a time graph illustrating the change in hematocrit level following a single bolus dose of EPO-0 (SEQ ID NO: 16), EPO-3 (SEQ ID NO: 3) and Aranesp®.

[0026] FIG. 9 is a graph illustrating the change in serum concentration of EPO-0 (SEQ ID NO: 16), EPO-3 (SEQ ID NO: 3) and Aranesp® post i.v. injection.

[0027] FIG. 10 is a Western blot illustrating the molecular weight & identity of MOD-4020 (SEQ ID NO: 36), MOD-4021 (SEQ ID NO: 37), MOD-4022 (SEQ ID NO: 38), MOD-4023 (SEQ ID NO: 39) and MOD-4024 (SEQ ID NO: 40). A PAGE SDS gel was blotted and stained using monoclonal anti-hGH antibodies. The photograph indicates that like commercial and wild type hGH, MOD-7020-4 variants are recognized by anti-hGH antibodies.

[0028] FIG. 11 is a bar graph illustrating the weight gain of hypophysectomized rats following administration of the GH-CTP polypeptides of the present invention.

[0029] FIG. 12 is a graph showing the mean plasma CTP-hGH-CTP-CTP or GH concentrations (pg/ml) following a single i.v. or s.c. dose of CTP-hGH-CTP-CTP or GH in rats (n=3-6 per dose/route).

[0030] FIG. 13 is a graph showing the mean incremental weight gain following a single s.c. doses of CTP-hGH-CTP-CTP (0.4, 0.8 and 4 mg/kg) in hypophysectomized rats in comparison to daily GH injections (0.1 mg/Kg/Day) (n=10 per dose).

[0031] FIG. 14 is a graph showing the area Under the Curve following single injection of CTP-hGH-CTP-CTP correlates with Body Weight gain in Rats.

[0032] FIG. 15 is a graph showing the incremental weight gain following an s.c. doses of CTP-hGH-CTP-CTP (0.4, 0.8 and 4 mg/Kg) 4 days apart in hypophysectomized rats in comparison to daily GH injections (0.1 mg/Kg/Day) (n=10 per dose).

[0033] FIG. 16 is a graph showing hGH serum concentration in hypophysectomized rat following SC injection of CTP-hGH-CTP-CTP and commercial hGH. Single dose of CTP-hGH-CTP-CTP 0.6 or 1.8 mg/Kg and Biotropin 0.35 or 1.05 mg/Kg were injected subcutaneously to hypophysectomised rats for determination of PK/PD profile. Serum hGH post injection was measured using specific ELISA kits.

[0034] FIG. 17 is a graph showing IGF-1 serum levels in Hypophysectomized Rats Following SC injection of CTP-hGH-CTP-CTP and commercial hGH. Single dose of CTP-hGH-CTP-CTP 0.6 or 1.8 mg/Kg and Biotropin 0.35 or 1.05 mg/Kg were injected subcutaneously to hypophysectomised rats for determination of PK/PD profile. Serum IGF-1 post injection was measured using specific ELISA kits (Roche Diagnostics).

[0035] FIG. 18 shows an illustration of the phase II study design.

[0036] FIG. 19 shows IGF-1 SDS following 4th weekly dose—All Cohorts.

[0037] FIG. 20 shows mean change from baseline in IGF-1 plasma concentrations after subcutaneous administration of MOD-4023 to growth hormone-deficient adults (Stage I; post 4th injection).

[0038] FIG. 21 shows mean IGF-1 levels (determined on day 4 post dosing) during 4 month extension study (52 patients).

DETAILED DESCRIPTION OF THE INVENTION

[0039] In one embodiment, the present invention describes long-acting polypeptides and methods of producing and
using same. In another embodiment, long-acting polypeptides comprise carboxy terminal peptide (CTP) of human Chorionic Gonadotropin (hCG). In another embodiment, CTP acts as a protectant against degradation of proteins or peptides derived therefrom. In another embodiment, CTP extends circulatory half-lives of proteins or peptides derived therefrom. In some embodiments, CTP enhances the potency of proteins or peptides derived therefrom.

In another embodiment, “CTP peptide,” “carboxy terminal peptide,” and “CTP sequence” are used interchangeably herein. In another embodiment, the carboxy terminal peptide is a full-length CTP. In another embodiment, the carboxy terminal peptide is a truncated CTP. Each possibility represents a separate embodiment of the present invention.

In another embodiment, “signal sequence” and “signal peptide” are used interchangeably herein. In another embodiment, “sequence” when in reference to a polynucleotide can refer to a coding portion. Each possibility represents a separate embodiment of the present invention.

In another embodiment, “peptide of interest” and “polypeptide sequence of interest” are used interchangeably herein. In another embodiment, the peptide of interest is a full-length protein. In another embodiment, the peptide of interest is a protein fragment. Each possibility represents a separate embodiment of the present invention.

In another embodiment, the invention provides a polypeptide consisting of a growth hormone, a single choric gonadotrophin carboxy terminal peptide attached to the amino terminus of the growth hormone, and two choric gonadotrophin carboxy terminal peptides attached to the carboxy terminus of the growth hormone. In another embodiment, the invention provides a polypeptide consisting of a growth hormone, a single choric gonadotrophin carboxy terminal peptide attached to the amino terminus of the growth hormone, two choric gonadotrophin carboxy terminal peptides attached to the carboxy terminus of the growth hormone, and a signal peptide attached to the amino terminus of one choric gonadotrophin carboxy terminal peptide.

In another embodiment, a growth hormone comprising CTPs as described herein has enhanced in vivo biological activity compared to the same growth hormone without CTPs. In another embodiment, a growth hormone comprising at least one CTP attached to its amino terminus and at least two CTPs attached to its carboxy terminus has enhanced in vivo biological activity compared to the same growth hormone without CTPs. In another embodiment, a growth hormone comprising one CTP attached to its amino terminus and two CTPs attached to its carboxy terminus has enhanced in vivo biological activity compared to the same growth hormone without CTPs.

In another embodiment, a polypeptide comprising at least two carboxy-terminal peptide (CTP) sequences of choric gonadotrophin attached to a polypeptide sequence of interest, wherein a first CTP sequence of the at least two CTP sequences is attached to an amino terminus of the polypeptide sequence of interest and a second CTP sequence of the at least two CTP sequences is attached to the carboxy terminus of the polypeptide sequence of interest is provided. In another embodiment, the carboxy-terminal peptide (CTP) sequence is of human Chorionic Gonadotrophin.

In another embodiment, a subject is a human subject. In another embodiment, a subject is a pet. In another embodiment, a subject is a mammal. In another embodiment, a subject is a farm animal. In another embodiment, a subject is a dog. In another embodiment, a subject is a cat. In another embodiment, a subject is a monkey. In another embodiment, a subject is a horse. In another embodiment, a subject is a cow. In another embodiment, a subject is a mouse. In another embodiment, a subject is a rat. In one embodiment, the subject is male. In another embodiment, the subject is female.

The phrase “polypeptide sequence of interest” refers, in another embodiment, to any polypeptide sequence, such as one comprising a biological activity. In another embodiment, the peptide is glycosylated. In another embodiment, the peptide is non-glycosylated. Examples of polypeptides which benefit from an extension in their circulatory half-life include, but are not limited to, erythropoietin (EPO), interferons, human growth hormone (hGH) and glucagon-like peptide-1 (GLP-1).

In another embodiment, the configuration of CTP-growth hormone-CTP-CTP as described herein comprises a growth hormone or an active fragment thereof connected via a peptide bond to at least one CTP unit. In another embodiment, a CTP-growth hormone-CTP-CTP as described herein comprises a growth hormone or an active fragment thereof connected via a peptide bond to at least one CTP unit which is connected to an additional CTP unit via a peptide bond. In another embodiment, a polypeptide as described herein comprises a growth hormone fragments thereof and CTP units and/or fragments thereof are interconnected via a peptide bond. In another embodiment, one nucleic acid encodes a polypeptide as described herein comprising a growth hormone and/or fragments thereof and CTP units and/or fragments thereof.

In another embodiment, the carboxy-terminal peptide (CTP) is attached to the polypeptide sequence of interest via a linker. In another embodiment, at least one CTP is optionally attached to said polypeptide sequence of interest via a linker. In another embodiment, the linker which connects the CTP sequence to the polypeptide sequence of interest is a covalent bond. In another embodiment, the linker which connects the CTP sequence to the polypeptide sequence of interest is a peptide bond. In another embodiment, the linker which connects the CTP sequence to the polypeptide sequence of interest is a substituted peptide bond. In another embodiment, the carboxy-terminal peptide (CTP) sequence comprises an amino acid sequence selected from the sequences set forth in SEQ ID NO: 48.

In another embodiment, SEQ ID NO: 48 comprises the following amino acid (AA) sequence:

```
DPRFQGDSSSSKAPPPLLPSFLGQPSDFPILQ
```

In another embodiment, the carboxy terminal peptide (CTP) of human Chorionic Gonadotropin (hCG) is fused to a protein. In another embodiment, the carboxy terminal peptide (CTP) of human hCG is fused to a glycoprotein. In another embodiment, the carboxy terminal peptide (CTP) of hCG is fused to a glycoprotein hormone. In another embodiment, the CTP of hCG is fused to a peptide derived from a glycoprotein hormone. In some embodiments, glycoprotein hormones comprise EPO, FSH, or TSH and peptides derived therefrom.

In some embodiments, a CTP sequence at both the amino terminal end of a polypeptide and at the carboxy terminal end of the polypeptide provide enhanced protection against degradation of a protein. In some embodiments, CTP
sequences at both the amino terminal end of a polypeptide and at the carboxy terminal end of the polypeptide provide an extended half-life to the attached protein.

In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the amino terminus provide enhanced protection against degradation of a protein. In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the carboxy terminus provide an extended half-life to the attached protein. In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the carboxy terminal end of the polypeptide provide an extended half-life to the attached protein. In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the carboxy terminus provide enhanced activity of the attached protein.

In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the amino terminus provide enhanced protection against degradation of the attached protein. In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the amino terminus provide an extended half-life to the attached protein. In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the polypeptide, and at least one additional CTP sequence attached in tandem to the CTP sequence at the amino terminus provide enhanced activity the attached protein.

In some embodiments, a CTP sequence at both the amino terminal end of a growth hormone and at the carboxy terminal end of the growth hormone provide enhanced protection against degradation of a growth hormone. In another embodiment, at least one CTP sequence at the amino terminal end of a growth hormone and two CTP units in the carboxy terminal end of a growth hormone provide prolonged clearance time. In another embodiment, at least one CTP sequence at the amino terminal end of a growth hormone and two CTP units in the carboxy terminal end of a growth hormone enhance Cmax of a growth hormone. In another embodiment, at least one CTP sequence at the amino terminal end of a growth hormone and two CTP units in the carboxy terminal end of a growth hormone enhance T1/2 of a growth hormone. In another embodiment, at least one CTP sequence at the amino terminal end of a growth hormone and two CTP units in the carboxy terminal end of a growth hormone enhance T1/2 of a growth hormone.

In some embodiments, CTP sequences at both the amino terminal end of a growth hormone and at the carboxy terminal end of the growth hormone provide an extended half-life of the modified growth hormone. In another embodiment, at least a single CTP sequence at the amino terminal end of a growth hormone and at least two CTP sequences at the carboxy terminal end of the growth hormone provide an extended half-life to the modified growth hormone. In another embodiment, a single CTP sequence at the amino terminal end of a growth hormone and two CTP sequences in tandem at the carboxy terminal end of the growth hormone provide extended half-life to the modified growth hormone.

In some embodiments, a CTP sequence at the amino terminal end of a polypeptide, a CTP sequence at the carboxy terminal end of the growth hormone, and at least one additional CTP sequence attached in tandem to the CTP sequence at the carboxy terminus provide enhanced protection against degradation to a growth hormone. In some embodiments, a CTP sequence at the amino terminal end of a growth hormone, a CTP sequence at the carboxy terminal end of the growth hormone, and at least one additional CTP sequence attached in tandem to the CTP sequence at the carboxy terminus extend the half-life of the growth hormone. In some embodiments, a CTP sequence at the amino terminal end of a growth hormone, a CTP sequence at the carboxy terminal end of the growth hormone, and at least one additional CTP sequence attached in tandem to the CTP sequence at the carboxy terminus enhance the biological activity of the growth hormone.

In another embodiment, the carboxy terminal peptide (CTP) peptide of the present invention comprises the amino acid sequence from amino acid 112 to position 145 of human chorionic gonadotropin, as set forth in SEQ ID NO: 17. In another embodiment, the CTP sequence of the present invention comprises the amino acid sequence from amino acid 118 to position 145 of human chorionic gonadotropin, as set forth in SEQ ID NO: 18. In another embodiment, the CTP sequence also commences from any position between positions 112-118 and terminates at position 145 of human chorionic gonadotropin. In some embodiments, the CTP sequence peptide is 28, 29, 30, 31, 32, 33 or 34 amino acids long and commences at position 112, 113, 114, 115, 116, 117 or 118 of the CTP amino acid sequence.

In another embodiment, the CTP peptide is a variant of chorionic gonadotrophin CTP which differs from the native CTP by 1-5 conservative amino acid substitutions as described in U.S. Pat. No. 5,712,122. In another embodiment, the CTP peptide is a variant of chorionic gonadotrophin CTP which differs from the native CTP by 1 conservative amino acid substitution. In another embodiment, the CTP peptide is a variant of chorionic gonadotrophin CTP which differs from the native CTP by 2 conservative amino acid substitutions. In another embodiment, the CTP peptide is a variant of chorionic gonadotrophin CTP which differs from the native CTP by 3 conservative amino acid substitutions. In another embodiment, the CTP peptide is a variant of chorionic gonadotrophin CTP which differs from the native CTP by 4 conservative amino acid substitutions. In another embodiment, the CTP peptide is a variant of chorionic gonadotrophin CTP which differs from the native CTP by 5 conservative amino acid substitutions. In another embodiment, the CTP peptide amino acid sequence of the present invention is at least 70% homologous to the native CTP amino acid sequence or a peptide thereof. In another embodiment, the CTP peptide amino acid sequence of the present invention is at least 80% homologous to the native CTP amino acid sequence or a peptide thereof. In another embodiment, the CTP peptide amino acid sequence of the present invention is at least 90% homologous to the native CTP amino acid sequence or a peptide thereof.
homologous to the native CTP amino acid sequence or a peptide thereof. In another embodiment, the CTP peptide amino acid sequence of the present invention is at least 95% homologous to the native CTP amino acid sequence or a peptide thereof.

[0060] In another embodiment, the CTP peptide DNA sequence of the present invention is at least 70% homologous to the native CTP DNA sequence or a peptide thereof. In another embodiment, the CTP peptide DNA sequence of the present invention is at least 80% homologous to the native CTP DNA sequence or a peptide thereof. In another embodiment, the CTP peptide DNA sequence of the present invention is at least 90% homologous to the native CTP DNA sequence or a peptide thereof. In another embodiment, the CTP peptide DNA sequence of the present invention is at least 95% homologous to the native CTP DNA sequence or a peptide thereof.

[0061] In one embodiment, at least one of the chorionic gonadotrophin CTP amino acid sequences is truncated. In another embodiment, both of the chorionic gonadotrophin CTP amino acid sequences are truncated. In another embodiment, 2 of the chorionic gonadotrophin CTP amino acid sequences are truncated. In another embodiment, 2 or more of the chorionic gonadotrophin CTP amino acid sequences are truncated. In another embodiment, all of the chorionic gonadotrophin CTP amino acid sequences are truncated. In one embodiment, the truncated CTP comprises the first 10 amino acids of SEQ ID NO: 43. In one embodiment, the truncated CTP comprises the first 11 amino acids of SEQ ID NO: 43. In one embodiment, the truncated CTP comprises the first 12 amino acids of SEQ ID NO: 43. In one embodiment, the truncated CTP comprises the first 13 amino acids of SEQ ID NO: 43. In one embodiment, the truncated CTP comprises the first 15 amino acids of SEQ ID NO: 43. In one embodiment, the truncated CTP comprises the first 16 amino acids of SEQ ID NO: 43. In one embodiment, the truncated CTP comprises the last 14 amino acids of SEQ ID NO: 43.

[0062] In one embodiment, at least one of the chorionic gonadotrophin CTP amino acid sequences is glycosylated. In another embodiment, both of the chorionic gonadotrophin CTP amino acid sequences are glycosylated. In another embodiment, 2 of the chorionic gonadotrophin CTP amino acid sequences are glycosylated. In another embodiment, 2 or more of the chorionic gonadotrophin CTP amino acid sequences are glycosylated. In another embodiment, all of the chorionic gonadotrophin CTP amino acid sequences are glycosylated. In one embodiment, the CTP sequence of the present invention comprises at least one glycosylation site. In another embodiment, the CTP sequence of the present invention comprises 2 glycosylation sites. In one embodiment, the CTP sequence of the present invention comprises 3 glycosylation sites. In one embodiment, the CTP sequence of the present invention comprises 4 glycosylation sites. Each possibility represents a separate embodiment of the present invention.

[0063] As provided herein, attachment of CTP sequence to both the amino and carboxy termini of the EPO protein results in increased potency at stimulating erythropoiesis (FIGS. 3-5 and Table 6 of Example 4), as compared to recombinant EPO and other combinations of EPO and CTP. In some embodiments, an EPO attached to three CTP sequences does not impair binding to its receptor as evidenced in Table 4 of Example 3, which demonstrates that EPO attached to three CTP sequences is equally effective at stimulating proliferation of TF-1 cells as wild-type EPO.

[0064] In some embodiments, “homology” according to the present invention also encompasses deletions, insertions, or substitution variants, including an amino acid substitution thereof, and biologically active polypeptide fragments thereof. In one embodiment the substitution variant comprises a substitution of the glycine in position 104 of the erythropoietin amino acid sequence with a serine (SEQ ID NO: 22).

[0065] In another embodiment, the methods of the present invention provide an EPO peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of anemia. In another embodiment, the methods of the present invention provide an EPO peptide having additionally at least one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for the treatment of anemia.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 1 having additionally at least one CTP amino acid peptide on the N-terminus. In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 2 having additionally at least one CTP amino acid peptide on the C-terminus. In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 3 having additionally at least one CTP amino acid peptide on the C-terminus and at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 4 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 5 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 6 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 7 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 8 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 9 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 10 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 11 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 12 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 13 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 14 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 15 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 16 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 17 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 18 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 19 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 20 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 21 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 22 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the C-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 24 having additionally at least one CTP amino acid peptide on the N-terminus.

In another embodiment, the methods of the present invention provide an EPO peptide set forth in SEQ ID NO: 25 having additionally at least one CTP amino acid peptide on the C-terminus.
In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding an EPO peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for the treatment of anemia. In another embodiment, the methods of the present invention provide a nucleic acid sequence as set forth in SEQ ID NO: 20 encoding an EPO peptide and one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of anemia. In another embodiment, the methods of the present invention provide a nucleic acid sequence as set forth in SEQ ID NO: 21 encoding an EPO peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for the treatment of anemia.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for inhibiting anemia.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for inhibiting anemia.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating tumor-associated anemia.

In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding any of the CTP-modified EPO peptides described herein, for the treatment of tumor-associated anemia.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating tumor hypoxia.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating tumor hypoxia.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.

In another embodiment, the methods of the present invention provide any of the CTP-modified EPO peptides described herein, for treating chronic infections such as HIV, inflammatory bowel disease, or septic episodes.
additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38, having additionally at least one CTP amino acid peptide on the N-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 42 having additionally at least one CTP amino acid peptide on the N-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth.

[0091] In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for stimulating muscle growth.

[0092] In one embodiment, the present invention provides a method of reducing the dosing frequency of a growth hormone in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

[0093] In another embodiment, the present invention provides a method of improving the area under the curve (AUC) of a growth hormone in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

[0094] In one embodiment, the present invention provides a method of treating a subject in need of GH therapy, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

[0095] In another embodiment, the present invention provides a method of increasing insulin-like growth factor (IGF-1) levels in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby increasing insulin-like growth factor (IGF-1) levels in a subject.

[0096] In another embodiment, the present invention provides a method of maintaining insulin-like growth factor (IGF-1) levels in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby maintaining insulin-like growth factor (IGF-1) levels in a subject. In another embodiment, the IGF-1 levels are kept in a defined range, as further provided herein.

[0097] In another embodiment, the present invention provides a method of increasing and maintaining insulin-like growth factor (IGF-1) levels within a defined range in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby
increasing and maintaining insulin-like growth factor (IGF-I) levels within a defined range in a subject.

In another embodiment, the defined range is a therapeutic dose range achieved by administering a CTP-modified growth hormone provided herein. In another embodiment, the defined range is one in which the Cmax and Cthrough of the sinusoidal behavior of IGF-I are maintained following consecutive administrations of a CTP-modified growth hormone as further provided herein (see Example 15). In another embodiment, the defined range is a therapeutic dose range for consecutively administering a CTP-modified growth hormone provided herein with excellent responsiveness in a subject and with minimal need for dose modification. In another embodiment, the defined range is comparable to the range of IGF-I levels in individuals that are considered to be normal. In another embodiment, the defined range is the normal range of IGF-I levels/values in normal individuals. In another yet embodiment, the defined range is within the normal range when IGF-I SDS values are within ±2 SDS.

In another embodiment, the methods of the present invention provide any of the CTP-modified GH peptides described herein, for stimulating bone growth.

In another embodiment, the methods of the present invention provide a nuclease acid sequence encoding any of the CTP-modified GH peptides described herein, for stimulating bone growth.

In another embodiment, conjugated growth hormones of this invention are used in the same manner as unmodified growth hormones. In another embodiment, conjugated growth hormones of this invention have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity in vivo. In another embodiment, due to the improved properties of the conjugated growth hormones as described herein, these conjugates are administered less frequently than unmodified growth hormones. In another embodiment, conjugated growth hormones as described herein are administered once a week to once every two weeks. In another embodiment, conjugated growth hormones as described herein are administered once every two weeks to once every three weeks. In another embodiment, conjugated growth hormones as described herein are administered once a day to three times a week. In another embodiment, decreased frequency of administration will result in improved patient compliance leading to improved treatment outcomes, as well as improved patient quality of life. In another embodiment, compared to conventional conjugates of growth hormones linked to poly(ethylene glycol) it has been found that growth hormone CTP conjugates having the molecular weight and linker structure of the conjugates of this invention have an improved potency, improved stability, elevated AUC levels, enhanced circulating half-life. In another embodiment, compared to conventional conjugates of growth hormones linked to poly(ethylene glycol) it has been found that growth hormones having the molecular weight and linker structure of the conjugates of this invention have an improved potency, improved stability, elevated AUC levels, enhanced circulating half-life. In another embodiment, a therapeutically effective amount of a conjugated growth hormone is the amount of conjugate necessary for the in vivo measurable expected biological activity. In another embodiment, a growth hormone utilized according to the teachings of the present invention exhibits increased potency. In some embodiments, the attachment of CTP sequence to both the amino and carboxy termini of a growth hormone results in prolonged in-vivo activity.

In another embodiment, a therapeutically effective amount of a conjugated growth hormone is determined according to factors as the exact type of condition being treated, the condition of the patient being treated, as well as the other ingredients in the composition. In another embodiment, a therapeutically effective amount of a conjugated growth hormone is 0.01 to 10 μg per kg body weight administered once a week. In another embodiment, a therapeutically effective amount of a conjugated growth hormone is 0.1 to 1 μg per kg body weight, administered once a week. In another embodiment, a pharmaceutical composition comprising a conjugated growth hormone is formulated at strength effective for administration by various means to a human patient.

In another embodiment, the growth hormone is any growth hormone known to one of skill in the art. In another embodiment, the growth hormone is a human growth hormone. In another embodiment, the growth hormone is a non-human growth hormone. In another embodiment, the nucleotide sequence and/or the amino acid sequence of a growth hormone is available in a gene bank database. In another embodiment, the growth hormone is a homologue. In another embodiment, a homologue also refers to a deletion, insertion, or substitution variant, including an amino acid substitution, thereof and biologically active polypeptide fragments thereof.

In another embodiment, the growth hormone is variant of hGH missing exons 2, 3, 4, or any combination thereof. In another embodiment, the growth hormone comprises a signal peptide. In another embodiment, the growth hormone comprises a signal cleavage site. In another embodiment, polypeptides comprising GH modified by CTPs of the present invention comprise recombinant GH.

