PHARMACEUTICAL COMPOSITION COMPRISING EICOSAPENTAENOIC ACID AND NICOTINIC ACID AND METHODS OF USING SAME

Inventor: Mehar Manku, Oxford (GB)
Assignee: AMARIN CORPORATION PLC., Dublin (IE)
Appl. No.: 13/061,865
PCT Filed: Sep. 2, 2009
PCT No.: PCT/US09/55760
§ 371 (c)(1), (2), (4) Date: May 23, 2011

Related U.S. Application Data
Provisional application No. 61/093,506, filed on Sep. 2, 2008.

Publication Classification
Int. Cl.
A61K 9/48 (2006.01)
A61K 31/455 (2006.01)
A61P 9/00 (2006.01)
A61P 3/06 (2006.01)

U.S. Cl. ... 424/455; 514/356

ABSTRACT
The present invention relates to, inter alia, pharmaceutical compositions comprising eicosapentaenoic acid and/or derivatives thereof and nicotinic acid, to methods of manufacturing such compositions, and to therapeutic methods for treating various diseases and disorders.
PHARMACEUTICAL COMPOSITION COMPRISING EICOSAPENTAENOIC ACID AND NICOTINIC ACID AND METHODS OF USING SAME

BACKGROUND

[0001] Cardiovascular disease is one of the leading causes of death in the United States and most European countries. It is estimated that over 70 million people in the United States alone suffer from a cardiovascular disease or disorder including but not limited to high blood pressure, coronary heart disease, dislipidemia, congestive heart failure and stroke.

[0002] At high doses (e.g. >1500 mg) niacin is a potent lipid lowering drug with the ability to lower very low density and low density lipoprotein particles and increase high density lipoprotein cholesterol-C (HDL-C). However, at these doses, niacin causes vascular-cutaneous flushing mediated by prostaglandin D2 and seriously limits patient compliance and thus effectiveness. At lower doses (e.g. <1500 mg/day) niacin only increases HDL-C without lowering very low density and low density lipoprotein particles. Extended- and sustained-release forms of niacin have been developed and can reduce (but not eliminate) flushing, but can also cause liver toxicity, gastrointestinal upset, nausea, diarrhea, sexual dysfunction and fatigue. These side effects significantly limit the use of niacin therapy.

SUMMARY

[0003] In one embodiment, the present invention provides a pharmaceutical composition comprising nicotinic acid in an amount of not more than about 1200 mg, not more than about 1000 mg, not more than about 750 mg, or not more than about 500 mg and eicosapentaenoic acid or a derivative thereof. In one embodiment, the composition contains not more than 10%, by weight, docosahexaenoic acid, if any. In another embodiment, the eicosapentaenoic acid or derivative thereof is eicosapentaenoic acid ethyl ester. In still another embodiment, the composition contains substantially no amount of docosahexaenoic acid or derivative thereof, if any.

[0004] In another embodiment, the present invention provides a method of treating and/or preventing a cardiovascular-related disease or disorder selected from primary hyperlipidemia, hypertriglyceridermia, hypercholesterolemia, mixed dyslipidemia, coronary heart disease, vascular disease, stroke, atherosclerosis, arrhythmia, hypertension, myocardial infarction, and other cardiovascular events, comprising administering to a subject in need thereof 1 to a plurality of dosage units comprising a composition or compositions as disclosed herein.

[0005] In still another embodiment, the invention provides a method of treating or preventing a cardiovascular-related disease or disorder in subject in need thereof, comprising administering to the subject a pharmaceutical composition comprising (a) nicotinic acid in an amount of not more than about 1200 mg, not more than about 1000 mg, not more than about 750 mg, or not more than about 500 mg and (b) eicosapentaenoic acid or a derivative thereof; wherein the composition comprises not more than 10%, by weight, docosahexaenoic acid or derivative thereof, if any.

[0006] In another embodiment, the present invention provides a method of treating or preventing a cardiovascular-related disease or disorder in a subject in need thereof, comprising co-administering to the subject a first pharmaceutical composition comprising nicotinic acid in an amount of not more than about 1200 mg, not more than about 1000 mg, not more than about 750 mg, or not more than about 500 mg and a second pharmaceutical composition comprising eicosapentaenoic acid or a derivative thereof wherein said second pharmaceutical composition contains not more than 10%, by weight, docosahexaenoic acid or derivative thereof, if any, substantially no docosahexaenoic acid or derivative thereof, or no docosahexaenoic acid or derivative thereof.

[0007] In another embodiment, the invention provides a method of one or more of: (a) decreasing serum low-density lipoprotein cholesterol (“LDL-C”), (b) decreasing serum triglyceride levels, (c) increasing serum high-density lipoprotein cholesterol (“HDL-C”) levels, (d) reducing apolipoprotein B (“Apo B”) levels compared to baseline, and/or (e) decreasing serum non-high density lipoprotein cholesterol (“non-HDL-C”; i.e. the difference between total cholesterol and HDL-C) levels in a subject in need thereof; the method comprising administering to the subject a pharmaceutical composition or compositions comprising (a) nicotinic acid in an amount of not more than about 1500 mg, not more than about 1200 mg, not more than about 1000 mg, not more than about 750 mg, or not more than about 500 mg and (b) eicosapentaenoic acid or a derivative thereof, wherein the composition contains not more than 10%, by weight, docosahexaenoic acid or derivative thereof, or any, substantially no docosahexaenoic acid or derivative thereof, or no docosahexaenoic acid or derivative thereof.

