(12) 特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
(43) 国際公開日
2012年11月15日(12/06/2012)
WO 2012/153814 A1

<table>
<thead>
<tr>
<th>国際特許分類</th>
<th>C22C3/00 (2006.01)</th>
<th>C22C3/58 (2006.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>国際出願番号</td>
<td>PCT/JP200608988</td>
<td>9 (81)</td>
</tr>
<tr>
<td>国際出願日</td>
<td>2006年1月25日 (16.09.2006)</td>
<td></td>
</tr>
<tr>
<td>国際出願の言語</td>
<td>日本語</td>
<td></td>
</tr>
<tr>
<td>国際公開の言語</td>
<td>日本語</td>
<td></td>
</tr>
<tr>
<td>優先権データ</td>
<td>特願2005/1-100598</td>
<td>2005年1月10日</td>
</tr>
<tr>
<td>特願2005/1-203604</td>
<td>2005年9月12日</td>
<td></td>
</tr>
<tr>
<td>特願2005/1-83537</td>
<td>2005年10月3日</td>
<td></td>
</tr>
<tr>
<td>出願人 (米国を除く全ての指定国について): 株式会社精工鋼 (KABUSHIKI KAISHA KOBE SEIKO SHOKUBUSTEEL, LTD.) [JP]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発明者:および</td>
<td>長谷川信彦 (SHIGENAKI Nagahara)</td>
<td></td>
</tr>
<tr>
<td>発明者/出願者 (米国についてのみ): 宮村剛 (MIYAMURA Takao)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>代理人: 濱田博 (HAMADA Yuriko)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(61) 摘要: HEAT-RESISTANT AUSTENITIC STAINLESS STEEL HAVING EXCELLENT CYCLIC OXIDATION RESISTANCE

(62) 発明の名称: 耐熱オーステナイト系ステンレス鋼

(63) 要約: 本発明の耐熱オーステナイト系ステンレス鋼は、C: 0.05〜0.2%、Si: 0.1〜1%、Mn: 0.1〜2%、Cu: 1〜4%、Ni: 7〜12%、Cr: 16〜20%、Nb: 0.1〜0.6%、Zr: 0.05〜0.4%、Ce: 0.05〜0.1%、Ti: 0.1〜0.6%、B: 0.0005〜0.005%、N: 0.001〜0.005%、S: 0.005%以下およびP: 0.05%以下を含まない。
明 細 書
発明の名称：耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼
技術分野
[0001] 本発明は、ボイラー等の伝熱管材料として好適に用いられる耐熱オーステナイト系ステンレス鋼に関するものであり、特に耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼に関するものである。

背景技術
[0002] 近年、温暖化ガスである二酸化炭素の排出を抑制するために、石炭による火力発電の高効率化が進められている。この発電効率を向上させるためには、ボイラーの蒸気温度と圧力の上昇が有効であり、こうしたボイラーの伝熱管材料としては、高温強度、耐酸化性に優れたものが適用されている。また、このような特性に優れた材料として、一般的にオーステナイト系ステンレス鋼が用いられる。

[0003] 伝熱管材料に要求される耐酸化性としては、耐繰返し酸化特性がある。ボイラーは起動と停止を繰り返すため、鋼管（伝熱管）表面に形成された酸化物は高温環境と低温環境を交互に受ける繰返し酸化環境下に置かれることになる。このような環境下では、材料基材との熱膨張差に起因して酸化物が剥離してしまい、スケール剥離による更なる酸化の進行と鋼管の肉厚減少（減肉）による強度不足が生じるという問題がある。このような環境下でも、上記のような現象が生じにくいような特性（本発明では、これを“耐繰返し酸化特性”と呼んでいる）が必要される。

[0004] 耐繰返し酸化特性以外の特性を含む広義の意味での耐酸化性に優れる耐熱材料としては、25Cr20Niオーステナイト系ステンレス鋼（SUS310S）が知られているが、このステンレス鋼は高価なNiを多量に含むことからコストが高いという問題がある。こうしたことから、ボイラーの伝熱管材料としては、Ni含有量を低く抑え、且つ高温強度や耐食性が良好で
ある18Crx8Niオーステナイト系ステンレス鋼（SUS304）を基本的な成分とすることが重要な要件となる。

18Crx8Niオーステナイト系ステンレス鋼に近い成分としては、Tiを添加しているSUS321の成分系が知られており、またSUS321の成分系に準ずる火力発電用規格を有するボイラーステンレス鋼としては、SUS321J2HTBが知られている。広義な意味での耐酸化性の向上技術としては、（1）ショットビニング加工や機械研磨などの表面処理、 （2）耐食性を向上させる成分であるAl、Si、C、Laを含むRE系（希土類元素）の添加、 （3）結晶粒微細化があり、Ti化合物を析出強化機構として用いているオーステナイト系ステンレス鋼に関連するものとして、例えば特許文献1、2のような技術が提案されている。

これらの技術のうち特許文献1は、耐食性向上に寄与するAlを添加すると共に、表面研磨でCr2O3層の形成を促進させることによって、耐酸化性を向上させることを開示している。また、表面研磨処理と同じ効果を得る代替手段として、AlとSiの合計量を4％以上に増加させ、加えてC、Y、La等のRE系またはCaを添加することによっても耐酸化性が向上できることが示されている。

