wo 2015/051118 A1 | [} 10 10 0000 RO O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/051118 A1

9 April 2015 (09.04.2015) WIPOIPCT

(51) International Patent Classification: (71) Applicant: QUALCOMM INCORPORATED [US/US];
HO4N 19/597 (2014.01) HO4N 19/70 (2014.01) ATTN: International IP Administration, 5775 Morehouse
HO4N 19/105 (2014.01) HO4N 19/136 (2014.01) Drive, San Diego, California 92121-1714 (US).

(21) International Application Number: (72) Inventors: PU, Wei; 5775 Morchouse Drive, San Diego,

PCT/US2014/058822 California 92121-1714 (US). CHEN, Jianle; 5775 More-

. . house Drive, San Diego, California 92121-1714 (US).

(22) International Filing Date: KARCZEWICZ, Marta; 5775 Morehouse Drive, San
2 October 2014 (02.10.2014) Diego, California 92121-1714 (US). KIM, Woo-Shik;

(25) Filing Language: English 5775 Morehouse Drive, San Diego, California 92121-1714
Lo . (US). SOLE ROJALS, Joel; 5775 Morehouse Drive, San

(26) Publication Language: Enghsh Diego, California 92121-1714 (IJS)

(30) Priority Data: (74) Agent: DAWLEY, Brian R.; Shumaker & Sieffert, P.A.,
61/886,230 3 October 2013 (03.10.2013) us 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
61/892,198 17 October 2013 (17.10.2013) us (US).

14/504,097 1 October 2014 (01.10.2014) us

[Continued on next page]

(54) Title: HIGH PRECISION EXPLICIT WEIGHTED PREDICTION FOR VIDEO CODING

REPRESENTING WHETHER TO

DECODE VALUE /200

ENABLE HIGH BIT DEPTH

DECODE VALUES
REPRESENTING BIT DEPTH
AND PARAMETERS

202
/

(57) Abstract: In one example, a device for coding video data includes a memory con-
figured to store video data, and a video coder configured to code a value for a syntax
element representative of whether a high bit depth is enabled for the video data, and
when the value for the syntax element indicates that the high bit depth is enabled: code a
value for a syntax element representative of the high bit depth for one or more paramet-
ers of the video data, code values for the parameters such that the values for the para-
meters are representative of bit depths that are based on the value for the syntax element

v representative of the high bit depth, and code the video data based at least in part on the

IDENTIFY REFERENCE BLOCK

/204

WEIGHT AND OFFSET PARAMS.

MODIFY SAMPLES OF 206

REFERENCE BLOCK USING

v

208
/

RECEIVE ENTROPY CODED
DATA FOR CURRENT BLOCK

}

210
s

ENTROPY DECODE DATATO
REPRODUCE COEFFICIENTS

v

INVERSE SCAN REPRODUCED

212
/

COEFFICIENTS

v

INVERSE QUANTIZE AND
INVERSE TRANSFORM
COEFFICIENTS TO PRODUCE
RESIDUAL BLOCK

214

Y

COMBINE PREDICTED BLOCK |~ 216

AND RESIDUAL BLOCK

FIG. 5

values for the parameters.



WO 2015/051118 A1 |IWATT 00PN VAT 0T T AU

kind of national protection available): AE, AG, AL, AM,
AQO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM,
GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN,
KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, ZA, ZM, ZW.

(81) Designated States (unless otherwise indicated, for every (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))



WO 2015/051118 PCT/US2014/058822

HIGH PRECISION EXPLICIT WEIGHTED PREDICTION
FOR VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Applications Serial No.
61/886,230, filed October 3, 2013, and Serial No. 61/892,198, filed October 17, 2013,

the entire contents of each of which are incorporated by reference.

TECHNICAL FIELD

[0002] This disclosure relates to video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video coding techniques.
[0004] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to as reference frames.



WO 2015/051118 PCT/US2014/058822

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] In general, this disclosure describes techniques for high precision explicit
weighted prediction. These techniques may be used for a range extension for high
efficiency video coding (HEVC), or extensions to other video coding standards.

[0007] In one example, a method of decoding video data includes decoding a value for a
syntax element representative of whether a high bit depth is enabled for video data,
when the value for the syntax element indicates that the high bit depth is enabled:
decoding a value for a syntax element representative of the high bit depth for one or
more parameters of the video data, decoding values for the parameters such that the
values for the parameters have bit depths based on the value for the syntax element
representative of the high bit depth, and decoding the video data based at least in part on
the values for the parameters.

[0008] In another example, a method of encoding video data includes determining to
enable a high bit depth for video data, after determining to enable the high bit depth:
encoding a value for a syntax element indicating that the high bit depth is enabled,
encoding a value for a syntax element representative of the high bit depth for one or
more parameters of the video data, encoding values for the parameters such that the
values for the parameters have bit depths based on the high bit depth, and encoding the

video data based at least in part on the values for the parameters.



WO 2015/051118 PCT/US2014/058822

[0009] In another example, a device for coding video data includes a memory
configured to store video data, and a video coder configured to code a value for a syntax
element representative of whether a high bit depth is enabled for the video data, and
when the value for the syntax element indicates that the high bit depth is enabled: code a
value for a syntax element representative of the high bit depth for one or more
parameters of the video data, code values for the parameters such that the values for the
parameters have bit depths based on the value for the syntax element representative of
the high bit depth, and code the video data based at least in part on the values for the
parameters.

[0010] In another example, a device for coding video data includes means for coding a
value for a syntax element representative of whether a high bit depth is enabled for
video data, means for coding a value for a syntax element representative of the high bit
depth for one or more parameters of the video data when the value for the syntax
element indicates that the high bit depth is enabled, means for coding values for the
parameters such that the values for the parameters have bit depths based on the value for
the syntax element representative of the high bit depth when the value for the syntax
element indicates that the high bit depth is enabled, and means for coding the video data
based at least in part on the values for the parameters when the value for the syntax
element indicates that the high bit depth is enabled.

[0011] In another example, a computer-readable storage medium (e.g., a non-transitory
computer-readable storage medium) has stored thereon instructions that, when executed,
cause a processor to code a value for a syntax element representative of whether a high
bit depth is enabled for video data, when the value for the syntax element indicates that
the high bit depth is enabled: code a value for a syntax element representative of the
high bit depth for one or more parameters of the video data, code values for the
parameters such that the values for the parameters have bit depths based on the value for
the syntax element representative of the high bit depth, and code the video data based at
least in part on the values for the parameters.

[0012] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.



WO 2015/051118 PCT/US2014/058822

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize techniques for high precision explicit weighted prediction.
[0014] FIG. 2 is a block diagram illustrating an example of a video encoder that may
implement techniques for high precision explicit weighted prediction.

[0015] FIG. 3 is a block diagram illustrating an example of a video decoder that may
implement techniques for high precision explicit weighted prediction.

[0016] FIG. 4 is a flowchart illustrating an example method for encoding a current block
according to the techniques of this disclosure.

[0017] FIG. 5 is a flowchart illustrating an example method for decoding a current block

of video data according to the techniques of this disclosure.

DETAILED DESCRIPTION

[0018] In general, the techniques of this disclosure relate to high precision explicit
weighted prediction. For example, these techniques may be used in a High Efficiency
Video Coding (HEVC) Range Extension. HEVC is described in ITU-T H.265, SERIES
H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS, Infrastructure of Audiovisual
Services—Coding of Moving Video, “High Efficiency Video Coding,” April 2013
(hereinafter, “H.265). Various extensions to HEVC have been proposed. One such
extension is the HEVC Range Extension, described in “High Efficiency Video Coding
(HEVC) Range Extensions text specification: Draft 4,” JCTVC-N1005_v3, August
2013 (hereinafter, “JCTVC-N1005").

[0019] H.265 specifies a main profile version I, which describes 8-bit and 10-bit
codecs. Parameters related to explicit weighted prediction in H.265 are restricted to the
8-bit codec. However, as proposed for the HEVC Range Extension, input video can be
up to 16-bit, which makes the 8-bit explicit weighted prediction parameters insufficient.
This disclosure describes enhanced explicit weighted prediction techniques that can be
used to match the bit depth of explicit weighted prediction parameters to the bit depth of
input video.

[0020] Section 7.3.6.3 of JCTVC-N1005 specifies syntax for weighted prediction
parameters as shown in Table 1 below. The weighted prediction parameters, which in
Table 1 form part of a prediction weight table (pred weight table), may be signaled in a

slice header.



WO 2015/051118 PCT/US2014/058822

5
TABLE 1
pred_weight table( ) { Descriptor
luma_log2 weight denom ue(v)
if( ChromaArrayType !'= 0)
delta_chroma_log2 weight denom se(v)

for(1=0;1 <= num_ref idx 10 active minusl; i++)

luma_weight 10 flag[ i ] u(l)

if( ChromaArrayType '= 0)

for(1=0;1 <= num_ref idx 10 active minusl; i++)

chroma_weight 10 flag[i ] u(l)

for(1=0;1 <= num_ref idx 10 active minusl; i++) {

if( luma_weight 10 flag[i]) {

delta_luma_weight 10] i ] se(v)

luma_offset 10[ 1] se(v)

}

if( chroma weight 10 flag[i])

for(j=0,7<2;j++) {

delta_chroma_weight 10[1][] ] se(v)

delta_chroma offset 10[i][] ] se(v)

}

}

if( slice type == B) {

for(1=0;1 <= num_ref idx 11 _active minusl; i++)

luma_weight 11_flag[ i ] u(l)

if( ChromaArrayType '= 0)

for(1=0;1 <= num_ref idx 11 active minusl; i++)

chroma_weight 11 flag[i] u(l)

for(1=0;1 <= num_ref idx 11 active minusl; i++) {

if( luma_weight 11 flag[i]) {

delta_luma_weight 11] 1 ] se(v)

luma_offset 11[1] se(v)

}

if( chroma weight 11 flag[i])

for(j=0,7<2;j++) {

delta_chroma_weight 11[1][] ] se(v)

delta_chroma_offset 11[1i][j ] se(v)

}




WO 2015/051118 PCT/US2014/058822

[0021] JCTVC-N1005, in section 7.4.7.3, defines semantics for the syntax elements of
Table 1 as follows:

[0022] luma log2 weight denom is the base 2 logarithm of the denominator for all
luma weighting factors. The value of luma log2 weight denom shall be in the range of
0 to 7, inclusive.

[0023] delta chroma log2 weight denom is the difference of the base 2 logarithm of
the denominator for all chroma weighting factors.