[0008] In another embodiment, the present invention provides a method of delaying or reducing the risk of cardiac arrest in a subject in need thereof, the method comprising administering to a subject in need thereof a pharmaceutical composition comprising (a) nicotinic acid in an amount of not more than about 1500 mg, not more than about 1200 mg, not more than about 1000 mg, not more than about 750 mg, or not more than about 500 mg and (b) eicosapentaenoic acid or a derivative thereof, wherein the composition contains not more than 10%, by weight, docosahexaenoic acid or derivative thereof, if any, substantially no docosahexaenoic acid or derivative thereof, or no docosahexaenoic acid or derivative thereof.

[0009] In still another embodiment, the present invention provides a kit comprising a first pharmaceutical composition comprising nicotinic acid in an amount of not more than about 1500 mg, not more than about 1200 mg, not more than about 1000 mg, not more than about 750 mg, or not more than about 500 mg, and a second pharmaceutical composition comprising eicosapentaenoic acid or a derivative thereof, wherein the second pharmaceutical composition contains not more than 10%, by weight, docosahexaenoic acid, if any.

[0010] In another embodiment, the invention provides a method of reducing niacin-induced flushing in a subject comprising providing a subject that is to begin niacin therapy, pre-treating the subject with EPA and administering niacin to the subject following said pre-treatment.

[0011] These and other embodiments of the present invention will be disclosed in further detail herein below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 shows that administration of ~97% pure EPA to subjects results in increased RBC EPA and decreased RBC arachidonic acid levels.

DETAILED DESCRIPTION

[0013] While the present invention is capable of being embodied in various forms, the description below of several
embodiments is made with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiments illustrated. Headings are provided for convenience only and are not to be construed to limit the invention in any manner. Embodiments illustrated under any heading may be combined with embodiments illustrated under any other heading.

[0014] The use of numerical values in the various quantitative values specified in this application, unless expressly indicated otherwise, are stated as approximations as though the minimum and maximum values within the stated ranges were both preceded by the word “about.” In this manner, slight variations from a stated value can be used to achieve substantially the same results as the stated value. As used herein, the terms “about” and “approximately” when referring to a numerical value shall have their plain and ordinary meanings to one skilled in the pertinent art at issue. Also, the disclosure of ranges is intended as a continuous range including every value between the minimum and maximum values recited as well as any ranges that can be formed by such values. Also disclosed herein are any and all ratios (and ranges of any such ratios) that can be formed by dividing a recited numeric value into any other recited numeric value. Accordingly, the skilled person will appreciate that many such ratios, ranges, and ranges of ratios can be unambiguously derived from the numerical values presented herein and in all instances such ratios, ranges, and ranges of ratios represent various embodiments of the present invention.

[0015] Without being held to a particular theory, it is believed that eicosapentaenoic acid is a competitive inhibitor of arachidonate metabolism in the cyclo-oxygenase pathway and that reduction of PGD2 levels by EPA ameliorates niacin flushing. In addition to attenuating niacin-induced flushing, it is also believed, without being bound by theory, that EPA can provide beneficial cardiovascular effects such as reduced platelet aggregation, vasodilation and plaque stabilization, which are independent of an increase in HDL-C as seen at low doses of niacin. As such, in one embodiment of the invention, a combination of low dose niacin with EPA (or pre-treatment with EPA followed by low dose niacin) is provided. In an embodiment of the invention, such therapy provides effective cardiovascular benefits with reduced side effects compared to conventional niacin dosing.

Eicosapentaenoic Acid

[0016] In one embodiment, compositions of the invention comprise eicosapentaenoic acid or a pharmaceutically acceptable ester, derivative, conjugate or salt thereof, or mixtures of any of the foregoing, collectively referred to herein as “EPA.” The term “pharmaceutically acceptable” in the present context means that the substance in question does not produce unacceptable toxicity to the subject or interaction with other components of the composition.

[0017] In one embodiment, the EPA comprises an eicosapentaenoic acid ester. In another embodiment, the EPA comprises a C1-C4 alkyl ester of eicosapentaenoic acid, in another embodiment, the EPA comprises eicosapentaenoic acid ethyl ester, eicosapentaenoic acid methyl ester, eicosapentaenoic acid propyl ester, or eicosapentaenoic acid butyl ester.

[0018] In another embodiment, the EPA is in the form of ethyl-EPA, lithium EPA, mono-, di- or triglyceride EPA or any other ester or salt of EPA, or the free acid form of EPA. The EPA may also be in the form of a 2-substituted derivative or other derivative which slows down its rate of oxidation but does not otherwise change its biological action to any substantial degree.

[0019] In another embodiment, the EPA comprises an EPA-Fatty Acid conjugate, in one embodiment, the EPA-Fatty Acid conjugates are diesters formed between EPA, a second fatty acid or EPA, and a linker as shown in structures (I)-(II), wherein R1 and R2 are acyl fatty acid groups derived from EPA or another fatty acid. R1 and R2 may both be derived from EPA (EPA-EPA) or may be derived from EPA and a different fatty acid (EPA-Fatty Acid). R1 is generally either hydrogen, fully hydrocarbon, or containing heteroatoms, and is preferably a C1-C4 alkyl group.

\[
\begin{align*}
(I) & \quad R^1 \quad O \quad CH_2 \quad CH_2 \quad R^2 \\
\text{II) } & \quad CH_2 OR^1 \quad CH_2 OR^2
\end{align*}
\]