In another embodiment, the methods of the present invention provide a GH peptide of the present invention for maintaining muscle quality.

In another embodiment, the methods of the present invention provide a GH of the present invention for maintaining bone quality.

In another embodiment, the methods of the present invention provide a GH-CPT nucleic acid sequence of the present invention for maintaining bone quality.

In another embodiment, the methods of the present invention provide any of the CTP-modified GH peptides described herein, for treating a wasting disease.

In another embodiment, the methods of the present invention provide any of the CTP-modified GH peptides described herein, for treating a wasting disease.

In another embodiment, the methods of the present invention provide any of the CTP-modified GH peptides described herein, for increasing cardiac function.

In another embodiment, the methods of the present invention provide any of the CTP-modified GH peptides described herein, for increasing lipolysis.
In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding any of the CTP-modified GH peptides described herein, for increasing lipolysis.

In another embodiment, the methods of the present invention provide any of the CTP-modified GH peptides described herein, for improving fluid balance.

In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. AAA72260. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. AAK69798. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. CA01435. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. CA01329. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. CA00380. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. AAA72555. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. NP_060506.2. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. NP_072053.1. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. NP_072054.1. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. NP_072055.1. In another embodiment, a growth hormone of the invention comprises the gene bank amino acid deposited sequence under accession no. NP_072056.1.

In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving fluid balance. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving fluid balance. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving fluid balance.

In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38 having additionally at least one CTP amino acid peptide on the N-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 42 having additionally at least one CTP amino acid peptide on the N-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide modified by CTPs, as provided herein, for treating osteoporosis.

In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for treating osteoporosis. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for treating osteoporosis.

In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for inhibiting osteoporosis.
minus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38 having additionally at least one CTP amino acid peptide on the N-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 42 having additionally at least one CTP amino acid peptide on the N-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a GH peptide modified by CTPs, as provided herein, for inhibiting osteoporosis.

[0120] In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for inhibiting osteoporosis. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for inhibiting osteoporosis.

[0121] In another embodiment, the methods of the present invention provide a GH peptide of the present invention for improving exercise capacity.

[0122] In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38 having additionally at least one CTP amino acid peptide on the N-terminus for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for improving lung function. In another embodiment, the methods of the present invention provide a GH peptide modified by CTPs, as provided herein, for improving lung function.

[0123] In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving lung function. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving lung function.

[0124] In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38 having additionally at least one CTP amino acid peptide on the N-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for improving immunity. In another embodiment,
the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 42 having additionally at least one CTP amino acid peptide on the N-terminus for improving immunity. In another embodiment, the methods of the present invention provide a GH peptide modified by CTPs, as provided herein, for improving immunity.

[0125] In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving immunity. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for improving immunity.

[0126] In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38 having additionally at least one CTP amino acid peptide on the N-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for regrowing vital organs. In another embodiment, the methods of the present invention provide a GH peptide modified by CTPs, as provided herein, for regrowing vital organs.

[0127] In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for regrowing vital organs. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for regrowing vital organs.

[0128] In another embodiment, the methods of the present invention provide a GH peptide of the present invention for increasing sense of well-being.

[0129] In another embodiment, the methods of the present invention provide a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 23 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 36 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 37 having additionally at least one CTP amino acid peptide on the N-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 38 having additionally at least one CTP amino acid peptide on the N-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 39 for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 40 for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 41 for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide set forth in SEQ ID NO: 42 having additionally at least one CTP amino acid peptide on the N-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a GH peptide modified by CTPs, as provided herein, for restoring REM sleep.
In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 45 encoding a GH peptide comprising one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for restoring REM sleep. In another embodiment, the methods of the present invention provide a nucleic acid of SEQ ID NO: 46 encoding a GH peptide and one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for restoring REM sleep.

In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding a GH protein as described herein. In another embodiment, the methods of the present invention provide a nucleic acid sequence encoding polypeptide comprising hGH modified by CTPs for stimulating muscle growth, increasing cardiac function, stimulating bone growth, maintaining muscle integrity, balancing muscle metabolism, inducing muscle build-up, enhancing bone load, treating symptoms associated with osteoporosis, treating a wasting disease, increasing lipolysis, improving fluid balance, treating osteoporosis, improving lung function, improving immunity, regrowing a vital organ, increasing sense of well-being, restoring REM sleep, or any combination thereof.

In some embodiments, “homology” according to the present invention also encompasses deletions, insertions, or substitution variants, including an amino acid substitution, thereof and biologically active polypeptide fragments thereof. In one embodiment the substitution variant is one in which the glutamine in position 65 of hGH is substituted by a valine [Gellerfors et al., J Pharm Biomed Anal 1989, 7:173-83].

In another embodiment, the nucleic acid molecule encoding a growth hormone as described herein encodes any amino acid sequence of a growth hormone known to one of skill in the art. In another embodiment, the nucleic acid molecule encoding a growth hormone as described herein encodes an hGH. In another embodiment, the nucleic acid molecule encoding a growth hormone comprises the gene bank nucleic acid deposited sequence under accession no. NM_000515.3. In another embodiment, the nucleic acid molecule encoding a growth hormone comprises the gene bank nucleic acid deposited sequence under accession no. NM_022559.2. In another embodiment, the nucleic acid molecule encoding a growth hormone comprises the gene bank nucleic acid deposited sequence under accession no. NM_022560.2. In another embodiment, the nucleic acid molecule encoding a growth hormone comprises the gene bank nucleic acid deposited sequence under accession no. NM_022561.2. In another embodiment, the nucleic acid molecule encoding a growth hormone comprises the gene bank nucleic acid deposited sequence under accession no. NM_022562.2.

In some embodiments, interferon is utilized according to the teachings of the present invention. In some embodiments, the attachment of CTP sequence to both the amino and carboxy termini of the interferon protein results in increased potency. In some embodiments, the attachment of CTP sequence to both the amino and carboxy termini of the interferon protein results in prolonged in-vivo activity.

In one embodiment, “interferon” refers to the mammalian interferon polypeptide Type I. In one embodiment, “interferon” refers to the mammalian interferon polypeptide Type II. In some embodiments, additional suitable interferon polypeptides as known to those of ordinary skill in the art are utilized. In some embodiments, the interferon is alpha-interferon. In some embodiments, the interferon is beta-interferon. In some embodiments, the interferon is gamma-interferon. In some embodiments, the interferon is a subspecies interferon. In one embodiment, the subspecies of interferon (IFN) is IFN-α2a. In one embodiment, the subspecies of interferon (IFN) is IFN-α2b. In one embodiment, the subspecies of interferon (IFN) is IFN-β1a. In one embodiment, the interferon (IFN) subspecies is IFN-β1b.

In one embodiment, interferon of the present invention exhibits interferon activity, such as antiviral and antiproliferative activity. In some embodiments, GenBank® Accession Numbers of non-limiting examples of interferons are listed in Table 1 below.

In one embodiment, an interferon of the present invention also refers to homologues. In one embodiment, an interferon amino acid sequence of the present invention is at least 50% homologous to an interferon sequence disclosed herein. In one embodiment, an interferon amino acid sequence of the present invention is at least 60% homologous an interferon sequence disclosed herein. In one embodiment, an interferon amino acid sequence of the present invention is at least 70% homologous an interferon sequence disclosed herein. In one embodiment, an interferon amino acid sequence of the present invention is at least 80% homologous to an interferon sequence disclosed herein). In one embodiment, interferon amino acid sequence of the present invention is at least 90% homologous to an interferon sequence disclosed herein. In one embodiment, an interferon amino acid sequence of the present invention is at least 95% homologous an interferon sequence disclosed herein. In some embodiments, homology according to the present invention also encompasses deletions, insertions, or substitution variants, including an amino acid substitution, thereof and biologically active polypeptide fragments thereof. In one embodiment the cysteine in position 17 of interferon β is substituted by a serine (SEQ ID NO: 24).

Table 1 below lists examples of interferons with their respective NCBI sequence numbers.

<table>
<thead>
<tr>
<th>Interferon name</th>
<th>NCBI sequence number</th>
</tr>
</thead>
<tbody>
<tr>
<td>interferon, a1</td>
<td>NP_076918.1</td>
</tr>
<tr>
<td>interferon, a10</td>
<td>NP_002162.1</td>
</tr>
<tr>
<td>interferon, a13</td>
<td>NP_008381.2</td>
</tr>
<tr>
<td>interferon, a14</td>
<td>NP_002163.1</td>
</tr>
<tr>
<td>interferon, a16</td>
<td>NP_002164.1</td>
</tr>
<tr>
<td>interferon, a2</td>
<td>NP_000596.2</td>
</tr>
<tr>
<td>interferon, a21</td>
<td>NP_002166.1</td>
</tr>
<tr>
<td>interferon, a4</td>
<td>NP_066946.1</td>
</tr>
</tbody>
</table>
In another embodiment, the methods of the present invention provide an interferon beta 1 peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating or inhibiting multiple sclerosis. In another embodiment, the methods of the present invention provide an interferon beta 1 peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for treating or inhibiting multiple sclerosis. In another embodiment, the methods of the present invention provide an interferon beta 1 peptide set forth in SEQ ID NO: 24 having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for treating or inhibiting multiple sclerosis. In another embodiment, the methods of the present invention provide an interferon beta 1 peptide set forth in SEQ ID NO: 24 having additionally on the N-terminus the signal peptide of SEQ ID NO: 26 and at least one CTP amino acid peptide on the N-terminus of SEQ ID NO: 26 and at least one CTP amino acid peptide on the C-terminus of SEQ ID NO: 24 for treating or inhibiting multiple sclerosis.

In some embodiments, glucagon-like peptide-1 is utilized according to the teachings of the present invention. In some embodiments, the attachment of CTP sequences to both the amino and carboxy termini of a “glucagon-like peptide-1” results in increased potency. In some embodiments, the attachment of CTP sequences to both the amino and carboxy termini of a peptide results in prolonged in-vivo activity. In some embodiments, the attachment of CTP sequences to both the amino and carboxy termini of the glucagon-like peptide-1 results in prolonged in-vivo activity.

In one embodiment, “glucagon-like peptide-1” (GLP-1) refers to a mammalian polypeptide. In one embodiment, “glucagon-like peptide-1” (GLP-1) refers to a human polypeptide. In some embodiments, GLP-1 is cleaved from the glucagon preproprotein (Genbank ID No. NP002045) that has the ability to bind to the GLP-1 receptor and initiate a signal transduction pathway resulting in insulinotropic activity. In one embodiment, “insulinotropic activity” refers to the ability to stimulate insulin secretion in response to elevated glucose levels, thereby causing glucose uptake by cells and decreased plasma glucose levels. In some embodiments, GLP-1 polypeptides include, but are not limited to those described in U.S. Pat. No. 5,118,666; which is incorporated by reference herein.

In one embodiment, “GLP-1” refers to a polypeptide, such as set forth in sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters. In one embodiment, a GLP-1 of the present invention also refers to a GLP-1 homologue. In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 50% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters. In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 60% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters. In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 70% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters. In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 80% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters.

In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 90% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters. In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 95% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters.

In another embodiment, a GLP-1 amino acid sequence of the present invention is at least 90% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters. In one embodiment, a GLP-1 amino acid sequence of the present invention is at least 95% homologous to GLP-1 sequences set forth in SEQ ID NO: 25 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters.

In one embodiment, the methods of the present invention provide a GLP-1 peptide having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating or inhibiting type II diabetes. In another embodiment, the methods of the present invention provide a GLP-1 peptide having additionally one CTP amino acid peptide on the N-terminus and two CTP amino acid peptides on the C-terminus for treating or inhibiting type II diabetes. In another embodiment, the methods of the present invention provide a GLP-1 peptide set forth in SEQ ID NO: 25 having additionally at least one CTP amino acid peptide on the N-terminus of SEQ ID NO: 26 and at least one CTP amino acid peptide on the C-terminus for treating or inhibiting type II diabetes.

In one embodiment, the homologue also refers to a deletion, insertion, or substitution variant, including an amino acid substitution, thereof and biologically active polypeptide fragments thereof.

In one embodiment the polypeptide sequence of interest is an EPO. In one embodiment the polypeptide sequence of interest is an interferon. In another embodiment the polypeptide sequence of interest is an IGF1. In another embodiment the polypeptide sequence of interest is an insulin. In another embodiment the polypeptide sequence of interest is an enkephalin. In another embodiment the polypeptide sequence of interest is an ACTH. In another embodiment the polypeptide sequence of interest is an insulin-like growth factor. In another embodiment the polypeptide sequence of interest is an epidermal growth factor. In another embodiment the polypeptide sequence of interest is an acidic or basic fibroblast growth factor. In another embodiment the polypeptide sequence of interest is a platelet-derived growth factor. In another embodiment the polypeptide sequence of interest is a granulocyte-CSF. In another embodiment the polypeptide sequence of interest is...
interest is a macrophage-CSF. In another embodiment the polypeptide sequence of interest is an IL-2. In another embodiment the polypeptide sequence of interest is an IL-3. In another embodiment the polypeptide sequence of interest is a tumor necrosis factor. In another embodiment the polypeptide sequence of interest is an LHRH. In another embodiment the polypeptide sequence of interest is an LHRH analog. In another embodiment the polypeptide sequence of interest is a somatostatin. In another embodiment the polypeptide sequence of interest is a growth hormone releasing factor. In another embodiment the polypeptide sequence of interest is an endorphin. In another embodiment the polypeptide sequence of interest is a natriuretic factor. In another embodiment the polypeptide sequence of interest is an adhesion. In another embodiment the polypeptide sequence of interest is an angiotatin. In another embodiment the polypeptide sequence of interest is an endostatin. In another embodiment the polypeptide sequence of interest is a receptor peptide. In another embodiment the polypeptide sequence of interest is a receptor binding ligand. In another embodiment the polypeptide sequence of interest is an antibody. In another embodiment the polypeptide sequence of interest is an antibody fragment. In another embodiment the polypeptide sequence of interest is a peptide or a protein including any modified form.

0146. In another embodiment, the peptide of the invention comprises a peptide of interest having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus. In another embodiment, the peptide of interest having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus comprises a protein selected from the following list: insulin, Albutein/albumin, Activase®, Alteplase/τPA, adenosine deaminase, immune globulin, glucocerebrosidase, Leukine-sargramostim/GM-CSF, G-CSF, Venoglobulin-S/IGG, Proleukin aldesleukin, DNase, Factor VIII, Helixate, L-asparaginase, WinRho SDF Rh 1, Retavase relaplace/τPA, Factor IX, FSH, globulin, fibrin, interleukin-11, bcaplermin/PGDF, lepirudin/herudin, TNF, Thymoglobin, Factor VIIa, interferon alpha-2a, interferon alpha-2b, interferon alpha-N3, interferon beta-1b, interferon gamma-1b, Interleukin-2, IFG, or monoclonal antibodies.

0147. In another embodiment, the methods of the present invention provide insulin having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of diabetes.

0148. In another embodiment, the methods of the present invention provide albumin having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of hypovolemic shock, hemodialysis or cardiopulmonary bypass.

0149. In another embodiment, the methods of the present invention provide Activase-alitplase/τPA having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of acute myocardial infarction, acute massive pulmonary embolism, or ischemic stroke.

0150. In another embodiment, the methods of the present invention provide adenosine deaminase having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of severe combined immunodeficiency disease.

0151. In another embodiment, the methods of the present invention provide immune globulin having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of transplant recipients.

0152. In another embodiment, the methods of the present invention provide a CMV immune globulin. In another embodiment, the methods of the present invention provide glucocerebrosidase having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Gaucher disease.

0153. In another embodiment, the methods of the present invention provide Leukine-sargramostim/GM-CSF having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of acute myocardial infarction.

0154. In another embodiment, the methods of the present invention provide a CMV immune globulin having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Neutropenia. In another embodiment, the methods of the present invention provide Venoglobulin-S/IGG having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Immunodeficiency diseases.

0155. In another embodiment, the methods of the present invention provide Proleukin (aldesleukin) having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of renal carcinoma or metastatic melanoma.

0156. In another embodiment, the methods of the present invention provide DNase having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Cystic fibrosis.

0157. In another embodiment, the methods of the present invention provide Factor VIII having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Hemophilia A.

0158. In another embodiment, the methods of the present invention provide Helixate having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Hemophilia A.

0159. In another embodiment, the methods of the present invention provide L-asparaginase having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of acute lymphoblastic leukemia.

0160. In another embodiment, the methods of the present invention provide WinRho SDF Rh IgG having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of Rh immunization and immune thromboeytopenic purpura.

0161. In another embodiment, the methods of the present invention provide Retavase relaplace/τPA having additionally at least one CTP amino acid peptide on the N-terminus and one CTP amino acid peptide on the C-terminus for the treatment of acute myocardial infarction.
In another embodiment, the methods of the present invention provide Factor IX having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of Hemophilia B.

In another embodiment, the methods of the present invention provide FSH having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for stimulation of ovulation during assisted reproduction.

In another embodiment, the methods of the present invention provide globulin having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the prevention of respiratory syncytial virus disease.

In another embodiment, the methods of the present invention provide fibrin having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for wound management and hemostasis. In another embodiment, the methods of the present invention provide interleukin-11 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for chemotherapy-induced thrombocytopenia.

In another embodiment, the methods of the present invention provide becaplermin/PDGF having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of diabetic foot ulcers.

In another embodiment, the methods of the present invention provide lepirudin/herudin having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for anticoagulation in heparin-induced thrombocytopenia.

In another embodiment, the methods of the present invention provide soluble TNF having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of rheumatoid arthritis.

In another embodiment, the methods of the present invention provide Thymoglobulin having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of organ transplant rejection disease.

In another embodiment, the methods of the present invention provide Factor VIIIa having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of hemophilia.

In another embodiment, the methods of the present invention provide interferon alpha-2a having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of hairy cell leukemia and AIDS-related Kaposis’s sarcoma.

In another embodiment, the methods of the present invention provide interferon alpha-2b having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of hairy cell leukemia, genital warts, AIDS-related Kaposis’s sarcoma, Hepatitis C, Hepatitis B, malignant melanoma, and follicular lymphoma.

In another embodiment, the methods of the present invention provide interferon alfa-N3 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of genital warts.

In another embodiment, the methods of the present invention provide interferon gamma-1b having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of chronic granulomatous disease.

In another embodiment, the methods of the present invention provide interferon alfa n-1 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of Hepatitis C infection.

In another embodiment, the methods of the present invention provide Interleukin-2 having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of renal carcinoma and metastatic melanoma.

In another embodiment, the methods of the present invention provide interferon beta-1b having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for the treatment of multiple sclerosis.

In another embodiment, the methods of the present invention provide hGH having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for organ transplant.

In another embodiment, the methods of the present invention provide a Reo monoclonal antibody having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for prevention of complications from coronary intervention and angioplasty.

In another embodiment, the methods of the present invention provide a monoclonal antibody having additionally at least one CTP amino acid peptide on the N-terminus and at least one CTP amino acid peptide on the C-terminus for treating colorectal cancer, Non-Hodgkin’s lymphoma, kidney transplant rejection, metastatic breast cancer, or the prevention of respiratory syncytial virus disease.

In one embodiment, the invention is employed in veterinary medicine. In one embodiment, the present invention provides treatment of domesticated mammals which are maintained as human companions (e.g., dogs, cats, horses), which have significant commercial value (e.g., dairy cows, beef cattle, sporting animals), which have significant scientific value (e.g., captive or free specimens of endangered species), or which otherwise have value.

In one embodiment, polypeptides, antibodies, or polynucleotides of the present invention are administered to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human. In one embodiment, the recited applications have uses in a wide variety of hosts. In some embodiments, such hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, or non-human primate.
In one embodiment, farm animals are treated by the methods of the present invention. In one embodiment, farm animals include pigs, cattle, dairy cows, horses, goats, sheep, chickens, turkeys, geese, ducks and related species. In one embodiment, laboratory animals are treated by the methods of the present invention. In one embodiment, laboratory animals include rats, mice, guinea pigs, rabbits, goats, monkeys, dogs, cats and others. In one embodiment, zoo animals are treated by the methods of the present invention. In one embodiment, zoo animals include all vertebrate animals kept in zoos. In one embodiment, aquatic animals are treated by the methods of the present invention. In one embodiment, aquatic animals include fish, eels, turtles, seals, penguins, sharks, whales, and related species. In one embodiment, domesticated animals are treated by the methods of the present invention. In one embodiment, domesticated animals include any pet, such as cats and dogs, or animal that is kept by humans, e.g., horses, cattle, pigs, goats, rabbits, chickens, turkeys, geese, ducks and the like.

According to the present invention the term pigs includes pigs, piglets, hogs, gilts, barrows, boars and sows. In another embodiment, "cattle" refers to calves, cows, dairy cows, heifers, steers and bulls.

In one embodiment, bovine growth hormone is utilized by the methods of the present invention. In one embodiment, bovine growth hormone is utilized by the methods of the present invention. In one embodiment, the artificial bovine growth hormone has a sequence set forth in NCBI sequence ID number AAB72262. In another embodiment, the artificial bovine growth hormone is any other artificial bovine growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, sheep growth hormone is utilized by the methods of the present invention. In one embodiment, sheep growth hormone has a sequence set forth in NCBI sequence ID number NP_001009315. In another embodiment, the sheep growth hormone is any other sheep growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, horse growth hormone is utilized by the methods of the present invention. In one embodiment, horse growth hormone has a sequence set forth in NCBI sequence ID number AAB21027. In another embodiment, the horse growth hormone is any other horse growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, chicken growth hormone is utilized by the methods of the present invention. In one embodiment, chicken growth hormone has a sequence set forth in NCBI sequence ID number CAA3561. In another embodiment, the chicken growth hormone is any other chicken growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, murine growth hormone is utilized by the methods of the present invention. In one embodiment, murine growth hormone has a sequence set forth in NCBI sequence ID number NP_032143. In another embodiment, the murine growth hormone is any other murine growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, tilapia growth hormone is utilized by the methods of the present invention. In one embodiment, the tilapia growth hormone has a sequence set forth in NCBI sequence ID number CAA00818. In another embodiment, the tilapia growth hormone is any other tilapia growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, bovine EPO is utilized by the methods of the present invention. In one embodiment, bovine EPO is any other bovine EPO known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, pig EPO is utilized by the methods of the present invention. In one embodiment, pig EPO has a sequence set forth in NCBI sequence ID number NP_000101908. In another embodiment, the pig EPO is any other pig EPO known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, sheep EPO is utilized by the methods of the present invention. In one embodiment, sheep growth hormone has a sequence set forth in NCBI sequence ID number NP_000101908. In another embodiment, the sheep growth hormone is any other sheep growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, murine EPO is utilized by the methods of the present invention. In one embodiment, the murine growth hormone has a sequence set forth in NCBI sequence ID number CAA72707. In another embodiment, the murine growth hormone is any other murine growth hormone known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, bovine GLP-1 is utilized by the methods of the present invention. In one embodiment, bovine GLP-1 has a sequence set forth in NCBI sequence ID number P01272. In another embodiment, the bovine GLP-1 is any other bovine GLP-1 known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, sheep GLP-1 is utilized by the methods of the present invention. In one embodiment, sheep GLP-1 has a sequence set forth in NCBI sequence ID number Q8M225. In another embodiment, the sheep GLP-1 is any other sheep GLP-1 known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, pig GLP-1 is utilized by the methods of the present invention. In one embodiment, chicken GLP-1 has a sequence set forth in NCBI sequence ID number P01274. In another embodiment, the chicken GLP-1 is any other chicken GLP-1 known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, murine GLP-1 is utilized by the methods of the present invention. In one embodiment, the murine GLP-1 has a sequence set forth in NCBI sequence ID number NP_032127. In another embodiment, the murine GLP-1 is any other murine GLP-1 known in the art. Each possibility represents a separate embodiment of the present invention.

In one embodiment, bovine interferon alpha is utilized by the methods of the present invention. In one embodiment, bovine interferon alpha has a sequence set forth in NCBI sequence ID number ABD57311. In another embodiment, the bovine interferon alpha is any other bovine inter-
feron alpha known in the art. Each possibility represents a separate embodiment of the present invention.

