(54) Title: DIAGNOSTICS AND THERAPEUTICS FOR GLAUCOMA

(57) Abstract:
The invention provides methods and compositions for diagnosing and treating glaucoma by detecting alterations in the Wnt signaling pathway-including changes in the level or bioactivity of frizzled related protein. The invention further provides methods for screening for anti-glaucomatous compounds by detecting a Wnt pathway component such as a frizzled related protein, as well as methods for predicting or diagnosing glaucoma based upon the detection of a genetic alteration in a Wnt pathway component gene.
ABSTRACT

The invention provides methods and compositions for diagnosing and treating glaucoma by detecting alterations in the Wnt signaling pathway—including changes in the level or bioactivity of frizzled related protein. The invention further provides methods for screening for anti-glaucomatous compounds by detecting a Wnt pathway component such as a frizzled related protein, as well as methods for predicting or diagnosing glaucoma based upon the detection of a genetic alteration in a Wnt pathway component gene.
DEMANDES OU BREVETS VOLUMINEUX

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS COMPREND PLUS D'UN TOME.

CECI EST LE TOME __2__ DE __2__

NOTE: Pour les tomes additionels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS

THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE THAN ONE VOLUME.

THIS IS VOLUME __2__ OF __2__

NOTE: For additional volumes please contact the Canadian Patent Office.
SEQUENCE LISTING

GENERAL INFORMATION:
APPLICANT: ALCON, INC. and THE UNIVERSITY OF IOWA RESEARCH FOUNDATION
TITLE OF INVENTION: Diagnostics and Therapeutics for Glaucoma
NUMBER OF SEQUENCES: 3

CORRESPONDENCE ADDRESS:
ADRESSEE: RICHES, MCKENZIE & HERBERT LLP
STREET: 2 BLOOM STREET EAST, SUITE 1800
CITY: TORONTO, ONTARIO, CANADA, M4W 3J5

COMPUTER READABLE FORM:
COMPUTER: IBM PC COMPATIBLE
OPERATING SYSTEM: DOS
SOFTWARE: ASCII TEXT

CURRENT APPLICATION DATA:
APPLICATION NUMBER:
FILING DATE: 26 February 2001
CLASSIFICATION: A61K 38/00, 31/70, 39/395, A01K 67/027, C12N 15/00, AG1P 27/06, C12N 9/00, C07K 14/47

PRIOR APPLICATION DATA:
APPLICATION NUMBER: UNITED STATES 60/186,073
FILING DATE: 29 February 2000

PATENT AGENT INFORMATION:
NAME: RICHES, MCKENZIE & HERBERT LLP
REFERENCE NUMBER: P4311

INFORMATION FOR SEQ ID NO: 1:
SEQUENCE CHARACTERISTICS:
LENGTH: 4469
TYPE: DNA
STRANDEDNESS:

TOPOLOGY:

MOLECULE TYPE:

HYPOTHETICAL:

ANTI-SENSE:

FRAGMENT TYPE:

ORIGINAL SOURCE: Homo Sapiens

IMMEDIATE SOURCE:

POSITION IN GENOME:

CHROMOSOME/SEGMENT:

MAP POSITION:

UNITS:

FEATURE:

NAME/KEY:

LOCATION:

IDENTIFICATION METHOD:

OTHER INFORMATION:

PUBLICATION INFORMATION:

AUTHOR:

TITLE:

JOURNAL:

VOLUME:

ISSUE:

PAGES:

DATE:

DOCUMENT NUMBER: WO 01/64949 A2

FILING DATE: 26 February 2001

PUBLICATION DATE: 07 September 2001

RELEVANT RESIDUES IN SEQ ID NO.:
SEQUENCE DESCRIPTION: SEQ ID NO: 1:

cctgcagccc cccggaggtc gtcgcgcggc cccggcggcccc gcggccttcct ctgcgcggcag 60
cctccgggg cccgggcccc cccaggcccc cggcgcgcggc cccggcggcccc gcggccttcct 120
acggcaggcc gaggccccgc ccctgcgggg ccgcgcggcag acgcctgcgc gcggccttcct 180
ccggccaggg cctggagactg cctcctctct gcctggaggt cctctgagag tcggcaggag 240
gacgcggcag ggagggccgg cgccagcccc gcggcgcggc gcggccgaggg gcgcacccggc 300
gcctggggac gcggcggcag ggagggccgg gcggcgcggc ccctgcgtggc ctgcgcggcag 360
tgggcgccgg gcctggaggt cctcctcctgc cccaggcagtc gactacagct gcgtctccttc 420
gcggaggtcc cccggatcgc gcctgcggct cctcactacaa gcccagctcg tcgtggccag 480
tccccggcggag ccctgcggct gcggcctcag gcccagctcg ggctggcagc ccggccaggg 540
ctcgcttgac ccgcggcactg tgcaggagtc gcggcctcag gcggcctcag gcggccaggg 600
tcacaacagc gcggcggcctc gcgggagttc tgcgtgtcct gcgtctcctgc gcggcctcag 660
gcgtgggggc ggccagctctc gcgggcctgc gcgggctgcgc gcggccctgc gcggccccgtg 720
agccggctct gcgggtgcag gcgggtggcg gcggccggag gcggcccgag gcggccctgc 780
gaggcagggc gcgggctggc gcgggcttcct gcgggggcag gcggccctgc gcggccccgtg 840
aagggcagcgc gcgggtgctgt gcgggtgctgt gcgggggggc gcggccggag gcggccctgc 900
atccgaggtcg ccgggagctg gcggccagag gcggccctgc gcggccctgc gcggccccgtg 960
gcggccagct cgcggccagc gcggccagag gcggccctgc gcggccctgc gcggccccgtg 1020
agacgcgtcg gcggccaggc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1080
tgggacccag gcggccctgc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1140
tgacagccgc ccagagctgc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1200
tggacacacgc cggccagctg gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1260
agcgccaggg gcccttcctgc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1320
cacacacacgc ccggcaggtg gcggcctggc gcggccctgc gcggccctgc gcggccccgtg 1380
gcggggccgg gcggccctgc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1440
gtaaggcgcag gcggcccttc ctggaggtgc ggccagcagg gcggccctgc gcggccctgc 1500
ccggtgcttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1560
cttgctggag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1620
ttgagggcgt gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1680
ttgaggggag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1740
ccgctggag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1800
agctggcttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1860

gctggttcct gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1920
ccgctggag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 1980

gctggttcct gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2040

gctggttcct gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2100

tggggtggttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2160

gcggcccttc gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2220

cctggctgag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2280

tggggtggttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2340

gcggcccttc gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2400

gcgcctggag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2460

tggggtggttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2520

cctggctgag gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2580

gcggcccttc gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2640

tggggtggttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2700

tggggtggttg gcggcccttc gcggccctgc gcggccctgc gcggccctgc gcggccccgtg 2760

66
ttatgattgt cccctctgggc caatgctttat acccaggtgag gatgtgtccag tggaggtgtta 2880
aagtggcucc ctcgctgccct agctgccaccc gggaagaagga tggttagatct gtttaactct 2940
tgaagactccc agtatgaaata ctccgacgccc cgcctagcttc ctaccocggag atgataccct 3000
ataaattaac ctctcactac agtctgttagc cttctctttaa caccttttta tggggtttctc 3060
ctctgcaacct tcactgtaaaa ttcgctgtttca ctttaagtgta ttggctctgta attttgagag 3120
attaaaaaat ggtgtatatat attagcaata tagaataatt tcatcctctct ctggtagcaac 3180
tgaatccagc agcacagtcc tactgctgtgc gatcctgccct ttgatttcttg ttgattcaact 3240
caagactgctc gtcctctacat gtagttgtctc aatttgcacaa atggccctcat gcacccgggc 3300
cctctctttg cggcaggtct ctttagtgaga gggtttttacct ggaacataag tagattccac 3360
agaataacgga agacaggtgag agctgtgtgctg gcagctctctt aaattggaagtt ctctcaggtgag 3420
gaagcaacacgt ctcacaagag acgtccaaat tcattgaaata tggtaatgcgc agctgctggt 3480
tttaccaccggt ctctgctcttag gtcctccagga cctctgagtgta cattagttac atggtagaag 3540
tttttagacc cctagcagcct tctgctctttc cacatcagcata aattcagaaac caaaaagggag 3600
gctctctgta gcctcgagcg tcgactctctc gcagcttctcct tttttctccca caaagtagct 3660
aacaacaacc atgtgctgacgc tgattggcctt ggtcatgttgct ccagccgagac gaggctttgc 3720
cctgtgatttc cccattctac gcctagggccg agctggggatcttgtagaagct 3780
tacaattactt ctgcttcgctgc ggtctctggttg cagacaaggct ttaaatctttctt 3840
gagaattacttgtagttactt ttagaaggtgc gacgtggaggtagaagggcctt aaatcacattgct 3900	tatattttaataactggatagtc ctccttgtaatctcctgctgcttgatgctcttг 3960
tcccacaggg tagaatatttcaatctcagcttc aggttttcatt tggtagtgtaga aattcacaagt 4020
atcccatttc ccacaaaccttc aatcttgcttg tctctctcagc cttctgtcagga gaggctttgc 4080
tgtcataactct cattgagtacagagagctccag ggtagatgctcttgagagagctcctataagct 4140
agccctgcagg gataaatcata cctgcggcgttc gcacactgttg ccagcagata cacagacat 4200
agatgaaacct cccggttctct taatggtctct cctgtagtacg ctctatttctg gatcctaatgct 4260
tctctccacagc agctttgaat acgtggaaaa atgttttaaat ctcattccatg ttgtagttgtt 4320
tttttaactgct atccactacg aatcggctgtgc gtttagatcctt atmattaatgataatcccccg 4380
tactggttcagtctattttttc atgtcgtttgc gatcattcgtactatgatgtaga aatcagtataaa 4440
tcactcaatt atcaatgaa aaaaaaaa