しかしながら、AlとSiの添加やCr2O3層の形成によって、鋼管表面に形成される酸化物の成長速度を遅らせる作用が期待できるものの、酸化物の形成自体を完全に防止できるものではなく、また良好な耐縁返し酸化特性的発揮は期待できない。更に、Alを添加する鋼材では、製管時に表面傷が生じやすいという問題もある。

特許文献2では、耐酸化特性を向上させるために、C、La、Hfを添加することが開示されているものの、上記技術と同様に、耐縁返し酸化特性が低いことが予想され、また耐縁返し酸化特性の改善を認識してなされたものでもない。

耐縁返し酸化特性を向上させるための技術として、特許文献3のような技術も提案されている。しかしながら、この技術では、AlおよびSiを多く
含むため、鋼管の表面傷や長時間熱処理後に脆化を招くという問題がある。またこの技術では、Yを含めてLaやCe等のREMを添加することがスケールの密着性を向上させる作用を発揮することが示されているが、十分な特性を有するものでなく、また耐繰返し酸化特性の改善を認識してなされたものでもない。

【0010】一方、ボイラー用オーステナイト系ステンレス鋼の耐酸化性を向上させる技術として、特許文献4のような技術も提案されている。この技術は、NbとNを析出強化や固溶強化のために用いている「SUS304J1HTB」の成分系である。この技術でも酸化物系介在物の形成を目的として、0.002～0.05％の程度のTiを添加しているが、SUS321J2HTBのようなTi化合物の析出を強化機構として用いている鋼材では、Tiを0.1～0.25％程度添加しなければ高温強度を確保できないことが予想される。またこの技術は、耐繰返し酸化特性の改善を認識してなされたものではなく、耐繰返し酸化特性が低いことが予想される。

【0011】特許文献5の技術では、REMの添加と粒子吹き付けビーニング加工によって、耐酸化性を向上させるものである。しかしながら、ビーニング加工は製造プロセスの増加によるコスト高を招くという別の問題があり、また耐繰返し酸化特性の改善を認識してなされたものではなく、耐繰返し酸化特性が低いことが予想される。

先行技術文献

特許文献

【0012】特許文献1：日本国特開2004－43903号公報
特許文献2：日本国特開平9－16565号公報
特許文献3：日本国特開平8－337850号公報
特許文献4：日本国特開2003－268503号公報
特許文献5：日本国特開平6－322489号公報

発明の概要
発明が解決しようとする課題

[0013] 本発明はこうした状況の下でなされたものであって、その目的は、N iとC rの含有量を8Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成を有すると共に、A lやS iの添加や表面処理に依存することなく、繰返し酸化環境における酸化物の剥離が少なく、減肉が生じにくい耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼を提供することにある。

課題を解決するための手段

[0014] 上記課題を解決した本発明の耐熱オーステナイト系ステンレス鋼は、C:0.05〜0.2％（質量％の意味。以下、化学成分組成について同じ。）、Si:0.1〜1％、Mn:0.1〜2.5％、Cu:1〜4％、Ni:7〜12％、Cr:16〜20％、Nb:0.1〜0.6％、Zr:0.05〜0.4％、Ce:0.005〜0.1％、Ti:0.1〜0.6％、B:0.0005〜0.005％、N:0.001〜0.15％、S:0.05％以下（0％を含まない）およびP:0.05％以下（0％を含まない）を含々含有し、残部が鉄および不可避不純物ならなることを特徴とする。

[0015] 本発明の耐熱オーステナイト系ステンレス鋼は、必要に応じて、更にMo:3％以下（0％を含まない）および／またはW:5％以下（0％を含まない）を含有することも有用であり、これらの成分を含有させることによって、高温強度が更に改善される。

[0016] 本発明の耐熱オーステナイト系ステンレス鋼は、必要に応じて、更にCa:0.005％以下（0％を含まない）および／またはMg:0.005％以下（0％を含まない）を含有することによって、Ceの歩留を向上できると共に靭性を向上することができる。

[0017] 上記のように化学成分組成を調整することによって、耐繰返し酸化特性を向上させた耐熱オーステナイト系ステンレス鋼が得られるのであるが、更に金属組織の結晶粒度をA S T M粒度番号で6以上、12未満とすることによって、より高い耐繰返し酸化特性を得ることができると共に、安定してその
特性を発揮できるものとなる。

発明の効果

本発明の耐熱オーステナイト系ステンレス鋼は、繰返し酸化環境においても、スケールの剥離による酸化の進行、およびそれに伴う鋼材の減肉が生じ難いため、石炭火力発電の伝熱管として使用することによって蒸気温度の高溫化による発電効率の向上が可能となり、既存材料に比べて伝熱管を長寿命化させてメンテナンスコストを低減することができる。また、スケールの剥離が少ないため、伝熱管として用いたときにその内部のスケール飛散が抑制でき、タービンの損傷を低減することも可能となる。