[0024] The variable Chromal.og2WeightDenom is derived to be equal to

luma log2 weight denom + delta chroma log2 weight denom, and the value shall be
in the range of 0 to 7, inclusive.

[0025] luma weight 10 flag[ i] equal to 1 specifies that weighting factors for the luma
component of list 0 prediction using RefPicList0[ 1 ] are present. luma weight 10 flag|
1] equal to 0 specifies that these weighting factors are not present.

[0026] chroma weight 10 flag[ i ] equal to 1 specifies that weighting factors for the
chroma prediction values of list 0 prediction using RefPicList0[ 1 ] are present.

chroma weight 10 flag[ i ] equal to 0 specifies that these weighting factors are not
present. When chroma weight 10 flag[ i ] is not present, it is inferred to be equal to 0.
[0027] delta luma weight 10[ 1] is the difference of the weighting factor applied to the
luma prediction value for list 0 prediction using RefPicListO[ 1 ].

[0028] The variable LumaWeightL.O[ i ] is derived to be equal to ( 1 <<

luma log2 weight denom ) + delta luma weight 10[ 1 ]. When luma weight 10 flag[ 1
] is equal to 1, the value of delta luma weight 10[ 1 ] shall be in the range of —128 to
127, inclusive. When luma_ weight 10 flag[ i ] is equal to 0, LumaWeightLO[ i ] is
inferred to be equal to 2"me-los2 weight denom

[0029] luma offset 10[ 1] is the additive offset applied to the luma prediction value for
list 0 prediction using RefPicListO[ i1 ]. The value of luma offset 10[ 1 ] shall be in the
range of —128 to 127, inclusive. When luma_weight 10 flag[ i ] is equal to 0,
luma_offset 10[ 1] is inferred as equal to O.

[0030] delta chroma weight 10[ 1 ][ ] is the difference of the weighting factor applied
to the chroma prediction values for list 0 prediction using RefPicListO[ i | with j equal to
0 for Cb and j equal to 1 for Cr.

[0031] The variable ChromaWeightL.O[ 1 ][ j ] is derived to be equal to (1 <<
ChromaLog2WeightDenom ) + delta_chroma weight 10[ 1][j ]. When

chroma weight 10 flag[ i ] is equal to 1, the value of delta chroma weight 10[1][j ]



WO 2015/051118 PCT/US2014/058822

shall be in the range of —128 to 127, inclusive. When chroma weight 10 flag[i]is
equal to 0, ChromaWeightLO[ i ][ j ] is inferred to be equal to 2¢omalog?WeightDenom
[0032] delta chroma offset 10[ i ][ j ] is the difference of the additive offset applied to
the chroma prediction values for list 0 prediction using RefPicList0[ 1 ] with j equal to 0
for Cb and j equal to 1 for Cr.
[0033] The variable ChromaOffsetL.O[ i ][ j ] is derived as follows:

ChromaOffsetLO[ 1 ][ j ] = Clip3( —128, 127, ( delta_chroma offset 10[1][j]—
( (128 * ChromaWeightLO[1][j]) >> ChromaLog2WeightDenom ) + 128 )) (7-50)
[0034] The value of delta_chroma offset 10[ i ][ j ] shall be in the range of =512 to 511,
inclusive. When chroma_weight 10 flag[ i ] is equal to 0, ChromaOffsetLO[1][j ] is
inferred to be equal to 0.
[0035] luma weight 11 flag[ i], chroma weight 11 flag[ i ], delta luma weight 111
], luma offset 11[ 1], delta chroma weight 11[1][] ], and delta chroma offset 11[1][
j ] have the same semantics as luma_weight 10 flag[ i ], chroma weight 10 flag[ 1],
delta luma weight 10[ 1], luma offset 10[ i ], delta chroma weight 10[ i ][] ], and
delta chroma offset 10[ 1][j ], respectively, with 10, LO, list 0, and List0 replaced by
11, L1, list 1, and List1, respectively.
[0036] The variable sumWeightLOFlags is derived to be equal to the sum of
luma weight 10 flag[i]+ 2 * chroma weight 10 flag[i], fori=
0.num_ref idx 10 active minusl.
[0037] When slice type is equal to B, the variable sumWeightL1Flags is derived to be
equal to the sum of luma_weight 11 flag[ 1]+ 2 * chroma weight 11 flag[ 1], fori=
0.num_ref idx 11 active minusl.
[0038] JCTVC-N1005 requires, for bitstream conformance, that, when slice type is
equal to P, sumWeightL.OFlags shall be less than or equal to 24, and when slice _type is
equal to B, the sum of sumWeightLOFlags and sumWeightL 1Flags shall be less than or
equal to 24.
[0039] Section 8.5.3.3.4.3 of JCTVC-N1005 specifies the explicit weighted sample
prediction process as:
[0040] Inputs to this process are:
[0041] - two variables nPbW and nPbH specifying the width and the height of the
luma prediction block,
[0042] - two (nPbW)x(nPbH) arrays predSamplesLO and predSamplesL1,
[0043] - the prediction list utilization flags, predFlagl.0, and predFlagl.1,



WO 2015/051118 PCT/US2014/058822

[0044] — the reference indices, refldxLL0 and refldxL1,
[0045] — a variable cldx specifying colour component index,
[0046] — a bit depth of samples, bitDepth.

[0047] Output of this process is the (nPbW)x(nPbH) array predSamples of prediction
sample values.

[0048] The variable shiftl is set equal to Max( 2, 14 — bitDepth ).

[0049] The variables log2Wd, 00, o1, and w0, w1l are derived as follows:

[0050] — If cldx is equal to 0 for luma samples, the following applies:

[0051] log2Wd = luma_log2 weight denom + shiftl (8-243)
[0052] w0 = LumaWeightLO[ refldxL0 ] (8-244)
[0053] w1l = LumaWeightL1[ refldxL1 ] (8-245)
[0054] 00 = luma_offset 10] refldxLO ] * (1 << ( bitDepth—8)) (8-246)
[0055] ol =luma offset 11[ refldxL1]* (1 << (bitDepth—8)) (8-247)
[0056] — Otherwise (cldx is not equal to 0 for chroma samples), the following
applies:

[0057] log2Wd = ChromaLog2WeightDenom + shift] (8-248)
[0058] w0 = ChromaWeightLO[ refldxL0 ][ cldx — 1] (8-249)
[0059] w1 = ChromaWeightL1[ refldxL1 ][ cldx — 1] (8-250)

[0060] 00 = ChromaOffsetLO[ refldxLO J[ cldx —1]* (1 << (bitDepth —8)) (8-251)
[0061] o1 = ChromaOffsetL1[ refldxL1 J[ cldx —1]* (1 << ( bitDepth —8)) (8-252)
[0062] The prediction sample predSamples[ x ][ y ] with x =0.nPbW — 1 and y =
0.nPbH — 1 are derived as follows:

[0063] - If the predFlagL.0 is equal to 1 and predFlagL.1 is equal to 0, the
prediction sample values are derived as follows:

[0064] if(log2Wd >= 1)

[0065] predSamples[ x ][ y ] = Clip3( 0, (1 << bitDepth ) — 1,

[0066] ( ( predSamplesLO[ x [y ]* w0 + 28V~ 1) >> log2Wd )+
00) (8-253)
[0067] clse

[0068] predSamples[ x ][ y ] = Clip3( 0, (1 << bitDepth ) — 1, predSamplesLO[
x][y]*w0+00)

[0069] — Otherwise, if the predFlagl0 is equal to 0 and predFlagL1 is equal to 1,

the prediction sample values are derived as follows:

[0070] if( log2Wd >= 1)



WO 2015/051118 PCT/US2014/058822

9
[0071] predSamples[ x ][ y ] = Clip3( 0, (1 << bitDepth ) — 1,
[0072] ( (predSamplesL1[ x [y ]* wl+2°8V4—1) >> log2Wd )+
ol) (8-254)
[0073] clse
[0074] predSamples[ x ][ y ] = Clip3( 0, (1 << bitDepth ) — 1, predSamplesL1[
x|[y]*wl+ol)
[0075] — Otherwise (predFlagL0 is equal to 1 and predFlagl1 is equal to 1), the

prediction sample values are derived as follows:

[0076] predSamples[ x ][ y ] = Clip3( 0, (1 << bitDepth ) — 1,

[0077] (predSamplesLO [ x ][ y ] * w0 + predSamplesL1[ x ][y ] * wl +

[0078] ((00+o0l+1) << log2Wd)) >> (log2Wd+ 1)) (8-255)
[0079] This disclosure describes techniques that may improve explicit weighted
prediction of JCTVC-N1005. For instance, the techniques of this disclosure may be
implemented for high precision explicit weighted prediction. High precision explicit
weighted prediction may improve coding efficiency for high bit depth input video. In
accordance with these techniques, a video coder (e.g., a video encoder or a video
decoder) may adaptively apply a right shift according to the bit depth of input data to
guarantee no overflow using 16-bit multiplication. Furthermore, the techniques of this
disclosure may include signaling a value for a syntax element (such as a flag) indicative
of whether high precision explicit weighted prediction is used.

[0080] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques for high precision explicit weighted prediction.
As shown in FIG. 1, system 10 includes a source device 12 that provides encoded video
data to be decoded at a later time by a destination device 14. In particular, source
device 12 provides the video data to destination device 14 via a computer-readable
medium 16. Source device 12 and destination device 14 may comprise any of a wide
range of devices, including desktop computers, notebook (i.c., laptop) computers, tablet
computers, set-top boxes, telephone handsets such as so-called “smart” phones, tablets,
televisions, cameras, display devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source device 12 and destination
device 14 may be equipped for wireless communication.

[0081] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type

of medium or device capable of moving the encoded video data from source device 12



WO 2015/051118 PCT/US2014/058822
10

to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14.

[0082] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0083] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital



WO 2015/051118 PCT/US2014/058822
11

video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0084] In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface 28,
video decoder 30, and display device 32. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques for high
precision explicit weighted prediction. In other examples, a source device and a
destination device may include other components or arrangements. For example, source
device 12 may receive video data from an external video source 18, such as an external
camera. Likewise, destination device 14 may interface with an external display device,
rather than including an integrated display device.