[0201] In one embodiment, sheep interferon alpha is utilized by the methods of the present invention. In one embodiment, sheep interferon alpha has a sequence set forth in NCBI sequence ID number CA441790. In another embodiment, the sheep interferon alpha is any other sheep interferon alpha known in the art. Each possibility represents a separate embodiment of the present invention.

[0202] In one embodiment, pig interferon alpha is utilized by the methods of the present invention. In one embodiment, chicken interferon alpha has a sequence set forth in NCBI sequence ID number AAP92118. In another embodiment, the pig interferon alpha is any other pig interferon alpha known in the art. Each possibility represents a separate embodiment of the present invention.

[0203] In one embodiment, murine interferon alpha is utilized by the methods of the present invention. In one embodiment, the murine interferon alpha has a sequence set forth in NCBI sequence ID number AAA37886. In another embodiment, the murine interferon alpha is any other murine interferon alpha known in the art. Each possibility represents a separate embodiment of the present invention.

[0204] In some embodiments, the CTP sequences modification is advantageous in permitting lower dosages to be used.

[0205] In some embodiments, “polypeptide” as used herein encompasses native polypeptides (either degradation products, synthetically synthesized polypeptides or recombinant polypeptides) and peptidomimetics (typically, synthetic polypeptides), as well as peptoids and semipeptoids which are polypeptide analogs, which have, in some embodiments, modifications rendering the polypeptides even more stable while in a body or more capable of penetrating into cells.

[0206] In some embodiments, modifications include, but are not limited to N terminus modification, C terminus modification, polypeptide bond modification, including, but not limited to, CH2—NH, CH2—S, CH2—S=O, O—C—NH, CH2—O, CH2—S=O, S—C—NH, CH═CH or C═CH, backbone modifications, and residue modification. Methods for preparing peptidomimetic compounds are well known in the art and are specified, for example, in Quantitative Drug Design, C. A. Ramsden Gd., Chapter 17.2, F. Cholpin Pergamon Press (1992), which is incorporated by reference as if fully set forth herein. Further details in this respect are provided hereinbelow.

[0207] In some embodiments, polypeptide bonds (—CO—NH—) within the polypeptide are substituted. In some embodiments, the polypeptide bonds are substituted by N-methylated bonds (—N(CH3)—CO—). In some embodiments, the polypeptide bonds are substituted by ester bonds (—C(R)H—C—O—O—C(R)—N—). In some embodiments, the polypeptide bonds are substituted by ketomethylene bonds (—CO—CH2—). In some embodiments, the polypeptide bonds are substituted by α-aza bonds (—NH—N(R)—CO—), wherein R is any alkyl, e.g., methyl, carba bonds (—CH2—NH—). In some embodiments, the polypeptide bonds are substituted by hydroxylethylene bonds (—CH(OH)—CH2—). In some embodiments, the polypeptide bonds are substituted by thiouamide bonds (—CS—NH—). In some embodiments, the polypeptide bonds are substituted by olefinic double bonds (—CH═CH—). In some embodiments, the polypeptide bonds are substituted by retro amide bonds (—N═CH—CO—). In some embodiments, the polypeptide bonds are substituted by polypeptide derivatives (—N(R)—CH2—CO—), wherein R is the “normal” side chain, naturally presented on the carbon atom. In some embodiments, these modifications occur at any of the bonds along the polypeptide chain and even at several (2–3 bonds) at the same time.

[0208] In some embodiments, natural aromatic amino acids of the polypeptide such as Trp, Tyr and Phe, are substituted for synthetic non-natural acid such as Phenylglycine, TIC, naphthylalanine (Nol), ring-methylated derivatives of Phe, halogenated derivatives of Phe or o-methyl-Tyr. In some embodiments, the polypeptides of the present invention include one or more modified amino acid or one or more non-amino acid monomers (e.g., fatty acid, complex carbohydrates etc).

[0209] In one embodiment, “amino acid” or “amino acid” is understood to include the 20 naturally occurring amino acid; those amino acid often modified post-translationally in vivo, including, for example, hydroxyproline, phosphoserine and phosphothreonine; and other unusual amino acid including, but not limited to, 2-aminoacidic acid, hydroxylysine, isodesmosine, nor-valine, nor-leucine and ornithine. In one embodiment, “amino acid” includes both D- and L-amino acid.

[0210] In some embodiments, the polypeptides of the present invention are utilized in therapeutics which requires the polypeptides to be in a soluble form. In some embodiments, the polypeptides of the present invention include one or more non-natural or natural polar amino acid, including but not limited to serine and threonine which are capable of increasing polypeptide solubility due to their hydroxyl-containing side chain.

[0211] In some embodiments, the polypeptides of the present invention are utilized in a linear form, although it will be appreciated by one skilled in the art that in cases where cyclization does not severely interfere with polypeptide characteristics, cyclic forms of the polypeptide can also be utilized.

[0212] In some embodiments, the polypeptides of the present invention are biochemically synthesized such as by using standard solid phase techniques. In some embodiments, these biochemical methods include exclusive solid phase synthesis, partial solid phase synthesis, fragment condensation, or classical solution synthesis. In some embodiments, these methods are used when the polypeptide is relatively short (about 5-15 kDa) and/or when it cannot be produced by recombinant techniques (i.e., not encoded by a nucleic acid sequence) and therefore involves different chemistry.

[0213] In some embodiments, solid phase polypeptide synthesis procedures are well known to one skilled in the art and further described by John Morrow Stewart and Janis Dillaha Young, Solid Phase Polypeptide Syntheses (2nd Ed., Pierce Chemical Company, 1984). In some embodiments, synthetic polypeptides are purified by preparative high performance liquid chromatography [Creighton T. (1983) Proteins, structures and molecular principles. WH Freeman and Co, N.Y.] and the composition of which can be confirmed via amino acid sequencing by methods known to one skilled in the art.

[0214] In some embodiments, recombinant protein techniques are used to generate the polypeptides of the present invention. In some embodiments, recombinant protein techniques are used for generation of relatively long polypeptides (e.g., longer than 18-25 amino acid). In some embodiments, recombinant protein techniques are used for the generation of large amounts of the polypeptide of the present invention. In some embodiments, recombinant techniques are described by
In one embodiment, a polypeptide of the present invention is synthesized using a polynucleotide encoding a polypeptide of the present invention. In some embodiments, the polynucleotide encoding a polypeptide of the present invention is ligated into an expression vector, comprising a transcriptional control of a cis-regulatory sequence (e.g., promoter sequence). In some embodiments, the cis-regulatory sequence is suitable for directing constitutive expression of the polypeptide of the present invention. In some embodiments, the cis-regulatory sequence is suitable for directing tissue specific expression of the polypeptide of the present invention. In some embodiments, the cis-regulatory sequence is suitable for directing inducible expression of the polypeptide of the present invention.

In some embodiments, polynucleotides which express the polypeptides of the present invention are as set forth in SEQ ID Nos: 20, 21, 44, 45 and 46.

In one embodiment, the phrase “a polynucleotide” refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).

In one embodiment, “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. In one embodiment, the sequence can be subsequently amplified in vivo or in vitro using a DNA polymerase.

In one embodiment, “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.

In one embodiment, “composite polynucleotide sequence” refers to a sequence, which is at least partially complementary and at least partially genomic. In one embodiment, a composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing there between. In one embodiment, the intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. In one embodiment, intronic sequences include cis acting expression regulatory elements.

In one embodiment, the polynucleotides of the present invention further comprise a signal sequence encoding a signal peptide for the secretion of the polypeptides of the present invention. In some embodiments, signal sequences include, but are not limited to the endogenous signal sequence for EPO as set forth in SEQ ID NO: 19 or the endogenous signal sequence for IFN-β1 as set forth in SEQ ID NO: 26. In another embodiment, the signal sequence is N-terminal to the CTP sequence that is in turn N-terminal to the polypeptide sequence of interest; e.g., the sequence is (a) signal sequence—(b) CTP—(c) sequence of interest—(d) optionally 1 or more additional CTP sequences. In another embodiment, 1 or more CTP sequences is inserted between the signal sequence of a polypeptide sequence of interest and the polypeptide sequence of interest itself, thus interrupting the wild-type sequence of interest. Each possibility represents a separate embodiment of the present invention.

In another embodiment, the growth hormone further comprises a signal peptide. In some embodiments, signal sequences include, but are not limited to the endogenous signal sequence. In some embodiments, signal sequences include, but are not limited to the endogenous signal sequence of any known growth hormone or growth hormones. In another embodiment, the polypeptides and methods of the present invention provide a growth hormone having additionally a signal peptide of comprising the following amino acid sequence:

```
MATGSRSTLLAFGOLICPLWHQEGSA
```
promoters, enhancer) and transcription and translation terminators (e.g., polyadenylation signals).

[0227] In one embodiment, a variety of prokaryotic or eukaryotic cells can be used as host-expression systems to express the polypeptides of the present invention. In some embodiments, these include, but are not limited to, microorganisms, such as bacteria transformed with a recombinant bacteriophage DNA, plasmid DNA or cDNA expression vector containing the polypeptide coding sequence; yeast transformed with recombinant yeast expression vectors containing the polypeptide coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors, such as Ti plasmid, containing the polypeptide coding sequence.

[0228] In some embodiments, non-bacterial expression systems are used (e.g. mammalian expression systems such as CHO cells) to express the polypeptide of the present invention. In one embodiment, the expression vector used to express polynucleotides of the present invention in mammalian cells is pCD-DHFR vector comprising a CMV promoter and a neomycin resistance gene. Construction of the pCl-Dhfr vector is described, according to one embodiment, in Example 1.

[0229] In some embodiments, in bacterial systems of the present invention, a number of expression vectors can be advantageously selected depending upon the use intended for the polypeptide expressed. In one embodiment, large quantities of polypeptide are desired. In one embodiment, vectors that direct the expression of high levels of the protein product, possibly as a fusion with a hydrophobic signal sequence, which directs the expressed product into the periplasm of the bacteria or the culture medium where the protein product is readily purified are desired. In one embodiment, certain fusion protein engineered with a specific cleavage site are used to aid in recovery of the polypeptide. In one embodiment, vectors adaptable to such manipulation include, but are not limited to, the pET series of E. coli expression vectors [Studier et al., Methods in Enzymol. 185:60-89 (1990)].

[0230] In one embodiment, yeast expression systems are used. In one embodiment, a number of vectors containing constitutive or inducible promoters can be used in yeast as disclosed in U.S. Pat. Nos. 5,932,447. In another embodiment, vectors which promote integration of foreign DNA sequences into the yeast chromosomes are used.

[0231] In one embodiment, the expression vector of the present invention can further include additional polynucleotide sequences that allow, for example, the translation of several proteins from a single mRNA such as an internal ribosome entry site (IRES) and sequences for genomic integration of the promoter-chimeric polypeptide.

[0232] In some embodiments, mammalian expression vectors include, but are not limited to, pcDNA3, pcDNA3.1 (+/-), pG3, pZeoSV2 (+/-), pSecTag2, pDisplay, pEF/myc/cyto, pCMV/myc/cyto, pCR3.1, pSinRep5, DH126, DH12B, pNMT1, pNMT141, pNMT181, which are available from Invitrogen, pCI which is available from Promega, pMbac, pPBac, p8K-RSV and p8K-CMV which are available from Stratagene, pIRES which is available from Clontech, and their derivatives.

[0233] In some embodiments, expression vectors containing regulatory elements from eukaryotic viruses such as retroviruses are used by the present invention. SV-40 vectors include pSVT7 and pMT2. In some embodiments, vectors derived from bovine papilloma virus include p8V-MTHA, and vectors derived from Epstein Barr virus include pIEBO, and pO5. Other exemplary vectors include pMSG, pAV009/ A*, pMTO10/A*, pMAAMneo-5, baculovirus pDSVE, and any other vector allowing 20 expression of proteins under the direction of the SV-40 early promoter, SV-40 later promoter, metallotheonine promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.

[0234] In some embodiments, recombinant viral vectors are useful for in vivo expression of the polypeptides of the present invention since they offer advantages such as lateral infection and targeting specificity. In one embodiment, lateral infection is inherent in the life cycle of, for example, the virus and is the process by which a single infected cell produces multiple progeny virions that bud off and infect neighboring cells. In one embodiment, the result is that a large area becomes rapidly infected, most of which was not initially infected by the original viral particles. In one embodiment, viral vectors are produced that are unable to spread laterally. In one embodiment, this characteristic can be useful if the desired purpose is to introduce a specified gene into only a localized number of target cells.

[0236] In some embodiments, introduction of nucleic acid by viral infection offers several advantages over other methods such as lipofection and electroporation, since higher transfection efficiency can be obtained due to the infectious nature of viruses.

[0237] In one embodiment, it will be appreciated that the polypeptides of the present invention can also be expressed from a nucleic acid construct administered to the individual employing any suitable mode of administration, described hereinabove (i.e., in vivo gene therapy). In one embodiment, the nucleic acid construct is introduced into a suitable cell via an appropriate gene delivery vehicle/method (transfection, transduction, homologous recombination, etc.) and an expression system as needed and then the modified cells are expanded in culture and returned to the individual (i.e., ex vivo gene therapy).

[0238] In one embodiment, in vivo gene therapy using EPO has been attempted in animal models such as rodents [Bohi et al., Blood. 2000; 95:2793-2798], primates [Gao et al., Blood, 2004, Volume 103, Number 9] and has proven successful in human clinical trials for patients with chronic renal failure [Lipkin et al Blood 2005, 106, Number 7].
In one embodiment, plant expression vectors are used. In one embodiment, the expression of a polypeptide coding sequence is driven by a number of promoters. In some embodiments, viral promoters such as the 35S RNA and 19S RNA promoters of CaMV [Brison et al., Nature 310:511-514 (1984)], or the coat protein promoter to TMV [Takamatsu et al., EMBO J. 6:307-311 (1987)] are used. In another embodiment, plant promoters are used such as, for example, the small subunit of RUBISCO [Coruzzi et al., EMBO J. 3:1671-1680 (1984); and Broglie et al., Science 224:838-843 (1984)] or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B [Gurley et al., Mol. Cell. Biol. 6:559-565 (1986)]. In one embodiment, constructs are introduced into plant cells using Ti plasmid, Ri plasmid, plant viral vectors, direct DNA transformation, microinjection, electroporation and other techniques well known to the skilled artisan. See, for example, Weissbach & Weissbach [Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp 421-463 (1985)]. Other expression systems such as insects and mammalian host cell systems, which are well known in the art, can also be used by the present invention.

It will be appreciated that other than containing the necessary elements for the transcription and translation of the inserted coding sequence (encoding the polypeptide), the expression construct of the present invention can also include sequences engineered to optimize stability, production, purification, yield or activity of the expressed polypeptide.

In some embodiments, transformed cells are cultured under effective conditions, which allow for the expression of high amounts of recombinant polypeptide. In some embodiments, effective culture conditions include, but are not limited to, effective media, bioreactor temperature, pH and oxygen conditions that permit protein production. In one embodiment, an effective medium refers to any medium in which a cell is cultured to produce the recombinant polypeptide of the present invention. In some embodiments, a medium typically includes an aqueous solution having assimilable carbon, nitrogen and phosphate sources, and appropriate salts, minerals, metals and other nutrients, such as vitamins. In some embodiments, cells of the present invention can be cultured in conventional fermentation bioreactors, shake flasks, test tubes, microtiter dishes and petri plates. In some embodiments, culturing is carried out at a temperature, pH and oxygen content appropriate for a recombinant cell. In some embodiments, culturing conditions are within the expertise of one of ordinary skill in the art.

In some embodiments, depending on the vector and host system used for production, resultant polypeptides of the present invention either remain within the recombinant cell, secreted into the fermentation medium, secreted into a space between two cellular membranes, such as the periplasmic space in E. coli; or retained on the outer surface of a cell or viral membrane.

In one embodiment, following a predetermine time in culture, recovery of the recombinant polypeptide is effected.

In one embodiment, the phrase “recovering the recombinant polypeptide” used herein refers to collecting the whole fermentation medium containing the polypeptide and need not imply additional steps of separation or purification.

In one embodiment, polypeptides of the present invention are purified using a variety of standard protein purification techniques, such as, but not limited to, affinity chromatography, ion exchange chromatography, filtration, electrophoresis, hydrophobic interaction chromatography, gel filtration chromatography, reverse phase chromatography, concanavalin A chromatography, chromatofocusing and differential solubilization.

In one embodiment, to facilitate recovery, the expressed coding sequence can be engineered to encode the polypeptide of the present invention and fused cleavable moiety. In one embodiment, a fusion protein can be designed so that the polypeptide can be readily isolated by affinity chromatography; e.g., by immobilization on a column specific for the cleavable moiety. In one embodiment, a cleavage site is engineered between the polypeptide and the cleavable moiety and the polypeptide can be released from the chromatographic column by treatment with an appropriate enzyme or agent that specifically cleaves the fusion protein at this site [e.g., see Booth et al., Immunol. Lett. 19:65-70 (1988); and Gardella et al., J. Biol. Chem. 265:15854-15859 (1990)].

In one embodiment, the polypeptide of the present invention is retrieved in “substantially pure” form.

In one embodiment, the phrase “substantially pure” refers to a purity that allows for the effective use of the protein in the applications described herein.

In one embodiment, the polypeptide of the present invention can also be synthesized using in vitro expression systems. In one embodiment, in vitro synthesis methods are well known in the art and the components of the system are commercially available.

In one embodiment, production of CTP-EPO-CTP polypeptides using recombinant DNA technology is illustrated in Example 1.

In some embodiments, the recombinant polypeptides are synthesized and purified; their therapeutic efficacy can be assayed in vivo or in vitro. In one embodiment, the binding activities of the recombinant EPO polypeptides of the present invention can be ascertained using various assays as described in Examples 2-6 and 8-9. In one embodiment, in vitro binding activity is ascertained by measuring the ability of the polypeptide to stimulate proliferation of TF-1 cells. In one embodiment, in vivo activity is deduced by analyzing hematocrit levels (FIGS. 3-5) and/or as a percentage of reticulocytes.

In one embodiment, the EPO polypeptides of the present invention can be used to treat a subject, with a variety of erythropoietin-associated conditions. In some embodiments, a subject is a human subject.
[0254] In some embodiment, the phrase “erythropoietin-associated conditions” refers to any condition associated with below normal, abnormal, or inappropriate modulation of erythropoietin. In some embodiment, levels of erythropoietin associated with such conditions are determined by any measure accepted and utilized by those of skill in the art. In some embodiment, erythropoietin-associated conditions typically include anemic conditions.

[0255] In some embodiment, “anemic conditions” refers to any condition, disease, or disorder associated with anemia. In some embodiment, anemic conditions include, but are not limited to, aplastic anemia, autoimmune hemolytic anemia, bone marrow transplantation, Churg-Strauss syndrome, Diamond Blackfan anemia, Fanconi’s anemia, Felty syndrome, graft versus host disease, hematopoietic stem cell transplantation, hemolytic uremic syndrome, myelodysplastic syndrome, nocturnal paroxysmal hemoglobinuria, osteomyelofibrosis, pancytopenia, pure red-cell aplasia, purpura Schoenlein-Henoch, sideroblastic anemia, refractory anemia with excess of blasts, rheumatoid arthritis, Shwachman syndrome, sickle cell disease, thalassemia major, thalassemia minor, thrombocytopenic purpura, etc.

[0256] In one embodiment, production of GH modified by CTPs using recombinant DNA technology is performed. [0257] In some embodiments, the recombinant polypeptides are synthesized and purified; their therapeutic efficacy can be assayed either in vivo or in vitro. In one embodiment, the binding activities of the recombinant GH modified by CTPs of the present invention can be ascertained using various assays.

[0258] In one embodiment, the present invention comprises CTP-GH-CTP polypeptides. In one embodiment, recombinant DNA technology methods are used for the production of CTP-GH-CTP polypeptides as illustrated in Example 7. In one embodiment, the therapeutic efficacy of the CTP-GH-CTP polypeptides of the present invention is assayed either in vivo. In one embodiment, the therapeutic efficacy of the CTP-GH-CTP polypeptides of the present invention is assayed either in vitro. In one embodiment, the binding activities of the recombinant GH polypeptides of the present invention are measured using Nb2 (a prolactin-dependent rat lymphoma cell line (ECACC Cell Bank)) or a FCD-P1 murine cell line, previously transfected with human growth hormone receptor. In one embodiment, binding of GH to these receptors induces cell proliferation which in one embodiment is measured by the levels of MITT cellular stain as a function of GH activity. In one embodiment, in vivo activity is deduced by measuring weight gain over time in treated growth hormone deficient animals.

[0259] In one embodiment, the present invention provides a method of inducing growth or weight gain in a subject, comprising administering to the subject a therapeutically effective amount of a polypeptide comprising a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to an amino terminal of said growth hormone, and two chorionic gonadotrophin CTPs attached to a carboxy terminal of the growth hormone, thereby inducing growth or weight gain in a subject.

[0260] In another embodiment, the present invention provides a method of inducing growth or weight gain in a non-human subject, comprising the step of administering to said non-human subject a therapeutically effective amount of an expression vector comprising a polynucleotide consisting of a nucleic acid encoding a polypeptide, said polypeptide consisting of a non-human growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said non-human growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said non-human growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby inducing growth or weight gain in a non-human subject.

[0261] In another embodiment, the present invention provides a method of inducing weight loss or decreasing body fat in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide comprising a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, thereby inducing weight loss or decreasing body fat in said subject. In one embodiment, said subject is obese. In another embodiment, said subject is overweight.

[0262] In another embodiment, the present invention provides a method of decreasing body fat in a non-human subject, comprising administering to said subject a therapeutically effective amount of an expression vector comprising a polynucleotide, said polynucleotide consisting of a non-human growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said non-human growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said non-human growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby inducing growth or weight gain in a non-human subject.

[0263] In another embodiment, the present invention provides a method of decreasing fat deposits in a subject. In another embodiment, the present invention provides a method of increasing muscle mass in a subject. In another embodiment, the present invention provides a method of promoting muscle growth in a subject. In another embodiment, the present invention provides a method of increasing muscle to fat ratio. In another embodiment, the present invention provides a method of decreasing body mass index (BMI) or Quetelet index.

[0264] In another embodiment, growth is measured by weight gain. In another embodiment, growth is measured by height gain. In another embodiment, growth is measured by weight gain. In another embodiment, growth is measured by muscle mass gain. In another embodiment, growth is measured by bone mass gain. In another embodiment, growth is measured by weight gain. In another embodiment, growth is measured by muscle mass gain. In another embodiment, the weight gain is due to bone and/or muscle mass gain. In another embodiment, growth is measured by any known measure known to one of skill in the art.

[0265] In some embodiment, human growth hormone polypeptides of the present invention can be used to treat a subject, with conditions related to growth and weight, such as a growth deficiency disorder, AIDS wasting, aging, impaired immune function of HIV-infected subjects, a catabolic illness, surgical recovery, a congestive cardiomyopathy, liver transplantation, liver regeneration after hepatectomy, chronic renal failure, renal osteodystrophy, osteoporosis, achondroplasia/hypochondroplasia, skeletal dysplasia, a chronic inflammatory or nutritional disorder such as Crohn’s disease,
short bowel syndrome, juvenile chronic arthritis, cystic fibrosis, male infertility, X-linked hypophosphatemic rickets, Down’s syndrome, Spina bifida, Noonan Syndrome, obesity, impaired muscle strength and fibromyalgia. In some embodiments, interferon polypeptides of the present invention are used to treat a subject, with a variety of conditions such as hairy cell leukemia (HCL), Kaposis sarcoma (KS), chronic myelogenous leukemia (CML), chronic Hepatitis C (CHC), coidylomata acuminata (CA), chronic Hepatitis B, malignant melanoma, follicular non-Hodgkin’s lymphoma, multiple sclerosis, chronic granulomatous disease, Mycobacterium avium complex (MAC), pulmonary fibrosis and osteoporosis.

[0266] In some embodiments, Glucagon-like peptide-1 (GLP-1) polypeptides of the present invention are used to treat a subject with non-insulin dependent diabetes, obesity, stroke, myocardial infarction, stroke, stress-induced hyperglycemia, or irritable bowel syndrome.

[0267] In one embodiment, the polypeptides of the present invention can be provided to the individual per se. In one embodiment, the polypeptides of the present invention can be provided to the individual as part of a pharmaceutical composition where it is mixed with a pharmaceutically acceptable carrier.