発明を実施するための形態

本発明者は、必要な高溫強度を維持しつつ、耐続返し酸化特性を向上したオーステナイト系ステンレス鋼を実現すべく、様々な角度から検討した。その結果、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成を有するステンレス鋼に対し、所定量のZrとCeを含有させれば、格段に優れた耐続返し酸化特性を発揮し得ることを見出し、本発明を完成した。

本発明の耐熱オーステナイト系ステンレス鋼は、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成に対し、所定量のZrとCeを含有することを特徴とするものであるが、これらZrとCeの含有量の範囲設定理由は、次の通りである。

ZrおよびCeは、これらの相乗効果によって、酸化物の剥離を抑制する効果を発現する。こうした効果を発揮させるためには、Zrについては0．05％以上含有させる必要がある。しかしながら、Zr含有量が過剰になると、粗大な介在物を形成して鋼材（若しくは鋼管）の表面性状や靭性を悪化させるため、その上限は0．4％以下とする必要がある。またCeについては、その効果を発揮させるためには、0．005％以上含有させる必要がある。しかしながら、Ce含有量が0．1％を超えて過剰になると、経済的なコスト増を招くことになる。
ZrおよびCeの添加は、鋼材のコスト高を招くため、含有させることに一部用いる作用をコスト高の兼合で、適切な含有量を設定すればよい。こうした観点から、Zr含有量の好ましい下限は0.10％以上（より好ましくは0.15％以上）であり、好ましい上限は0.3％以下（より好ましくは0.25％以下）である。またCe含有量の好ましい下限は0.01％以上（より好ましくは0.05％以上）であり、好ましい上限は0.03％以下（より好ましくは0.03％以下）である。

また、Ceの原料は純Ceを添加してもよいが、別途作製したCeを含む母合金やCeを含むミッシュメタルを用いて必要なCe純分を添加することも可能であり、ミッシュメタルに含まれるLa、Nd、Pr等が、後々Ceよりも低濃度で不純物として鋼材に含まれたとしても問題はなく、酸化し易い純Ceに比べて、母合金やミッシュメタルを用いることで溶解作業時の取り扱いを簡略化することが可能である。

尚、従来技術のうち特許文献1、3、5には、Y、La、Ceを含むREを添加することによって、酸化物の密着性が向上することが開示されているが、これらの開示は、REはいずれも単独添加を想定したものであって、Zrと共にCeを添加することによる相乗効果については何ら開示されていないものである。

また上記特許文献2には、ZrとCeを併用して含み得ることも開示されているが、この技術でいずれか必須の成分ではなく、非添加も含めて必要に応じて添加されるものであり、特にZrは粒界強化やクリープ延性の向上を期待して本発明で規定する範囲よりも少なく含有するものである。

本発明の耐熱オーステナイト系ステンレス鋼は、NiとCrの含有量が18Cr-8Niオーステナイト系ステンレス鋼と同等の化学成分組成を有することであるが、上記ZrとCe以外の各元素の化学成分組成（C、Si、Mn、Cu、Ni、Cr、Nb、Ti、B、N、S、P）も適切に調整する必要がある。これらの成分による作用および範囲設定理由は下記の通りである。
[0027] [C : 0.05 ～0.2%]

Cは、高温の使用環境において炭化物を形成し、伝熱管として必要な高温強度、クリープ強度を向上させる作用を有する元素であり、強化機構となる炭化物の析出量を確保するためには0.05％以上含有させる必要がある。
しかしながら、C含有量が過剰になって0.2％を超えると、固溶限を超えて粗大な炭化物となり、更なる強化が得られなくなる。C含有量の好ましい下限は0.07％以上、好ましい上限は0.18％以下である。

[S i: 0.1 ～1%]

Siは、溶鋼中で脱酸作用を有する元素である。また微量の含有であっても、耐酸化性の向上に有効に作用する。これらの効果を発揮させるためには、Si含有量は0.1％以上とする必要がある。しかしながら、Si含有量が過剰になって1％を超えると、δ相の形成を招き、鋼材の脆性（δ脆化）をもたらすことになる。Si含有量の好ましい下限は0.2％以上、好ましい上限は0.3％以下である。

[M n: 0.1 ～2.5%]

MnはSiと同様に、溶鋼中で脱酸作用を有する元素であり、またオーステナイトを安定化させる作用がある。これらの効果を発揮させるためには、Mn含有量は0.1％以上とする必要がある。しかしながら、Mn含有量が過剰になって2.5％を超えると、熱間加工性を阻害することになる。Mn含有量の好ましい下限は0.2％以上、好ましい上限は2.0％以下である。

[C u: 1 ～4%]

Cuは、鋼中に整合析出物（母材と原子配列が連続的であるような析出物）を形成し、高温クリープ強度を著しく向上させる元素であり、ステンレス鋼における主要な強化機構の一つである。この効果を発揮させるためには、Cu含有量は1％以上とする必要がある。しかしながら、Cu含有量が過剰
になって4％を超えてもその効果は飽和する。Cu含有量の好ましい下限は2.0％以上（より好ましくは2.5％以上）であり、好ましい上限は3.7％以下（より好ましくは3.5％以下）である。

[Ni : 7～12％]