[0085] The illustrated system 10 of FIG. 1 is merely one example. Techniques for high
precision explicit weighted prediction may be performed by any digital video encoding
and/or decoding device. Although generally the techniques of this disclosure are
performed by a video encoding device, the techniques may also be performed by a video
encoder/decoder, typically referred to as a “CODEC.” Moreover, the techniques of this
disclosure may also be performed by a video preprocessor. Source device 12 and
destination device 14 are merely examples of such coding devices in which source
device 12 generates coded video data for transmission to destination device 14. In some
examples, devices 12, 14 may operate in a substantially symmetrical manner such that
cach of devices 12, 14 include video encoding and decoding components. Hence,
system 10 may support one-way or two-way video transmission between video devices
12, 14, e.g., for video streaming, video playback, video broadcasting, or video
telephony.

[0086] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the

techniques described in this disclosure may be applicable to video coding in general,



WO 2015/051118 PCT/US2014/058822
12

and may be applied to wireless and/or wired applications. In each case, the captured,
pre-captured, or computer-generated video may be encoded by video encoder 20. The
encoded video information may then be output by output interface 22 onto a computer-
readable medium 16.

[0087] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms, in various examples.
[0088] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, ¢.g., GOPs. Display device 32 displays the decoded video
data to a user, and may comprise any of a variety of display devices such as a cathode
ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display device.

[0089] Video encoder 20 and video decoder 30 may operate according to a video coding
standard, such as the High Efficiency Video Coding (HEVC) standard presently under
development, and may conform to the HEVC Test Model (HM). Alternatively, video
encoder 20 and video decoder 30 may operate according to other proprietary or industry
standards, such as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part
10, Advanced Video Coding (AVC), or extensions of such standards. The techniques of
this disclosure, however, are not limited to any particular coding standard. Other
examples of video coding standards include MPEG-2 and ITU-T H.263. Although not
shown in FIG. 1, in some aspects, video encoder 20 and video decoder 30 may each be
integrated with an audio encoder and decoder, and may include appropriate MUX-
DEMUX units, or other hardware and software, to handle encoding of both audio and

video in a common data stream or separate data streams. If applicable, MUX-DEMUX



WO 2015/051118 PCT/US2014/058822
13

units may conform to the ITU H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

[0090] The ITU-T H.264/MPEG-4 (AVC) standard was formulated by the ITU-T Video
Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts
Group (MPEG) as the product of a collective partnership known as the Joint Video
Team (JVT). In some aspects, the techniques described in this disclosure may be
applied to devices that generally conform to the H.264 standard. The H.264 standard is
described in ITU-T Recommendation H.264, Advanced Video Coding for generic
audiovisual services, by the ITU-T Study Group, and dated March, 2005, which may be
referred to herein as the H.264 standard or H.264 specification, or the H.264/AVC
standard or specification. The Joint Video Team (JVT) continues to work on extensions
to H.264/MPEG-4 AVC.

[0091] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0092] The JCT-VC continues to develop the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction encoding modes, the HM
may provide as many as thirty-three intra-prediction encoding modes.

[0093] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCUs) (also
referred to as “coding tree units”) that include both luma and chroma samples. Syntax
data within a bitstream may define a size for the LCU, which is a largest coding unit in
terms of the number of pixels. A slice includes a number of consecutive treeblocks in

coding order. A video frame or picture may be partitioned into one or more slices. Each



WO 2015/051118 PCT/US2014/058822
14

treeblock may be split into coding units (CUs) according to a quadtree. In general, a
quadtree data structure includes one node per CU, with a root node corresponding to the
treeblock. If a CU is split into four sub-CUs, the node corresponding to the CU includes
four leaf nodes, each of which corresponds to one of the sub-CUs.

[0094] Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there
is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not
split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the
16x16 CU was never split.

[0095] A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may in turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.
Syntax data associated with a coded bitstream may define a maximum number of times
a treeblock may be split, referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU). This disclosure uses the term “block™ to refer to any of a CU, PU,
or TU, in the context of HEVC, or similar data structures in the context of other
standards (e.g., macroblocks and sub-blocks thereof in H.264/AVC).

[0096] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each
CU may contain one or more PUs and one or more TUs. Syntax data associated with a
CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be

partitioned to be non-square in shape. Syntax data associated with a CU may also



WO 2015/051118 PCT/US2014/058822
15

describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square (¢.g., rectangular) in shape.

[0097] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefficients, which may be quantized.
[0098] A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents a spatial area corresponding to all or a portion of the corresponding CU, and
may include data for retrieving a reference sample for the PU. Moreover, a PU includes
data related to prediction. For example, when the PU is intra-mode encoded, data for
the PU may be included in a residual quadtree (RQT), which may include data
describing an intra-prediction mode for a TU corresponding to the PU. As another
example, when the PU is inter-mode encoded, the PU may include data defining one or
more motion vectors for the PU. The data defining the motion vector for a PU may
describe, for example, a horizontal component of the motion vector, a vertical
component of the motion vector, a resolution for the motion vector (e.g., one-quarter
pixel precision or one-eighth pixel precision), a reference picture to which the motion
vector points, and/or a reference picture list (e.g., List 0, List 1, or List C) for the motion
vector.

[0099] A leaf-CU having one or more PUs may also include one or more transform
units (TUs). The transform units may be specified using an RQT (also referred to as a
TU quadtree structure), as discussed above. For example, a split flag may indicate
whether a leaf-CU is split into four transform units. Then, each transform unit may be
split further into further sub-TUs. When a TU is not split further, it may be referred to
as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share
the same intra prediction mode. That is, the same intra-prediction mode is generally
applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video
encoder may calculate a residual value for each leaf-TU using the intra prediction mode,
as a difference between the portion of the CU corresponding to the TU and the original

block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or



WO 2015/051118 PCT/US2014/058822
16

smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf-
TU for the same CU. In some examples, the maximum size of a leaf-TU may
correspond to the size of the corresponding leaf-CU.

[0100] Moreover, TUs of leaf-CUs may also be associated with respective quadtree data
structures, referred to as residual quadtrees (RQTs). That is, a leaf-CU may include a
quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU
quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree
generally corresponds to a treeblock (or LCU). TUs of the RQT that are not split are
referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to
leaf-CU and leaf-TU, respectively, unless noted otherwise.

[0101] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0102] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0103] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal



WO 2015/051118 PCT/US2014/058822
17

direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0104] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data in
the spatial domain (also referred to as the pixel domain) and the TUs may comprise
coefficients in the transform domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer transform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUSs including the residual
data for the CU, and then transform the TUs to produce transform coefficients for the
CU.

[0105] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where # 1s greater than m.

[0106] Following quantization, the video encoder may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coefficients at the back of the array. In some
examples, video encoder 20 may utilize a predefined scan order to scan the quantized
transform coefficients to produce a serialized vector that can be entropy encoded. In
other examples, video encoder 20 may perform an adaptive scan. After scanning the
quantized transform coefficients to form a one-dimensional vector, video encoder 20
may entropy encode the one-dimensional vector, e.g., according to context-adaptive
variable length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC),
syntax-based context-adaptive binary arithmetic coding (SBAC), Probability Interval



WO 2015/051118 PCT/US2014/058822
18

Partitioning Entropy (PIPE) coding or another entropy encoding methodology. Video
encoder 20 may also entropy encode syntax elements associated with the encoded video
data for use by video decoder 30 in decoding the video data.

[0107] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0108] In accordance with the techniques of this disclosure, video encoder 20 and video
decoder 30 may be configured to perform high precision explicit weighted prediction.
For instance, video encoder 20 and video decoder 30 may be configured to code video
data in accordance with certain modified semantics to the syntax elements of Table 1
discussed above. As an example, the modified semantics may include any or all of the
semantics shown below. In the semantics for syntax elements below, underlined text
represents differences relative to the semantics set forth in JCTVC-N1005.

[0109] luma log2 weight denom is the base 2 logarithm of the denominator for all
luma weighting factors. The value of luma _log2 weight denom shall be in the range of

0 to bitDepth-1. inclusive.

[0110] delta chroma log2 weight denom is the difference of the base 2 logarithm of
the denominator for all chroma weighting factors.

[0111] The variable ChromaLog2WeightDenom is derived to be equal to

luma log2 weight denom + delta chroma log2 weight denom, and the value shall be

in the range of 0 to bitDepth-1, inclusive.

[0112] delta luma weight 10[ 1] is the difference of the weighting factor applied to the
luma prediction value for list 0 prediction using RefPicListO[ 1 ].

[0113] The variable LumaWeightLO[ i ] is derived to be equal to (1 <<

luma log2 weight denom ) + delta luma weight 10[ 1 ]. When luma weight 10 flag[ 1
]is equal to 1, the value of delta_luma_weight 10[ i ] shall be in the range of —2"P*!
to 21} “inclusive. When luma_weight 10 flag[ i ] is equal to 0, LumaWeightLO[ i

] is inferred to be equal to 2"me-tos2 weight denom



WO 2015/051118 PCT/US2014/058822
19

[0114] luma offset 10[ 1] is the additive offset applied to the luma prediction value for
list 0 prediction using RefPicList0[ i1 ]. The value of luma_offset 10[ 1 ] shall be in the

range of —2PPP1 4 pbiDePth-L 1 Hinclusive. When luma_weight 10 flag[ i ] is equal to
0, luma offset 10[ i ] is inferred as equal to 0.

[0115] delta chroma weight 10[ 1 ][ ] is the difference of the weighting factor applied
to the chroma prediction values for list 0 prediction using RefPicListO[ i | with j equal to
0 for Cb and j equal to 1 for Cr.

[0116] The variable ChromaWeightL.O[ i ][ j ] is derived to be equal to (1 <<
ChromaLog2WeightDenom ) + delta_chroma weight 10[ i ][j ]. When

chroma weight 10 flag[ 1] 1is equal to 1, the value of delta chroma weight 10[1 ][] ]

shall be in the range of —2"PPH! to 2O} Hinclusive. When

chroma weight 10 flag[ 1] is equal to 0, ChromaWeightLO[ 1 ][ j ] is inferred to be
equal to 2Chromalog2WeightDenom.

[0117] delta chroma offset 10[ 1 ][] ] is the difference of the additive offset applied to
the chroma prediction values for list 0 prediction using RefPicList0[ i | with j equal to 0
for Cb and j equal to 1 for Cr.

[0118] The variable ChromaOffsetLO[ i ][ j ] is derived as follows:

[0119] ChromaOffsetLO[ i ][ j ] = Clip3( =2t pbiPepth-1 g
delta_chroma_offset 10[i][j]— ((2>™"™ * ChromaWeightLO[i][j]) >>
ChromaLog2WeightDenom ) + 27ty (7-50)
[0120] The value of delta_chroma_offset 10[ i ][ j ] shall be in the range of —2""™""! to

PPt Cinclusive. When chroma weight 10 flag[ i ] is equal to 0,
ChromaOffsetL0[ 1 ][ j ] is inferred to be equal to 0.