[0268] In one embodiment, a “pharmaceutical composition” refers to a preparation of one or more of the active ingredients described herein with other chemical components such as physiologically suitable carriers and excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism.

[0269] In one embodiment, “active ingredient” refers to the polypeptide sequence of interest, which is accountable for the biological effect.

[0270] In some embodiments, any of the compositions of this invention will comprise at least two CTP sequences bound to a protein of interest, in any form. In one embodiment, the present invention provides combined preparations. In one embodiment, “a combined preparation” defines especially a “kit of parts” in the sense that the combination partners as defined above can be dosed independently or by use of different fixed combinations with distinguished amounts of the combination partners i.e., simultaneously, concurrently, separately or sequentially. In some embodiments, the parts of the kit of parts can then, e.g., be administered simultaneously or chronologically staggered, that is at different time points and with equal or different time intervals for any part of the kit of parts. The ratio of the total amounts of the combination partners, in some embodiments, can be administered in the combined preparation. In one embodiment, the combined preparation can be varied, e.g., in order to cope with the needs of a patient subpopulation to be treated or the needs of the single patient which different needs can be due to a particular disease, severity of a disease, age, sex, or body weight as can be readily made by a person skilled in the art.

[0271] In one embodiment, the phrases “physiologically acceptable carrier” and “pharmaceutically acceptable carrier” which can be used interchangeably refer to a carrier or a diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered compound. An adjuvant is included under these phrases. In one embodiment, one of the ingredients included in the pharmaceutically acceptable carrier can be for example polyethylene glycol (PEG), a biocompatible polymer with a wide range of solubility in both organic and aqueous media (Mutter et al. (1979)).

[0272] In one embodiment, “excipient” refers to an inert substance added to a pharmaceutical composition to further facilitate administration of an active ingredient. In one embodiment, excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.

[0274] In one embodiment, suitable routes of administration, for example, include oral, rectal, transmucosal, transnasal, intestinal or parenteral delivery, including intramuscular, subcutaneous and intramuscular injections as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intracranial injections.

[0275] In one embodiment, the preparation is administered in a local rather than systemic manner, for example, via injection of the preparation directly into a specific region of a patient’s body.

[0276] In another embodiment, polypeptides comprising GH modified by CTPs of the present invention are administered in a dose of 1-90 micrograms in 0.1-5 ml solution. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-50 micrograms in 0.1-5 ml solution. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-25 micrograms in 0.1-5 ml solution. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 50-90 micrograms in 0.1-5 ml solution. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 10-50 micrograms in 0.1-5 ml solution.

[0277] In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-90 micrograms in 0.1-5 ml solution by intramuscular (IM) injection, subcutaneous (SC) injection, or intravenous (IV) injection once a week. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-90 micrograms in 0.1-5 ml solution by intramuscular (IM) injection, subcutaneous (SC) injection, or intravenous (IV) injection twice a week. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-90 micrograms in 0.1-5 ml solution by intramuscular (IM) injection, subcutaneous (SC) injection, or intravenous (IV) injection three times a week. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-90 micrograms in 0.1-5 ml solution by intramuscular (IM) injection, subcutaneous (SC) injection, or intravenous (IV) injection once every 17 days. In another embodiment, polypeptides comprising GH modified by CTPs are administered in a dose of 1-90 micrograms in 0.1-5 ml solution by intramuscular (IM) injection, subcutaneous (SC) injection, or intravenous (IV) injection once every 19 days weeks.

[0278] Various embodiments of dosage ranges are contemplated by this invention. The dosage of the polypeptide of the present invention, in one embodiment, is in the range of
0.05-80 mg/day. In another embodiment, the dosage is in the range of 0.05-50 mg/day. In another embodiment, the dosage is in the range of 0.1-20 mg/day. In another embodiment, the dosage is in the range of 0.1-10 mg/day. In another embodiment, the dosage is in the range of 0.5-5 mg/day. In another embodiment, the dosage is in the range of 0.5-50 mg/day. In another embodiment, the dosage is in the range of 5-80 mg/day. In another embodiment, the dosage is in the range of 35-65 mg/day. In another embodiment, the dosage is in the range of 35-65 mg/day. In another embodiment, the dosage is in the range of 20-60 mg/day. In another embodiment, the dosage is in the range of 40-60 mg/day. In another embodiment, the dosage is in the range of 45-60 mg/day. In another embodiment, the dosage is in the range of 60-120 mg/day. In another embodiment, the dosage is in the range of 120-240 mg/day. In another embodiment, the dosage is in the range of 40-60 mg/day. In another embodiment, the dosage is in the range of 240-400 mg/day. In another embodiment, the dosage is in the range of 45-60 mg/day. In another embodiment, the dosage is in the range of 15-25 mg/day. In another embodiment, the dosage is in the range of 5-10 mg/day. In another embodiment, the dosage is in the range of 55-65 mg/day.

In another embodiment, the dosage is 20 mg/day. In another embodiment, the dosage is 30 mg/day. In another embodiment, the dosage is 40 mg/day. In another embodiment, the dosage is 50 mg/day. In another embodiment, the dosage is 60 mg/day. In another embodiment, the dosage is 70 mg/day. In another embodiment, the dosage is 80 mg/day. In another embodiment, the dosage is 90 mg/day. In another embodiment, the dosage is 100 mg/day.

The dosage of the GH modified by CTPs of the present invention, in one embodiment, is in the range of 0.005-100 mg/week. In another embodiment, the dosage is in the range of 0.005-5 mg/week. In another embodiment, the dosage is in the range of 0.01-50 mg/week. In another embodiment, the dosage is in the range of 0.1-20 mg/week. In another embodiment, the dosage is in the range of 0.1-10 mg/week. In another embodiment, the dosage is in the range of 0.01-5 mg/week. In another embodiment, the dosage is in the range of 0.001-0.01 mg/week. In another embodiment, the dosage is in the range of 0.001-0.1 mg/week. In another embodiment, the dosage is in the range of 0.1-5 mg/week. In another embodiment, the dosage is in the range of 0.5-50 mg/week. In another embodiment, the dosage is in the range of 0.2-15 mg/week. In another embodiment, the dosage is in the range of 0.8-65 mg/week. In another embodiment, the dosage is in the range of 1-50 mg/week. In another embodiment, the dosage is in the range of 5-10 mg/week. In another embodiment, the dosage is in the range of 8-15 mg/week. In another embodiment, the dosage is in the range of 10-20 mg/week. In another embodiment, the dosage is in the range of 20-40 mg/week. In another embodiment, the dosage is in the range of 20-120 mg/week. In another embodiment, the dosage is in the range of 12-40 mg/week. In another embodiment, the dosage is in the range of 40-60 mg/week. In another embodiment, the dosage is in the range of 50-100 mg/week. In another embodiment, the dosage is in the range of 10-60 mg/week. In another embodiment, the dosage is in the range of 15-25 mg/week. In another embodiment, the dosage is in the range of 5-10 mg/week. In another embodiment, the dosage is in the range of 55-65 mg/week. In another embodiment, the dosage is in the range of 1-5 mg/week.

In another embodiment, the GH dosage given to a subject is 50% of the standard dosage given to a reference subject from the same population of subjects (e.g., children, elderly, men, women, GH deficient, specific nationality, etc.). In another embodiment, the dosage is 30% of the dosage given to a subject from a specific population of subjects. In another embodiment, the dosage is 45% of the dosage given to a subject from a specific population of subjects. In another embodiment, the dosage is 100% of the dosage given to a subject from a specific population of subjects.

In another embodiment, the dosage is 1-5 mg/week. In another embodiment, the dosage is 2 mg/week. In another embodiment, the dosage is 4 mg/week. In another embodiment, the dosage is 1.2 mg/week. In another embodiment, the dosage is 1.8 mg/week. In another embodiment, the dosage is approximately the dosages described herein.

In another embodiment, the dosage is 1-5 mg/administration. In another embodiment, the dosage is 2 mg/administration. In another embodiment, the dosage is 4 mg/administration. In one embodiment, the dosage is 1.2 mg/administration. In another embodiment, the dosage is 1.8 mg/administration. In one embodiment, the composition is administered once a week. In another embodiment, the composition is administered once biweekly. In another embodiment, the composition is administered monthly. In another embodiment, the composition is administered daily.

In another embodiment, GH modified by CTPs is formulated in an intranasal dosage form. In another embodiment, GH modified by CTPs is formulated in an injectable dosage form. In another embodiment, GH modified by CTPs is administered to a subject in a dose ranging from 0.0001 mg to 0.6 mg. In another embodiment, GH modified by CTPs is administered to a subject in a dose ranging from 0.001 mg to 0.005 mg. In another embodiment, GH modified by CTPs is administered to a subject in a dose ranging from 0.005 mg to 0.01 mg. In another embodiment, GH modified by CTPs is administered to a subject in a dose ranging from 0.01 mg to 0.3 mg. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 0.2 mg to 0.6 mg.

In another embodiment, GH modified by CTPs is administered to a subject in a dose ranging from 1-100 micrograms. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 10-80 micrograms. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 20-60 micrograms. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 40-80 micrograms. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 1-50 micrograms. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 30-60 micrograms.

In another embodiment, GH modified by CTPs is administered to a subject in a dose ranging from 0.2 mg to 2 mg. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 2 mg to 6 mg. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 4 mg to 10 mg. In another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 6 mg to 10 mg.
another embodiment, a GH modified by CTPs is administered to a subject in a dose ranging from 5 mg and 15 mg.

[0287] In another embodiment, a GH modified by CTPs is injected into the muscle (intramuscular injection). In another embodiment, a GH modified by CTPs is injected below the skin (subcutaneous injection). In another embodiment, a GH modified by CTPs is injected into the muscle. In another embodiment, a GH modified by CTPs is injected below the skin.

[0288] In another embodiment, the methods of the invention include increasing the compliance in the use of GH therapy, comprising providing to a subject in need thereof, a GH modified by CTPs, thereby increasing compliance in the use of growth hormone therapy.

[0289] In another embodiment, protein drugs of molecular weight lower than 50,000 daltons, such as GH modified by CTPs of the present invention are in general short-lived species in vivo, having short circulatory half-lives of several hours. In another embodiment, the subcutaneous route of administration in general provides slower release into the circulation. In another embodiment, the CTP modified polypeptide of the invention prolongs the half-life of protein drugs of molecular weight lower than 50,000 daltons, such as GH. In another embodiment, the CTP modified polypeptide of the invention enable interferons to exert their beneficial effects for a longer period of time.

[0290] In another embodiment, the immunogenicity of a CTP modified polypeptide comprising a GH modified by CTPs is equal to an isolated GH. In another embodiment, the immunogenicity of a CTP modified polypeptide comprising a GH modified by CTPs is comparable to an isolated GH. In another embodiment, modifying a GH as described herein with CTP peptides reduces the immunogenicity of the GH. In another embodiment, the CTP modified polypeptide comprising a GH is as active as an isolated GH protein. In another embodiment, the CTP modified polypeptide comprising a GH is more active than an isolated GH. In another embodiment, the CTP modified polypeptide comprising a GH maximizes the growth hormone’s protective ability against degradation while minimizing reductions in bioactivity.

[0291] In another embodiment, the methods of the invention include increasing the compliance of subjects afflicted with chronic illnesses that are in need of a GH therapy. In another embodiment, the methods of the invention enable reduction in the dosing frequency of a GH by modifying the GH with CTPs as described hereinabove. In another embodiment, the term compliance comprises adherence. In another embodiment, the methods of the invention include increasing the compliance of patients in need of a GH therapy by reducing the frequency of administration of the GH. In another embodiment, reduction in the frequency of administration of the GH is achieved due to the CTP modifications which render the CTP-modified GH more stable. In another embodiment, reduction in the frequency of administration of the GH is achieved as a result of increasing T1/2 of the growth hormone. In another embodiment, reduction in the frequency of administration of the GH is achieved as a result of increasing the clearance time of the GH. In another embodiment, reduction in the frequency of administration of the growth hormone is achieved as a result of increasing the AUC measure of the growth hormone.

[0292] In another embodiment, the present invention provides a method of decreasing body fat in a non-human subject, comprising administering to said subject a therapeutically effective amount of an expression vector comprising a polynucleotide, said polynucleotide consisting of a non-human growth hormone, one choric gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said non-human growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby inducing growth or weight gain in a non-human subject.

[0293] In another embodiment, the present invention provides a method of increasing insulin-like growth factor (IGF-1) levels in a human subject, comprising administering to said subject a therapeutically effective amount of a polypeptide comprising a growth hormone, one choric gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby inducing growth or weight gain in a non-human subject.

[0294] In another embodiment, the present invention provides a method of increasing insulin-like growth factor (IGF-1) levels in a human subject, comprising administering to said subject a therapeutically effective amount of an expression vector comprising a polynucleotide, said polynucleotide consisting of a non-human growth hormone, one choric gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said non-human growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby inducing growth or weight gain in a non-human subject.

[0295] In one embodiment, increasing IGF-1 levels in a human subject may be effective in treating, preventing or suppressing type 1 diabetes, type 2 diabetes, amyotrophic lateral sclerosis (ALS aka “Lou Gehrig’s Disease”), severe burn injury and myotonic muscular dystrophy (MDM).

[0296] In another embodiment, a GH modified by CTPs is administered to a subject once a day. In another embodiment, a polypeptide comprising a GH modified by CTPs is administered to a subject once every two days. In another embodiment, a GH modified by CTPs is administered to a subject once every three days. In another embodiment, a GH modified by CTPs is administered to a subject once every four days. In another embodiment, a GH modified by CTPs is administered to a subject once every five days. In another embodiment, a GH modified by CTPs is administered to a subject once every six days. In another embodiment, a GH modified by CTPs is administered to a subject once every week. In another embodiment, a GH modified by CTPs is administered to a subject once every 7-14 days. In another embodiment, a GH modified by CTPs is administered to a subject once every 10-20 days. In another embodiment, a GH modified by CTPs is administered to a subject once every 5-15 days. In another embodiment, a GH modified by CTPs is administered to a subject once every 15-30 days.

[0297] In another embodiment, the dosage is in a range of 50-500 mg/day. In another embodiment, the dosage is in a range of 50-150 mg/day. In another embodiment, the dosage is in a range of 100-200 mg/day. In another embodiment, the dosage is in a range of 150-250 mg/day. In another embodiment, the dosage is in a range of 200-300 mg/day. In another embodiment, the dosage is in a range of 250-400 mg/day. In
another embodiment, the dosage is in a range of 300-500 mg/day. In another embodiment, the dosage is in a range of 350-500 mg/day.

[0298] In one embodiment, the dosage is 20 mg/day. In one embodiment, the dosage is 30 mg/day. In one embodiment, the dosage is 40 mg/day. In one embodiment, the dosage is 50 mg/day. In one embodiment, the dosage is 0.01 mg/day. In another embodiment, the dosage is 0.1 mg/day. In another embodiment, the dosage is 0.5 mg/day. In another embodiment, the dosage is 50 mg/day. In another embodiment, the dosage is 10 mg/day. In another embodiment, the dosage is 20-70 mg/day. In another embodiment, the dosage is 5 mg/day.

[0299] In another embodiment, the dosage is 1-90 mg/day. In another embodiment, the dosage is 1-90 mg/2 days. In another embodiment, the dosage is 1-90 mg/3 days. In another embodiment, the dosage is 1-90 mg/4 days. In another embodiment, the dosage is 1-90 mg/5 days. In another embodiment, the dosage is 1-90 mg/6 days. In another embodiment, the dosage is 1-90 mg/week. In another embodiment, the dosage is 1-90 mg/9 days. In another embodiment, the dosage is 1-90 mg/14 days.

[0300] In another embodiment, the growth hormone dosage is 10-50 mg/day. In another embodiment, the dosage is 10-50 mg/2 days. In another embodiment, the dosage is 10-50 mg/3 days. In another embodiment, the dosage is 10-50 mg/4 days. In another embodiment, the dosage is 10-50 micrograms/mg/5 days. In another embodiment, the dosage is 10-50 mg/6 days. In another embodiment, the dosage is 10-50 mg/week. In another embodiment, the dosage is 10-50 mg/9 days. In another embodiment, the dosage is 10-50 mg/11 days. In another embodiment, the dosage is 10-50 mg/14 days.

[0301] Oral administration, in one embodiment, comprises a unit dosage form comprising tablets, capsules, lozenges, chewable tablets, suspensions, emulsions and the like. Such unit dosage forms comprise a safe and effective amount of the desired compound, or compounds, each of which is in one embodiment, from about 0.7 or 3.5 mg to about 280 mg/70 kg, or in another embodiment, about 0.5 or 10 mg to about 210 mg/70 kg. The pharmaceutically-acceptable carriers suitable for the preparation of unit dosage forms for oral administration are well-known in the art. In some embodiments, tablets typically comprise conventional pharmaceutically-compatible adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmellose; lubricants such as magnesium stearate, stearic acid and talc. In one embodiment, glidants such as silicon dioxide can be used to improve flow characteristics of the powder-mixture. In one embodiment, coloring agents, such as the FD&C Dyes, can be added for appearance. Sweeteners and flavoring agents, such as aspartame, saccharin, menthol, peppermint, and fruit flavors, are useful adjuvants for chewable tablets. Capsules typically comprise one or more solid diluents disclosed above. In some embodiments, the selection of carrier components depends on secondary considerations like taste, cost, and shelf stability, which are not critical for the purposes of this invention, and can be readily made by a person skilled in the art.

[0302] In one embodiment, the oral dosage form comprises a predefined release profile. In one embodiment, the oral dosage form of the present invention comprises an extended release tablet, capsule, lozenge or chewable tablet. In one embodiment, the oral dosage form of the present invention comprises a slow release tablet, capsule, lozenge or chewable tablet. In one embodiment, the oral dosage form of the present invention comprises an immediate release tablet, capsule, lozenge or chewable tablet. In one embodiment, the oral dosage form is formulated according to the desired release profile of the pharmaceutical active ingredient as known to one skilled in the art.

[0303] Peroral compositions, in some embodiments, comprise liquid solutions, emulsions, suspensions, and the like. In some embodiments, pharmaceutically-acceptable carriers suitable for peroral compositions are well-known in the art. In some embodiments, liquid oral compositions comprise, from about 0.012% to about 0.9333% of the desired compound or compounds, or in another embodiment, from about 0.03% to about 0.7%.

[0304] In some embodiments, compositions for use in the methods of this invention comprise solutions or emulsions, which in some embodiments are aqueous solutions or emulsions comprising a safe and effective amount of the compounds of the present invention and optionally, other compounds, intended for topical transanal administration. In some embodiments, compositions comprise from about 0.01% to about 10.0% w/v of a subject compound, more preferably from about 0.1% to about 2.0, which is used for systemic delivery of the compounds by the transanal route.

[0305] In another embodiment, the pharmaceutical compositions are administered by intravenous, intra-arterial, or intramuscular injection of a liquid preparation. In some embodiments, liquid formulations include solutions, suspensions, dispersions, emulsions, oils and the like. In one embodiment, the pharmaceutical compositions are administered intravenously, and are thus formulated in a form suitable for intravenous administration. In another embodiment, the pharmaceutical compositions are administered intra-arterially, and are thus formulated in a form suitable for intrarterial administration. In another embodiment, the pharmaceutical compositions are administered intramuscularly, and are thus formulated in a form suitable for intramuscular administration.

[0306] In another embodiment, the pharmaceutical compositions are administered topically to body surfaces, and are thus formulated in a form suitable for topical administration. Suitable topical formulations include gels, ointments, creams, lotions, drops and the like. For topical administration, the compounds of the present invention are combined with an additional appropriate therapeutic agent or agents, prepared and applied as solutions, suspensions, or emulsions in a physiologically acceptable diluent with or without a pharmaceutical carrier.

[0307] In one embodiment, pharmaceutical compositions of the present invention are manufactured by processes well known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

[0308] In one embodiment, pharmaceutical compositions for use in accordance with the present invention are formulated in conventional manner using one or more pharmaceutically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active ingredients into
preparations which, can be used pharmaceutically. In one embodiment, formulation is dependent upon the route of administration chosen.

[0309] In one embodiment, injectables, of the invention are formulated in aqueous solutions. In one embodiment, injectables, of the invention are formulated in physiologically compatible buffers such as Hank’s solution, Ringer’s solution, or physiological salt buffer. In some embodiments, for transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

[0310] In one embodiment, the preparations described herein are formulated for parenteral administration, e.g., by bolus injection or continuous infusion. In some embodiments, formulations for injection are presented in unit dosage form, e.g., in ampoules or in multidose containers with optionally, an added preservative. In some embodiments, compositions are suspensions, solutions or emulsions in oily or aqueous vehicles, and contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

[0311] The compositions also comprise, in some embodiments, preservatives, such as benzalkonium chloride and thimerosal and the like; chelating agents, such as edetate sodium and others; buffers such as phosphate, citrate and acetate; toxicity agents such as sodium chloride, potassium chloride, glycerin, mannitol and others; antioxidants such as ascorbic acid, aceytelystaine, sodium metabisulfite and others; aromatic agents; viscosity adjustors, such as polymers, including cellulose and derivatives thereof; and polyvinyl alcohol and acid and bases to adjust the pH of these aqueous compositions as needed. The compositions also comprise, in some embodiments, local anesthetics or other actives. The compositions can be used as sprays, mists, drops, and the like.

[0312] In some embodiments, pharmaceutical compositions for parenteral administration include aqueous solutions of the active preparation in water-soluble form. Additionally, suspensions of the active ingredients, in some embodiments, are prepared as appropriate oily or water based injection suspensions. Suitable lipophilic solvents or vehicles include, in some embodiments, fatty oils such as sesame oil, or synthetic fatty acid esters such as ethyl oleate, triglycerides or liposomes. Aqueous injection suspensions contain, in some embodiments, substances, which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. In another embodiment, the suspension also contain suitable stabilizers or agents which increase the solubility of the active ingredients to allow for the preparation of highly concentrated solutions.

[0313] In another embodiment, the active compound can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treut et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Figler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid).

[0314] In another embodiment, the pharmaceutical composition delivered in a controlled release system is formulated for intravenous infusion, implantable osmotic pump, transdermal patch, liposomes, or other modes of administration. In one embodiment, a pump is used (see Langer, supra; Selton, CRC Crit. Rev. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Sandek et al., N. Engl. J. Med. 321: 574 (1989). In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity to the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984). Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990).

[0315] In some embodiments, the active ingredient is in powder form for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water based solution, before use. Compositions are formulated, in some embodiments, for atomization and inhalation administration. In another embodiment, compositions are contained in a container with attached atomizing means.

[0316] In one embodiment, the preparation of the present invention is formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa butter or other glycerides.

[0317] In some embodiments, pharmaceutical compositions suitable for use in context of the present invention include compositions wherein the active ingredients are contained in an amount effective to achieve the intended purpose. In some embodiments, a therapeutically effective amount means an amount of active ingredients effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated.

[0318] In one embodiment, determination of a therapeutically effective amount is well within the capability of those skilled in the art.

[0319] The compositions also comprise preservatives, such as benzalkonium chloride and thimerosal and the like; chelating agents, such as edetate sodium and others; buffers such as phosphate, citrate and acetate; toxicity agents such as sodium chloride, potassium chloride, glycerin, mannitol and others; antioxidants such as ascorbic acid, aceytelystaine, sodium metabisulfite and others; aromatic agents; viscosity adjustors, such as polymers, including cellulose and derivatives thereof; and polyvinyl alcohol and acid and bases to adjust the pH of these aqueous compositions as needed. The compositions also comprise local anesthetics or other actives. The compositions can be used as sprays, mists, drops, and the like.

[0320] Some examples of substances which can serve as pharmaceutically-acceptable carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; tallow; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polysols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the Tween™ brand emulsifiers; wetting agents, such as sodium laurel sulfate; coloring agents; flavoring agents; tabletting agents, stabilizers; antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions. The choice of a pharmaceutically-acceptable carrier to be used in conjunction with the compound is basically determined by the way the compound is to be administered. If the subject compound is to be injected, in one embodiment, the pharmaceutically-acceptable carrier is sterile, physiologically saline, with a blood-compatible suspending agent, the pH of which has been adjusted to about 7.4.