Niは、オーステナイトを安定化させる作用があり、オーステナイト相を維持するためには7％以上含有させる必要がある。しかしながら、Ni含有量が過剰になって12％を超えると、コストの増加をもたらすことになる。Ni含有量の好ましい下限は7.5％以上（より好ましくは8.0％以上）であり、好ましい上限は11.5％以下（より好ましくは11.0％以下）である。

[Cr : 16～20％]

Crは、ステンレス鋼としての耐食性を発現するために必須の元素である。こうした効果を発揮させるためには、Crは16％以上含有させる必要がある。しかしながら、Cr含有量が過剰になって20％を超えると、高温強度の低下を招くフェライト相が増加する。Cr含有量の好ましい下限は16.5％以上（より好ましくは17.0％以上）であり、好ましい上限は19.5％以下（より好ましくは19.0％以下）である。

[Nb : 0.1～0.6％]

Nbは、炭窒化物（炭化物、窒化物または炭窒化物）を析出させることで、高温強度の改善に有効な元素であり、またこの析出物が晶粒の粗大化を抑制し、Crの拡散を促進することで、副次的に耐食性向上の作用を発揮する。必要な析出量を確保するためには、Nbは0.1％以上含有させる必要がある。しかしながら、Nb含有量が0.6％を超えて過剰になると、析出物が粗大化し靭性の低下を招くことになる。Nb含有量の好ましい下限は0.12％以上（より好ましくは0.15％以上）であり、好ましい上限は0.5％以下（より好ましくは0.3％以下）である。

[Ti : 0.1～0.6％]

TiもNbと同様な作用を発揮するものの、NbおよびZrと複合添加す
析出物が更に安定化し、更に高強度を維持するためには、Ti含有量を0.1％以上とする必要がある。しかしながら、Ti含有量が過剰になると、Nbの場合と同様に析出物が粗大化し、和性の低下を招くことになるので、0.6％以下とする必要がある。Ti含有量の好ましい下限は0.12％以上、好ましい上限は0.15％以上であり、好ましい上限は0.5％以下（より好ましくは0.3％以下）である。

[B : 0.0005 ～ 0.005％]

Bは、鋼中に固溶することで、主な強化機構の一つであるM₂₃C₆型炭化物（Mは炭化物形成元素）の形成を促進させる作用がある。こうした効果を有効に発揮させるためには、B含有量を0.0005％以上とする必要がある。しかしながら、B含有量が過剰になると熱間加工性や溶接性の低下を招くため、0.005％以下とする必要がある。B含有量の好ましい下限は0.001％以上、好ましい上限は0.004％以下（より好ましくは0.003％以下）である。

[N : 0.001 ～ 0.15％]

Nは、鋼中に固溶することで固溶強化によって高温強度を向上させる作用があり、また長期間の高温荷重下において、CrやNbと炭化物を形成して高温強度の向上に有効な元素である。これらの効果を有効に発揮させるためには、N含有量を0.001％以上とする必要がある。しかしながら、N含有量が過剰になって0.15％を超えると、粗大なTi窒化物やNb窒化物の形成を招いて韌性を悪化させる。N含有量の好ましい下限は0.002％以上（より好ましくは0.003％以上）であり、好ましい上限は0.10％以下（より好ましくは0.08％以下、更に好ましくは0.02％以下）である。

[S : 0.005％以下 （0％を含まない）]

Sは、不可避不純物であるが、その含有量が増加すると熱間加工性を劣化させるため、0.005％以下とする必要がある。また、SはCeを硫化物
として固定することでCeを添加することによる作用を損なうので、好ましくは0.002%以下（より好ましくは0.001%以下）に抑制するのが良い。

[0038] [P:0.05%以下（0%を含まない）]
Pは、不可避不純物であるが、その含有量が増加すると溶接性を損なうため、0.5%以下とする必要がある。好ましくは0.04%以下（より好ましくは0.03%以下）に抑制するのが良い。

[0039] 本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、Ce原料をミッシュメタルで添加する際にCeよりも低濃度で含まれるLa、Nd、Pr等に加え、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容される。但し、スクラップ原料に由来するSn、Pb、Sb、As、Znなどの低融点不純物金属は、熱間加工時や高温環境での使用時に粒界の強度を低下させるため、熱間加工性や長期使用後の耐脆化割れを改善するためには低濃度に抑えることが望ましい。また、本発明の鋼材は、必要に応じてMoやW、Ca、Mg等を含有していても良く、含有される元素の種類に応じて鋼材の特性が更に改善される。

[0040] [Mo:3%以下（0%を含まない）および/またはW:5%以下（0%を含まない）]
MoおよびWは、固溶強化によって高温強度を向上させる効果があり、必要によって含有させることで高温強度を更に上昇させることができ、しかしながら、Mo含有量が過剰になると熱間加工性を阻害するので、3%以下とすることが望ましい。より好ましくは、2.5%以下（更に好ましくは2.0%以下）である。また、W含有量が過剰になると粗大な金属間化合物を形成して高温延性の低下を招くため、5%以下とすることが好ましい。より好ましくは4.5%以下（更に好ましくは4.0%以下）である。尚、上記のような効果を有効に発揮させるための好ましい下限は、Moで0.1%以上（より好ましくは0.5%以上）であり、Wで0.1%以上（より好ましくは1.0%以上）である。但し、これらの元素は含有させることによって
、上記のような作用を発揮するが、それと同時にコスト増を招くため、必要
な強化量と許容されるコストに応じて含有量を設定すれば良い。