[0121] delta luma weight 11[i], luma offset 11[i], delta chroma weight 11[i ][] ], and
delta _chroma offset 11[ 1 ][ j ] have the same semantics as delta luma weight 10 1],
luma offset 10[ 1], delta chroma weight 10[ i ][] ], and delta chroma offset 10[ i ][]
], respectively, with 10, L0, list 0, and List0 replaced by 11, L1, list 1, and Listl,
respectively.

[0122] In addition or in the alternative, video encoder 20 and video decoder 30 may be
configured to implement a high precision explicit weighted sample prediction process as
described below. Underlined text in the discussion below represents changes relative to
JCTVC-N1005. Removals from the proposal of JCTVC-N1005 are not necessarily
emphasized in the discussion below, but can be observed by comparing this discussion

with the discussion of JCTVC-N1005 presented above.



WO 2015/051118 PCT/US2014/058822
20

[0123] The variables log2Wd, 00, o1, and w0, w1 are derived as follows:

[0124] — If cldx is equal to 0 for luma samples, the following applies:

[0125] log2Wd = luma_log2 weight denom + shiftl (8-243)
[0126] w0 = LumaWeightLO[ refldxLO0 ] (8-244)
[0127] w1l = LumaWeightL1[ refldxL1 ] (8-245)
[0128] 00 = luma_offset 10[ refldxLO ] (8-246")
[0129] o1 = luma offset 11[ refldxL1 ] (8-247)
[0130] — Otherwise (cldx is not equal to 0 for chroma samples), the following
applies:

[0131] log2Wd = ChromalLog2WeightDenom + shift] (8-248)
[0132] w0 = ChromaWeightLO[ refldxL0 ][ cIdx — 1 ] (8-249)
[0133] w1l = ChromaWeightL1[ refldxL1 ][ cIdx — 1 ] (8-250)
[0134] 00 = ChromaOffsetLO[ refldxLO ][ cIdx — 1 ] (8-251")
[0135] ol = ChromaOffsetL1[ refldxL1 ][ cIdx — 1 ] (8-252)
[0136] JCTVC-N1005 specifies formulas (8-246), (8-247), (8-251) and (8-252) as
follows:

[0137] 00 = luma_offset 10[ refldxLO]* (1 << ( bitDepth—8)) (8-246)
[0138] ol =luma offset 11[ refldxL1]* (1 << (bitDepth—8)) (8-247)

[0139] 00 = ChromaOffsetLO[ refldxLO J[ cldx — 1 ] * (1 << ( bitDepth —8)) (8-251)
[0140] o1 = ChromaOffsetL1[ refldxL1 J[ cldx —1]* (1 << ( bitDepth —8)) (8-252)
[0141] As can be seen through comparison, in formulas (8-246"), (8-247"), (8-251") and
(8-252) of this disclosure, the variables 00 and o1 may be calculated without
multiplying by ( 1 << (' bitDepth — 8 ) ), as specified in JCTVC-N1005. Similarly, the
variables 00 and ol may be calculated without calculating ( 1 << ( the bit depth minus
8 ) ), where “<<” represents the bitwise left-shift operator.

[0142] Video encoder 20 and video decoder 30 may be configured to code data
indicative of whether high precision weighted prediction is enabled, e.g., for a sequence
of pictures. For example, video encoder 20 and video decoder 30 may be configured to
code a syntax element of a sequence parameter set (SPS), where the value of the syntax
element indicates whether high precision weighted prediction (that is, a high bit depth)
is enabled for video data. Table 2 below presents syntax that may be used for such data
indicative of whether high precision weighted prediction is enabled. In accordance with
the example of FIG. 2, video encoder 20 and video decoder 30 may code a flag to

indicate whether the high precision weighted prediction is used in an SPS RBSP syntax.



WO 2015/051118 PCT/US2014/058822
21

The flag can also be signaled in other high level syntax body, such as a video parameter
set (VPS), a picture parameter set (PPS), a slice header, a block header, or the like. In
the example of Table 2, underlined text represents additions relative to the syntax of

HEVC and JCTVC-N1005.

TABLE 2
seq_parameter set rbsp() { Descriptor
bit_depth_luma_minus8 ue(v)
bit_depth_chroma_minus8 ue(v)
if (BitDepthy > 10 || BitDepthc > 10)
use high precision_weighted prediction flag u(1)
log2 max_pic_order_cnt_Isb_minus4 ue(v)

[0143] Semantics for the use high precision weighted prediction_flag may be defined
as follows:

[0144] use_high precision weighted prediction flag equal to 1 specifies that high
precision explicit weighted prediction in this disclosure is used.

use_high precision_weighted prediction_flag equal to 0 specifies that high precision
explicit weighted prediction in this disclosure is not used and the HEVC range
extension draft (per JCTVC-N1005) is used. When not presented, it is inferred to be 0.
[0145] As can be seen in the example of Table 2, if the bit depth for luminance (luma or
‘Y’) is greater than 10 or if the bit depth for chrominance (chroma or ‘C’) is greater than
10, the sequence parameter set may include the

use high precision weighted prediction flag syntax element, which may indicate
whether to use high precision weighted prediction (that is, a high bit depth). Thus, a
“high bit depth” for a weighted prediction process may correspond to a bit depth that is
greater than ten (10) bits.

[0146] Furthermore, video encoder 20 and video decoder 30 may be configured to
operate according to the following modifications to JCTVC-N1005. In section
8.5.3.3.4.3 of JCTVC-N1005, shiftl is set equal to Max(2, 14 — bitDepth). In the worst
case, the predSamples[x][y] can be up to: bitDepth (input bit depth) + shiftl + 1 (scaling
from interpolation) + 1 (sign bit from interpolation).

[0147] Table 3 below lists the worst case sample bit depth, as modified to accommodate
the techniques of this disclosure (where underlined text represents modifications to the

syntax described in JCTVC-N1005):



WO 2015/051118 PCT/US2014/058822

22
TABLE 3
Input bit shift Sample bit
depth 1 depth
16 2 20
15 2 19
14 2 18
13 2 17
12 2 16
11 3 16

[0148] Then, in the worst case, in formula (8-253) described above,
predSamplesLO[ x ][ y ] * w0 would not otherwise be implemented using 16 bit
multiplication. In accordance with the techniques of this disclosure, however, w0 may

be restricted to Min(bitDepth, 16 - shift1-2) (bit).

[0149] In another example, video encoder 20 and video decoder 30 may be configured
to use offset parameters having extended precision, but use weighting parameters
having the same precision as in JCTVC-N1005. That is, only the semantics of
luma_offset 10, luma offset 11, delta chroma offset 10, and delta chroma offset 11
may be changed according to the various examples described above, whereas the
semantics of other syntax elements may be kept unchanged relative to JCTVC-N1005.
Thus, video encoder 20 and video decoder 30 may code video data using one or more
offset parameters having extended precision (e.g., one or more of luma offset 10,
luma_offset 11, delta chroma offset 10, and delta_chroma offset 11), and weighting
parameters having precisions defined in JCTVC-N1005.

[0150] Offset parameters, such as luma_offset 10, luma offset 11,

delta chroma offset 10, and delta chroma offset 11, may be used to offset prediction
samples of a block by a particular amount. Such offsets may be beneficial when global
or regional changes occur in a current picture, relative to a set of reference samples
(e.g., a reference picture or a portion of the reference picture). For example, if
illumination increases or decreases globally or regionally in a current picture relative to
a reference picture, such as during a scene fade-in or fade-out or a sudden flash of light
such as a lightning strike, it may be beneficial to introduce offsets to samples in the

luminance values of the reference picture, rather than attempting to identify a different



WO 2015/051118 PCT/US2014/058822
23

reference picture. Introducing the offset may decrease a residual value for a block of
the current picture, which may reduce the bitrate of the video data.

[0151] Whereas JCTVC-N1005 included a fixed range of possible values for such
offsets (that is, fixed bit depths for signaling such offsets), the techniques of this
disclosure allow for dynamically adjusting the bit depth of such offsets. That is, video
encoder 20 may signal one or more values representative of the bit depth for the offset
parameters, as well as whether the high bit depth is enabled (that is, whether a high
precision weighted prediction process is enabled). Video decoder 30, similarly, may use
the signaled values representative of the bit depth to correctly decode the bitstream.
More particularly, video decoder 30 may determine which bits of the bitstream apply to
the offset parameters and when the bits begin applying to a subsequent, different syntax
element. For example, if the bit depth is 8 bits, and video decoder 30 has decoded 8 bits
for an offset parameter, video decoder 30 may determine that a subsequent bit applies to
a different syntax element, and not to the offset parameter.

[0152] Allowing for a higher bit depth for offset parameters than the bit depths of such
parameters specified in JCTVC-N1005 may yield certain advantages. For example, the
coding efficiency (that is, the number of bits included in the bitstream) may be
improved when input video data has a relatively high bit depth. However, when the
input video data has a relatively low bit depth or when the number of bits used for the
offset parameters does not yield significant coding gains (as shown by, e.g., rate-
distortion metrics), video encoder 20 may disable the high bit depth.

[0153] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder or decoder circuitry, as applicable, such as one or more
microprocessors, digital signal processors (DSPs), application specific integrated
circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic circuitry,
software, hardware, firmware or any combinations thereof. Each of video encoder 20
and video decoder 30 may be included in one or more encoders or decoders, either of
which may be integrated as part of a combined video encoder/decoder (CODEC). A
device including video encoder 20 and/or video decoder 30 may comprise an integrated
circuit, a microprocessor, and/or a wireless communication device, such as a cellular
telephone.

[0154] FIG. 2 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for high precision explicit weighted prediction. Video encoder

20 may perform intra- and inter-coding of video blocks within video slices.



WO 2015/051118 PCT/US2014/058822
24

Intra-coding relies on spatial prediction to reduce or remove spatial redundancy in video
within a given video frame or picture. Inter-coding relies on temporal prediction to
reduce or remove temporal redundancy in video within adjacent frames or pictures of a
video sequence. Intra-mode (I mode) may refer to any of several spatial based coding
modes. Inter-modes, such as uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based coding modes.