INFORMATION FOR SEQ ID NO: 2:

SEQUENCE CHARACTERISTICS:

LENGTH: 313
TYPE: PRT
STRANDEDNESS:
TOPOLOGY:
MOLECULE TYPE:
HYPOTHETICAL:
ANTI-SENSE:
FRAGMENT TYPE:
ORIGINAL SOURCE: Homo Sapiens
IMMEDIATE SOURCE:
SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Gly Ile Gly Arg Ser Glu Gly Gly Arg Arg Gly Ala Leu Gly Val
1      5       10       15

Leu Leu Ala Leu Gly Ala Ala Leu Leu Leu Ala Val Gly Ser Ala Ser Glu
20     25      30

Tyr Asp Tyr Val Ser Phe Gln Ser Asp Ile Gly Pro Tyr Gln Ser Gly
35     40      45

Arg Phe Tyr Thr Lys Pro Pro Gln Cys Val Asp Ile Pro Ala Asp Leu

68
<table>
<thead>
<tr>
<th></th>
<th>Arg</th>
<th>Leu</th>
<th>Cys</th>
<th>His</th>
<th>Asn</th>
<th>Val</th>
<th>Gly</th>
<th>Tyr</th>
<th>Lys</th>
<th>Lys</th>
<th>Met</th>
<th>Val</th>
<th>Leu</th>
<th>Pro</th>
<th>Asn</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>His</td>
<td>Glu</td>
<td>Thr</td>
<td>Met</td>
<td>Ala</td>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Gln</td>
<td>Gln</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
<td>Lys</td>
<td>Asn</td>
<td>Cys</td>
<td>His</td>
<td>Ala</td>
<td>Gly</td>
<td>Thr</td>
<td>Gln</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Ala</td>
<td>Pro</td>
<td>Val</td>
<td>Cys</td>
<td>Leu</td>
<td>Asp</td>
<td>Arg</td>
<td>Pro</td>
<td>Ile</td>
<td>Tyr</td>
<td>Pro</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Cys</td>
<td>Glu</td>
<td>Ala</td>
<td>Val</td>
<td>Arg</td>
<td>Asp</td>
<td>Ser</td>
<td>Cys</td>
<td>Glu</td>
<td>Pro</td>
<td>Val</td>
<td>Met</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
<td>Trp</td>
<td>Pro</td>
<td>Glu</td>
<td>Met</td>
<td>Leu</td>
<td>Lys</td>
<td>Cys</td>
<td>Asp</td>
<td>Lys</td>
<td>Phe</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Cys</td>
<td>Ile</td>
<td>Ala</td>
<td>Met</td>
<td>Thr</td>
<td>Pro</td>
<td>Pro</td>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>Glu</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Pro</td>
<td>Gln</td>
<td>Gly</td>
<td>Thr</td>
<td>Thr</td>
<td>Val</td>
<td>Cys</td>
<td>Pro</td>
<td>Pro</td>
<td>Cys</td>
<td>Asp</td>
<td>Asn</td>
<td>Glu</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Glu</td>
<td>Ala</td>
<td>Ile</td>
<td>Ile</td>
<td>Glu</td>
<td>His</td>
<td>Leu</td>
<td>Cys</td>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
<td>Phe</td>
<td>Ala</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Met</td>
<td>Lys</td>
<td>Ile</td>
<td>Lys</td>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Lys</td>
<td>Glu</td>
<td>Asn</td>
<td>Gly</td>
<td>Asp</td>
<td>Lys</td>
<td>Lys</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Lys</td>
<td>Lys</td>
<td>Lys</td>
<td>Pro</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
<td>Gly</td>
<td>Pro</td>
<td>Ile</td>
<td>Lys</td>
<td>Lys</td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Lys</td>
<td>Asn</td>
<td>Gly</td>
<td>Ala</td>
<td>Asp</td>
<td>Cys</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>His</td>
<td>Gln</td>
<td>Leu</td>
<td>Asp</td>
<td>Leu</td>
<td>Ser</td>
<td>His</td>
<td>His</td>
<td>Phe</td>
<td>Leu</td>
<td>Ile</td>
<td>Met</td>
<td>Gly</td>
<td>Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
<td>Lys</td>
<td>Ser</td>
<td>Gln</td>
<td>Tyr</td>
<td>Leu</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>Ile</td>
<td>His</td>
<td>Lys</td>
<td>Trp</td>
<td>Asp</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Lys</td>
<td>Glu</td>
<td>Phe</td>
<td>Lys</td>
<td>Asn</td>
<td>Phe</td>
<td>Met</td>
<td>Lys</td>
<td>Lys</td>
<td>Met</td>
<td>Lys</td>
<td>Asn</td>
<td>His</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Thr</td>
<td>Phe</td>
<td>Gln</td>
<td>Ser</td>
<td>Val</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
</tr>
</tbody>
</table>
INFORMATION FOR SEQ ID NO: 3:

SEQUENCE CHARACTERISTICS:
  LENGTH: 240
  TYPE: DNA
  STRANDEDNESS:
  TOPOLOGY:
  MOLECULE TYPE:
  HYPOTHETICAL:
  ANTI-SENSE:
  FRAGMENT TYPE:
  ORIGINAL SOURCE: Homo Sapiens
  IMMEDIATE SOURCE:
  POSITION IN GENOME:
    CHROMOSOME/SEGMENT:
    MAP POSITION:
    UNITS:
  FEATURE:
    NAME/KEY:
    LOCATION:
    IDENTIFICATION METHOD:
    OTHER INFORMATION:
  PUBLICATION INFORMATION:
    AUTHOR:
    TITLE:
    JOURNAL:
    VOLUME:
    ISSUE:
    PAGES:
    DATE:
DOCUMENT NUMBER: WO 01/64949 A2
FILING DATE: 26 February 2001
PUBLICATION DATE: 07 September 2001
RELEVANT RESIDUES IN SEQ ID NO.:  

SEQUENCE DESCRIPTION: SEQ ID NO: 3:

aacagcctgc ctgtcccccc gcacrtttta catatatttg ttctattct gcagatgga 60
agttgacatg ggtggttggt ccccatcccc gcagagagtt tcacaaacaa aacatctctg 120
cagtttttccc caagtacctt gagatacttc ccaaaacccc tatgttttaat cagcagatgta 180
tataagcccag ttcaacctga caactttacc cttctttgcc aatgtacagg aagtagttct 240
DEMANDES OU BREVETS VOLUMINEUX

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS COMPREND PLUS D'UN TOME.

CECI EST LE TOME _2_ DE _2_

NOTE: Pour les tomes additionnels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS

THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE THAN ONE VOLUME.

THIS IS VOLUME _2_ OF _2_

NOTE: For additional volumes please contact the Canadian Patent Office.
WE CLAIM:

1. A method for screening for a frizzled related protein agonist or antagonist comprising the steps of:

   a) combining a frizzled related protein, polypeptide, or bioactive fragment thereof, a frizzled related protein binding partner and a test compound under conditions wherein, but for the test compound, the frizzled related protein and frizzled related protein binding partner are able to interact; and

   b) detecting the extent to which a frizzled related protein/frizzled related protein binding partner complex is formed in the presence of the test compound, wherein an increased amount of complex formation in the presence of the test compound relative to in the absence of a test compound indicates that the test compound is a frizzled related protein agonist and a decreased amount of complex formation in the presence of the test compound relative to in the absence of the test compound indicates that the test compound is a frizzled related protein antagonist.