[Ca :0.005%以下 (0を含まない)および/Mg :0.005%
5%以下 (0を含まない)]

CaおよびMgは、脱硫・脱酸要素として働くため、Ce硫化物やCe酸
化物の形成を抑制してCeの歩留り向上や、介在物形成による靭性低下の抑
制が可能となる。こうした効果を有効に発揮させるための好ましい下限はい
ずれも0.0002%以上であり、より好ましくは0.0005%以上であ
る。しかしながら、これらの含有量が過剰になると、溶解作業中に溶鋼の突
沸が生じるなどの作業上の制約を受けるため、上限値をいずれも0.005
%以下とした。より好ましくはいずれも0.002%以下である。

本発明の耐熱オーステナイト系ステンレス鋼は、所定量のZrとCeを含
有することによって、耐繰返し酸化特性を改善できるのであるが、更に特性
を向上させるためには、金属組織の結晶粒度を制御することが有効である。
こうした観点から、耐熱オーステナイト系ステンレス鋼の金属組織の結晶粒
度は、ASTM (American Society for Testing and Materials) 粒度番号で6以上、12未満の微細組
織とすることが好ましい。上記粒度番号（結晶粒度番号）は、ASTMで定
められたものであり、計数方法（Planimetric method）
によって算出された粒度番号を意味する。

金属組織の結晶粒度がASTM粒度番号で6未満であると、ZrとCeを
含有することによる耐繰返し酸化特性の向上効果自体は得られるものの、そ
の改善効果を十分に高めることができなくなる。この粒度番号はより好まし
くは7以上であり、更に好ましくは9以上である。一方、熱間・冷間加工と
熱処理による製管プロセスでは、極端に微細な結晶粒組織は実質的に作製不
可能であるため、結晶粒度の上限は12未満とすることが好ましい。製造コ
ストや生産性を考慮すると、10以下であることがより好ましい。

上記のような結晶粒度範囲は、結晶粒界のビニングに寄与する成分の添
加量と、製管プロセス中の抽伸や押出しなどの熱間・冷間加工と熱処理の条件を調整することで得られる。これら3つの要因によって各々の最適条件は変化するが、結晶粒度を微細にするためには析出する元素の添加量が多く、加工度を高く、熱処理温度を低くする必要がある。冷間・熱間加工は肉厚調整と、歪を導入して加工後の熱処理で結晶粒組織を整えることが目的であり、通常は30％以上の断面減少率で実施される。また、熱処理は歪を除去することが目的であり、概ね1000℃以上、1300℃未満の温度範囲において実施される。例えば、断面減少率が35％程度の場合、熱処理温度を1250℃以下、好ましくは1225℃以下、特に好ましくは1150℃以下とすることで、規定の粒度範囲を得ることができるのが析出成分・加工 - 熱処理のバランスによってはこの条件に限定されるものではない。

[0045]上記のような耐熱オーステナイト系ステンレス鋼を用いてボイラー用伝熱管を構成することによって、繰返し酸化環境下で優れた特性を発揮するものとなる。

[0046]以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。

実施例

[0047]【実施例1】

下記表1に示す化学成分組成からなる各種鋼材を溶解し、真空溶解炉（VLF）にて溶製した20kgインゴットを幅：120mm×厚さ：20mmの寸法に熱間鍛造加工し、1250℃で熱処理を施した後、冷間圧延によって厚さ：13mmまで加工した。その後、1150℃で5分の熱処理を再度実施して、これを母材とした。この母材から20mm×30mm×2mmの鋼材を機械加工にとって切出し、エメリー紙を用いた研磨とダイヤモンド砥粒を用いたパフ研磨で、鋼材の表面を平滑・鏡面化して試験片を作製した。

[0048]尚、下記表1に示した鋼材のうち、試験No.1~10は本発明で規定す
要求を満足する鋼材（本発明鋼）、試験No.11〜16は本発明で規定する要件を外れる鋼材（比較鋼）であり、このうち試験No.14、15、16は、夫々既存鋼である「火SUS304J1HTB相当鋼」、「SUS304L相当鋼」、「SUS310S相当鋼」である。また、試験No.7、8はCeをミシュメタルで添加した鋼材であり、不純物としてLa、PにNd等が含まれている。試験No.9、10はそれぞれMgとCaを添加した鋼材である。

上記「火SUS304J1HTB相当鋼」（試験No.14）は、18Cr—8Niオーステナイト系ステンレス鋼に属し、ボイラー伝熱管として使用実績のある鋼種である（例えば、「まてりあ」第46巻、第2号、2007、P99—101）。また、SUS310S相当鋼（試験No.16）は、25Cr—20Niオーステナイト系ステンレス鋼に属し、18Cr—8Niオーステナイト系ステンレス鋼よりもNiを多く含むため高価であるが、化学成分の点で本質的に18Cr—8Niオーステナイト系ステンレス鋼よりも耐食性に優れた鋼種である。