[0020] The linker may be any suitable diol including, for example, an alkyl diol such as 1,3-propanediol, an alkynyl diol, an aryl diol such as 1,4-dihydroxybenzene (hydroquinone), etc., or a geminal diol, for example a C1-C4 alkyl geminal diol, an alkyl geminal diol, etc. The second fatty acid may be any suitable fatty acid including for example EPA, LA, AA, ALA, STA, ETA, or DPA. Synthesis of the diester conjugate is accomplished according to methods well known in the art, including for example, using metals, metal-chlorides, or organic acids as catalysts; using fatty acid chlorides such as EPA-chloride, γ-linolenic acid chloride (GLA-chloride), dihomo-γ-linolenic acid chloride (DGLA-chloride), linoleic acid chloride (LA-chloride), arachidonic acid chloride (AA-chloride), conjugated linoleic acid chloride (cLA-chloride), LA-chloride, STA-chloride, ETA-chloride, DPA-chloride, etc.; and the use of immobilized enzymes as catalysts.

[0021] In another embodiment, a composition of the present invention includes a mixture of EPA-Fatty Acid diesters. In a related embodiment, compositions of the present invention include less than 20% EPA-DHA conjugate, less than 15% EPA-DHA conjugate, less than 10% EPA-DHA conjugate, less than 5% EPA-DHA conjugate, less than 8% EPA-DHA conjugate, less than 7% EPA-DHA conjugate, less than 6% EPA-DHA conjugate, less than 5% EPA-DHA conjugate, less than 4% EPA-DHA conjugate, less than 3% EPA-DHA conjugate, less than 2% EPA-DHA conjugate, less than 1% EPA-DHA conjugate, less than 0.5% EPA-DHA conjugate, or less than 0.1% EPA-DHA conjugate, by weight of all fatty acids present.

[0022] In another embodiment, a composition of the present invention includes at least 96% EPA-EPA conjugate, at least 97% EPA-EPA conjugate, at least 98% EPA-EPA conjugate, or at least 99% EPA-EPA conjugate by weight of all fatty acids present. In another embodiment, a composition of the present invention contains not less than 10%, not more than 9%, not more than 8%, not more than 7%, not more than 6%, not more than 5%, not more than 4%, not more than 3%,
not more than 2%, not more than 1%, not more than 0.6%, not more than 0.5%, not more than 0.4%, not more than 0.3%, not more than 0.2, or not more than 0.1% of any EPA-EPA diester conjugate other than EPA-EPA diester by weight of all fatty acids present.

[0023] In another embodiment, EPA is present in a composition of the invention in an amount of about 50 mg to about 5000 mg, about 75 mg to about 2500 mg, or about 100 mg to about 1000 mg, for example about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 275 mg, about 300 mg, about 325 mg, about 350 mg, about 375 mg, about 400 mg, about 425 mg, about 450 mg, about 475 mg, about 500 mg, about 525 mg, about 550 mg, about 575 mg, about 600 mg, about 625 mg, about 650 mg, about 675 mg, about 700 mg, about 725 mg, about 750 mg, about 775 mg, about 800 mg, about 825 mg, about 850 mg, about 875 mg, about 900 mg, about 925 mg, about 950 mg, about 975 mg, about 1000 mg, about 1025 mg, about 1050 mg, about 1075 mg, about 1100 mg, about 1025 mg, about 1050 mg, about 1075 mg, about 1200 mg, about 1225 mg, about 1250 mg, about 1275 mg, about 1300 mg, about 1325 mg, about 1350 mg, about 1375 mg, about 1400 mg, about 1425 mg, about 1450 mg, about 1475 mg, about 1500 mg, about 1525 mg, about 1550 mg, about 1575 mg, about 1600 mg, about 1625 mg, about 1650 mg, about 1675 mg, about 1700 mg, about 1725 mg, about 1750 mg, about 1775 mg, about 1800 mg, about 1825 mg, about 1850 mg, about 1875 mg, about 1900 mg, about 1925 mg, about 1950 mg, about 1975 mg, about 2000 mg, about 2025 mg, about 2050 mg, about 2075 mg, about 2100 mg, about 2125 mg, about 2150 mg, about 2175 mg, about 2200 mg, about 2225 mg, about 2250 mg, about 2275 mg, about 2300 mg, about 2325 mg, about 2350 mg, about 2375 mg, about 2400 mg, about 2425 mg, about 2450 mg, about 2475 mg or about 2500 mg.

[0024] In one embodiment, a composition of the invention contains not more than about 10%, not more than about 9%, not more than about 8%, not more than about 7%, not more than about 6%, not more than about 5%, not more than about 4%, not more than about 3%, not more than about 2%, not more than about 1%, or not more than about 0.5%, by weight, doceohexaenoic acid or derivative thereof, by weight of the total composition or of all fatty acids present. In another embodiment, a composition of the invention contains substantially no doceohexaenoic acid or derivative thereof. In still another embodiment, a composition of the invention contains no doceohexaenoic acid or derivative thereof.

[0025] In another embodiment, EPA comprises at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, or 100%, by weight of all fatty acids present in a composition.

[0026] In another embodiment, a composition of the invention contains less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.25%, by weight of the total composition or by weight of the total fatty acid content, of any fatty acid other than EPA. Illustrative examples of a “fatty acid other than EPA” include linolenic acid (LA), arachidonic acid (AA), doceohexaenoic acid (DHeA), alpha-linolenic acid (ALA), stearadonic acid (STA), eicosatrienoic acid (ETA) and/or doceopentaenoic acid (DPeA).