2. A method of claim 1, which additionally comprises the step of preparing a pharmaceutical composition from the test compound.
caagagttca gtcgctcatac gtatctggctc attttgacaa agtgccctcaat gcaacccgggccc
cttcctctcgt ccggcagatgc tctattgagag ggttttacct ggaacataag tagttaccac
agaactcaggaa agacagcgttg acttgtgtctg gcagctctctct aatggacaat ttccaggtac
gaagcaacag agtctgaaag agctcaaaat aatgggaaga ttgtaatcgc agctgtgggtttctc
tttccaccccg tctgttccagcg agtccaaagga ccttgaattgt cattagttac tttgtattgagag
ccccgtgcagcg cctagcgacct gtgttctcctgt catatgcaaaat acttccagagc caaaaaggaggtc
gtccttgta gcgacacagc tcgactatca cggagcttttg cttttctccta caaagatcttcttc
acaacaaaccg catgcagagc gttctgtcgtt cttccagaga gggaggttgggctc
tgtgtttaattct gccgtgtaattt cttaatattct gctaggccca aagtggtgatt ttgaagactttt
caaataatcc attctggtatc agtcctgtgg agggccctttg cagaacctcag tttattttttttt
agaagataatttt ttttattttt gcttccaatag tcagagccat agttttgtttct ttgagttgta aattacagta
atccatattt ccaaccccaatt acctgttttt ctcattcaga ctctgtatgt gccggtttg
ctgtcataact ccataagatgc agggagctca gttgatctgtg ttgaggagag caccctagggtcc
gacctgcaggg aataacaata ctggccttct gcacggtttg ccagcagata cacagacatc
ggatgaaatt cccggttctct cttgatagttt ctctctttta gtcocatagt
ctccctacaaag actttttgaat actttggaatag tgtttttctat ccattctagtt cttgtgtttttt
ctttttaactcg catttttaccg gtggtttttgct cttatgcgt tatttataa gtaatccgggtc
tggtttttttt ctgagttttttg cctaggttttct catttttttta cttggactaaaat
uccctctcatt atataatgaaa aaaa aaa

FIGURE 1 (con't)
Met Gly Ile Gly Arg Ser Glu Gly Gly Arg Arg Arg Gly Ala Leu Gly Val Leu Leu Ala Leu Gly Ala Ala Leu Leu Ala Val Gly Ser Ala Ser Glu Tyr Asp Tyr Val Ser Phe Gln Ser Asp Ile Gly Pro Tyr Gln Ser Gly Arg Phe Tyr Thr Lys Pro Pro Gln Cys Val Asp Ile Pro Ala Asp Leu Arg Lou Cys His Asn Val Gly Tyr Lys Lys Met Val Leu Pro Asn Leu Leu Glu His Glu Thr Met Ala Glu Val Lys Gin Gin Ala Ser Ser Trp Val Pro Leu Leu Asn Lys Asn Cys His Ala Gly Thr Gin Val Phe Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp Arg Pro Ile Tyr Pro Cys Arg Trp Leu Cys Glu Ala Val Arg Asp Ser Cys Glu Pro Val Met Gin Phe Phe Gly Phe Tyr Trp Pro Glu Met Leu Lys Cys Asp Lys Phe Pro Glu Gly Asp Val Cys Ile Ala Met Thr Pro Pro Asn Ala Thr Glu Ala Ser Lys Pro Glu Gly Thr Thr Val Cys Pro Pro Cys Asp Asn Glu Leu Lys Ser Glu Ala Ile Ile Glu His Leu Cys Ala Ser Glu Phe Ala Leu Arg Met Lys Ile Lys Glu Val Lys Lys Glu Asn Gly Asp Lys Lys Ile Val Pro Lys Lys Lys Pro Leu Lys Lys Gly Pro Ile Lys Lys Lys Asp Leu Lys Lys Leu Val Leu Tyr Leu Lys Asn Gly Ala Asp Cys Pro Cys His Glu Leu Asp Asn Leu Ser His His Phe Leu Ile Met Gly Arg Lys Val Lys Ser Gin Tyr Leu Leu Thr Ala Ile His Lys Trp Asp Lys Lys Asn Lys Glu Phe Lys Asn Phe Met Lys Lys Met Lys Asn His Glu Cys Pro Thr Phe Gin Ser Val Phe Lys ---

FIGURE 2
(a) FRP-blocked Cell

(b) Wnt-stimulated Cell

FIGURE 3