[0321] In addition, the compositions further comprise binders (e.g. acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl
cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmelose sodium, crospovidone, guar gum, sodium starch glycolate), buffers (e.g., Tris-HCl, acetate, phosphate) of various pH and ion strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F-68, bile acid salts), protease inhibitors, surfactants (e.g. sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., glycerol, polyethylene glycol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g. hydroxypropyl cellulose, hydroxypropylmethyl cellulose), viscosity increasing agents (e.g. carboxymethyl cellulose, ethyl cellulose, guar gum), sweeteners (e.g. aspartame, citric acid), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), lubricants (e.g. stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow-aids (e.g. colloidal silicon dioxide), plasticizers (e.g. diethyl phthalate, triethyl citrate), emulsifiers (e.g. carboxymethyl cellulose, sodium lauryl sulfate), polymer coatings (e.g. poloxamers or poloxamines), coating and film forming agents (e.g. ethyl cellulose, acrylates, polyvinyl challenge), and/or adjuvants.

In some embodiments, preparation of an effective amount or dose can be estimated initially from in vitro assays. In one embodiment, a dose can be formulated in animal models and such information can be used to more accurately determine useful doses in humans.

In one embodiment, toxicity and therapeutic efficacy of the active ingredients described herein can be determined by standard pharmaceutical procedures in vitro, in cell cultures or experimental animals. In one embodiment, the data obtained from these in vitro and cell culture assays and animal studies can be used in formulating a range of dosage for use in human. In one embodiment, the dosages vary depending upon the dosage form employed and the route of administration utilized. In one embodiment, the exact formulation, route of administration and dosage can be chosen by the individual in view of the patient’s condition. [See e.g., Fingl et al., (1975) “The Pharmacological Basis of Therapeutics”, Ch. 1 p. 1].

In one embodiment, depending on the severity and responsiveness of the condition to be treated, dosing can be of a single or a plurality of administrations, with course of treatment lasting from several days to several weeks or until cure is effected or diminution of the disease state is achieved.

In one embodiment, the amount of a composition to be administered will, of course, be dependent on the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician, etc.

In one embodiment, compositions including the preparation of the invention formulated in a compatible pharmaceutical carrier are also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

In another embodiment, a GH modified by CTPs is administered via systemic administration. In another embodiment, a growth hormone as described herein is administered by intravenous, intramuscular or subcutaneous injection. In another embodiment, a GH modified by CTPs is lyophilized (i.e., freeze-dried) preparation in combination with complex organic excipients and stabilizers such as nonionic surface active agents (i.e., surfactants), various sugars, organic polys and/or human serum albumin. In another embodiment a pharmaceutical composition comprises a lyophilized GH modified by CTPs as described in sterile water for injection. In another embodiment, a pharmaceutical composition comprises a lyophilized growth hormone as described in sterile 0.9% NaCl for injection.

In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein and complex carriers such as human serum albumin, polyelectrolytes, sugars, and anionic surface active stabilizing agents. See, for example, WO 89/10756 (Hara et al.—containing polyol and p-hydroxybenzoate). In another embodiment, the pharmaceutical composition comprises a growth hormone as described herein and lactobionic acid and an acetate/glycine buffer. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein and amino acids, such as arginine or glutamate that increase the solubility of interferon compositions in water. In another embodiment, the pharmaceutical composition comprises a lyophilized GH modified by CTPs as described herein and glycine or human serum albumin (HSA), a buffer (e.g.
acetate) and an isotonic agent (e.g. NaCl). In another embodiment, the pharmaceutical composition comprises a lyophilized GH modified by CTPs as described herein and phosphate buffer, glycerine and HSA.

[0333] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein is stabilized when placed in buffered solutions having a pH between about 4 and 7.2. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein is stabilized with an amino acid as a stabilizing agent and in some cases a salt (if the amino acid does not contain a charged side chain).

[0334] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein is a liquid composition comprising a stabilizing agent at between about 0.3% and 5% by weight which is an amino acid.

[0335] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein provides dosing accuracy and product safety. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein provides a biologically active, stable liquid formulation for use in injectable applications. In another embodiment, the pharmaceutical composition comprises a non-lyophilized GH modified by CTPs as described herein.

[0336] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein provides a liquid formulation permitting storage for a long period of time in a liquid state facilitating storage and shipping prior to administration.

[0337] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises solid lipids as matrix material. In another embodiment, the injectable pharmaceutical composition comprising a GH modified by CTPs as described herein comprises solid lipids as matrix material. In another embodiment, the production of lipid microparticles by spray congealing was described by Speiser (Speiser and al., Pharm. Res. 8 (1991) 47-54) followed by lipid nanospheres for peroral administration (Speiser EP 0167825 (1990)). In another embodiment, lipids, which are used, are well tolerated by the body (e.g. glycerides composed of fatty acids which are present in the emulsions for parenteral nutrition).

[0338] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein is in the form of liposomes (J. E. Diederichs and al., Pharm. nd. 56 (1994) 267-275).

[0339] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises polymeric microspheres. In another embodiment, the injectable pharmaceutical composition comprising a GH modified by CTPs as described herein comprises polymeric microspheres. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises nanoparticles. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises liposomes. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises microspheres. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises lipid nanoparticles. In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises amphiphilic lipids.

[0340] In another embodiment, the pharmaceutical composition comprising a GH modified by CTPs as described herein comprises a drug, a lipid matrix and a surfactant. In another embodiment, the lipid matrix has a monoglyceride content which is at least 50% by weight.

[0341] In one embodiment, compositions of the present invention are presented in a pack or dispenser device, such as an FDA approved kit, which contain one or more unit dosage forms containing the active ingredient. In one embodiment, the pack, for example, comprise metal or plastic foil, such as a blister pack. In one embodiment, the pack or dispenser device is accompanied by instructions for administration. In one embodiment, the pack or dispenser is accompanied by a notice associated with the container in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the combinations or human or veterinary administration. Such notice, in one embodiment, is labeling approved by the U.S. Food and Drug Administration for prescription drugs or of an approved product insert.

[0342] Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.

EXAMPLES

Example 1

Generation of EPO Constructs

Materials and Methods:

Construction of Expression Vector pCI-dhfr:

pCI-neo mammalian expression vector was purchased from Promega (Catalog No. E1841). The vector contains a CMV IE enhancer/promoter and neomycin phosphotransferase gene. The pSV2-dhfr clone was purchased from ATCC (Catalog No. 37146). The plasmid contains the murine dhfr gene. The construction of pCI-dhfr vector was performed as follows:

a. The pSV2-dhfr plasmid was digested with restriction enzyme BgIII (3' end of the dhfr gene). DNA polymerase I, Large (Klenow) Fragment was used to fill-in the 5' overhangs to form blunt ends. The DNA was then digested with restriction enzyme AvrII (5' end of the dhfr gene). The dhfr gene (AvrII—blunt end) fragment was isolated.

b. The pCI-neo vector was digested with restriction enzyme BstXI (3' end of the neo gene). DNA polymerase I, Large (Klenow) Fragment was used to remove the 3' overhangs to form blunt ends. The DNA was then digested with restriction enzyme AvrII (5' end of the neo gene). The expression vector (AvrII—blunt end) was isolated.

c. The dhfr gene was ligated into pCI vector to form an expression vector containing the dhfr gene (pCI-dhfr).

Construction of hEPO-CTP Variants:

A cassette gene containing the C-Terminal peptide (CTP) of the beta subunit of hCG was fused to the coding sequence of human EPO (NP_000790.2) at different locations. Four EPO-CTP variants were constructed as illustrated in Fig. 1A-D. The proEPO signal peptide was used for the construction of the secreted EPO-CTP variants. XbaI-NotI fragments containing Epo sequences were ligated into the pCI-dhfr expression vector of the present invention.

Table 2 hereinafter summarizes the primer sequences used for constructing the CTP-containing polypeptides of the present invention.

<table>
<thead>
<tr>
<th>Primer ID</th>
<th>SEQ number</th>
<th>Restriction site (underlined in sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7 5' AATCTAGAGGTCATCTACAGGGGOTGC 3'</td>
<td>XbaI</td>
</tr>
<tr>
<td>2</td>
<td>8 5' ATTCGACGCAAGGATCCAGAAGACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>3</td>
<td>9 5' TAAATATTGGGGTGCTCCGAGGGCCC 3'</td>
<td>SspI</td>
</tr>
<tr>
<td>4</td>
<td>10 5' GTATATTACCAAAMGGGGACAC6GCTTATG 3'</td>
<td>SspI</td>
</tr>
<tr>
<td>5</td>
<td>11 5' GCCCTGCTGTCGGAAGC 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>6</td>
<td>12 5' GCCTGCTGCTGGAGGC 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>7</td>
<td>13 5' ATTCGACGCAAGGATCCAGAAGACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>8</td>
<td>14 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>9</td>
<td>15 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>10</td>
<td>16 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>11</td>
<td>17 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>12</td>
<td>18 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>13</td>
<td>19 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>14</td>
<td>20 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>15</td>
<td>21 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>16</td>
<td>22 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>17</td>
<td>23 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>18</td>
<td>24 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>19</td>
<td>25 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>20</td>
<td>26 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>21</td>
<td>27 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>22</td>
<td>28 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>23</td>
<td>29 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>24</td>
<td>30 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>25</td>
<td>31 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>26</td>
<td>32 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>27</td>
<td>33 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>28</td>
<td>34 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>29</td>
<td>35 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>30</td>
<td>36 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>31</td>
<td>37 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
<tr>
<td>32</td>
<td>38 5' CTTCGACGCAAGGACACCTTTATG 3'</td>
<td>NotI</td>
</tr>
</tbody>
</table>

days
The Xbal-NotI 401 bp fragment was constructed by PCR using the above primer set (SEQ ID NO: 7) and primer 3 (SEQ ID NO: 8) and a mixture of the products of the previous two reactions as a template; as a result of the PCR amplification, a 787 bp product was formed and ligated into TA cloning vector (Invitrogen, catalog K2000-01). The Xbal-NotI fragment containing ctp-Epo-cpt sequence was ligated into the eukaryotic expression vector pCI-dhfr to yield the 701-6-p90-1 clone.

Example 2

Expression and Isolation of EPO-CTP Polypeptides

Materials and Methods

DNA Transfection and Clone Selection:

DG44 cells were transfected with pCI-DHFR expression vectors containing EPO-CTP variants using FuGENE6 Reagent (FuGENE Transfection Reagent-Roche Cat. 11 815 091 001). 48 hr following transfection, cells were diluted and seeded at 50-200 cells per well in a selective medium (CD DG44 Medium w/o HT (Gibco: Scotland part: #09790111A) Sku num.:ME060027 supplemented with 8 mM L-Glutamine Biological Industries: Cat: 03-020-1A) and 18 mL/L of 10% Pluronic F-68 solution (Gibco: Cat: 240040-032). Selected clones were screened for highest protein production using commercial ELISA. Three to five producing clones for each variant were frozen for a backup cell bank. A selected clone for each variant was adapted to growth in larger scale cultures up to 1L flasks on an orbital shaker platform. Supernatants were collected and analyzed by ELISA, SDS-PAGE and Western blot. Following the withdrawal of aliquots, the protein-containing supernatants were kept frozen until further use.

Cell Culture:

DG44 cells were maintained in DG44 medium with HT (cat#12610-010, Gibco) supplemented with 8 mM L-Glutamine (Biological Industries: Cat: 03-020-1A) and 18 mL/L of 10% Pluronic F-68 solution (Gibco: Cat: 240040-032), at 37°C in a humidified 8% CO2 incubator. Transfected clones were maintained in DG44 basal medium without HT supplement, hypoxanthine and thymidine, with pluronic acid and L-glutamine.

Sample Preparation:

Supernatants were collected, filtered and analyzed by ELISA to determine protein concentration. SDS-PAGE and Western blot were used to determine purity and identity. Following ELISA, sample concentrations were defined and the solution was dialyzed against PBS. Following the withdrawal of aliquots, the protein-containing supernatants were kept frozen at -20°C until further use.

Western Blotting:

Samples were electrophoresed on non-denaturing 15% SDS-polyacrylamide gels. Gels were allowed to equilibrate for 10 min in 25 mM Tris and 192 mM glycin in 20% (vol/vol) methanol. Proteins were transferred to a 0.2 μm pore size nitrocellulose membrane (Sigma, Saint Louis, Mo.) at 250 mA for 3 h, using a Mini Trans-Blot electrophoresis cell (BioRad Laboratories, Richmond, Calif.). The nitrocellulose membrane was incubated in 5% non-fat dry milk for 2 h at room temperature. The membrane was incubated with EPO anti-serum (1:1000 titer) overnight at 4°C. followed by three consecutive washes in PBS containing 0.1% Tween (10 min/ wash). The membrane was incubated with secondary anti-
body conjugated to Horse Radish Peroxidase (HRP) (Zymed, San Francisco, Calif.) for 2 h at room temperature, followed by three washes. Finally, the nitrocellulose paper was reacted with enhanced chemiluminescent substrate (ECL) (Pierce, Rockford, Ill.) for 5 min, dried with a Whatman sheet, and exposed to X-ray film.

Results

Table 3 hereinafter shows the concentrations of the various CTP-modified EPO forms obtained from 5 selected clones and their preparation for further testing.

<table>
<thead>
<tr>
<th>#Version</th>
<th># Clone</th>
<th>Stock Titer IU/ml</th>
<th>Post dilution in Mspk Mpg</th>
<th>EPO3 titer IU/ml</th>
<th>Post ultrafiltration IU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epo0</td>
<td>17</td>
<td>3093</td>
<td>102</td>
<td>102</td>
<td>335</td>
</tr>
<tr>
<td>Epo1</td>
<td>47</td>
<td>1049</td>
<td>104</td>
<td>104</td>
<td>291</td>
</tr>
<tr>
<td>Epo2</td>
<td>67</td>
<td>2160</td>
<td>110</td>
<td>110</td>
<td>303</td>
</tr>
<tr>
<td>Epo3</td>
<td>85</td>
<td>105</td>
<td>119</td>
<td>119</td>
<td>392</td>
</tr>
<tr>
<td>Epo4</td>
<td>112</td>
<td>6100</td>
<td>ND</td>
<td>ND</td>
<td>342</td>
</tr>
</tbody>
</table>

1. EPO variants stock concentration were determined by ELISA (Quantikine IVD Epo ELISA, R&D Systems).
2. Samples Epo-0, 1, 2, and 4 were diluted to 105 IU/ml in mock rep (Adjusted to Epo3 titer). Epo-3 wild type EPO expressed in the same system as the CTP-modified EPO.
3. All samples were concentrated and dialyzed by ultrafiltration against PBS to a final concentration of 180 IU/ml.

Conclusion

All proteins were detected by Western blot as illustrated in FIG. 2.

Example 3

Biological Activity of the EPO-CTP Polypeptides of the Present Invention

The TF-1 bioactivity test represents the ability of the EPO-CTP variants to bind its receptor and then stimulate activity which results in cell proliferation. Therefore, this test was used as a first step in evaluating the biological potency of the EPO-CTP polypeptides of the present invention.
EPO-4 were about 50% less potent than WT-EPO, and EPO-2 potency was even less than 50%.

Example 4

Evaluation of the EPO-CTP Polypeptides of the Present Invention in a Mouse Model

The following experiment was performed in order to compare the bio-activity of the EPO-CTP polypeptides of the present invention and commercial EPO.

Materials and Methods

Animals:

Species/Strain: ICR or CD-1 Mice of either sex about 20-25 g
Group Size: n=7
No. Groups: 9
Total No. Animals: n=63

Experimental Design of the Study:

The experiment was set up as summarized in Table 5 hereinbelow.

Table 5

<table>
<thead>
<tr>
<th>Group</th>
<th>No. Mice per Group</th>
<th>TREATMENT</th>
<th>Dose Level</th>
<th>Dosing Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n = 7</td>
<td>Vehicle (Control)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MOCK</td>
<td>15 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MOD-7010</td>
<td>15 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MOD-7011</td>
<td>15 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MOD-7012</td>
<td>15 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MOD-7013</td>
<td>15 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MOD-7014</td>
<td>15 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>rhEPO</td>
<td>5 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5 µg/kg</td>
<td>1x weekly</td>
<td></td>
</tr>
</tbody>
</table>

Animal Treatment:

All animals were administered with either control or the test EPO polypeptides of the present invention by bolus injection. The injection volume did not exceed 10 ml/kg. The length of the experiment was 22 days. A morbidity and mortality check was performed daily.

Reticulocyte Count and Hematocrit (Hct) Examination:

Reticulocyte count was carried out in all test animals at day 2 and 14 hrs following the 1st respective vehicle or treatment injection. Hct was determined in all animals once prior to initial treatment ("0" Baseline control) and at 24 hrs after the 1st respective vehicle or treatment injection, and thereafter twice weekly until study termination (Day-22).

Results

The hematocrit results which are illustrated in FIGS. 3-5 show that EPO 3 has the highest hematocrit percentage change from baseline compared to EPO 1, EPO 2, RecombiNar® 1, RecombiNar® 3, rhEPO, and Vehicle. The results demonstrating the percentage of reticulocytes in mice treated with the EPO-CTP polypeptides are summarized in Table 6 hereinbelow. These results show that EPO-3 is the most potent stimulator of erythropoiesis.

Table 6

<table>
<thead>
<tr>
<th>% reticulocytes</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.72</td>
</tr>
<tr>
<td>Mock</td>
<td>1.08</td>
</tr>
<tr>
<td>7010 SEQ ID NO: 16</td>
<td>3.5</td>
</tr>
<tr>
<td>7011 SEQ ID NO: 1</td>
<td>3.52</td>
</tr>
<tr>
<td>7012 SEQ ID NO: 2</td>
<td>3.82</td>
</tr>
<tr>
<td>7013 SEQ ID NO: 3</td>
<td>1.02</td>
</tr>
<tr>
<td>7014 SEQ ID NO: 4</td>
<td>3.48</td>
</tr>
<tr>
<td>RecombiNar® 1/W</td>
<td>3.23</td>
</tr>
<tr>
<td>RecombiNar® 3/w</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Conclusion

The in vivo experiment was designed to measure two parameters; the first was to measure erythropoiesis parameters such as percentage of reticulocytes and increase of hemoglobin, RBC and hematocrit levels. The second was to measure the durability of the biological activity of each variant by injecting once weekly doses.

A superior performance of EPO-3 in its ability to stimulate erythropoiesis was observed in normal mice.

Example 5

Comparison of the EPO-CTP Polypeptides of the Present Invention to Aranesp®

The following experiment was performed in order to compare the biological activity of a single bolus dose of some EPO-CTP polypeptides of the present invention, commercial EPO and Aranesp®. Aranesp® is a commercial long-acting recombinant erythropoietin in which two site mutations were introduced, resulting in two additional N-glycosylation sites and an increase in the number of incorporated sialic acid residues.

Materials and Methods

Animals:

Species/Strain: Female CD-1 Mice of either sex about 20-25 g
Group Size: n=3

Experimental design of the study:

The experiment was set up as summarized in Table 7 hereinbelow.
TABLE 7

<table>
<thead>
<tr>
<th>Group # Test Article</th>
<th>animals' group/ time-point</th>
<th>Dose Solution Conc. (μg/mL)</th>
<th>Dose Volume (mL/kg)</th>
<th>Time-Points * (hours post-administration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MOD-7010</td>
<td>3</td>
<td>1.5</td>
<td>10</td>
<td>0 (Pre-dose), 0.25, 0.5, 1, 2, 4, 6, 24, 48, 96, 168, 216, 264 and 336 hr post-dose administration</td>
</tr>
<tr>
<td>2 MOD-7013</td>
<td>3</td>
<td>1.5</td>
<td>10</td>
<td>0.25, 0.5, 1, 2, 4, 6, 24, 48, 96, 168, 216, 264 and 336 hr post-dose administration</td>
</tr>
<tr>
<td>3 Aranesp®</td>
<td>3</td>
<td>1.5</td>
<td>10</td>
<td>0.25, 0.5, 1, 2, 4, 6, 24, 48, 96, 168, 216, 264 and 336 hr post-dose administration</td>
</tr>
</tbody>
</table>

[0404] Animal Treatment:

All animals were administered with either control or the test EPO polypeptides of the present invention by bolus injection. The injection volume did not exceed 10 mL/kg. The length of the experiment was 14 days. A morbidity and mortality check was performed daily.

[0405] Reticulocyte Count and Hematocrit (hct) Examination:

Reticulocyte count and hematocrit examination were performed as described above.

Results

[0408] The results are illustrated in FIGS. 6-9. Following a single I.V. injection of 15 μg/kg of EPO 3, all three blood parameters associated with erythropoietin i.e. number of reticulocytes, hemoglobin level and hematocrit, were improved relative to those obtained with similar injected dose of rhEPO or Aranesp®.

Example 6

Comparison of the Pharmacokinetics of EPO-CTP Polypeptides of the Present Invention to Aranesp®

[0409] The following experiment was performed in order to compare the pharmacokinetics of EPO-CTP polypeptide of the present invention, commercial EPO and Aranesp®.

Materials and Methods

[0410] Serum samples were analyzed in order to determine specific concentration levels for each sample. Concentration and time-point data were processed using WinNonLin non-compartmental analysis. Parameters determined included: AUC, CL, Ke, T1/2, Cmax, Tmax, and Vdz.

[0411] Serum concentrations were determined using two ELISA kits in parallel. EPO-3 serum concentration was measured using StemCell ELISA kit in comparison to EPO-0 and Aranesp® serum concentration which were determined using R&D system ELISA kit.

Results

[0412] The results of the pharmacokinetic analysis are summarized in Table 8, hereinafter. These results show that EPO-3 exhibited favorable pharmacokinetic measures as indicated for example in AUC measures, t1/2, and Cmax. Tmax measures were equal to EPO-0, EPO-3, and Aranesp®.

TABLE 8

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>EPO-0</th>
<th>EPO-3</th>
<th>Aranesp®</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUClast</td>
<td>hr * mL/mg</td>
<td>31739</td>
<td>306072</td>
<td>178661</td>
</tr>
<tr>
<td>CL</td>
<td>mL/hr/kg</td>
<td>1.1152</td>
<td>0.2188</td>
<td>0.1207</td>
</tr>
<tr>
<td>Ke</td>
<td>/hr</td>
<td>0.157</td>
<td>0.0529</td>
<td>0.0639</td>
</tr>
<tr>
<td>t1/2</td>
<td>hr</td>
<td>4.4139</td>
<td>13.1141</td>
<td>10.84</td>
</tr>
<tr>
<td>Cmax</td>
<td>mIU/mL</td>
<td>10766</td>
<td>16466</td>
<td>13266</td>
</tr>
<tr>
<td>Tmax</td>
<td>hr</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Vdz</td>
<td>mL/kg</td>
<td>7.1017</td>
<td>4.1394</td>
<td>1.8877</td>
</tr>
</tbody>
</table>

[0413] The results of the serum concentration analysis are illustrated in FIG. 9. These results show that EPO-3 was still detectable in the serum after about 190 hours. Both EPO-0 and Aranesp® were not detectable in the serum after about 140 hours and 50 hours, respectively.

Conclusion

[0414] Clearance of EPO-3 (MOD-7013) from the blood of CD-1 mice was significantly slower than that for rhEPO or Aranesp®. The corresponding calculated half-life times were: rhEPO-4.41 h; Aranesp®-0.84 h; and MOD-7013-13.11 h.

Example 7

Generation of hGH Constructs

Materials and Methods

[0415] Four hGH clones (variants of 20 kD protein) were synthesized. XbaI-Not I fragments containing hGH sequences from the four variants were ligated into the eukaryotic expression vector pCI-dhfr previously digested with XbaI-NotI. DNA from the 4 clones (401, 1, 2, 3, and 4) was prepared. Another partial hGH clone (1-242 bp) from 22 kD protein was also synthesized (0606114). Primers were ordered from Sigma-Genosys. The primer sequences used to generate the hGH-CTP polypeptides of the present invention are summarized in Table 9 hereinafter.
[0416] Construction of 402-O-p69-1 (hGH) SEQ ID NO: 36:

[0417] MOD-4020 is the wild type recombinant human growth hormone (without CTP) which was prepared for use as control in the below described experiments.