[0050]
<table>
<thead>
<tr>
<th>試験No.</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Cu</th>
<th>Mo</th>
<th>Nb</th>
<th>Ti</th>
<th>Zr</th>
<th>Ce</th>
<th>B</th>
<th>N</th>
<th>その他（備考）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.30</td>
<td>1.58</td>
<td>0.026</td>
<td>0.002</td>
<td>9.7</td>
<td>18.4</td>
<td>3.0</td>
<td>-</td>
<td>0.19</td>
<td>0.20</td>
<td>0.19</td>
<td>0.015</td>
<td>0.0020</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.30</td>
<td>1.60</td>
<td>0.018</td>
<td>0.002</td>
<td>9.5</td>
<td>18.3</td>
<td>3.0</td>
<td>-</td>
<td>0.18</td>
<td>0.14</td>
<td>0.25</td>
<td>0.092</td>
<td>0.0020</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>0.89</td>
<td>0.21</td>
<td>0.025</td>
<td>0.001</td>
<td>9.8</td>
<td>16.7</td>
<td>2.1</td>
<td>0.8</td>
<td>-</td>
<td>0.13</td>
<td>0.40</td>
<td>0.38</td>
<td>0.020</td>
<td>0.0048</td>
<td>0.130</td>
</tr>
<tr>
<td>4</td>
<td>0.10</td>
<td>0.15</td>
<td>1.80</td>
<td>0.032</td>
<td>0.004</td>
<td>9.2</td>
<td>18.1</td>
<td>3.1</td>
<td>-</td>
<td>0.21</td>
<td>0.22</td>
<td>0.09</td>
<td>0.008</td>
<td>0.0021</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.32</td>
<td>1.26</td>
<td>0.029</td>
<td>0.003</td>
<td>9.5</td>
<td>17.9</td>
<td>1.3</td>
<td>0.8</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.017</td>
<td>0.0019</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.07</td>
<td>0.75</td>
<td>0.77</td>
<td>0.045</td>
<td>0.002</td>
<td>9.2</td>
<td>19.7</td>
<td>3.8</td>
<td>-</td>
<td>0.56</td>
<td>0.12</td>
<td>0.35</td>
<td>0.034</td>
<td>0.0005</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.11</td>
<td>0.54</td>
<td>1.87</td>
<td>0.025</td>
<td>0.001</td>
<td>9.8</td>
<td>18.1</td>
<td>3.0</td>
<td>0.8</td>
<td>0.18</td>
<td>0.26</td>
<td>0.19</td>
<td>0.023</td>
<td>0.0018</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.12</td>
<td>0.76</td>
<td>1.14</td>
<td>0.018</td>
<td>0.003</td>
<td>11.3</td>
<td>18.4</td>
<td>2.8</td>
<td>0.9</td>
<td>0.19</td>
<td>0.15</td>
<td>0.11</td>
<td>0.041</td>
<td>0.0019</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.11</td>
<td>0.55</td>
<td>1.45</td>
<td>0.019</td>
<td>0.002</td>
<td>9.6</td>
<td>18.7</td>
<td>3.0</td>
<td>0.8</td>
<td>0.18</td>
<td>0.26</td>
<td>0.16</td>
<td>0.025</td>
<td>0.0018</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
<td>0.42</td>
<td>1.48</td>
<td>0.022</td>
<td>0.001</td>
<td>9.8</td>
<td>17.9</td>
<td>3.2</td>
<td>0.8</td>
<td>0.17</td>
<td>0.25</td>
<td>0.10</td>
<td>0.013</td>
<td>0.0021</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.09</td>
<td>0.19</td>
<td>1.60</td>
<td>0.030</td>
<td>0.003</td>
<td>9.2</td>
<td>17.9</td>
<td>3.0</td>
<td>0.7</td>
<td>0.27</td>
<td>0.23</td>
<td>0.02</td>
<td>0.019</td>
<td>0.0018</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.06</td>
<td>0.25</td>
<td>1.50</td>
<td>0.031</td>
<td>0.002</td>
<td>9.3</td>
<td>18.1</td>
<td>3.1</td>
<td>0.6</td>
<td>0.19</td>
<td>0.16</td>
<td>0.15</td>
<td>&lt;0.001</td>
<td>0.0022</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.11</td>
<td>0.29</td>
<td>1.48</td>
<td>0.031</td>
<td>0.002</td>
<td>9.3</td>
<td>18.1</td>
<td>3.0</td>
<td>0.8</td>
<td>0.21</td>
<td>0.19</td>
<td>0.01</td>
<td>0.003</td>
<td>0.0022</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.10</td>
<td>0.19</td>
<td>0.73</td>
<td>0.030</td>
<td>0.003</td>
<td>9.2</td>
<td>18.0</td>
<td>3.1</td>
<td>-</td>
<td>0.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0018</td>
<td>0.110</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.05</td>
<td>0.40</td>
<td>1.82</td>
<td>0.032</td>
<td>0.002</td>
<td>8.4</td>
<td>18.5</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.05</td>
<td>1.46</td>
<td>1.80</td>
<td>0.030</td>
<td>0.001</td>
<td>19.52</td>
<td>24.2</td>
<td>0.08</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0012</td>
<td>0.058</td>
<td></td>
</tr>
</tbody>
</table>