[0155] As shown in FIG. 2, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode
select unit 40, reference picture memory 64, summer 50, transform processing unit 52,
quantization unit 54, and entropy encoding unit 56. Mode select unit 40, in turn,
includes motion compensation unit 44, motion estimation unit 42, intra-prediction unit
46, and partition unit 48. For video block reconstruction, video encoder 20 also
includes inverse quantization unit 58, inverse transform unit 60, and summer 62. A
deblocking filter (not shown in FIG. 2) may also be included to filter block boundaries
to remove blockiness artifacts from reconstructed video. If desired, the deblocking filter
would typically filter the output of summer 62. Additional filters (in loop or post loop)
may also be used in addition to the deblocking filter. Such filters are not shown for
brevity, but if desired, may filter the output of summer 50 (as an in-loop filter).

[0156] During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of
the received video block relative to one or more blocks in one or more reference frames
to provide temporal prediction. Intra-prediction unit 46 may alternatively perform intra-
predictive coding of the received video block relative to one or more neighboring blocks
in the same frame or slice as the block to be coded to provide spatial prediction. Video
encoder 20 may perform multiple coding passes, ¢.g., to select an appropriate coding
mode for each block of video data.

[0157] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into LCUs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the

quadtree may include one or more PUs and one or more TUSs.



WO 2015/051118 PCT/US2014/058822
25

[0158] Mode select unit 40 may select one of the coding modes, intra or inter, ¢.g.,
based on error results, and provides the resulting intra- or inter-coded block to summer
50 to generate residual block data and to summer 62 to reconstruct the encoded block
for use as a reference frame. Mode select unit 40 also provides syntax elements, such as
motion vectors, intra-mode indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

[0159] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD), sum
of square difference (SSD), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference picture memory 64. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-cighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0160] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0161] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion

vector for the PU of the current video block, motion compensation unit 44 may locate



WO 2015/051118 PCT/US2014/058822
26

the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming
pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components, and motion compensation unit
44 uses motion vectors calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

[0162] Motion compensation unit 44 may further be configured to apply offsets to
prediction samples during motion compensation. For instance, mode select unit 40 may
cause motion compensation unit 44 to apply offsets to luminance and/or chrominance
samples of a reference block (or to an entire reference picture), which may improve
prediction from the reference block or reference picture for a current picture. In
accordance with the techniques of this disclosure, mode select unit 40 may select offsets
of either a conventional bit depth or of a relatively high bit depth. When the offsets are
of the high bit depth, video encoder 20 may encode a value for a syntax clement (e.g., of
a sequence parameter set (SPS)) indicating that the high bit depth is enabled.

[0163] As an example, video encoder 20 may be configured to apply offsets to
luminance prediction data of one or more reference pictures. If the current picture is a
uni-directionally predicted picture (that is, a P-picture), video encoder 20 may apply the
offsets to one or more reference pictures in reference picture list 0. Video encoder 20
may signal values for parameters representative of offsets to be applied to one or more
reference pictures in reference picture list 0. That is, video encoder 20 may signal
values for luma_offset 10[ 1], where 1 is in the range of all reference pictures in
reference picture list 0. Similarly, if the current picture is a B-picture, video encoder 20
may signal values for offset parameters of reference pictures in both reference picture
list 0 and reference picture list 1, where the offset parameters for reference pictures of
reference picture list 0 may correspond to luma offset 10[ 1 ] and the offset parameters
for reference pictures of reference picture list 1 may correspond to luma offset 111 ].
[0164] Similarly, video encoder 20 may encode values for offset parameters for
chrominance samples. For example, video encoder 20 may encode values for
delta_chroma offset 10[ 1 ][ j ] parameters and, if the current picture is a B-picture,

delta chroma offset 11[1][j ] parameters. Again, “l10” represents reference picture list



WO 2015/051118 PCT/US2014/058822
27

0 while “11” represents reference picture list 1, and ‘i’ is in the range of pictures in the
respective reference picture list. The variable ‘j” for these parameters represents a value
based on a context index “cldx,” namely, cIdx-1. The cldx value may be zero (0) for
luma samples and non-zero for chroma samples.

[0165] Video encoder 20 may signal the values for the luma offset 10[ 1],

luma offset 11[ 1], delta chroma offset 10[ 1][j ], and delta chroma offset 11[1][] ]
parameters in a prediction weight table (pred weight table), which may form part of a
slice header.

[0166] Accordingly, motion compensation unit 44 may calculate values for variables 00
and ol according to formulas (8-246"), (8-247), (8-251") and (8-252’), as discussed
above with respect to FIG. 1. Motion compensation unit 44 may apply the offsets to
reference blocks determined from respective reference pictures. Accordingly, when
video encoder 20 forms and encodes residual blocks, summer 50 may calculate the
residual blocks as pixel-by-pixel (or sample-by-sample) differences between a current,
uncoded block and the reference block formed by motion compensation unit 44 (where
motion compensation unit 44 may have applied the offsets to the reference block). As
discussed above, mode select unit 40 may cause motion compensation unit 44 to try
various values for the offsets and select values for the offset parameters that yield the
best rate-distortion characteristics. Moreover, when high bit depth is enabled, mode
select unit 40 may attempt values for the offset parameters within ranges defined by the
high bit depth.

[0167] Intra-prediction unit 46 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion estimation unit 42 and motion compensation unit
44, as described above. In particular, intra-prediction unit 46 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra-prediction
unit 46 may encode a current block using various intra-prediction modes, e.g., during
separate encoding passes, and intra-prediction unit 46 (or mode select unit 40, in some
examples) may select an appropriate intra-prediction mode to use from the tested
modes.

[0168] For example, intra-prediction unit 46 may calculate rate-distortion values using a
rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)

between an encoded block and an original, unencoded block that was encoded to



WO 2015/051118 PCT/US2014/058822
28

produce the encoded block, as well as a bitrate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0169] After selecting an intra-prediction mode for a block, intra-prediction unit 46 may
provide information indicative of the selected intra-prediction mode for the block to
entropy encoding unit 56. Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode. Video encoder 20 may include in the
transmitted bitstream configuration data, which may include a plurality of intra-
prediction mode index tables and a plurality of modified intra-prediction mode index
tables (also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra-prediction mode, an intra-
prediction mode index table, and a modified intra-prediction mode index table to use for
each of the contexts.

[0170] Video encoder 20 forms a residual video block by subtracting the prediction data
from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52
may perform other transforms which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other types of transforms could
also be used.

[0171] In any case, transform processing unit 52 applies the transform to the residual
block, producing a block of residual transform coefficients. The transform may convert
the residual information from a pixel value domain to a transform domain, such as a
frequency domain. Transform processing unit 52 may send the resulting transform
coefficients to quantization unit 54. Quantization unit 54 quantizes the transform
coefficients to further reduce bit rate. The quantization process may reduce the bit
depth associated with some or all of the coefficients. The quantization process may also
be referred to as a “scaling” process, and thus, quantized transform coefficients may
also be referred to as “scaled transform coefficients.” The degree of quantization (or

scaling) may be modified by adjusting a quantization parameter. In some examples,



WO 2015/051118 PCT/US2014/058822
29

entropy encoding unit 56 may then perform a scan of the matrix including the quantized
transform coefficients.

[0172] Following quantization, entropy encoding unit 56 entropy codes the scanned,
quantized transform coefficients. For example, entropy encoding unit 56 may perform
context adaptive variable length coding (CAVLC), context adaptive binary arithmetic
coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC),
probability interval partitioning entropy (PIPE) coding or another entropy coding
technique. In the case of context-based entropy coding, context may be based on
neighboring blocks. Following the entropy coding by entropy encoding unit 56, the
encoded bitstream may be transmitted to another device (e.g., video decoder 30) or
archived for later transmission or retrieval.

[0173] Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain, e.g., for later use as a reference block. Motion compensation unit
44 may calculate a reference block by adding the residual block to a predictive block of
one of the frames of reference picture memory 64. Motion compensation unit 44 may
also apply one or more interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
reference picture memory 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a
block in a subsequent video frame.

[0174] In this manner, video encoder 20 of FIG. 2 represents an example of a video
encoder configured to encode a value for a syntax element representative of whether a
high bit depth is enabled for video data, and when the value for the syntax element
indicates that the high bit depth is enabled: encode a value for a syntax element
representative of a bit depth for one or more parameters of the video data, encode values
for the parameters such that the values for the parameters have bit depths based on the
value for the syntax element representative of the bit depth, and encode the video data
based at least in part on the values for the parameters.

[0175] FIG. 3 is a block diagram illustrating an example of video decoder 30 that may
implement techniques for high precision explicit weighted prediction. In the example of

FIG. 3, video decoder 30 includes an entropy decoding unit 70, motion compensation



WO 2015/051118 PCT/US2014/058822
30

unit 72, intra prediction unit 74, inverse quantization unit 76, inverse transformation
unit 78, reference picture memory 82 and summer 80. Video decoder 30 may, in some
examples, perform a decoding pass generally reciprocal to the encoding pass described
with respect to video encoder 20 (FIG. 2). Motion compensation unit 72 may generate
prediction data based on motion vectors received from entropy decoding unit 70, while
intra-prediction unit 74 may generate prediction data based on intra-prediction mode
indicators received from entropy decoding unit 70.

[0176] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors or intra-
prediction mode indicators, and other syntax elements. Entropy decoding unit 70
forwards the motion vectors and other syntax elements to motion compensation unit 72.
Video decoder 30 may receive the syntax elements at the video slice level and/or the
video block level.

[0177] When the video slice is coded as an intra-coded (1) slice, intra prediction unit 74
may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame is coded as an inter-coded (i.c., B, P or GPB)
slice, motion compensation unit 72 produces predictive blocks for a video block of the
current video slice based on the motion vectors and other syntax elements received from
entropy decoding unit 70. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List 0 and List 1, using default construction
techniques based on reference pictures stored in reference picture memory §2.

[0178] Motion compensation unit 72 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 72 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice, P slice, or GPB slice), construction information for one or more of

the reference picture lists for the slice, motion vectors for each inter-encoded video



WO 2015/051118 PCT/US2014/058822
31

block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0179] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 72
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0180] In accordance with the techniques of this disclosure, video decoder 30 may
decode syntax elements of an SPS to determine whether a high bit depth is enabled for
video data. When the high bit depth is enabled, video decoder 30 may decode values
for offset parameters having bit depths that are based on a signaled bit depth value.
That is, the SPS may signal whether the high bit depth is enabled and, when the high bit
depth is enabled, bit depths for luminance and/or chrominance offset parameters.
[0181] Assuming that the SPS indicates that the high bit depth (e.g., bit depths greater
than 10 for luminance and/or chrominance offset parameters) is enabled, video decoder
30 may further decode values for the offset parameters. Video decoder 30 may decode
a slice header of a slice that includes a prediction weight table (pred weight table),
such as Table 1, which may signal the values for the offset parameters. In particular,
video decoder 30 may use the signaled bit depth values (e.g., signaled according to
Table 2 above) to decode the values for the offset parameters. For example, video
decoder 30 may use a signaled bit depth to determine portions of the bitstream that
apply to an offset parameter as opposed to a subsequent syntax element of the slice
header.