[0418] Three PCR reactions were performed. The first reaction was conducted with primer 25 and primer 32 and plasmid DNA of 0606114 (partial clone of hGH 1-242 bp) as a template; as a result of the PCR amplification, a 245 bp product was formed.

[0419] The second reaction was conducted with primer 33 and primer 40 and plasmid DNA of 401-O-p57-2 as a template; as a result of the PCR amplification, a 542 bp product was formed.

[0420] The last reaction was conducted with primers 25 and 40 and a mixture of the products of the previous two reactions as a template; as a result of the PCR amplification, a 705 bp product was formed and ligated into the TA cloning vector (Invitrogen, catalog K2000-01). The XbaI-Not1 fragment containing hGH-0 sequence was ligated into the eukaryotic expression vector pCI-dhfr. The vector was transfected into DG-44 CHO cells. Cells were grown in protein-free medium.

[0421] Construction of 402-1-p83-5 (hGH-CTP)—SEQ ID NO: 37 and 402-2-p72-3(hGH-CTP)x2)—SEQ ID NO: 38:

[0422] MOD-4021 is a recombinant human growth hormone which was fused to 1 copy of the C-terminal peptide of the beta chain of human Chorionic Gonadotropin (CTP). The CTP cassette of MOD-4021 was attached to the C-terminus (one cassette). MOD-4022 is a recombinant human growth hormone which was fused to 2 copies of the C-terminal peptide of the beta chain of human Chorionic Gonadotropin (CTP). The two CTP cassettes of MOD-4022 were attached to the C-terminus (two cassettes).

[0423] Construction of hGH-CTP and hGH-CTP-CTP was performed in the same way as the construction of hGH-0, pCI-dhfr-401-1-p20-1 (hGH*-ctp) and pCI-dhfr-401-2-p21-2 (hGH*-ctp)x2) were used as templates in the second PCR reaction.

[0424] MOD-4021 and MOD-4022 were expressed in DG-44 CHO cells. Cells were grown in protein-free medium. The molecular weight of MOD-4021 is ~30.5 Kd since hGH has a MW of 22 Kd while each “CTP cassette” contributes 8.5 Kd to the overall molecular weight (see FIG. 10). The molecular weight of MOD-4022 is ~39 Kd (see FIG. 10).

[0425] Construction of 402-3-p81-4 (CTP-hGH-CTP-CTP)—SEQ ID NO: 39 and 402-4-p82-9(CTP*hGH-CTP-CTP)—SEQ ID NO: 40:

[0426] MOD-4023 is a recombinant human growth hormone which was fused to 3 copies of the C-terminal peptide of the beta chain of human Chorionic Gonadotropin (CTP). The three CTP cassettes of MOD-4023 were attached to both N-terminus (one cassette) and the C-terminus (two cassettes). MOD-4024 is a recombinant human growth hormone which is fused to 1 truncated and 2 complete copies of the C-terminal peptide of the beta chain of human Chorionic Gonadotropin (CTP). The truncated CTP cassette of MOD-4024 was attached to the N-terminus and two CTP cassettes were attached to the C-terminus (two cassettes).

[0427] Three PCR reactions were performed. The first reaction was conducted with primer 25 and primer 35 and plasmid DNA of p401-3-p12-5 or p401-4-p22-las a template; as a result of the PCR amplification, a 265 or 220 bp product was formed. The second reaction was conducted with primer 34 and primer 37 and plasmid DNA of TA-hGH-2-q65-1 as a template; as a result of the PCR amplification, a 695 bp product was formed. The last reaction was conducted with primers 25 and 37 and a mixture of the products of the previous two reactions as a template; as a result of the PCR amplification, a 938 or 891 bp product was formed and ligated into TA cloning vector (Invitrogen, catalog K2000-01). XbaI-Not1 fragment containing hGH sequence was ligated into our eukaryotic expression vector pCI-dhfr.

[0428] MOD-4023 and MOD-4024 were expressed in DG-44 CHO cells. Cells were grown in protein-free medium. The molecular weight of MOD-4023 is ~47.5 Kd (see FIG. 10) and the molecular weight of MOD-4024 is ~43.25 Kd (see FIG. 10).

[0429] Construction of 402-6-p95a-8 (CTP-hGH-CTP)—SEQ ID NO: 41:

[0430] Construction of hGH-6 was performed in the same way as the construction of hGH-3, pCI-dhfr-402-1-p83-5 (hGH-ctp) was used as a template in the second PCR reaction.
Construction of 402-5-p96-4 (CTP-hGH) — SEQ ID NO: 42:

PCR reaction was performed using primer 25 and primer 396 and plasmid DNA of pCI-dhfr-ctp-EPO-ctp (402-6-p95a-8) as a template; as a result of the PCR amplification, a 763 bp product was formed and ligated into TA cloning vector (Invitrogen, catalog K2000-01). Xba I-Not I fragment containing ctp-hGH sequence was ligated into our eukaryotic expression vector pCI-dhfr to yield 402-5-p96-4 clone.

Example 8

In Vivo Bioactivity Tests of hGH-CTP Polypeptides of the Present Invention

The following experiment was performed in order to test the potential long acting biological activity of hGH-CTP polypeptides in comparison with commercial recombinant human GH and MOD-4020.

Materials and Methods

Female hypophysectomized rats (60-100 g) received a weekly S.C. injection of 21.7 μg hGH-CTP polypeptides or a once daily 5 μg S.C. injection of control commercial rhGH.

Weight was measured in all animals before treatment, 24 hours following first injection and then every other day until the end of the study on day 21. Each point represents the group’s average weight gain percentage ((Weight day O-weight last day)/Weight day 0). Average weight gain was normalized against once-daily injection of commercial hGH. The treatment schedule is summarized in Table 10.

<table>
<thead>
<tr>
<th>No.</th>
<th>Drug</th>
<th>N</th>
<th>Route</th>
<th>Treatment Schedule</th>
<th>Equinolar Dose (μg/rat)</th>
<th>Accumulate Dosage (μg/rat)</th>
<th>Dose Vol (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>NA</td>
<td>NA</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>Mock</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>NA</td>
<td>NA</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>MOD-4020</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>MOD-4021</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>MOD-4022</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>MOD-4023</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>MOD-4024</td>
<td>7</td>
<td>s.c.</td>
<td>days 1, 7 and 13; 1/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>Commercial hGH v.1</td>
<td>7</td>
<td>s.c.</td>
<td>days 1-13; d/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
<tr>
<td>9</td>
<td>Commercial hGH v.1</td>
<td>7</td>
<td>s.c.</td>
<td>days 1-13; d/W</td>
<td>21.7</td>
<td>65</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Results

Results are summarized in FIG. 11. These results show that MOD-4023 (SEQ ID NO: 39) and MOD-4024 (SEQ ID NO: 40) induced over 120% weight gain compared to commercial rhGH which induced 100% weight gain.

Conclusion

Three weekly doses (Days of injections; 1, 7, and 13) of 21.7 μg of MOD-4023 (SEQ ID NO: 39) and MOD-4024 (SEQ ID NO: 40) induced a 30% greater weight increase in hypophysectomised rats compared to commercial rhGH injected at the same accumulated dose which was administered once per day at a dose of 5 μg for 13 days.

Example 9

Pharmacokinetic Studies of CTP-Modified GH

Single-dose pharmacokinetic studies were conducted in Sprague-Dawley rats. All animal experimentation was conducted in accordance with the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and under the supervision and approval of the Institutional Animal Care and Use Committees of Modigene, Biotechnology General Ltd. Rats were housed either individually or two per cage in rooms with a 12-h light/dark cycle. Access to water (municipal supply) and noncertified rodent chow was provided ad libitum.

To compare the pharmacokinetics of CTP-hGH-CTP-CTP and hGH in rats, four groups of Sprague-Dawley rats (270-290 g), three to six males per group. The rats
were randomly assigned to four treatment groups (see Table 11). Rats were administered a single s.c. or i.v. injection of GH (50 μg/kg i.v. or s.c.) or CTP-1gH-CTP-CTP (108 μg/kg i.v. or s.c.). With the exception of the predose sample, which was collected under isoflurane anesthesia, blood collection was performed in unanesthetized animals. Blood samples (approximately 0.25 ml) were collected in EDTA-coated microtainers for ELISA analyses of CTP-1gH-CTP-CTP plasma concentration at the times outlined in Table 11. After each sampling, the blood volume was replaced with an equal volume of sterile 0.9% saline. Samples were stored on ice for up to 1 h prior to centrifugation and plasma harvest. Plasma samples were stored at approximately −20°C prior to analysis.

TABLE 11

Experimental design of rat pharmacokinetic study

<table>
<thead>
<tr>
<th>Trt. Gp.</th>
<th>Test Article</th>
<th>No. of animals/group</th>
<th>Test Timepoint</th>
<th>Dose Route</th>
<th>Dose Level (μg/kg)</th>
<th>Injected Vol. (μl)</th>
<th>Concentration (μg/ml)</th>
<th>Total vol. (ml)</th>
<th>Time-Points * (hours post-dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biotropin</td>
<td>6#</td>
<td>SC</td>
<td>Male</td>
<td>50</td>
<td>500</td>
<td>20/5</td>
<td></td>
<td>0 (Pre-dose)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5, 2, 4, 8, 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48, 72</td>
</tr>
<tr>
<td>2</td>
<td>CTP-1gH-CTP-CTP</td>
<td>6#</td>
<td>SC</td>
<td>Male</td>
<td>108</td>
<td>500</td>
<td>43.2/5</td>
<td></td>
<td>0.5, 2, 4, 8, 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24, 48, 72</td>
</tr>
<tr>
<td>3</td>
<td>Biotropin</td>
<td>6#</td>
<td>IV</td>
<td>Male</td>
<td>50</td>
<td>300</td>
<td>20/3</td>
<td></td>
<td>0, 0.12, 2, 4, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12, 24</td>
</tr>
<tr>
<td>4</td>
<td>CTP-1gH-CTP-CTP</td>
<td>6#</td>
<td>IV</td>
<td>Male</td>
<td>108</td>
<td>300</td>
<td>43.2/3</td>
<td></td>
<td>0.12, 2, 4, 8, 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24, 48, 72</td>
</tr>
</tbody>
</table>

*3 rats per time point

Example 10

Pharmacokinetics of CTP-Modified GH in SD Rats

CTP-1gH-CTP-CTP is a single chain protein of 275 amino acids and up to twelve O-linked carbohydrates. The structure consists of modified human Growth Hormone (Somatropin) attached to three copies of the C-terminal peptide (CTP) of the beta chain of human Chorionic Gonadotropin (hCG); one copy at the N-terminus and two copies (in tandem) at the C-terminus. Human Growth Hormone is comprised of 191 amino acids. CTP is comprised of 28 amino acids and four O-linked sugar chains.

TABLE 12

Mean pharmacokinetic parameters following single-dose i.v. and s.c. administration of CTP-1gH-CTP-CTP and GH (Biotropin) in Sprague-Dawley rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>SC</th>
<th>CTP-1gH-CTP-CTP</th>
<th>CTP-1gH-CTP-CTP</th>
<th>IV</th>
<th>CTP-1gH-CTP-CTP</th>
<th>CTP-1gH-CTP-CTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>mg/Kg</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>AUClast</td>
<td>hr·μg/mL</td>
<td>41</td>
<td>680</td>
<td>162.7</td>
<td>1508.3</td>
<td>275.8</td>
<td>926</td>
</tr>
<tr>
<td>Cmax</td>
<td>ng/ml</td>
<td>13</td>
<td>36.8</td>
<td>275.8</td>
<td>926</td>
<td>275.8</td>
<td>926</td>
</tr>
</tbody>
</table>
TABLE 12-continued

Mean pharmacokinetic parameters following single-dose i.v. and s.c. administration of CTP-hGH-CTP-CTP and GH (Biotropin) in Sprague-Dawley rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>SC</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmax</td>
<td>hr</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>MRt</td>
<td>hr</td>
<td>2.5</td>
<td>12.9</td>
</tr>
<tr>
<td>TV/2 alpha</td>
<td>hr</td>
<td>1.58</td>
<td>0.74</td>
</tr>
<tr>
<td>TV/2 beta</td>
<td>hr</td>
<td>1.73</td>
<td>9</td>
</tr>
</tbody>
</table>

PK Statistics

<table>
<thead>
<tr>
<th>SC</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP- hGH- CTP</td>
<td>CTP- hGH- CTP</td>
</tr>
<tr>
<td>Biotropin</td>
<td>CTP</td>
</tr>
<tr>
<td>CTP- hGH- CTP- CTP</td>
<td>CTP- hGH- CTP- CTP</td>
</tr>
</tbody>
</table>

Data Statistical Analysis

[0444] Analysis of serum samples was performed in order to determine specific concentration levels for each sample. Concentration and time-point data were processed using WinNonlin noncompartmental analysis.

[0445] Parameters that were determined included: AUC, MRT, T1/2, Cmax, and Tmax. FIG. 12 demonstrates the superior pharmacokinetic profile of CTP-hGH-CTP-CTP plasma concentration compared to GH concentrations (pg/ml) following a single i.v. or s.c. dose of CTP-hGH-CTP-CTP or GH in rats (n=3-6 per dose/route).

[0446] Following a single S.C. injection of 50 μg/kg, clearance of CTP-hGH-CTP-CTP from SD rat’s blood was significantly slower than that of CTP-hGH-CTP and of Biotropin. The corresponding calculated half-life times and AUCs were:

<table>
<thead>
<tr>
<th>Compound</th>
<th>TV/2 & AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotropin</td>
<td>1.7 h, AUC 41 hr * ng/mL</td>
</tr>
<tr>
<td>CTP-hGH-CTP</td>
<td>8.5 h, AUC 424 hr * ng/mL</td>
</tr>
<tr>
<td>CTP-hGH-CTP-CTP</td>
<td>9.0 h, AUC 680 hr * ng/mL</td>
</tr>
</tbody>
</table>

Conclusion:

[0447] CTP-hGH-CTP-CTP was chosen as the final candidate out of 6 other variants. CTP-hGH-CTP-CTP demonstrated superior performance in terms of biological activity and pharmacokinetics.

Example 11

Weight Gain Assay (WGA) for Single Dose/Repeated Dose of CTP-Modified GH

[0448] Hypophysectomized (inturnal method) male rats, 3-4 weeks of age, were obtained from CRL Laboratories. During a post-surgical acclimation period of 3 weeks, rats were examined and weighed twice weekly to eliminate animals deemed to have incomplete hypophysectomy evidenced by weight gain similar to that of sham-operated rats. Those rats with incomplete hypophysectomized were eliminated from the study. The average body weights of the hypophysectomized were 70-90 grams, at the time of the experiment. This is the standard USP and EP bioassay for hGH. Hypophysectomized rats (rats from which the pituitary gland was removed) lose their ability to gain weight. Injections of hGH (and of CTP-hGH-CTP-CTP) to these rats result in weight gain. Based on the measured weight gain along a defined period of time and the amount of hGH injected, the specific activity of hGH (and CTP-hGH-CTP-CTP) is determined.

Rats were administered either a single s.c. doses of 0.4, 0.8 and 4 mg/Kg or repeated s.c. doses of 0.6 and 1.8 mg/Kg for 3 days apart for 3 weeks. Individual body weights of all animals are determined at randomization, prior to the first dosing, thereafter every two days or in case of decedents at the time of death, and prior to sacrifice.

Single Dose and Repeated Dose Weight Gain Assay

[0449] The results comparing whole body growth response following different dosing patterns of CTP-hGH-CTP-CTP in hypophysectomized rats are demonstrated in FIG. 13. The results demonstrate that a single injection of 0.4 & 0.8 mg/Kg/day doses of hGH-CTP were equivalent to 4 daily injections of 0.1 mg/Kg/day of Biotropin. The peak of the hGH-CTP effect was after 2 days.

[0450] FIG. 14 further demonstrates that the area under the curve following single injection of CTP-hGH-CTP-CTP correlates with Body Weight gain in Rats. Thus, the collective data demonstrates that body weight gain is closely correlated with cumulative AUC.

[0451] The hGH-CTP construct administered 4 days apart promotes the same weight gain as daily injections of Biotropin as demonstrated in FIG. 15. Half-life of hGH in humans is expected to be 5x better than in rats—indicating potential peak effect in humans after 10 days for one single injection. These results support administration of hGH-CTP construct, CTP-hGH-CTP-CTP, once weekly or bi-weekly in humans.

Pharmacodynamics/Pharmacokinetics Studies of CTP-Modified GH

[0452] Hypophysectomized (inturnal method) male rats, 3-4 weeks of age, were obtained from CRL Laboratories. During a post-surgical acclimation period of 3 weeks, rats were examined and weighed twice weekly to eliminate animals deemed to have incomplete hypophysectomy evidenced by weight gain similar to that of sham-operated rats. Those rats with incomplete hypophysectomized were eliminated from the study. The average body weights of the hypophysectomized and sham rats were 70 and 150 g, respectively, at the time of the experiment.

[0453] Rats were administered a single s.c. with CTP-hGH-CTP-CTP, vehicle, human growth hormone CTP-hGH-CTP-CTP or human growth hormone (20 μg/rat) was administered s.c. in an injection volume of 0.2 ml/rat. The dose of GH was 0.35 and 1.05 μg/Kg, a dose of growth hormone that was equimolar with the amount of GH in a corresponding 0.6 and 1.8 μg/Kg dose of CTP-hGH-CTP-CTP. The treatment groups are summarized in Table 13. Following injection, plasma samples for IGF-1 analyses were obtained at the times described in Table 13. Samples were analyzed for IGF-1 concentration using a commercial ELISA (R&D systems).
Non-compartmental pharmacokinetic analysis was performed on the mean serum concentration versus time curves for each group. CTP-hgh-CTP-CTP Cmax was significantly higher than Biotropin Cmax. The terminal half-live of CTP-hgh-CTP-CTP was 6 times higher than Biotropin.

The AUC0-t and the AUC0-t were very similar suggesting the duration of sampling was adequate to characterize the pharmacokinetic profiles. AUC of CTP-hgh-CTP-CTP was 10 times higher than Biotropin. Moreover, Cmax was generally proportional to dose and for CTP-hgh-CTP-CTP and it was twice higher than Cmax of Biotropin. However, as shown in FIG. 16, Tmax of CTP-hgh-CTP-CTP was 8 hr as compare to 0.5 hr of Biotropin, and the terminal half-lives did not appear to vary with dose level. 1/2 of CTP-hgh-CTP-CTP was 6.8 times longer than of Biotropin.

Indirect effects of GH are mediated primarily by an insulin-like growth factor-I (IGF-I), a hormone that is secreted from the liver and other tissues in response to growth hormone. A majority of the growth promoting effects of growth hormone is actually due to IGF-1 acting on its target cells. Accordingly, the effect of the CTP-hgh construct, CTP-hgh-CTP-CTP, on IGF-I serum levels in Hypophysectomized Rats was measured. FIG. 17 presents results of IGF-I serum levels in Hypophysectomized Rats Following SC injection of CTP-hgh-CTP-CTP and commercial hGH.

Single dose of CTP-hgh-CTP-CTP 0.6 or 1.8 mg/Kg and Biotropin 0.35 or 0.05 mg/Kg were injected subcutaneously to hypophysectomised rats for determination of PK/PD profile. Serum IGF-I post injection was measured using specific ELISA kits (Roche Diagnostics).

The cumulative serum levels of IGF-I following injection of CTP-hgh-CTP-CTP was significantly higher than following injection of Biotropin. Cmax was generally proportional to dose and for CTP-hgh-CTP-CTP it was 3-4 times higher than Cmax of Biotropin. Tmax of CTP-hgh-CTP-CTP was 36-48 hr as compare to 20-24 hr of Biotropin. In conclusion, higher hGH levels and longer presence in serum result in significant increase in IGF-I levels.

Example 13
Carbohydrate Content and Sialic Acid Content of CTP-Modified GH

Analysis of O-glycans is based on a Prozyme kit. O-glycans are chemically and enzymatically cleaved from the protein and separated from peptides using paper chromatography. Sequencing of the O-glycan pool is performed by sequential enzymatic digestions (exo-glycosidases) followed by HPLC analysis compared to standards. Glycoprofiling with Sequence Analysis

Glycoprofiling was performed by Ludger Ltd. Two samples (EN648 and RS80708) were taken through triplicate releases and each release was also analyzed by HPLC in triplicate. Triplicate 300 µg samples of EN648 and RS80708 and a single 100 µl sample of citrate/sodium chloride buffer, plus a positive control fetuin (250 µg) and a 100 µl water
negative control, were ultra-filtrated by centrifugation using a molecular weight cut off membrane of 10,000 Da to replace the buffer with water, then taken through hydrazinolysis under O-mode conditions (6 h at 60°C). Released glycans were re-N-acetylated and cleaned up by LudgerClean CEX cartridges. An aliquot of the released glycans was then labeled with 2-aminobenzamide (2AB), cleaned up with Ludger Clean S cartridges and analyzed by LudgerSep-N2 HILIC-HPLC.

Monosaccharide Content

Analysis of neutral monosaccharides requires hydrolysis of glycans to their constituent monosaccharide components. The hydrolysis was performed by Ludger Ltd, on intact glycoprotein samples. Specifically, 50 µg of intact glycoprotein was acid hydrolyzed, 2-AB (2-aminobenzamide) labeled and run on a reverse phase HPLC column. This method hydrolyzes all glycans present on the glycoprotein inclusive of N and O linked types.

Sialic Acid Profiling

Two samples (EN648 and RS0708) and a buffer control were analyzed. Sialic acid analysis requires mild acid release of the monosaccharides followed by DMB fluorophore labeling and HPLC analysis on a LudgerSep-R1 column. 50 µg of intact glycoprotein was acid hydrolyzed for each analysis.

Glyco Analysis of CTP-hGH-CTP-CTP

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>GU</th>
<th>Structure</th>
<th>Name</th>
<th>Unit</th>
<th>Nan</th>
<th>ABs</th>
<th>ABS</th>
<th>BTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>0.92</td>
<td>2AB + bgd</td>
<td>GalNAc</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>1.02</td>
<td>2AB + bgd</td>
<td>galactose</td>
<td>1.9</td>
<td>9.7</td>
<td>23.8</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>1.72</td>
<td></td>
<td></td>
<td>4.3</td>
<td>4.6</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.79</td>
<td>2AB</td>
<td>Galβ1-3GalNAc</td>
<td>2.3</td>
<td>67.7</td>
<td>69.4</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td>2.25</td>
<td>2AB</td>
<td>NeuNAcα2-3Gal</td>
<td>19.8</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2.57</td>
<td></td>
<td></td>
<td>1.5</td>
<td>1.9</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.90</td>
<td>2AB</td>
<td>NeuNAcα2-3Galβ1-3GalNAc</td>
<td>70.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>3.58</td>
<td></td>
<td></td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.22</td>
<td></td>
<td></td>
<td>0.9</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.42</td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The monosaccharide profiles indicate that the CTP-hGH-CTP-CTP glycoprotein samples contain predominantly O-link type glycans. The major O-glycan peak is sialylated core 1 (Neu5Acc2-3Galβ1-3GalNAc). The major sialic acid is Neu5Ac and there are some minor peaks suggesting the presence of 3-4% of di-acetylated sialic acid N-acetyl-9-O-acetylneuraminic acid (Neu5, 9Ac2) and less than 1% N-glycolyneuraminic acid. There are also small amounts of Neu5Acc2-6Galβ1-3GalNAc.

Example 14

Pharmacokinetic/Toxicokinetic Analysis of CTP-Modified GH in Rhesus Monkeys

Serum concentrations versus time curves were generated for each animal. Non-compartmental analysis was performed with WinNonlin professional version 5.2.1 (Pharsight Corporation, Mt View Calif.). The estimated pharmacokinetic parameters are shown in Table 16 below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1.8 mg/kg</th>
<th>90 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (µg/mL)</td>
<td>2.073 ± 0.417</td>
<td>108.7 ± 46.0</td>
</tr>
<tr>
<td>Tmax (hr)</td>
<td>4 ± 0</td>
<td>11 ± 7</td>
</tr>
<tr>
<td>AUC₀₋∞ (µg·hr/mL)</td>
<td>38.7 ± 7.4</td>
<td>2,444 ± 394</td>
</tr>
<tr>
<td>AUC₀₋∞ (µg·hr/mL)</td>
<td>39.0 ± 7.3</td>
<td>2,472 ± 388</td>
</tr>
<tr>
<td>CL/F (mL/hr/kg)</td>
<td>47.5 ± 9.0</td>
<td>37.04 ± 4.78</td>
</tr>
<tr>
<td>T₁/₂ (hr)</td>
<td>10.02 ± 1.47</td>
<td>9.85 ± 1.07</td>
</tr>
<tr>
<td>Vz/F (mL/kg)</td>
<td>70.1 ± 23.6</td>
<td>529 ± 104</td>
</tr>
</tbody>
</table>

The AUC₀₋∞ and the AUC₀₋∞ were very similar suggesting the duration of sampling was adequate to characterize the pharmacokinetic profiles. Cmax was proportional to dose. Tmax was later at the higher dose. Tmax was at 4 hours for all animals in the low dose group and was at 8 or 24 hours in the high dose group. Terminal half-lives are similar for the two dose groups.