* 残部 鉄、およびP, S以外の不可避不純物
上記で得られた各種試験片を用い、減肉量を評価するために繰返し酸化試験を実施した。この繰返し酸化試験では、炉内加熱25分、大気冷5分のサイクルでサンプルを1100℃の大気炉から出し入れし、20サイクルまで加熱と冷却を繰り返した。繰返し酸化試験後に、試験片の重量変化を電子天秤にて測定し、鋼材の減肉量（mg・cm⁻²）を算出した。また繰返し酸化試験後の試験片の表面粗さを、目視によって観察した。上記の測定結果（減肉量、表面粗さ）を、下記表2に示す。

<table>
<thead>
<tr>
<th>試験No.</th>
<th>減肉量（mg・cm⁻²）</th>
<th>表面粗さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.8</td>
<td>平滑</td>
</tr>
<tr>
<td>2</td>
<td>7.6</td>
<td>平滑</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>平滑</td>
</tr>
<tr>
<td>4</td>
<td>33.2</td>
<td>平滑</td>
</tr>
<tr>
<td>5</td>
<td>11.6</td>
<td>平滑</td>
</tr>
<tr>
<td>6</td>
<td>20.4</td>
<td>平滑</td>
</tr>
<tr>
<td>7</td>
<td>9.2</td>
<td>平滑</td>
</tr>
<tr>
<td>8</td>
<td>7.9</td>
<td>平滑</td>
</tr>
<tr>
<td>9</td>
<td>8.1</td>
<td>平滑</td>
</tr>
<tr>
<td>10</td>
<td>8.7</td>
<td>平滑</td>
</tr>
<tr>
<td>11</td>
<td>73.4</td>
<td>粗</td>
</tr>
<tr>
<td>12</td>
<td>76.9</td>
<td>粗</td>
</tr>
<tr>
<td>13</td>
<td>93.1</td>
<td>粗</td>
</tr>
<tr>
<td>14</td>
<td>80.5</td>
<td>粗</td>
</tr>
<tr>
<td>15</td>
<td>140.1</td>
<td>粗</td>
</tr>
<tr>
<td>16</td>
<td>0.4</td>
<td>平滑</td>
</tr>
</tbody>
</table>

この結果から、次のように考察できる。本発明で規定する化学成分組成を満足する鋼（本発明鋼：試験No. 1〜10）は、既存鋼（試験No. 14、15）や、本発明で規定する化学成分組成から外れた比較鋼（試験No. 11〜13）に比べて減肉量が小さくなっており、ZrとCeの複合添加に
よってスケール剥離が生じにくく、減肉量が抑制できることが分かる。

また、本発明鋼の方がスケール表面の粗さが平滑であることからも、スケールの生成・剥離が生じていないことが分かる。更に、本発明鋼はN含有量が多く耐食性に優れるとされている25Cr-20Niの既存鋼SUS310S相当鋼（試験No.16）と同等の特性を発揮しており、18Cr-8Niオーステナイト系ステンレス鋼で安価にも関わらず、耐縁返し酸化特性を25Cr-20Niオーステナイト系ステンレス鋼と同等まで向上できていることが分かる。

[実施例2]

表1、2に示した試験No.1～6の発明鋼と、試験No.14の比較鋼について、断面減少率35％の冷間加工後に熱処理温度を1125～1275℃の温度範囲で変化させ、各々の鋼材で結晶粒度番号が4.5～10.0の試料を作製した。縁返し酸化試験は炉内加熱25分、大気放冷5分の温度サイクルで、サンプルを1100℃の大気炉から出し入れし、40サイクル後の試験片質量を初期状態の試験片質量と比較することで質量減少量（減肉量：mg·cm⁻²）を求めた。

サイクル数については、ZrとCeを添加した鋼の一部で減肉量が大幅に改善され、20サイクル後の減肉量が、粒度によっては誤差程度であったため、40サイクルまで加熱と冷却を縁返し、結晶粒度の算出には1鋼種当たり3視野の観察を行った。

上記の測定結果（減肉量）を、結晶粒度と共に下記表3に示す。
<table>
<thead>
<tr>
<th>数量（cm³）</th>
<th>表面積（cm²）</th>
<th>重量（g）</th>
<th>体积（ml）</th>
<th>密度（g/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>10000</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>100000</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1000000</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

表中数值仅供参考，具体数据可能因实际情况而有所不同。
この結果から、次のように考察できる。結晶粒度番号が6以上のサンプルが、化学成分組成に加えて結晶粒径まで本願発明の規定を満足する発明例、6未満のサンプルが化学成分組成は満足するものの結晶粒径は満足しない発明例である（結晶度番号に下線を示してある）。試験No.14の比較鋼の結果に表れているように、本願発明の化学成分組成を外れる鋼材では、結晶粒度が変化しても結晶粒径が低減されないものので、試験No.1~6の発明鋼では結晶粒度番号が大きいものほど結晶粒径が低減される傾向があることが分かる。また、結晶粒度の異なる発明鋼のいずれもが試験No.14の既存鋼より結晶粒径が低減できていることから、ZrとCeの添加自体によって、耐縁返し酸化特性が向上すること、および化学成分組成が本発明で規定する範囲内であっても、結晶粒径が微細なほど更に特性が良くなることが分かる。