[0027] In another embodiment, a composition of the invention has one or more of the following features: (a) eicosapentaenoic acid ethyl ester represents at least 96%, at least 97%, or at least 98%, by weight, of all fatty acids present in the composition; the composition contains not more than 4%, not more than 3%, or not more than 2%, by weight, of total fatty acids other than eicosapentaenoic acid ethyl ester; (c) the composition contains not more than 0.6%, 0.5%, or 0.4% of any individual fatty acid other than eicosapentaenoic acid ethyl ester; the composition has a refractive index (20°C) of about 1 to about 2, about 1.2 to about 1.8 or about 1.4 to about 1.5; the composition has a specific gravity (20°C) of about 0.8 to about 1.0, about 0.85 to about 0.95 or about 0.9 to about 0.92; contains not more than 20 ppm, 15 ppm or 10 ppm heavy metals, contains not more than 5 ppm, 4 ppm, 3 ppm, or 2 ppm arsenic, and/or has a peroxide value not more than 5, 4, 3, or 2 meq/kg.

Nicotinic Acid

[0028] In one embodiment, a composition of the invention comprises nicotinic acid (also referred to herein as “nicain”, “3-Pyridine carboxamide” and/or “vitamin B3”). In another embodiment, the nicotinic acid is in crystalline form. In one embodiment, the EPA and nicotinic acid are not covalently linked.

[0029] In one embodiment, the nicotinic acid is present in a composition of the invention in an amount of about 5 mg to about 1200 mg, about 10 mg to about 800 mg, about 15 mg to about 750 mg, about 20 mg to about 500 mg, about 25 mg to about 400 mg, or about 50 mg to about 200 mg, for example in an amount of about 25 mg, about 50 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 275 mg, about 300 mg, about 325 mg, about 350 mg, about 375 mg, about 400 mg, about 425 mg, about 450 mg, about 475 mg, about 500 mg, about 525 mg, about 550 mg, about 575 mg, about 600 mg, about 625 mg, about 650 mg, about 675 mg, about 700 mg, about 725 mg, about 750 mg, about 775 mg, about 800 mg, about 825 mg, about 850 mg, about 875 mg, about 900 mg, about 925 mg, about 950 mg, about 975 mg, about 1000 mg, about 1025 mg, about 1050 mg, about 1075 mg, about 1100 mg, about 1025 mg, about 1050 mg, about 1075 mg, about 1200 mg, about 1225 mg, about 1250 mg, about 1275 mg, about 1300 mg, about 1325 mg, about 1350 mg, about 1375 mg, about 1400 mg, about 1425 mg, about 1450 mg, about 1475 mg, about 1500 mg, about 1525 mg, about 1550 mg, about 1575 mg, about 1600 mg, about 1625 mg, about 1650 mg, about 1675 mg, about 1700 mg, about 1725 mg, about 1750 mg, about 1775 mg, about 1800 mg, about 1825 mg, about 1850 mg, about 1875 mg, about 1900 mg, about 1925 mg, about 1950 mg, about 1975 mg, about 2000 mg, about 2025 mg, about 2050 mg, about 2075 mg, about 2100 mg, about 2125 mg, about 2150 mg, about 2175 mg, about 2200 mg, about 2225 mg, about 2250 mg, about 2275 mg, about 2300 mg, about 2325 mg, about 2350 mg, about 2375 mg, about 2400 mg, about 2425 mg, about 2450 mg, about 2475 mg or about 2500 mg.

[0030] In various embodiments, the nicotinic acid can be in immediate-release, extended-release or sustained-release form. The term “immediate-release” in the present context refers to nicotinic acid formulations from which nicotinic acid, upon ingestion by a human subject, is absorbed at a rate of about 400 to about 600 mg/hr, for example about 500 mg/hr. Typically, immediate-release nicotinic acid is not coated with any release-modifying barrier or layer. The immediate-release nicotinic acid can be in crystalline form.

Nicoral® (Upsher-Smith Laboratories) is an illustrative immediate-release nicotinic acid formulation. The term “extended-release nicotinic acid” herein refers to nicotinic acid formulations from which nicotinic acid, upon ingestion by a human subject, is absorbed at a rate of about 80 to about 200 mg/hr, for example about 100 mg/hr. Nicoral® (Kos Pharmaceuticals) is an illustrative extended-release nicotinic acid formulation. The term “sustained-release” in the present context refers to nicotinic acid formulations from which the nicotinic acid, when ingested by a human subject, is absorbed at a rate of about 25 mg/hr to about 75 mg/hr, for example about 50 mg/hr.

[0031] In one embodiment, nicotinic acid and EPA are present in a composition of the invention, or are co-adminis-
tered in a weight ratio of about 1:1000 to about 1000:1, about 1:500 to about 500:1, about 1:100 to about 100:1, about 1:50 to about 50:1, about 1:25 to about 25:1, about 1:10 to about 10:1, about 1:5 to about 5:1, about 1:4 to about 4:1, about 1:3 to about 3:1, about 1:2 to about 2:1 or about 1:1.

In another embodiment, an additional cardiovascular agent is co-formulated with EPA and/or nicotinic acid, or is co-administered with EPA and/or nicotinic acid. The additional cardiovascular agent can illustratively include a 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitor (also referred to as a “statin”), a fibrate, or a bile salt sequestrant or binding resin.

In one embodiment, a composition of the invention comprises EPA and a statin. Non-limiting examples of suitable statins that can be used in accordance with various embodiments of the invention include prevaestatin, lovastatin, simvastatin, atorvastatin, fluvastatin, pitavastatin and rosuvastatin and salts thereof. In a related embodiment, the composition contains not more than 10% DHA or derivative thereof, if any. In another related embodiment, the composition contains no DHA or derivative thereof such as ethyl-DHA.