[0182] After decoding the values for the offset parameters, video decoder 30 may use
the offset parameters to calculate values for offset variables for luminance and/or
chrominance samples. The offset variables may be, for example, variables 00 and o1 as
discussed above. Video decoder 30 may calculate values for variables 00 and o1 using
formulas (8-246°), (8-247), (8-2517) and (8-252), as discussed above with respect to
FIG. 1. Then, motion compensation unit 72 may apply these offsets to respective
reference samples to produce a predicted block. That is, motion compensation unit 72
may apply the offset value of 00 to reference samples from reference pictures in
reference picture list 0 and the offset value of 01 to reference samples from reference

pictures in reference picture list 1. In accordance with the techniques of this disclosure,



WO 2015/051118 PCT/US2014/058822
32

video decoder 30 may calculate values for variables 00 and ol without calculating ( 1
<< ( the bit depth minus 8 ) ) and multiplying this value by the value of the signaled
offset parameter, contrary to the techniques of JCTVC-N1005.

[0183] Inverse quantization unit 76 inverse quantizes, i.c., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied.

[0184] Inverse transform unit 78 applies an inverse transform, ¢.g., an inverse DCT, an
inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.

[0185] After motion compensation unit 72 generates the predictive block (which may
include offsetting reference samples using offsets that may have high bit depths, as
discussed above) for the current video block based on the motion vectors and other
syntax elements, video decoder 30 forms a decoded video block by summing the
residual blocks from inverse transform unit 78 with the corresponding predictive blocks
generated by motion compensation unit 72. Summer 80 represents the component or
components that perform this summation operation. If desired, a deblocking filter may
also be applied to filter the decoded blocks in order to remove blockiness artifacts.
Other loop filters (either in the coding loop or after the coding loop) may also be used to
smooth pixel transitions, or otherwise improve the video quality. The decoded video
blocks in a given frame or picture are then stored in reference picture memory 82, which
stores reference pictures used for subsequent motion compensation. Reference picture
memory 82 also stores decoded video for later presentation on a display device, such as
display device 32 of FIG. 1.

[0186] In this manner, video decoder 30 of FIG. 3 represents an example of a video
decoder configured to decode a value for a syntax element representative of whether a
high bit depth is enabled for the video data, and when the value for the syntax element
indicates that the high bit depth is enabled: decode a value for a syntax element
representative of a bit depth for one or more parameters of the video data, decode values
for the parameters such that the values for the parameters have bit depths based on the
value for the syntax element representative of the bit depth, and decode the video data

based at least in part on the values for the parameters.



WO 2015/051118 PCT/US2014/058822
33

[0187] FIG. 4 is a flowchart illustrating an example method for encoding a current
block. The current block may comprise a current CU or a portion of the current CU.
Although described with respect to video encoder 20 (FIGS. 1 and 2), it should be
understood that other devices may be configured to perform a method similar to that of
FIG. 4.

[0188] In this example, video encoder 20 initially determines weighting parameters
(150) and offset parameters (154). The weighting and/or offset parameters may have a
relatively high bit depth, e.g., a bit depth over ten (10) bits. Accordingly, video encoder
20 may signal (e.g., in a syntax element of an SPS, such as

use_high precision_weighted prediction_flag) whether to enable a high bit depth (154).
Furthermore, video encoder 20 may signal values representing bit depths for the
weighting and/or offset parameters, as well as the values of the parameters themselves
(156). For example, video encoder 20 may encode values for luma offset 10[ 1 ]
parameters, luma offset 11] i ] parameters, delta chroma offset 10[ 1 ][ j ] parameters,
and delta_chroma offset 111 ][ j ] parameters.

[0189] Video encoder 20 may then identify a reference block for a current block (158).
For example, motion estimation unit 42 may perform a motion search for a matching
block in a reference picture. The matching block, used as a reference block, may be the
block that exhibits the lowest error value, e.g., as measured by SAD, SSD, MAD, MSD,
or other such error metrics. Motion compensation unit 44 may then modify samples of
the reference block using the weighting and offset parameters (160). For instance,
motion compensation unit 44 may calculate values for variable 00 and ol according to
formulas (8-246"), (8-247’), (8-2517) and (8-252"), and thus, without calculating ( 1 <<
( bitDepth — 8 ) ). Again, the weighting and/or offset parameters may have a relatively
high bit depth. Accordingly, motion compensation unit 44 may offset samples of the
reference block using, for example, an offset parameter having more than ten bits. In
some examples, the offset parameter may be a sixteen bit value. Video encoder 20 may
use the modified reference block as a predicted block for the current block.

[0190] Video encoder 20 may then calculate a residual block for the current block, e.g.,
to produce a transform unit (TU) (162). To calculate the residual block, video encoder
20 may calculate a difference between the original, uncoded block and the predicted
block for the current block. Video encoder 20 may then transform and quantize
coefficients of the residual block (164). Next, video encoder 20 may scan the quantized

transform coefficients of the residual block (166). During the scan, or following the



WO 2015/051118 PCT/US2014/058822
34

scan, video encoder 20 may entropy encode the coefficients (168). For example, video
encoder 20 may encode the coefficients using CAVLC or CABAC. Video encoder 20
may then output the entropy coded data of the block (170).

[0191] In this manner, the method of FIG. 4 represents an example of a method for
encoding video data including determining whether to enable a high bit depth for video
data, and after determining to enable the high bit depth: encoding a value for a syntax
element indicating that the high bit depth is enabled, encoding a value for a syntax
element representative of a bit depth for one or more parameters of the video data,
encoding values for the parameters such that the values for the parameters have bit
depths based on the bit depth, and encoding the video data based at least in part on the
values for the parameters.

[0192] FIG. 5 is a flowchart illustrating an example method for decoding a current block
of video data. The current block may comprise a current CU or a portion of the current
CU. Although described with respect to video decoder 30 (FIGS. 1 and 3), it should be
understood that other devices may be configured to perform a method similar to that of
FIG. 5.

[0193] Initially, video decoder 30 may decode a value for a syntax element
representative of whether to enable a high bit depth for video data (200), and thus,
whether to perform high precision explicit weighted prediction. Assuming the high bit
depth is enabled, video decoder 30 may decode values representing the bit depth and
weighting and/or offset parameters (202). For example, video decoder 30 may decode
values for luma_offset 10[ 1 ] parameters, luma offset 11[ i | parameters,

delta _chroma offset 10[ 1 ][ j ] parameters, and delta chroma offset 11[1 ][ ]
parameters. Such values may be decoded as part of a slice header, e.g., in accordance
with Table 1 as described above.

[0194] Video decoder 30 may then identify a reference block for a current block (204).
For example, video decoder 30 may decode motion parameters for the current block,
e.g., using merge mode or advanced motion vector prediction (AMVP) mode. The
motion parameters may identify one or more of a reference picture list, an index into the
reference picture list, motion vector difference values, and/or a motion vector predictor
of a set of candidate motion vector predictors. Video decoder 30 may then modify
samples of the reference block using the weighting and offset parameters (206). For
instance, motion compensation unit 72 may calculate values for variable 00 and ol

according to formulas (8-246°), (8-247), (8-2517), and (8-252"), and thus, without



WO 2015/051118 PCT/US2014/058822
35

calculating (1 << ( bitDepth — 8 ) ). Again, the weighting and/or offset parameters
may have a relatively high bit depth. Accordingly, motion compensation unit 72 may
offset samples of the reference block using, for example, an offset parameter having
more than ten bits. In some examples, the offset parameter may be a sixteen bit value.
Video decoder 30 may use the modified reference block as a predicted block for the
current block.

[0195] Video decoder 30 may also receive entropy coded data for the current block,
such as entropy coded data for coefficients of a residual block corresponding to the
current block (208). Video decoder 30 may entropy decode the entropy coded data to
reproduce coefficients of the residual block (210). Video decoder 30 may then inverse
scan the reproduced coefficients (212), to create a block of quantized transform
coefficients. Video decoder 30 may then inverse quantize and inverse transform the
coefficients to produce a residual block (214). Video decoder 30 may ultimately decode
the current block by combining the predicted block and the residual block (216).

[0196] In this manner, the method of FIG. 5 represents an example of a method for
decoding video data including decoding a value for a syntax element representative of
whether a high bit depth is enabled for video data, when the value for the syntax
element indicates that the high bit depth is enabled: decoding a value for a syntax
element representative of a bit depth for one or more parameters of the video data,
decoding values for the parameters such that the values for the parameters have bit
depths based on the value for the syntax element representative of the bit depth, and
decoding the video data based at least in part on the values for the parameters.

[0197] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0198] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media



WO 2015/051118 PCT/US2014/058822
36

including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0199] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0200] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined



WO 2015/051118 PCT/US2014/058822
37

codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0201] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0202] Various examples have been described. These and other examples are within the

scope of the following claims.



WO 2015/051118 PCT/US2014/058822
38

WHAT IS CLAIMED IS:

1. A method of decoding video data, the method comprising:
decoding a value for a syntax element representative of whether a high bit depth
is enabled for video data;
when the value for the syntax element indicates that the high bit depth is
enabled:
decoding a value for a syntax element representative of the high bit depth
for one or more parameters of the video data;
decoding values for the parameters such that the values for the
parameters are representative of bit depths that are based on the value for the
syntax element representative of the high bit depth; and
decoding the video data based at least in part on the values for the

parameters.

2. The method of claim 1, wherein decoding the value for the syntax element
representative of whether the high bit depth is enabled comprises decoding a value for a
syntax element of a sequence parameter set (SPS) for a sequence of pictures of the video

data.

3. The method of claim 1, wherein the one or more parameters comprise a

luma_offset 10[ i ] parameter or a luma_offset 11] i ] parameter.