AUC was approximately proportional to dose with a slightly larger than proportional AUC at the higher dose producing a slightly lower estimate for CL/F and Vz/F compared to the lower dose. It is not possible to say if CL and Vz are lower at the higher dose or if F is lower at the lower dose. There was overlap between the groups so it is questionable that this represents a meaningful difference in CL/F and Vz/F.

Pharmacokinetic parameters estimated by the model were very similar to those from non-compartmental analysis. Absorption and elimination half-lives are shown in Table 17 below:

<table>
<thead>
<tr>
<th>Dose</th>
<th>T₁/₂ α (hr)</th>
<th>T₁/₂ e (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 mg/kg</td>
<td>1.17 ± 0.40</td>
<td>10.41 ± 2.36</td>
</tr>
<tr>
<td>90 mg/kg</td>
<td>6.49 ± 1.87</td>
<td>7.26 ± 1.85</td>
</tr>
</tbody>
</table>

The data indicate that the elimination rates are fairly similar between the groups with a slightly longer T1/2 el in the lower dose group. The absorption, however, is more than 5-fold slower following subcutaneous administration of 90 mg/kg compared to that following 1.8 mg/kg. As in the case of the non-compartmental analysis, modeling indicated a later Tmax at the high dose.

Although GH supplementation is effective in the treatment of GH deficiency in children and adults, the disadvantages of daily injections over extended periods of time limit its use by physicians in certain patient populations as well as increase the risk of dosing error, the number of care givers, the cost of treatment and noncompliance. Especially important in certain populations, such as children of short stature who may not understand the implications of not following the prescribed GH dosing regimen, is the necessity of compliance to achieve the optimal benefit from GH therapy. The issue of finding a more suitable alternative to daily GH injections and subsequent compliance gains further importance as GH-deficient children transition into adults with a continuing need for GH treatment. The requirement of daily therapy is largely due to recombinant GH’s short plasma half-life and has led to the development of a sustained release form of GH (Reiter E Q, Attire K M, Marshing T J, Silverman B L, Kemp S F, Neolith R B, Ford K M, and Sanger P A. Multimember study of the efficacy and safety of sustained release GH in the treatment of naive pediatric patients with GH deficiency. J. Clin. Endocrinol. Metab. 86 (2001), pp. 4700-4706).

GH-CTP, a recombinant human growth hormone-CTP fusion protein, as described herein, has a pharmacokinetic profile in the rat that is longer in duration than that of GH. This unique pharmacokinetic profile allows for intermittent administration of GH-CTP to achieve pharmacodynamic effects in growth-hormone-deficient rat as evidenced by growth and elevations in plasma IGF-1 levels, respectively.

GH-CTP offers a superior pharmacokinetic profile compared with that of GH when administered s.c. in the rat. There are substantial differences in plasma clearance of GH-CTP compared to GH. Specifically, plasma is cleared of GH-CTP at more than 6 times more slowly than GH following s.c. dosing. The terminal half-life and mean residence time of GH-CTP were approximately six times longer than that of GH in rats following s.c. administration. In addition, the CINF following s.c. dosing is 10 times lower for GH-CTP than for GH.

In an effort to examine whether the pharmacokinetic advantages in the rat translated to a pharmacodynamic benefit, the possibility that GH-CTP might stimulate growth in GH-deficient hypophysectomized rats with dosing regimens less frequent than daily was tested at equimolar CTP-hGH-CTP-CTP and GH dose levels. Single SC injection of GH-CTP promoted incremental weight gain which was equal to 4 daily consecutive injections of GH. In addition, the every fourth day administration schedule for GH-CTP shows enhanced body weight gain over GH.

Pharmacodynamically, the long circulation time of GH-CTP relative to GH in the hypophysectomized rats resulted in a prolonged IGF-1 response measured in blood plasma following a single s.c. injection. Subcutaneous administration of a single dose of GH-CTP increased circulating IGF-1 concentrations in a dose-dependent manner in the hypophysectomized rats. At the highest albutropin dose, IGF-1 concentrations were elevated above baseline for as long as 75 hours after a single administration. Thus, the enhanced circulation time of a single dose of GH-CTP
resulted in substantial pharmacodynamic improvement over a single dose of GH, raising the possibility that GH-CTP could offer similar growth enhancement with reduced dosing frequency compared with standard GH treatment regimens.

[0475] Single CTPs modified hGH-dose of 90 mg/kg in Rhesus and 180 mg/kg in rats were well tolerated in both species. The allometric factor between rats and primates is approximately X2 which is based on the anticipated clearance of proteins in these animals. In-line with industry-accepted extrapolation models for therapeutic proteins’ half-life increase between species (FDA Guidance), 90 mg/kg in Primates has a PK profile slightly better than 180 mg/kg of CTPs modified hGH in Rat. Thus, allometric extrapolation to humans supports weekly or once/2 w injection.

[0476] The present concept utilizing a CTP-GH construct, reduced dosing frequency compared to the commercial GH recombinant product. Nutropin Depot® is a sustained release formulation of GH approved for use in pediatric populations; however, comparisons to historical controls have revealed that 1- and 2-year growth rates are significantly (p<0.001) lower in children given Nutropin Depot® (1-year growth rate 8.2±1.8 cm/year) than in children treated with GH (one-year growth rate 10.1±2.8 cm/year) (Silverman B L, et al. J. Pediatr. Endocrinol. Metab. 15 (2002), pp. 715-722). The local effects of subcutaneously administered Nutropin Depot® include nodules, erythema, pain at the injection site, headache and vomiting. Preclinical toxicology studies in both rat and monkey have shown that s.c. administration of CTP-hGH- CTP-CTP produces no local reactions compared to vehicle. Given the medical need for a less frequently administered form of GH, the pharmacologic properties of CTP-hGH- CTP-CTP in this study in rats suggest that this product is favorable also in terms of toxicology and patent compliance. The sustained activity of CTP-hGH-CTP-CTP in the rat supports its potential utility as an agent that requires only intermittent administration to attain a therapeutic benefit that is currently achieved with daily dosing.

Example 15
Long-Acting CTP-Modified Version of Human Growth Hormone (hGH-CTP) was Highly Effective in Growth Hormone Deficient Adults—Phase II Clinical Trial

[0477] A randomized, open-label, Phase II Clinical Trial was conducted to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamic properties of hGH-CTP injected either weekly or twice-monthly in patients who currently receive daily injections of growth hormone. The trial was conducted at multiple sites in six countries. The three main cohorts in the trial received a single weekly dose of hGH-CTP, containing 30%, 45% or 100% of the equivalent cumulative commercial hGH dose that growth hormone-deficient adult patients receive over the course of seven days in the form of daily injections (referred to as the “30%”, “45%” and “100%” cohorts, respectively). The data reflect results from 39 patients, 13 in each cohort. 2 females were included in each cohort.

[0478] In addition to the three main cohorts, growth hormone deficient adults were enrolled in an experimental fourth cohort, which is conducted outside of the formal Phase I trial. The patients in the experimental fourth cohort receive a single injection of hGH-CTP once every two weeks that contains 50% of the cumulative commercial dose of that growth hormone-deficient adult patients receive over a two-week period in the form of daily injections.

[0479] Efficacy for the three main cohorts receiving a single weekly injection of hGH-CTP is defined by measuring daily insulin-like growth factor 1 (IGF-1) levels within the desired therapeutic range over a period of seven days (during the last week of treatment in the study). The desired therapeutic range is defined as between ±2 standard deviations through −2 standard deviations from the average IGF-1 levels expected in a normal population, stratified by age group and gender. In addition, the trial measured IGF-1 levels within a narrower range of ±1.5 standard deviations for the purpose of observing the variance of the patients within the normal range.

Results:

[0480] Table 18 contains the average percent of days within the normal therapeutic range (+/−2 SD), average percent of days within a narrower normal therapeutic range (+/−1.5 SD), and average Cmax (highest concentration level) of IGF-1 for males, measured during the last treatment week, expressed in standard deviations from the normal population mean IGF-1 levels.

<table>
<thead>
<tr>
<th>Cohort</th>
<th>% Days Within Normal Range of IGF-1 (+/−1.5 SD)</th>
<th>% Days Within Narrow Normal Range of IGF-1 (+/−2 SD)</th>
<th>Avg. Cmax of IGF-1 (preferred below ±2 SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>57%</td>
<td>100%</td>
<td>−0.9</td>
</tr>
<tr>
<td>45%</td>
<td>100%</td>
<td>100%</td>
<td>0.1</td>
</tr>
<tr>
<td>100%</td>
<td>86%</td>
<td>100%</td>
<td>0.4</td>
</tr>
</tbody>
</table>

[0481] Two mg per week of hGH-CTP, containing 50% of the cumulative weekly hGH dose that an adult patient would usually be prescribed as the initial treatment dose, has a high likelihood of being defined as the starting dose for males and females in the adult Phase III.

[0482] There was no evidence of safety and/or tolerability issues, and no indication that hGH-CTP, when used in higher doses, induced excessive levels of IGF-1 in patients or even levels above the normal range.

Phase II—IGF-1 Summary and Perspectives

MOD-4023 Phase II Study Design and Objectives:

[0483] A two stage Phase II study confirming CTP-hGH- CTP-CTP (MOD-4023) weekly administration regimen was completed (see FIG. 18). The trial was a switch over study performed in growth hormone deficient (GHD) patients currently on a daily hGH treatment that were considered normalized on their daily treatment prior to MOD-4023 administration, as reflected by IGF-1 SDS levels within the normal range (±2SDS). Stage I of the study was a 4 week dose-finding study (4 injections) supported by full pharmacokinetics-pharmacodynamics (PK-PD) analysis during the week following the 4th dose of MOD-4023. The major objective of this part was to identify a therapeutic dose range in which the IGF-1 level is kept within a defined range. Another objective was to evaluate the PK-PD profile of MOD-4023 at 3 different doses/multi-
pliers, and confirming a dose-dependent response. The second stage of the study (Stage II) was a 16-week MOD-4023 treatment and dose titration period. All patients who continued to Stage II began with the same MOD-4023 dose level (61.7% of their personal, optimized, weekly cumulative r-hGH dose), but could have their dose modified based on their monitored IGF-I levels.

In the first part of the study the doses were administered based on percentage of the weekly accumulated hGH in order to evaluate the initial response following a weekly regimen of MOD-4023. For example: A patient receiving 1 mg/day of hGH who was randomized to the 55% cohort was injected with a MOD-4023 dose of $1_{\text{avg}} * 7_{\text{days}} * 0.55$ on weekly basis.

Results

The primary efficacy endpoint of this study was the mean time interval of IGF-I levels that lay within normal range after the last dose administration during Stage I, expressed in hours. In the final analysis the IGF-I levels of most of the patients during that week were within the normal range for the entire week (Table 19). Patients who were within the specified SDS range at the final time point were assigned a time interval of 168 hours. None of the patients exceeded +2 SDS at Cmax, indicating that there are no excessive IGF-I levels. Eighty-five percent of males (28/33 males) had an average IGF-I SDS within the normal range (±2 SDS) (Fig. 19). The mean time interval of IGF-I levels that lay within ± the normal range of all three cohorts did not show a significant change as all mean time intervals were within 1 standard deviation of one another.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{avg} (ng/mL)</td>
<td>174 ± 57.0 (11)</td>
<td>178 ± 43.1 (11)</td>
<td>154 ± 28.5 (11)</td>
</tr>
</tbody>
</table>

Mean ± standard deviation (N).

Phase II Stage II (4 Months Extension) Results and Perspectives:

Based on the PD analysis of Phase II Stage I the following was concluded: 1) Although the study objective was not to optimize patients IGF-I levels namely, targeting IGF-I SDS value to 0, (since IGF-I SDS optimization requires relatively long titration period), still therapeutic dose range for weekly administration of MOD-4023 could be established: around 56%-123% of the weekly cumulative dose of daily hGH. 2) IGF-I profile following a weekly MOD-4023 administration is relatively flat, as reflected by fairly small difference between Cmax and C trough. 3) The Cavg (AUC 0-168/168 hr) which represents the mean weekly IGF-I exposure correlated to Day 4 values. Therefore, day 4 post MOD-4023 administration was chosen as the monitoring day for IGF-I levels.

The ability of weekly administration of MOD-4023 to maintain IGF-I within the normal range at an optimal dose and for a longer period of time was addressed during the second part of the study (Stage II-4 months extension period). In this study, the same patient population from the first stage was administered with 61.7% of their hGH weekly dose and IGF-I was monitored every two weeks. The majority of the patients maintain the IGF-I SDS value within the normal range throughout the study as measured on day 4 post injection. Patients who demonstrated IGF-I levels below the normal range were further titrated and their MOD-4023 dose was increased (aligned with the clinical practice).

Minority of patients with IGF-I SDS values below the normal range required further titration but demonstrated remarkable improvement in IGF-I SDS, indicating that IGF-I profile can be optimized by MOD-4023 dose increment/decrement. Excellent responsiveness and minimal dose modification were needed as presented in Fig. 21 and summarized in Table 4 hereunder.
Crough of the “sinusoidal” behavior of IGF-I levels are maintained along the study, confirming again weekly regimen of MOD-4023.

In conclusion, MOD-4023 should obviate the need for the numerous injections now required for the treatment of GHD. The results of this study have demonstrated that MOD-4023 can be injected once per week and achieve the clinical efficacy endpoints assessed, while maintaining a favorable safety profile. A GH treatment regimen that requires less frequent injections may improve compliance and potentially overall outcomes.

Hence, based on the achieved IGF-I profile and the Phase II safety and tolerability results, the recommended injection frequency and dosing for the Phase III study are: a single weekly injection of MOD-4023 containing 61.7% of the cumulative weekly hGH dose, personalized for each patient.

Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to the precise embodiments, and that various changes and modifications may be effected therein by those skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.

TABLE 4

Summary of required dose modifications during Stage II.

<table>
<thead>
<tr>
<th>Number of Dose Modifications</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dose modifications</td>
<td>22 (out of 34)</td>
<td>3 (of 8)</td>
</tr>
<tr>
<td>1 dose modification</td>
<td>6 (out of 34)</td>
<td>1 (out of 8)</td>
</tr>
<tr>
<td>2 dose modifications</td>
<td>3 (out of 34)</td>
<td>3 (out of 8)</td>
</tr>
<tr>
<td>3 dose modifications</td>
<td>3 (out of 34)</td>
<td>1 (out of 8)</td>
</tr>
</tbody>
</table>

[0492] Based on day 4 IGF-I SDS values (correlated to Cavg), a significant improvement in IGF-I levels, as compared to Stage I of the study was observed for the individual patients. This observation further supported the notion that an adjustment period is necessary to reach optimal IGF-I levels and profile. Females are known to be less sensitive to hGH replacement treatment (MOD-4023 as well) and usually require higher doses and longer period of titration. In addition, IGF-I SDS levels as measured on day 4 were maintained constantly at a similar values within the normal range during the 4 month extension period, indicating that MOD-4023 can be administered in a weekly regimen. Following consecutive administrations of MOD-4023 no major decrease in IGF-I levels at day 4 has been observed indicating that the Cmaxand trough of the “sinusoidal” behavior of IGF-I are maintained along the study, confirming again weekly regimen of MOD-4023.

[0493] In conclusion, MOD-4023 should obviate the need for the numerous injections now required for the treatment of GHD. The results of this study have demonstrated that MOD-4023 can be injected once per week and achieve the clinical efficacy endpoints assessed, while maintaining a favorable safety profile. A GH treatment regimen that requires less frequent injections may improve compliance and potentially overall outcomes.

[0494] Hence, based on the achieved IGF-I profile and the Phase II safety and tolerability results, the recommended injection frequency and dosing for the Phase III study are: a single weekly injection of MOD-4023 containing 61.7% of the cumulative weekly hGH dose, personalized for each patient.

[0495] Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to the precise embodiments, and that various changes and modifications may be effected therein by those skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 50

<210> SEQ ID NO 1
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105 110
Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 115 120 125
Leu Arg Ser Leu Thr Leu Ser Thr Leu Arg Ala Leu Gly Ala Gln Lys Glu 130 135 140
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 145 150 155 160
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 165 170 175

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
Arg Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Pro Ser
Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln

<210> SEQ ID NO 2
<211> LENGTH: 249
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu
1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu
20 25 30
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
35 40 45
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
50 55 60
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
65 70 75 80
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
85 90 95
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
100 105 110
Gln Pro Trp Glu Pro Leu Gln His Val Asp Lys Ala Val Ser Gly
115 120 125
Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Glu Lys Glu
130 135 140
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
145 150 155 160
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
165 170 175
Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
180 185 190
Arg Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Pro Ser
195 200 205
Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln Ser Ser Ser
210 215 220
Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly
225 230 235 240
Pro Ser Asp Thr Pro Ile Leu Pro Gln
245

<210> SEQ ID NO 3
<211> LENGTH: 277
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 3

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu
1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ser Ser Ser Ser Lys
Continued

20 25 30
Ala Pro Pro Ser Leu Pro Ser Ser Arg Leu Pro Gly Pro Ser
35 40 45
Asp Thr Pro Ile Leu Pro Gln Ala Pro Pro Arg Leu Ile Cys Asp Ser
50 55 60
Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
65 70 75 80
Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val
85 90 95
Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
100 105 110
Gln Gln Ala Val Glu Val Trp Glu Gln Gly Leu Ala Leu Leu Ser Glu Ala
115 120 125
Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu
130 135 140
Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu
145 150 155 160
Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro
165 170 175
Pro Asp Ala Ala Ser Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr
180 185 190
Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu
195 200 205
Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Ser Ser Ser
210 215 220
Ser Lys Ala Pro Pro Pro Leu Pro Ser Pro Ser Pro Ser Arg Leu Pro Gly
225 230 235 240
Pro Ser Asp Thr Pro Ile Leu Pro Gln Ser Ser Ser Ser Lys Ala Pro
245 250 255
Pro Pro Ser Leu Pro Ser Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr
260 265 270
Pro Ile Leu Pro Gln
275

<210> SEQ ID NO 4
<211> LENGTH: 387
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 4

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Leu Ser Leu 1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
-continued

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 110 115
Leu Arg Ser Leu Thr Thr Leu Leu Leu Arg Ala Leu Gly Ala Glu Lys Glu 140
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 160
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 175
Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 190
Arg Ser Ser Ser Ser Lys Ala Pro Pro Pro Leu Pro Ser Pro Ser Pro Ser 205
Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Glu Ala Pro Pro 220
Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala 240
Lys Glu Ala Glu Asn Ile Thr Gly Cys Ala Glu His Cys Ser Leu 255
Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp 270
Lys Arg Met Glu Val Gly Glu Glu Ala Val Glu Val Trp Glu Gly Leu 285
Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gin Glu Ala Leu Val Asn 400
Ser Ser Gln Pro Trp Glu Pro Leu Glu His Val Asp Lys Ala Val 305 310 315
Ser Gly Leu Arg Ser Leu Thr Leu Leu Arg Ala Leu Gly Ala Gln 320 325 330
Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg 350
Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn 365
Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr 380 385

<210> SEQ ID NO 5
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 5
Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ser Ser Ser Ser Lys 20 25 30
Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser 35 40 45
Asp Thr Pro Ile Leu Pro Glu Ala Pro Pro Arg Leu Ile Cys Asp Ser 50 55 60
Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
-continued

65 70 75 80
Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val
85 90 95

Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
100 105 110

Gln Gln Ala Val Glu Val Trp Gin Gly Leu Ala Leu Leu Ser Glu Ala
115 120 125

Val Leu Arg Gly Gln Ala Leu Val Asn Ser Ser Gin Pro Trp Glu
130 135 140

Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu
145 150 155 160

Thr Thr Leu Leu Arg Ala Leu Gly Ala Gin Lys Glu Ala Ile Ser Pro
165 170 175

Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr
180 185 190

Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu
195 200 205

Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg
210 215 220

<210> SEQ ID NO 6
<211> LENGTH: 249
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 6

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Ser Leu
1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ser Ser Ser Lys
20 25 30
Ala Pro Pro Pro Ser Leu Pro Ser Arg Leu Pro Gly Pro Ser
35 40 45
Asp Thr Pro Ile Leu Pro Gin Ala Pro Pro Arg Leu Ile Cys Asp Ser
50 55 60
Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
65 70 75 80
Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val
95 95

Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
100 105 110

Gln Gln Ala Val Glu Val Trp Gin Gly Leu Ala Leu Leu Ser Glu Ala
115 120 125

Val Leu Arg Gly Gln Ala Leu Val Asn Ser Ser Gin Pro Trp Glu
130 135 140

Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu
145 150 155 160

Thr Thr Leu Leu Arg Ala Leu Gly Ala Gin Lys Glu Ala Ile Ser Pro
165 170 175

Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr
180 185 190

Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu
195 200 205

Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Ser Ser
Ser Lys Ala Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly

Pro Ser Asp Thr Pro Ile Leu Pro Gln

<210> SEQ ID NO: 7
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Forward primer for EPO-CTP constructs
<400> SEQUENCE: 7

aatcttaggg tcatctaggg ggtgc

<210> SEQ ID NO: 8
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Forward primer for EPO-CTP constructs
<400> SEQUENCE: 8

attgagcccg eggagccaga aagccttat tg

<210> SEQ ID NO: 9
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Reverse primer for EPO-CTP constructs
<400> SEQUENCE: 9

taatatgg ggtgcagcgag ggccc

<210> SEQ ID NO: 10
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Forward primer for EPO-CTP constructs
<400> SEQUENCE: 10

ccataattac cacaagcccc acacagccc at

<210> SEQ ID NO: 11
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Reverse primer for EPO-CTP constructs
<400> SEQUENCE: 11

tgcgagcggg gatctttatct tgtccctgt ctctgc

<210> SEQ ID NO: 12
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Forward primer for EPO-CTP constructs
<400> SEQUENCE: 12
-continued

gcctgctgt oggaagc

<210> SEQ ID NO 13
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Reverse primer for EPO-CTP constructs

<400> SEQUENCE: 13

atgcccggcg oggatcagga agaccttat tg

<210> SEQ ID NO 14
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Reverse primer for EPO-CTP constructs

<400> SEQUENCE: 14

cctggaggaag gaggagccca ggactgaggag gc

<210> SEQ ID NO 15
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Forward primer for EPO-CTP constructs

<400> SEQUENCE: 15

cctgggttcct tcctctcaag gggc

<210> SEQ ID NO 16
<211> LENGTH: 193
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 16

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu
1 5 10 15
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu
20 25 30
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
35 40 45
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
50 55 60
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
65 70 75 80
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
85 90 95
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
100 105 110
Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
115 120 125
Leu Arg Ser Leu Thr Thr Leu Arg Ala Leu Gly Ala Gln Lys Glu
130 135 140
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
145 150 155 160
-continued

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
165 170 175

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
180 185 190

Arg

<210> SEQ ID NO 17
<211> LENGTH: 34
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: CTP amino acid sequence

<400> SEQUENCE: 17

Asp Pro Arg Phe Gln Asp Ser Ser Ser Lys Ala Pro Pro Pro Ser
1 5 10 15

Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu
20 25 30

Pro Gln

<210> SEQ ID NO 18
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: CTP amino acid sequence

<400> SEQUENCE: 18

Ser Ser Ser Ser Lys Ala Pro Pro Ser Leu Pro Ser Pro Ser Arg
1 5 10 15

Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln
20 25

<210> SEQ ID NO 19
<211> LENGTH: 786
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 19