A statin, if present in a composition or compositions of the invention, can be present in an amount of about 1 to about 300 mg, about 5 mg to about 200 mg, about 10 mg to about 180 mg, about 20 mg to about 150 mg, about 30 mg to about 100 mg, or about 40 mg to about 60 mg.

Prevaestatin (Pravachol®; manufactured by Bristol-Myers Squibb, Princeton, N.J.) is hydrophilic and is best absorbed without food. Prevaestatin can be present in a composition of the invention (or co-administered therewith) in an amount of about 1 to about 80 mg, about 5 mg to 60 mg, or about 10 mg to about 40 mg.

Lovastatin (Mevacor®; by Merck, Whitehouse Station, N.J.) can be present in a composition of the invention (or co-administered therewith) in an amount of about 1 mg to about 100 mg, about 5 mg to about 80 mg, or about 10 mg to about 40 mg.

Simvastatin (Zocor® by Merck, Whitehouse Station, N.J.) can be present in a composition of the invention (or co-administered therewith) in an amount of about 1 mg to about 80 mg per day, about 2 mg to 60 mg about 3 mg, or about 5 mg to about 40 mg.

Atorvastatin (Lipitor® by Pfizer, New York, N.Y.) can be present in a composition of the invention (or co-administered therewith) in an amount of about 1 mg to about 100 mg, about 5 mg to about 80 mg, or about 10 mg to about 40 mg.

Fluvastatin, (Lescol® by Novartis, New York, N.Y.) can be present in a composition of the invention (or co-administered therewith) in an amount of about 5 mg to about 160 mg, about 10 mg to about 120 mg, or about 20 mg to about 80 mg.

The dosage of rosuvastatin, in the combined administration of concentrated omega-3 fatty acids is from 1 to 80 mg, preferably 2 to 60 mg, and more preferably from 5 to 40 mg per dosage of concentrated omega-3 fatty acids.

In another embodiment, a pharmaceutical composition consisting of, or consisting essentially of, EPA, nicotinic acid (and optionally a statin and/or a fibrate) and one or more pharmaceutically acceptable excipients is provided. In another embodiment, a pharmaceutical composition containing active ingredients consisting of, or consisting essentially of, EPA and nicotinic acid niacin is provided. In another embodiment, a pharmaceutical composition containing active ingredients consisting of, or consisting essentially of, EPA, nicotinic acid and a statin is provided.

Dosage Forms

In one embodiment, compositions of the invention are orally deliverable. The terms “orally deliverable” or “oral administration” herein include any form of delivery of a therapeutic agent or a composition thereof to a subject wherein the agent or composition is placed in the mouth of the subject, whether or not the agent or composition is swallowed. Thus “oral administration” includes buccal and sublingual as well as esophageal administration.

In some embodiments, compositions of the invention are in the form of solid dosage forms. Non-limiting examples of suitable solid dosage forms include tablets (e.g. suspension tablets, bite suspension tablets, rapid dispersion tablets, chewable tablets, melt tablets, effervescent tablets, bilayer tablets, etc), caplets, capsules (e.g. a soft or a hard gelatin capsule filled with solid and/or liquids), powder (e.g. a packaged powder, a dispersible powder or an effervescent powder), lozenges, sachets, cachets, troches, pellets, granules, microgranules, encapsulated microgranules, powder aerosol formulations, or any other solid dosage form reasonably adapted for oral administration.

EPA, nicotinic acid, a statin and/or any other desired active ingredient can be co-formulated in the same dosage unit, or can be individually formulated in separate dosage units. The terms “dose unit” and “dosage unit” herein refer to a portion of a pharmaceutical composition that contains an amount of a therapeutic agent suitable for a single administration to provide a therapeutic effect. Such dosage units may be administered one to a plurality (i.e. 1 to about 10, 1 to 8, 1 to 6, 1 to 4 or 1 to 2) of times per day, or as many times as needed to elicit a therapeutic response.

In one embodiment, a composition of the invention comprises nicotinic acid and/or a statin dispersed or suspended in EPA, wherein the dispersion or suspension is present in a capsule (for example gelatin or HPMC capsule), sachet, or other dosage form or carrier as described herein. In another embodiment, the dispersion or suspension is substantially uniform. In still another embodiment, where co-administration of two or more dosage units is desired, the EPA is present in a first dosage unit, for example a suspension in a capsule, and the nicotinic acid is present in second dosage unit, for example a tablet. Optionally, any desired statin can be present in a third composition.

In another embodiment, composition(s) of the invention can be in the form of liquid dosage forms or dose units to be inhibit directly or they can be mixed with food or beverage prior to ingestion. Non-limiting examples of suitable liquid dosage forms include solutions, suspension, elixirs, syrups, liquid aerosol formulations, etc.

Storage Stability

In one embodiment, compositions of the invention, upon storage in a closed container maintained at room temperature, refrigerated (e.g. about 5 to about 5·10⁶ C.) temperature, or frozen for a period of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months, exhibit at least about 90%, at least about
Excipients

[0048] Compositions of the invention optionally comprise one or more pharmaceutically acceptable excipients. The term “pharmaceutically acceptable excipient” herein means any substance, not itself a therapeutic agent, used as a carrier or vehicle for delivery of a therapeutic agent to a subject or added to a pharmaceutical composition to improve its handling or storage properties or to permit or facilitate formation of a unit dose of the composition, and that does not produce unacceptable toxicity or interaction with other components in the composition.