【0061】本発明鋼であるNo.1~6の各々の粒度依存性を見ると、各鋼種でZrとCeの含有量に起因した絶対値としての特性差はあるものの、いずれの鋼種においても結晶粒度番号が6未満に比べて6以上の場合に高い耐縁返し酸化特性となり、特に7以上、更に9以上の粒度において顕著な改善効果が得られることが分かる。即ち、本発明の組成範囲を満たす鋼材とすることで、耐縁返し酸化特性を改善できるが、結晶粒度を調整することによってその効果を更に高め、優れた耐縁返し酸化特性を安定して得られることが分かる。

【0062】本発明を詳細にまた判定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができる事は当業者にとって明らかである。

産業上の利用可能性

【0063】本発明の耐熱オーステナイト系ステンレス鋼は、ボイラー等の伝熱管材料
とし て 好 適 に 用 い ら れ る。
請求の範囲

[請求項1] C : 0.05 ～ 0.2 %（質量%の意味。以下、化学成分組成について同じ。）、Si : 0.1 ～ 1 %、Mn : 0.1 ～ 2.5 %、Cu : 1 ～ 4 %、Ni : 7 ～ 12 %、Cr : 16 ～ 20 %、Nb : 0.1 ～ 0.6 %、Zr : 0.05 ～ 0.1 %、Ce : 0.005 ～ 0.1 %、Ti : 0.1 ～ 0.6 %、B : 0.0005 ～ 0.005 %、N : 0.001 ～ 0.15 %、S : 0.005 % 以下（0 % を含まない）およびP : 0.05 % 以下（0 % を含まない）を夫々含有し、残部が鉄および不可避不純物からなることを特徴とする耐縫返し酸化特性に優れた耐熱オーステナイ系スチール鋼。

[請求項2] 更に、下記元素の少なくとも 1 つを含有する請求項 1 に記載の耐熱オーステナイ系スチール鋼。

Mo : 3 % 以下（0 % を含まない）

W : 5 % 以下（0 % を含まない）

Ca : 0.005 % 以下（0 % を含まない）

Mg : 0.005 % 以下（0 % を含まない）

[請求項3] 金属組織の結晶粒度がASTM粒度番号で6以上、12未満である請求項1または2に記載の耐熱オーステナイ系スチール鋼。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C22C 8/00 (2006.01), C22C38 / 58 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C 2 2 C 3 8 / 0 0 - 3 8 / 6 0

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2012

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 9-165655 A (NKK Corp.), 24 June 1997 (24.06.1997), entire text: all drawings</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006/106944 A (Sumitomo Metal Industries Ltd.), 12 October 2006 (12.10.2006), entire text</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier application or patent but published on or after the international filing date
  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 01 August, 2012 (01.08.12)

Date of mailing of the international search report 14 August, 2012 (14.08.12)

Authorized officer

Name and mailing address of the ISA
Japane s e Patent Offi c e

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
国際調査報告

国際出願番号 PCT/JP2012/062039

A. 発明の属する分野の分類（国際特許分類（IPC））

IntCl. C22C38/00 (2006.01) i, C22C38/58 (2006.01) i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

IntCl. C22C38/00-38/60

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922－1996年
日本国公表実用新案公報 1971－2012年
日本国実用新案登録公報 1996－2012年
日本国登録実用新案公報 1994－2012年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献のカテゴリーコード 引用文献名 及び一部の国所が関連するときは、その関連する国所の表示 関連する求める項の番号

A JP 9-165655 A（日本鋼管株式会社）1997.06.24，全文、図面（ファミリーなし） 1-3

A JP 9-324246 A（日本鋼管株式会社）1997.12.16，全文、図面（ファミリーなし） 1-3

A WO 2006/106944 A1（住友金属工業株式会社）2006.10.12，全文
& US 2008/008903 A1 & EP 1867743 A1 & CA 260368 1 A

☑ C欄の続きにも文献が列挙されている。 ☐ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリーコード
IA 特に調査のある文献ではなく、一般的技術水準を示すもの
IE 国際出願 日前の出願 または特許 であるが、国際出願日以降に公表されたもの
E 優先権主張に疑義を提起する文献は、他文献の発行日若しくは他の特許に基づき発行するために引用する文献（理由を付す）
ID 口頭による開示、使用、展示等に倣及する文献
IP 国際出願 日前の、かつ優先権の主張の基礎となる出願の日後に公表された文献

□ 特許庁審査官（前欄のある職員）

相澤 哲佑

特許庁審査官 梶原の有職員）

電話番号 03－3581－1101 内線 3435

国際調査を完了した日 01.08.2012
国際調査報告の発送日 14.08.2012

特許庁審査官（機能の有職員）

相澤 哲佑

電話番号 03－3581－1101 内線 3435

様式 PCT/ISA/210（第2ページ）（2009年7月）
C (続き) 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
</table>

様式 PCT/ISA/210 (第2ページの続き) (2009年7月)