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu
1 5 10 15

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly
20 25

<210> SEQ ID NO 20
<211> LENGTH: 786
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 20

tctagaggtc atcatggggg tgcaagaagt tctgctgct ctgctgctt tctgtcctt 60
tctgctgct cctgctgcc tctccagctc ggctcactct tctctcaagg ccctctcccc 120
gagctctcga agtcctgccc gactctcggag gcctgctgag ccccaaaatat taccacaagc 180
cccacaacgc ctctctgtgc acagccgagt ccctcgaggg tctctcttgg aggcccaagga 240
ggcgagaat atcaagacgg gcctgtcact taacagcagc ttgaatcags atataactgt 300
cccagacacc aagtaataat tctatgcttg gaagagcatg gaggtcgccg agcagcagt 360
agaagctcttg ccagggctgtg cctgctctg tcgaagctgt cttcgggggc agggcctgtt 420
-continued-

ggctaaacttc toccagccttg ggagcctcct ggagtcgcat gttgataaag cagtcagttg

ccttccagcct tcacaaactttg tctttcggtgc ttgcggagcc cagaaagagaa cactttccc

tccagatcgc goctgcgcctg tcacaaactt gttgacaact tocccaacctc
tctccagatcc tctaatcgttct cccctccggg aagagcagaa ctgtcacaag ccagagccctt
cagacagagc gacagactctc ctttctccaaag ggcctccctccc cgccgccttc caagttcaca
cgacattgc ggccctccgg gcaccccgat cttcctccaa taaagttctt ctggatcgc

ggccgc

<210> SEQ ID NO: 21
<211> LENGTH: 873
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 21

tctagagggct acctgagggg gaggcagagt tctgtgggtct cttgtggttc tctgtggtct

tctgctgctc ctcctggggtc tcacaggtctg gggctctctc tcctcaaaggg cccctcctccc
gagcctttcag gctccacattc gcctcggcgg ggcctgggac ccctaactct ctcaccaagc

ccccaaccg ccctcctgtg ccagcgcgaat ctggagaggg ttcctcttgg aggccagaaaa

ggagccagat tcacagcaggg gcctgtgcga actacgcgcag cttgtcagag ataagtgcgt

cccgacaccc aaaggttaatt tctagccttg gcagcaggtct gaggcctggt gcagcgcctggt

ggcmcaacttc toccagccttg ggagcctcct ggagtcgcat gttgataaag cagtcagttg

ccttccagcct tcacaaactttg tctttcggtgc ttgcggagcc cagaaagagaa cactttccc

tccagatcgc goctgcgcctg tcacaaactt gttgacaact tocccaacctc
tctccagatcc tctaatcgttct cccctccggg aagagcagaa ctgtcacaag ccagagccctt
cagacagagc gacagactctc ctttctccaaag ggcctccctccc cgccgccttc caagttcaca
cgacattgc ggccctccgg gcaccccgat cttcctccaa taaagttctt ctggatcgc

tccagatcgc goctgcgcctg tcacaaactt gttgacaact tocccaacctc

tcagttgatgccttcaccttg gatgcgcctcgg gcgc

<210> SEQ ID NO: 22
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 22

Met Gly Val His Glu Pro Ala Trp Leu Trp Leu Leu Leu Leu Ser Leu

1 5 10 15

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu

20 25 30

Ile Cys Ser Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu

35 40 45

Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu

50 55 60

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg

65 70 75 80

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
Leu Ser Glu Ala Val Leu Arg Ser Gln Ala Leu Val Asn Ser Ser
100 105 110
Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
115 120 125
Leu Arg Ser Leu Thr Thr Leu Arg Ala Gln Ala Gln Lys Glu
130 135 140
Ala Ile Ser Pro Pro Asp Ala Ala Ala Ala Ala Pro Leu Arg Thr Ile
145 150 155 160
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
165 170 175
Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
180 185 190
Arg Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Ser
195 200 205
Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln
210 215 220

<210> SEQ ID NO 23
<211> LENGTH: 217
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 23
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
1 5 10 15
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
20 25 30
Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln
35 40 45
Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys
50 55 60
Val Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe
65 70 75 80
Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Thr Gln Glu Lys
85 90 95
Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gin Ser Thr
100 105 110
Leu Glu Pro Val Gin Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val
115 120 125
Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Lys Asp Leu Glu
130 135 140
Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg
145 150 155 160
Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser
165 170 175
His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe
180 185 190
Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gin Cys
195 200 205
Arg Ser Val Gly Ser Cys Gly Phe
210 215
SEQUENCE: 24

Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln 1 5 10 15
Ser Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg Leu Glu Tyr Cys Leu 20 25 30
Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Ile Gln Gln Leu Gln 35 40 45
Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln 50 55 60
Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser Ser Thr Gly Trp Asn 65 70 75 80
Glu Thr Ile Val Glu Asn Leu Ala Asn Val Tyr His Gln Ile Asn 95 90 95
His Leu Lys Thr Val Leu Glu Glu Leu Glu Gln Glu Gln Asp Phe Thr 100 105 110
Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys Arg Tyr Tyr Gln Thr 115 120 125
Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser His Cys Ala Trp Thr 130 135 140
Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr Phe Ile Asn Arg Leu 145 150 155 160
Thr Gly Tyr Leu Arg Asn 165

SEQUENCE: 25

His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15
Gln Ala Ala Lys Glu Gln Thr Lys Leu Thr Leu Gln Gln Arg 20 25 30

SEQUENCE: 26

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser 1 5 10 15
Thr Thr Ala Leu Ser 20

SEQUENCE: 27
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctctagagga cagggccac</td>
<td>Forward primer for HGH-CTP constructs</td>
</tr>
<tr>
<td>acagggaggt ctggggttct tgca</td>
<td>Forward primer for HGH-CTP constructs</td>
</tr>
<tr>
<td>tgcaagacc ccagaccc ctggtgc</td>
<td>Reverse primer for HGH-CTP constructs</td>
</tr>
<tr>
<td>ccaactctat caatgtatct ta</td>
<td>XbaI Forward primer for HGH-CTP constructs</td>
</tr>
<tr>
<td>ctcctagagga cagggccac</td>
<td>Reverse primer for HGH-CTP constructs</td>
</tr>
<tr>
<td>gcaactcttg ttaggtgca aaggc</td>
<td>Forward primer for HGH-CTP constructs</td>
</tr>
<tr>
<td>gccttgaca cctaccagga gtctg</td>
<td>Reverse primer for HGH-CTP constructs</td>
</tr>
</tbody>
</table>
-continued

<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: NotI Reverse primer for HGH-CTP constructs

<400> SEQUENCE: 34
acgagcgccg atcagacct tcatactga ggc

<210> SEQ ID NO 35
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Reverse primer for HGH-CTP constructs

<400> SEQUENCE: 35
gcggcgcgag ctcagccagt gccc

<210> SEQ ID NO 36
<211> LENGTH: 217
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 36
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
1 5 10 15
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
20 25 30
Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln
35 40 45
Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys
50 55 60
Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe
65 70 75 80
Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Thr Gln Glu Lys
85 90 95
Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Glu Ser Trp
100 105 110
Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val
115 120 125
Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu
130 135 140
Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg
145 150 155 160
Thr Gln Ile Phe Lys Glu Thr Tyr Ser Lys Phe Asp Thr Asn Ser
165 170 175
His Asn Asp Asp Ala Leu Leu Leu Asn Tyr Gly Leu Leu Tyr Cys Phe
180 185 190
Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Glu Cys
195 200 205
Arg Ser Val Glu Gly Ser Cys Gly Phe
210 215

<210> SEQ ID NO 37
<211> LENGTH: 245
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<table>
<thead>
<tr>
<th>amino acids</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>30</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Thr Glu Glu Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Asn Leu Glu Leu Arg Ile Ser Leu Leu Ile Glu Ser Trp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>115</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>145</th>
<th>150</th>
<th>155</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>165</th>
<th>170</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr Gly Gln Ile Phe Lys Glu Thr Tyr Ser Lys Phe Asp Thr Asn Ser</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>180</th>
<th>185</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Asn Asp Arg Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>195</th>
<th>200</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Glu Cys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>210</th>
<th>215</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg Ser Val Glu Gly Ser Cys Gly Phe Ser Ser Ser Ser Lys Ala Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>225</th>
<th>230</th>
<th>235</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Pro Ser Leu Pro Ser Pro Ser Leu Pro Gly Pro Ser Asp Thr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amino acids</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Ile Leu Pro Gln</td>
<td></td>
</tr>
</tbody>
</table>
Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Glu Ser Trp 100 105 110
Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 115 120 125
Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 130 135 140
Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 145 150 155 160
Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 170 175
His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 180 185 190
Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Glu Cys 195 200 205
Arg Ser Val Glu Gly Ser Cys Gly Phe Ser Ser Ser Ser Ser Lys Ala Pro 210 215 220
Pro Pro Ser Leu Pro Pro Ser Pro Arg Leu Pro Gly Pro Ser Asp Thr 225 230 235 240
Pro Ile Leu Pro Gln Ser Ser Ser Ser Lys Ala Pro Pro Pro Pro Ser Leu 245 250 255
Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro 260 265 270
Gln

<210> SEQ ID NO 39
<211> LENGTH: 301
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 39

Met Ala Thr Gty Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
1 5 10 15
Cys Leu Pro Trp Leu Glu Glu Gln Ser Ala Ser Ser Ser Ser Ser Ser Ser Lys Ala
20 25 30
Pro Pro Pro Ser Leu Pro Pro Ser Pro Arg Leu Pro Gly Pro Ser Asp
35 40 45
Thr Pro Ile Leu Pro Gln Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe
50 55 60
Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp
65 70 75 80
Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Glu Lys Tyr
95 100 105 110
Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile
120 125 130 135 140
Pro Thr Pro Ser Arg Asp Glu Thr Glu Ser Ser Asn Gln Glu
145 150 155 160
Leu Leu Arg Ile Ser Leu Leu Ile Glu Ser Thr Leu Glu Pro Val
170 175 180 185 190
Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser
205 210 215 220 225
Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Glu
240 245 250 255 260
Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Glu Ile

<210> SEQ ID NO: 40
<211> LENGTH: 285
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 40

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
 1 5 10 15
Cys Leu Pro Trp Leu Gln Glu Gln Gln Ser Ala Ser Ser Ser Ser Lys Ala
 20 25 30
Pro Pro Pro Ser Leu Pro Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe
 35 40 45
Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp
 50 55 60
Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr
 65 70 75 80
Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile
 85 90 95
Pro Thr Pro Ser Asn Arg Glu Thr Gln Gln Ser Asn Leu Glu
100 105 110
Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu Pro Val
115 120 125
Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser
130 135
Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Gly Ile Gln
145 150 155 160
Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile
165 170 175
Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp
180 185 190
Ala Leu Leu Lys Asn Tyr Leu Leu Tyr Cys Phe Arg Lys Asp Met
195 200 205
Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu
210 215 220
Gly Ser Cys Gly Phe Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu
225 230 235 240
Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro

-continued
<210> SEQ ID NO 41
<211> LENGTH: 273
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 41

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
 1 5 10 15
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Ser Ser Ser Ser Ser Lys Ala
 20 25 30
Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp
 35 40 45
Thr Pro Ile Leu Pro Gln Phe Pro Thr Ile Leu Ser Arg Leu Phe
 50 55 60
Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp
 65 70 75 80
Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr
 85 90 95
Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile
 100 105 110
Pro Thr Pro Ser Asn Arg Glu Thr Gin Gin Lys Ser Asn Leu Gin
115 120 125
Leu Leu Arg Ile Ser Leu Leu Ile Gin Ser Trp Leu Glu Pro Val
130 135 140
Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser
145 150 155 160
Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gin
165 170 175
Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gin Gin
180 185 190
Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp
195 200 205
Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met
210 215 220
Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gin Cys Arg Ser Val Glu
225 230 235 240
Gly Ser Cys Gly Phe Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu
245 250 255 260
Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro
265 270 275
Gln

<210> SEQ ID NO 42
<211> LENGTH: 245
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 42
| 1 | Met | Ala | Thr | Gly | Ser | Arg | Thr | Ser | Leu | Leu | Leu | Ala | Phe | Gly | Leu | Leu |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5 | Cys | Leu | Pro | Trp | Leu | Gln | Glu | Gly | Ser | Ala | Ser | Ser | Ser | Ser | Lys | Ala |
| 10 | Pro | Pro | Ser | Leu | Pro | Ser | Pro | Ser | Arg | Leu | Pro | Gly | Pro | Ser | Asp |
| 15 | Thr | Pro | Ile | Leu | Pro | Gln | Phe | Pro | Thr | Ile | Pro | Ser | Arg | Leu | Phe |
| 20 | Asp | Asn | Ala | Met | Leu | Arg | Ala | His | Arg | Leu | His | Gln | Leu | Ala | Phe | Asp |
| 25 | Thr | Tyr | Gln | Glu | Phe | Glu | Glu | Ala | Tyr | Ile | Pro | Lys | Glu | Gln | Lys | Tyr |
| 30 | Ser | Phe | Leu | Gln | Asn | Pro | Gln | Thr | Ser | Leu | Cys | Phe | Ser | Glu | Ser | Ile |
| 35 | Pro | Thr | Pro | Ser | Asn | Arg | Glu | Thr | Gln | Gln | Lys | Ser | Asn | Leu | Glu |
| 40 | Leu | Leu | Arg | Ile | Ser | Leu | Leu | Ile | Gln | Ser | Thr | Leu | Pro | Val |
| 45 | Gln | Phe | Leu | Arg | Ser | Val | Phe | Ala | Asn | Ser | Leu | Val | Tyr | Gln | Ala | Ser |
| 50 | Asp | Ser | Asn | Val | Tyr | Asp | Leu | Lys | Asp | Leu | Glu | Gln | Lys | Ile | Gln |
| 55 | Thr | Leu | Met | Gly | Arg | Leu | Glu | Asp | Gly | Ser | Pro | Arg | Thr | Gly | Gln | Ile |
| 60 | Phe | Lys | Gln | Thr | Tyr | Ser | Lys | Phe | Asp | Thr | Asn | Ser | His | Asn | Asp | Asp |
| 65 | Ala | Leu | Leu | Lys | Asn | Tyr | Gly | Leu | Leu | Tyr | Cys | Phe | Arg | Lys | Asp | Met |
| 70 | Asp | Lys | Val | Glu | Thr | Phe | Arg | Ile | Val | Gln | Cys | Arg | Ser | Val | Glu |
| 75 | Gly | Ser | Cys | Gly | Phe |

SEQ ID NO 43
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial

SEQ ID NO 44
LENGTH: 853
TYPE: DNA
ORGANISM: Homo sapiens

SEQUENCE: 43
```
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Ser Ser Ser Ser Lys Ala
Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp
Thr Pro Ile Leu Pro Gln Phe Pro Thr Ile Pro Ser Leu Arg Leu Phe
Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp
Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr
Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile
Pro Thr Pro Ser Asn Arg Glu Thr Gln Gln Lys Ser Asn Leu Glu
Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Thr Leu Gln Pro Val
Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser
Asp Ser Asn Val Tyr Asp Leu Lys Asp Leu Glu Gln Lys Ile Gln
Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile
Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp
Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met
Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu
Gly Ser Cys Gly Phe
```

SEQ ID NO 44
LENGTH: 863
TYPE: DNA

SEQUENCE: 44
```
tctagaggac atggccacccg gcagcaggac cagcctgctg ctggccttctc gcctgctctg 60
cctgcctagg ctgcaggaggc gcagcgccag ccttcttctt aaggtccac cccatctctt 120
gccagccccg agcagactgc cgggtcccccag cgacacacccc attctgcctc agtttcccac 180
cattccccctc agcagctgctg tcgacaacgc cattctgagg gcctcacaggct gcacacccct 240
```
ggtccttgac acctaccaag agttcagagga agctacacte ccacaagtg agaagtaacag 300
cctcctagcg aaccaccaacta cctccttgcttg cttcagcag aacatccccca ccaccacca 360
cagagaggag aaccaccaag agaagtaacag 420
cagagagtcttg tgcagagccct cagatcttcat gcaccttcttg 480
cagaggtcaacag tgcagagccct cagatcttcat gcaccttcttg 540
cctcctagggct gggctgtgctct caccaccc aagcagcatct ctgcagagtgctgctct 600
cctcctagggct gggctgtgctct caccaccc aagcagcatct ctgcagagtgctgctct 660
gtacggttgc gagatccgcaacctt gcacccagcttg tgcagagccct cttccttgcttg 720
gtacggttgc gagatccgcaacctt gcacccagcttg tgcagagccct cttccttgcttg 780
tgcagagcttg gcacccagcttg tgcagagccct cttccttgcttg 840
tgcagagcttg gcacccagcttg tgcagagccct cttccttgcttg 903

tggctgcagcga cgcacccagcttg tgcagagccct cttccttgcttg 937

<210> SEQ ID NO 45
<211> LENGTH: 937
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 45
tctttagaac atggcaccagc gcacccagcttg tgcagagccct cttccttgcttg 60
ccgcttacgg ctgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 120
gcaccagc gcacccagcttg tgcagagccct cttccttgcttg 180
cctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 240
gcaccagc gcacccagcttg tgcagagccct cttccttgcttg 300
cctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 360
cctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 420
cctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 480
gcaccagc gcacccagcttg tgcagagccct cttccttgcttg 540
cctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 600
cctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 660
tctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 720
tctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 780
tctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 840
tctcctctgcttg tgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 903

tgcagagcttg gcacccagcttg tgcagagccct cttccttgcttg 937

<210> SEQ ID NO 46
<211> LENGTH: 689
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 46
tctttagaac atggcaccagc gcacccagcttg tgcagagccct cttccttgcttg 60
ccgcttacgg ctgcagagccct cttccttgcttg aacagctctctg aacagtctctctg 120
gcaccagc gcacccagcttg tgcagagccct cttccttgcttg 180
gcaccagc gcacccagcttg tgcagagccct cttccttgcttg 240
gtacggttgc gagatccgcaacctt gcacccagcttg tgcagagccct cttccttgcttg 300

tgcagagcttg gcacccagcttg tgcagagccct cttccttgcttg 360
eh
.ncbiagatcg agctctctgc agaacaacctgacaccctcttg tcttcagctg tagacatcocy
300
ccacccaggagaccaagagcacagacagccgggtgcctgc aggacagctgcagggattctg
360
cctgtgtccg atccagactgc gctggagctgc agctgacagc tggagatctc
420
cagcctgtcttg cacagccctg gggagagctgc gacgagagctgc acgtgacagc
480
gggcctcgg acctgtcagc gcgcggcgcgc gcggcgcgc gcggcgcgc
540
cagcagactgccagcagctgcctgc ccagcagactgccagcagctgcctgc
tggagagctgc agctgacagc tggagatctc
600
ctagctgtgcctgcgcgagctgcctgc gcgggcgcgc gcgggcgcgc gcgggcgcgc gcgggcgcgc
660
cagcagactgccagcagctgcctgc ccagcagactgccagcagctgcctgc
tggagagctgc agctgacagc tggagatctc
720
cgcccgggcgcgc gcgggcgcgc gcgggcgcgc gcgggcgcgc gcgggcgcgc gcgggcgcgc
780
ggagagagctgc gggagagctgc gacgagagctgc acgtgacagc
tggagagctgc agctgacagc tggagatctc
840
cagcagactgccagcagctgcctgc ccagcagactgccagcagctgcctgc
tggagagctgc agctgacagc tggagatctc
tggagagctgc agctgacagc tggagatctc
tggagagctgc agctgacagc tggagatctc
889

<210> SEQ ID NO 48
<211> LENGTH: 217
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 47

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
1 5 10 15
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
20 25 30
Ser Arg Leu Phe Asn Ala Met Leu Arg Ala His Arg Leu His Gln
35 40 45
Leu Ala Phe Asp Ser Thr Tyr Gln Glu Phe Glu Ala Tyr Ile Pro Lys
50 55 60
Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gin Thr Ser Leu Cys Phe
65 70 75 80
Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Thr Gin Gin Lys
85 90 95
Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gin Ser Trp
100 105 110
Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val
115 120 125
Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu
130 135 140
Glu Gly Ile Gin Thr Leu Met Gin Arg Leu Glu Asp Gly Ser Pro Arg
145 150 155 160
Thr Gly Gln Ile Phe Lys Gin Thr Tyr Ser Lys Phe Asp Thr Asn Ser
165 170 175
His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe
180 185
Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gin Cys
195 200 205
Arg Ser Val Gly Gly Ser Cys Gly Phe
210 215
What is claimed is:

1. A method of reducing the dosing frequency of a growth hormone in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

2. The method of claim 1, wherein the sequence of at least one CTP consists of an amino acid sequence selected from the group consisting of: SEQ ID NO: 17 and SEQ ID NO: 18.

3. The method of claim 1, wherein said at least one CTP is glycosylated.

4. The method of claim 1, wherein said at least one CTP is truncated.

5. The method of claim 1, wherein the sequence of said signal peptide is as set forth in SEQ ID NO: 19.

6. The method of claim 1, wherein at least one CTP is optionally attached to said growth hormone via a linker.

7. The method of claim 6, wherein the linker is a peptide bond.

8. The method of claim 1, wherein said polypeptide is administered once weekly or once bi-weekly.

9. The method of claim 1, wherein said subject is a human subject.

10. The method of claim 1, wherein said growth hormone is human growth hormone (hGH).

11. A method of improving the area under the curve (AUC) of a growth hormone in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

12. The method of claim 11, wherein the sequence of at least one CTP consists of an amino acid sequence selected from the group consisting of: SEQ ID NO: 17 and SEQ ID NO: 18.

13. The method of claim 11, wherein said at least one CTP is glycosylated.

14. The method of claim 11, wherein said at least one CTP is truncated.

15. The method of claim 11, wherein the sequence of said signal peptide is as set forth in SEQ ID NO: 19.

16. The method of claim 11, wherein at least one CTP is optionally attached to said growth hormone via a linker.

17. The method of claim 16, wherein the linker is a peptide bond.

18. The method of claim 11, wherein said polypeptide is administered once weekly or once bi-weekly.
19. The method of claim 11, wherein said subject is a human subject.

20. The method of claim 11, wherein said growth hormone is human growth hormone (hGH).

21. A method of treating a subject in need of GH therapy, comprising administering to said subject a therapeutically effective amount of a polypeptide comprising a polynucleotide, said polynucleotide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby reducing the dosing frequency of a growth hormone in a subject.

22. The method of claim 21, wherein the sequence of at least one CTP consists of an amino acid sequence selected from the group consisting of: SEQ ID NO: 17 and SEQ ID NO: 18.

23. The method of claim 21, wherein said at least one CTP is glycosylated.

24. The method of claim 21, wherein said at least one CTP is truncated.

25. The method of claim 21, wherein the sequence of said signal peptide is as set forth in SEQ ID NO: 19.

26. The method of claim 21, wherein at least one CTP is optionally attached to said growth hormone via a linker.

27. The method of claim 26, wherein the linker is a peptide bond.

28. The method of claim 21, wherein said polypeptide is administered once weekly or once bi-weekly.

29. The method of claim 21, wherein said subject is a human subject.

30. The method of claim 21, wherein said growth hormone is human growth hormone (hGH).

31. A method of increasing insulin-like growth factor (IGF-I) levels in a subject, comprising administering to said subject a therapeutically effective amount of a polypeptide consisting of a growth hormone, one chorionic gonadotrophin carboxy terminal peptide (CTP) attached to the amino terminus of said growth hormone, and two chorionic gonadotrophin CTPs attached to the carboxy terminus of said growth hormone, and wherein said polypeptide optionally consists of a signal peptide attached to the amino terminus of said one CTP, thereby increasing insulin-like growth factor (IGF-I) levels in a subject.

32. The method of claim 31, wherein the sequence of at least one CTP consists of an amino acid sequence selected from the group consisting of: SEQ ID NO: 17 and SEQ ID NO: 18.

33. The method of claim 31, wherein said at least one CTP is glycosylated.

34. The method of claim 31, wherein said at least one CTP is truncated.

35. The method of claim 31, wherein the sequence of said signal peptide is as set forth in SEQ ID NO: 19.

36. The method of claim 31, wherein at least one CTP is optionally attached to said growth hormone via a linker.

37. The method of claim 36, wherein the linker is a peptide bond.

38. The method of claim 31, wherein said polypeptide is administered once weekly or once bi-weekly.

39. The method of claim 31, wherein said subject is a human subject.

40. The method of claim 31, wherein said growth hormone is a human growth hormone.