[0050] Compositions of the invention optionally comprise one or more pharmaceutically acceptable diluents as excipients. Suitable diluents illustratively include, either individually or in combination, lactose, including anhydrous lactose and lactose monohydrate; starches, including directly compressible starch and hydrolyzed starches (e.g., Cellosteam™ and Emdex™); mannitol; sorbitol; xylitol; dextrose (e.g., Ceroxose™ 2000) and dextrose monohydrate; dibasic calcium phosphate dihydrate; sucrose-based diluents; confectioner’s sugar; monobasic calcium sulfate monohydrate; calcium sulfate dihydrate; granular calcium lactate trihydrate; dextrates; inositol; hydrolyzed cereal solids; amylase; celluloses including microcrystalline cellulose, food grade sources of α-and amorphous cellulose (e.g., Rexcel™) and powdered cellulose; calcium carbonate; gelatin; benzyl alcohol; polyvinylpyrrolidone and the like. Such diluents, if present, constitute in total about 5% to about 95%, about 10% to about 85%, or about 20% to about 80%, of the total weight of the composition.

[0051] Compositions of the invention optionally comprise one or more pharmaceutically acceptable disintegrants as excipients. Suitable disintegrants include, either individually or in combination, starches, including sodium starch glycolate (e.g., Explotab™ of PenWest) and pregelatinized corn starches (e.g., National™ 1551, National™ 1550, and Colocorn™ 1500), clays (e.g., Veegum™ HV), celluloses such as purified cellulose, microcrystalline cellulose, methylcellulose, carboxymethylcellulose and sodium carboxymethylcellulose, croscarmellose sodium (e.g., Ac-Di-Sol™ of FMC), alginates, crospovidone, and gums such as agar, guar, xanthan, locust bean, karaya, pectin and tragacanth gums. Such disintegrants, if present, typically comprise in total about 0.2% to about 30%, about 0.2% to about 10%, or about 0.2% to about 5%, of the total weight of the composition.

[0052] Compositions of the invention optionally comprise one or more antioxidants. Illustrative antioxidants include sodium ascorbate and vitamin E (tocopherol). One or more antioxidants, if present, are typically present in a composition of the invention in an amount of about 0.001% to about 5%, about 0.005% to about 2.5%, or about 0.01% to about 1%, by weight.

[0053] Compositions of the invention optionally comprise one or more pharmaceutically acceptable wetting agents as excipients. Non-limiting examples of surfactants that can be used as wetting agents in compositions of the invention include quaternary ammonium compounds, for example benzalkonium chloride, benzethonium chloride and cetlypyridinium chloride, diocetyl sodium sulfosuccinate, polyoxethylene alkylphenyl ethers, for example nonoxynol 9, nonoxynol 10, and octoxynol 9, poloxamers (polyoxyethylene and poloxypolypropylene block copolymers), polyoxymethylene fatty acid glycerides and oils, for example polyoxyethylene (8) caprylocapric mono- and diglycerides (e.g., Labrasol™ of Gattefosse), polyoxyethylene (35) castor oil and polyoxyethylene (40) hydrogenated castor oil, polyoxyethylene alkyl ethers, for example polyethylene glycol fatty acid esters, for example polyethylene glycol (40) steare, polyoxyethylene sorbitan esters, for example polysorbate 20 and polysorbate 80 (e.g., Tween™ 80 of ICI), propylene glycol fatty acid esters, for example propylene glycol laurate (e.g., Lanuglycol™ of Gattefosse), sodium lauryl sulfate, fatty acids and salts thereof, for example oleic acid, sodium oleate and triethanolamine oleate, glycercylic fatty acid esters, for example glyceryl monostearate, sorbitan esters, for example sorbitan monolaurate, sorbitan monoooleate, sorbitan monopalmitate and sorbitan monostearate, tyloxapol, and mixtures thereof. Such wetting agents, if present, constitute in total about 0.25% to about 15%, about 0.4% to about 10%, or about 0.5% to about 5%, of the total weight of the composition.

[0054] Compositions of the invention optionally comprise one or more pharmaceutically acceptable lubricants (including anti-adherents and/or glidants) as excipients. Suitable lubricants include, either individually or in combination, glycercylic behenate (e.g., Compriol™ 8888); stearic acid and salts thereof, including magnesium (magnesium stearate), calcium and sodium stearates; hydrogenated vegetable oils (e.g., Sterotex™); colloidal silica; talc; waxes; boric acid; sodium benzoate; sodium acetate; sodium fumarate; sodium chloride; DL-leucine; PEG (e.g., Carbowax™ 4000 and Carbowax™ 6000); sodium oleate; sodium lauryl sulfate; and magnesium lauryl sulfate. Such lubricants, if present, constitute in total about 0.1% to about 10%, about 0.2% to about 8%, or about 0.25% to about 5%, of the total weight of the composition.

[0055] Suitable anti-adherents include talc, cornstarch, DL-leucine, sodium lauryl sulfate and metallic stearates. Talc is an anti-adherent or glidant used, for example, to reduce formulation sticking to equipment surfaces and to reduce static in the blend. Talc, if present, constitutes about 0.1% to about 10%, about 0.25% to about 5%, or about 0.5% to about 2%, of the total weight of the composition. Glidants can be used to promote powder flow of a solid formulation. Suitable
Glidants include colloidal silicon dioxide, starch, talc, tribasic calcium phosphate, powdered cellulose and magnesium trisilicate.