4. The method of claim 3, wherein decoding a value for the luma offset 10[ 1]
parameter or the luma_offset 10[ 1 ] parameter comprises decoding a value in the range
of —2 raised to (the high bit depth minus 1) to 2 raised to (the high bit depth minus 1)

minus 1, inclusive.

5. The method of claim 3, wherein decoding the video data comprises, when
performing a high precision weighted prediction process for luminance samples:
calculating a value for a variable 00 used in the high precision weighted
prediction process as being equal to a value for a luma_offset 10[ refldxL0 ] parameter,
without calculating ( 1 << ( the high bit depth minus 8 ) ); and
calculating a value for a variable o1 used in the high precision weighted
prediction process as being equal to a value for a luma_offset 11 refldxL1 ] parameter,

without calculating ( 1 << (the high bit depth minus 8 ) ).



WO 2015/051118 PCT/US2014/058822
39

6. The method of claim 1, wherein the one or more weighted prediction parameters
comprise a delta_chroma offset 10[ 1 ][ j ] parameter or a delta chroma offset 11[1 ][]

| parameter.

7. The method of claim 6, wherein decoding a value for the
delta chroma offset 10[ 1 ][ j ] parameter or the delta chroma offset 11[1][j ]
parameter comprises decoding a value in the range of —2 raised to (the high bit depth

plus 1) to 2 raised to (the high bit depth plus 1) minus 1 inclusive.

8. The method of claim 6, further comprising:

deriving a value for a ChromaOffsetLO[ i ][ j ] variable according to the formula:
Clip3( —2 raised to (the high bit depth minus 1), 2 raised to (the high bit depth minus 1)
minus 1, ( delta_chroma offset 10[1][j]— (( 2 raised to (the high bit depth minus 1) *
ChromaWeightLO[ 1 ][j]) >> ChromaLog2WeightDenom ) + 2 raised to (the high bit
depth minus 1)) ); and

deriving a value for a ChromaOffsetL1[ i ][ j ] variable according to the formula:
Clip3( —2 raised to (the high bit depth minus 1), 2 raised to (the high bit depth minus 1)
minus 1, ( delta chroma offset 11[1][j]— ( (2 raised to (the high bit depth minus 1) *
ChromaWeightLL1[1][j]) >> ChromaLog2WeightDenom ) + 2 raised to (the high bit
depth minus 1) )).

9. The method of claim 8, wherein decoding the video data comprises, when
performing a high precision weighted prediction process for chrominance samples:

calculating a value for a variable 00 used in the high precision weighted
prediction process as being equal to a ChromaOffsetLO[ refldxL0 ][ cIldx — 1 ] variable,
without calculating ( 1 << ( the high bit depth minus 8 ) );

calculating a value for a variable o1 used in the high precision weighted
prediction process as being equal to a ChromaOffsetL1[ refldxLL1 ][ cIldx — 1 ] variable,
without calculating ( 1 << (the high bit depth minus 8 ) ).

10. The method of claim 1, wherein the one or more parameters comprise a
luma offset 10[ i | parameter, a luma_offset 11] i ] parameter, a
delta chroma offset 10[ 1 ][ j ] parameter, and a delta chroma offset 11[1][j ]

parameter.



WO 2015/051118 PCT/US2014/058822
40

11.  The method of claim 1, wherein decoding the video data comprises adaptively

performing a right shift operation according to the high bit depth.

12. The method of claim 1, wherein the syntax element representative of whether the

high bit depth is enabled comprises use high precision weighted prediction flag.

13. A method of encoding video data, the method comprising:

determining to enable a high bit depth for video data;
after determining to enable the high bit depth:

encoding a value for a syntax element indicating that the high bit depth is
enabled;

encoding a value for a syntax element representative of the high bit depth
for one or more parameters of the video data;

encoding values for the parameters such that the values for the
parameters are representative of bit depths that are based on the high bit depth;
and

encoding the video data based at least in part on the values for the

parameters.

14.  The method of claim 13, wherein encoding the value for the syntax element
indicating that the high bit depth is enabled comprises encoding a value for a syntax

element of a sequence parameter set (SPS) for a sequence of pictures of the video data.

15.  The method of claim 13, wherein the one or more parameters comprise a
luma_offset 10[ 1 | parameter or a luma offset 11] i | parameter, and wherein encoding
a value for the luma offset 10[ i | parameter or the luma offset 10[ i | parameter
comprises encoding a value in the range of —2 raised to (the high bit depth minus 1) to 2

raised to (the high bit depth minus 1) minus 1, inclusive.

16.  The method of claim 15, wherein encoding the video data comprises, when

performing a high precision weighted prediction process for luminance samples:
calculating a value for a variable 00 used in the high precision weighted

prediction process as being equal to a value for a luma_offset 10[ refldxL0 ] parameter

without calculating ( 1 << ( the high bit depth minus 8 ) ); and



WO 2015/051118 PCT/US2014/058822
41

calculating a value for a variable o1 used in the high precision weighted
prediction process as being equal to a value for a luma_offset 11] refldxLL1 ] parameter

without calculating ( 1 << (the high bit depth minus 8 ) ).

17. The method of claim 13,

wherein the one or more weighted prediction parameters comprise a
delta chroma offset 10[1][j ] parameter or a delta chroma offset 11[1 ][] ]
parameter, and

wherein encoding a value for the delta_chroma offset 10[ i ][ j ] parameter or
the delta chroma offset 11[1][j ] parameter comprises encoding a value in the range
of —2 raised to (the high bit depth plus 1) to 2 raised to (the high bit depth plus 1) minus

1 inclusive.

18.  The method of claim 17, wherein encoding the video data comprises, when
performing a high precision weighted prediction process for chrominance samples:

calculating a value for a ChromaOffsetL.O[ refldxLO0 ][ cIdx — 1 ] variable from
the delta chroma offset 10[ i ][ j ] parameter;

calculating a value for a variable 00 used in the high precision weighted
prediction process as being equal to the ChromaOffsetLO[ refldxLO ][ cldx — 1]
variable, without calculating ( 1 << ( the high bit depth minus 8 ) );

calculating a value for a ChromaOffsetL1[ refldxL1 ][ cIldx — 1 ] variable from
the delta chroma offset 11[1][j ] parameter; and

calculating a value for a variable o1 used in the high precision weighted
prediction process as being equal to the ChromaOffsetL1[ refldxL1 ][ cldx — 1]
variable, without calculating ( 1 << ( the high bit depth minus 8 ) ).

19. The method of claim 13, wherein the one or more parameters comprise a
luma offset 10[ i | parameter, a luma_offset 11] i ] parameter, a
delta chroma offset 10[ 1 ][ j ] parameter, and a delta chroma offset 11[1][j ]

parameter.

20.  The method of claim 13, wherein the syntax element representative of whether

the high bit depth is enabled comprises use _high precision weighted prediction flag.



WO 2015/051118 PCT/US2014/058822
42

21. A device for coding video data, the device comprising:

a memory configured to store video data; and

a video coder configured to code a value for a syntax element representative of
whether a high bit depth is enabled for the video data, and when the value for the syntax
element indicates that the high bit depth is enabled: code a value for a syntax element
representative of the high bit depth for one or more parameters of the video data, code
values for the parameters such that the values for the parameters are representative of bit
depths that are based on the value for the syntax element representative of the high bit

depth, and code the video data based at least in part on the values for the parameters.

22.  The device of claim 21, wherein the video coder is configured to code the value
for the syntax element representative of whether the high bit depth is enabled in a

sequence parameter set (SPS) for a sequence of pictures of the video data.

23.  The device of claim 21, wherein the one or more parameters comprise a
luma_offset 10[ i ] parameter or a luma_offset 11] i ] parameter, and wherein the video
coder is configured to code a value for the luma_offset 10[ i ] parameter or the
luma_offset 10[ i ] parameter comprises code a value in the range of —2 raised to (the

high bit depth minus 1) to 2 raised to (the high bit depth minus 1) minus 1, inclusive.

24.  The device of claim 23, wherein the video coder is configured to, when
performing a high precision weighted prediction process for luminance samples:
calculate a value for a variable 00 used in the high precision weighted prediction
process as being equal to a value for a luma offset 10[ refldxL0 ] parameter without
calculating (1 << ( the high bit depth minus 8 ) ), and calculate a value for a variable
ol used in the high precision weighted prediction process as being equal to a value for a
luma_offset 11] refldxL1 ] parameter without calculating ( 1 << ( the high bit depth

minus 8§ ) ).

25.  The device of claim 21, wherein the one or more weighted prediction
parameters comprise a delta_chroma offset 10[ i ][ j ] parameter or a

delta chroma offset 11[1][j ] parameter, and wherein the video coder is configured to
code a value for the delta chroma offset 10[ i ][ j ] parameter or the

delta chroma offset 11[1][j ] parameter as a value in the range of —2 raised to (the

high bit depth plus 1) to 2 raised to (the high bit depth plus 1) minus 1 inclusive.



WO 2015/051118 PCT/US2014/058822
43

26.  The device of claim 25, wherein the video coder is configured to, when
performing a high precision weighted prediction process for chrominance samples:
calculate a value for a ChromaOffsetLO[ refldxL0 ][ cIdx — 1 ] variable from the

delta chroma offset 10[ 1 ][ j ] parameter, calculate a value for a variable 00 used in a
high precision weighted prediction process as being equal to the ChromaOffsetLO[
refldxL0 ][ cldx — 1 ] variable, without calculating ( 1 << ( the high bit depth minus 8 )
), calculate a value for a ChromaOffsetL1[ refldxL1 ][ cIldx — 1 ] variable from the

delta chroma offset 11[1][j ] parameter, and calculate a value for a variable o1 used in
the high precision weighted prediction process as being equal to the ChromaOffsetL1]
refldxL1 ][ cldx — 1 ] variable, without calculating ( 1 << ( the high bit depth minus 8 )

).

27.  The device of claim 21, wherein the one or more parameters comprise a
luma offset 10[ i | parameter, a luma_offset 11] i ] parameter, a

delta chroma offset 10[1][j ] parameter, and a delta chroma offset 11[1][] ]

parameter.

28.  The device of claim 21, wherein the video coder comprises a video decoder.
29.  The device of claim 21, wherein the video coder comprises a video encoder.
30.  The device of claim 21, wherein the syntax element representative of whether

the high bit depth is enabled comprises use _high precision weighted prediction flag.

31.  The device of claim 21, wherein the device comprises at least one of:
an integrated circuit;
a microprocessor; and

a wireless communication device.