[0056] Compositions of the present invention optionally comprise one or more flavoring agents, sweetening agents, and/or colorants. Flavoring agents useful in the present invention include, without limitation, acacia syrup, alitame, aspartame, banana, Bavarian cream, berry, black currant, butter, butter pecan, butterscotch, calcium citrate, camphor, caramel, cherry, cherry cream, chocolate, cinnamon, citrus, citrus punch, citrus cream, cocoa, coffee, cola, cool cherry, cool citrus, cyclamate, cyclamate, dextrose, eucalyptus, eugenol, fructose, fruit punch, ginger, glycyrrhizinate, glycyrrhiza (licorice) syrup, grape, grapefruit, honey, isomalt, lemon, lime, lemon cream, MagnaSweet®, maltitol, mannitol, maple, menthol, mint, mint cream, mixed berry, nut, orange, peanut butter, pear, peppermint, peppermint cream, Prosweet® Powder, raspberry, root beer, rum, sucralose, saffrole, sorbitol, spearmint, spearmint cream, strawberry, strawberry cream, stevia, sucralose, sucrose, Swiss cream, tagatose, tangerine, thiamin, tutti fruiti, vanilla, walnut, watermelon, wild cherry, wintergreen, xylitol, and combinations thereof, for example, anise-menthol, cherry-anise, cinnamon-orange, cherry-cinnamon, chocolate-mint, honey-lemon, lemon-lime, lemon-mint, menthol-eucalyptus, orange-cream, vanilla-mint, etc.

[0057] Sweetening agents that can be used in the present invention include, for example, acesulfame potassium (acesulfame K), alitame, aspartame, cyclamate, cyclamate, dextrose, isomalt, MagnaSweet®, maltitol, mannitol, neohesperidin DC, neotame, Prosweet® Powder, saccharin, sorbitol, stevia, sucralose, sucrose, tagatose, thiamin, xylitol, and the like.

[0058] Flavoring agents, sweetening agents, and/or colorants can be present in compositions of the invention in any suitable amount, for example about 0.01% to about 10%, about 0.1% to about 8%, or about 1% to about 5%, by weight.

[0059] Compositions of the invention optionally comprise a suspending agent. Non-limiting illustrative examples of suitable suspending agents include silicon dioxide, bentonite, hydrated aluminum silicate (e.g., kaolin) and mixtures thereof. One or more suspending agents are optionally present in compositions of the invention in a total amount of about 0.01% to about 3.0%, about 0.1% to about 2.0%, or about 0.25% to about 1.0%, by weight.

[0060] The foregoing excipients can have multiple roles as is known in the art. For example, starch can serve as a filler as well as a disintegrant. The classification of excipients above is not to be construed as limiting in any manner. Excipients categorized in any manner may also operate under various different categories of excipients as will be readily appreciated by one of ordinary skill in the art.

Therapeutic Methods

[0061] In one embodiment, compositions of the invention are useful for treatment and/or prevention of a cardiovascular-related disease or disorder. The term “cardiovascular-related disease or disorder” herein refers to any disease or disorder of the heart or blood vessels (i.e., arteries and veins) or any symptom thereof. Non-limiting examples of a cardiovascular-related disease or disorder include hypertriglyceridemia, hypercholesterolemia, mixed dyslipidemia, coronary heart disease, vascular disease, stroke, atherosclerosis, arrhythmia, hypertension, myocardial infarction, and other cardiovascular events.

[0062] The term “treatment” in relation to a given disease or disorder includes, but is not limited to, inhibiting the disease or disorder, for example, arresting the development of the disease or disorder; relieving the disease or disorder, for example, causing regression of the disease or disorder; relieving a condition caused by or resulting from the disease or disorder, for example, relieving, preventing or treating symptoms of the disease or disorder. The term “prevention” in relation to a given disease or disorder means: preventing the onset of disease development if none had occurred, preventing the disease or disorder from occurring in a subject that may be predisposed to the disorder or disease but has not yet been diagnosed as having the disorder or disease, and/or preventing further disease/disorder development if already present.

[0063] In one embodiment, the present invention provides a method of blood lipid therapy comprising administering to a subject in need thereof 1 to a plurality of dosage units comprising a composition or compositions as disclosed herein. In another embodiment, the subject being treated has a baseline triglyceride level, prior to treatment with a composition of the present invention, greater than about 150 mg/dl or greater than about 175 mg/dl, for example about 200 mg/dl to about 600 mg/dl or about 200 mg/dl to about 500 mg/dl.

[0064] In a related embodiment, upon treatment with a composition of the present invention, for example over a period of about 1 to about 200 weeks, about 1 to about 100 weeks, about 1 to about 80 weeks, about 1 to about 50 weeks, about 1 to about 40 weeks, about 1 to about 20 weeks, about 1 to about 15 weeks, about 1 to about 10 weeks, about 1 to about 5 weeks, about 1 to about 2 weeks or about 1 week, the subject or subjects exhibit one or more of: (a) reduced triglyceride levels compared to baseline, (b) reduced Apo B levels compared to baseline, (c) increased HDL-C levels compared to baseline, (d) no increase in LDL-C levels compared to baseline, (e) a reduction in LDL-C levels compared to baseline, (f) a reduction in non-HDL-C levels compared to baseline, and/or (g) no flushing or reduced flushing compared to: (i) treatment with more than 1 g per day of nicotinic acid, (ii) treatment with more than 3 g per day of nicotinic acid, or (iii) treatment with a combination of about 1 to about 3 g per day of nicotinic acid plus about 4 g of Omacaor®. Each Omacor® capsule contains 900 mg of the ethyl ester of omega-3 fatty acids—approximately 465 mg EPA and 375 mg DHA—and 4 mg α-tocopherol.