WO 2015/051118 PCT/US2014/058822
44

32. A device for coding video data, the device comprising:

means for coding a value for a syntax element representative of whether a high
bit depth is enabled for video data;

means for coding a value for a syntax element representative of the high bit
depth for one or more parameters of the video data when the value for the syntax
element indicates that the high bit depth is enabled;

means for coding values for the parameters such that the values for the
parameters are representative of bit depths that are based on the value for the syntax
element representative of the high bit depth when the value for the syntax element
indicates that the high bit depth is enabled; and

means for coding the video data based at least in part on the values for the
parameters when the value for the syntax element indicates that the high bit depth is

enabled.

33. A computer-readable storage medium having stored thereon instructions that,
when executed, cause a processor to:
code a value for a syntax element representative of whether a high bit depth is
enabled for video data;
when the value for the syntax element indicates that the high bit depth is
enabled:
code a value for a syntax element representative of the high bit depth for
one or more parameters of the video data;
code values for the parameters such that the values for the parameters are
representative of bit depths that are based on the value for the syntax element
representative of the high bit depth; and

code the video data based at least in part on the values for the parameters.

34, The computer-readable medium of claim 33, wherein the instructions that cause
the processor to code the value for the syntax element indicating that the high bit depth
is enabled comprise instructions that cause the processor to code a value for a syntax

element of a sequence parameter set (SPS) for a sequence of pictures of the video data.

35.  The computer-readable medium of claim 33, wherein the one or more
parameters comprise a luma_offset 10[ i ] parameter or a luma_offset 11[ i | parameter,

and wherein the instructions that cause the processor to code a value for the



WO 2015/051118 PCT/US2014/058822
45

luma_offset 10[ i ] parameter or the luma_offset 10[ 1 ] parameter comprise instructions
that cause the processor to code a value in the range of —2 raised to (the high bit depth

minus 1) to 2 raised to (the high bit depth minus 1) minus 1, inclusive.

36.  The computer-readable medium of claim 35, wherein the instructions that cause
the processor to code the video data comprise instructions that cause the processor to,
when performing a high precision weighted prediction process for luminance samples:

calculate a value for a variable 00 used in the high precision weighted prediction
process as being equal to a value for a luma offset 10[ refldxL0 ] parameter without
calculating (1 << ( the high bit depth minus 8 ) ); and

calculate a value for a variable o1 used in the high precision weighted prediction
process as being equal to a value for a luma offset 11[ refldxL1 ] parameter without

calculating (1 << ( the high bit depth minus 8 ) ).

37.  The computer-readable medium of claim 33, wherein the one or more weighted
prediction parameters comprise a delta chroma offset 10[ 1 ][ j ] parameter or a

delta chroma offset 11[1][j ] parameter, and wherein the instructions that cause the
processor to code a value for the delta chroma offset 10[ 1][ j ] parameter or the

delta chroma offset 11[1][j ] parameter comprise instructions that cause the processor
to code a value in the range of —2 raised to (the high bit depth plus 1) to 2 raised to (the
high bit depth plus 1) minus 1 inclusive.



WO 2015/051118 PCT/US2014/058822
46

38.  The computer-readable medium of claim 37, wherein the instructions that cause
the processor to code the video data comprise instructions that cause the processor to,
when performing a high precision weighted prediction process for chrominance
samples:

calculate a value for a ChromaOffsetLO[ refldxL0 ][ cIdx — 1 ] variable from the
delta _chroma offset 10[ 1 ][ j ] parameter;

calculate a value for a variable 00 used in the high precision weighted prediction
process as being equal to the ChromaOffsetLO[ refldxLO ][ cldx — 1 ] variable, without
calculating (1 << ( the high bit depth minus 8 ) );

calculate a value for a ChromaOffsetL 1] refldxL1 ][ cIdx — 1 ] variable from the
delta chroma offset 11[1][j ] parameter; and

calculate a value for a variable o1 used in the high precision weighted prediction
process as being equal to the ChromaOffsetL1[ refldxL1 ][ cldx — 1 ] variable, without
calculating (1 << ( the high bit depth minus 8 ) ).

39.  The computer-readable storage medium of claim 33, wherein the one or more
parameters comprise a luma_offset 10[ i ] parameter, a luma offset 11[ i ] parameter, a
delta chroma offset 10[ 1 ][ j ] parameter, and a delta chroma offset 11[1][j ]

parameter.

40.  The computer-readable storage medium of claim 33, wherein the syntax element
representative of whether the high bit depth is enabled comprises

use_high precision_weighted prediction_flag.



WO 2015/051118 PCT/US2014/058822

Page1/5
/10
SOURCE DEVICE DESTINATION DEVICE
12
14
VIDEO SOURCE DISPLAY DEVICE
18 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT 16 INPUT
INTERFACE |12 INTERFACE
22 28

FIG. 1



PCT/US2014/058822

WO 2015/051118

Page2/5

viva
O3dIA

A ¢ 9l
r-r---r—-""""—--"""—-—-"""—-"""-—-"-—-—-=-- || IIIIIIIIIIIIIIIIIIIIIIIIIIII
0z !
¥3Q0ON3 03aIA SX201d O3dIA =
d3aLoNYLSNOOIY ¥9
29 AYOWINW
95 (19 (] 34N1o1d
1INN 1INN 1INN 43y
ONIGOONT [ B | NOLLVZILNVNO [ | WHOASNVYL +
AdOYLNT ISHIANI 3asyaANl  [SHO019
_ ‘aIs3y —
‘NOO3Y oF
1INN
NOILOIa3¥d
VHLNI
= _
1INA tﬂﬁ:
NOILYSNIdINOD
SLNIWI 13 XVLNAS
NOLLOW NOILILYVd
3
b4 2
1INN T
NOILVINILST
1INN
0§ NOLLOW 19313S IAOW
SLIN3ID0144309 —
INMOASNVYL 55 ¢S X
1vNais3y 1INN nll wz_whw_uwomn_
a3zILNVNO
NOILVZILNVND NNOJSNYAL w.mwwww_m




PCT/US2014/058822

WO 2015/051118

Page 3/5

€ 'Old

75 S)201d a7 57
- AYOWAN | vnais3y 1INN 1INN
O3aIA JANLOId INMOASNVYL NOILVZILNVNO
@3aoo3a | |3oNzy¥z43y 08 3SYIANI ISYIANI
A
m.||||||||||“ 44309
| VI | "ZILNVNO
| LINN
|| nowogzwd | L
_ VHLNI " 07
1INN
> >
_ ZI | SIN3W313 ONIQ0o3d
_ 1NN | YV INAS AdOYLINT
| | NOlLLYSNadwo9 | |
_ NOILOW |
o _ |
0¢

d3a0233d O3AIA

Nv3dislig
O3daiIA
d3doON3



WO 2015/051118

Page 4/5

PCT/US2014/058822

DETERMINE WEIGHTING
PARAMETERS

150
/

v

DETERMINE OFFSET
PARAMETERS

152
/

:

SIGNAL WHETHER TO
ENABLE HIGH BIT DEPTH

/1 54

v

SIGNAL VALUES
REPRESENTING BIT DEPTH
AND PARAMETERS

156
/

v

IDENTIFY REFERENCE BLOCK

/1 58

v

MODIFY SAMPLES OF
REFERENCE BLOCK USING
WEIGHT AND OFFSET PARAMS.

160
/

v

CALCULATE RESIDUAL BLOCK
FOR CURRENT BLOCK

162
/

I

TRANSFORM AND QUANTIZE
RESIDUAL BLOCK

/1 64

v

SCAN COEFFICIENTS OF
RESIDUAL BLOCK

166
/

;

ENTROPY ENCODE
COEFFICIENTS

/‘1 68

I

OUTPUT ENTROPY CODED
DATA FOR COEFFICIENTS

FIG. 4



WO 2015/051118 PCT/US2014/058822

Page 5/5

DECODE VALUE /200
REPRESENTING WHETHER TO
ENABLE HIGH BIT DEPTH

:

DECODE VALUES Ve 202
REPRESENTING BIT DEPTH
AND PARAMETERS

v

IDENTIFY REFERENCE BLOCK

v

MODIFY SAMPLES OF e 206
REFERENCE BLOCK USING
WEIGHT AND OFFSET PARAMS.

v

208
RECEIVE ENTROPY CODED /
DATA FOR CURRENT BLOCK

I

210
ENTROPY DECODE DATA TO /
REPRODUCE COEFFICIENTS

v

212
INVERSE SCAN REPRODUCED /
COEFFICIENTS

!

INVERSE QUANTIZE AND

INVERSE TRANSFORM —214

COEFFICIENTS TO PRODUCE
RESIDUAL BLOCK

v

COMBINE PREDICTED BLOCK /216
AND RESIDUAL BLOCK

/204

FIG. 5



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/058822

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N19/597 HO4N19/105
ADD.

HO4N19/70

HO4N19/136

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X FLYNN D ET AL:
4II,

SG.16 ); URL:

no. JCTVC-N1005-v3,

page 66

"Range Extensions Draft
14. JCT-VC MEETING; 25-7-2013 - 2-8-2013;
VIENNA; (JOINT COLLABORATIVE TEAM ON VIDEO
CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,

8 August 2013 (2013-08-08), XP030114950,
page 141, paragraph 8.5.3.3.4.3 - page 142

1-4,6-8,
10,11,
13-15,
17,19,
21-23,
25,
27-29,
31-35,
37,39

_/__

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 January 2015

Date of mailing of the international search report

22/01/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moschetti, Fulvio

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

21 October 2013 (2013-10-21), XP030114946,
paragraph [3.4.4] - paragraph [03.5]

PCT/US2014/058822
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,P PU W ET AL: "High Precision Weighted 1-40
Prediction for HEVC Range Extension",
15. JCT-VC MEETING; 23-10-2013 -
1-11-2013; GENEVA; (JOINT COLLABORATIVE
TEAM ON VIDEO CODING OF ISO/IEC
JTC1/SC29/WG11 AND ITU-T SG.16 ); URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-00235-v5,
24 October 2013 (2013-10-24), XP030115291,
page 1 - page 4
X,P MCCANN K ET AL: "High Efficiency Video 1-4,6-8,
Coding (HEVC) Test Model 12 (HM 12) 10,11,
Encoder Description", 13-15,
14. JCT-VC MEETING; 25-7-2013 - 2-8-2013; 17,19,
VIENNA; (JOINT COLLABORATIVE TEAM ON VIDEO 21-23,
CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T 25,
SG.16 ); URL: 27-29,
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,, 31-35,
no. JCTVC-N1002, 37,39

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report