[0065] Relevant serum total cholesterol, HDL-C, non-HDL-C, and LDL-C levels can be measured in accordance with any of the well known analytical methods available in the art, for example using a Synchron 4CX® 4CE to perform a blood panel analysis. In one embodiment, subjects fast for up to 12 hours prior to blood sample collection.

[0066] In another embodiment, upon treatment with a composition of the present invention, the subject or subjects exhibit one or more of: (a) a reduction in triglyceride level of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, or at least about 50% as compared to baseline; (b) a reduction in non-HDL-C levels of at least 5%, at least about 10%, at least about 15%, at least about 20%, at least 25%, at least about 35%, or at least about 40%;
least about 45%, or at least about 50% as compared to baseline; (c) an increase in HDL-C levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, or at least about 50% as compared to baseline; (d) a reduction in LDL-C levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, or at least about 50% as compared to baseline; (e) a reduction in Apo B levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, or at least about 50% as compared to baseline; and/or (f) no flushing or reduced flushing compared to treatment with 1 g or more per day of nicotinic acid or 3 g or more per day of nicotinic acid, or a combination of about 1 to about 3 g per day of nicotinic acid plus Omacor®, for example about 4 g per day of Omacor®.

[0067] In another embodiment, the present invention provides a method of treating or preventing primary hypercholesterolemia and/or mixed dyslipidemia (Fredrickson Types IIa and IIb) in a subject in need thereof, comprising administering to the subject one or more compositions as disclosed herein. In a related embodiment, the present invention provides a method of reducing triglyceride levels in a subject or subjects when treatment with a statin or nicotinic acid extended-release monotherapy is considered inadequate (Fredrickson type IV hyperlipidemia).

[0068] In another embodiment, the present invention provides a method of treating or preventing risk of recurrent nonfatal myocardial infarction in a subject with a history of myocardial infarction, comprising administering to the subject one or more compositions as disclosed herein.

[0069] In another embodiment, the present invention provides a method of slowing progression of or promoting regression of atherosclerotic disease in a subject in need thereof, comprising administering to the subject one or more compositions as disclosed herein.

[0070] In another embodiment, the present invention provides a method of treating or preventing very high serum triglyceride levels (e.g., Types IV and V hyperlipidemia) in a subject in need thereof, comprising administering to the subject one or more compositions as disclosed herein.

[0071] In another embodiment, the present invention provides a method of treating subjects having very high serum triglyceride levels (e.g., greater than 1000 mg/dL or greater than 2000 mg/dL) and that are at risk of developing pancreatitis, comprising administering to the subject one or more compositions as disclosed herein.

[0072] In another embodiment optionally associated with any of the methods disclosed herein, administration of any composition or compositions disclosed herein to a subject results in an absence of flushing or reduced flushing by comparison with administration of conventional high dose (e.g., >1.5 g, for example about 2 g to about 3 g maintenance dose) immediate-release, extended-release or sustained-release nicotinic acid therapy or combination therapy. The term “flushing” herein includes facial flushing or flushing associated with any other area of the skin, for example redness, itching, burning and/or tingling sensations that typically occur on the face, neck, chest, and back.

[0073] In another embodiment, administration of a composition of the invention to a subject or plurality of subjects results in no flushing, tolerable flushing or decreased flushing by comparison with: (a) 3 g or more per day of nicotinic acid therapy, (b) 2 g or more per day of nicotinic acid therapy, (c) 1 g or more per day of nicotinic acid therapy, (d) at least 2 g, 3 g or 4 g of Omacor® per day plus greater than 1 g per day of nicotinic acid therapy, or (e) at least 2 g, 3 g or 4 g Omacor® per day plus 2 g or more per day of nicotinic acid therapy or 3 g or more per day of nicotinic acid therapy.

[0074] In another embodiment optionally associated with any of the methods disclosed herein, administration of any of the compositions of the invention to a subject or plurality of subjects results in substantially no or no liver toxicity or reduced liver toxicity compared to administration of extended-release or sustained-release nicotinic acid dosage units to a subject or plurality of subjects in an amount of more than 1.5 g per day or greater, for example 2 g per day or greater, or 3 g per day or greater.

[0075] In still another embodiment, administration of any of the compositions disclosed herein to a subject results in no flushing or decreased flushing, and no increase in LDL or reduced increase in LDL by comparison with daily co-administration of four 1 g Omacor® capsules plus 3 g of immediate-release nicotinic acid.

[0076] In still another embodiment, administration of any of the compositions disclosed herein to a subject results in increased subject compliance and or decreased subject withdrawal from treatment by comparison with daily administration of four 1 g Omacor® capsules plus 3 g of immediate-release nicotinic acid. In another embodiment, subject compliance (% of subjects substantially complying with the prescribed dosage regimen) is greater than 70%, greater than 80%, greater than 90%, greater than 93%, greater than 95%, or greater than 98%, for example over a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 days, and/or subject withdrawal or non-compliance due to flushing (% of subjects substantially not complying with the prescribed dosage regimen due to flushing effects) is less than 8%, less than 7%, less than 5% or less than 3%, for example over a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 days.

[0077] One embodiment of the invention comprises treating or preventing a cardiovascular-related disease or disorder as defined herein by administering to a subject in need thereof about 50 mg to about 1500 mg per day of immediate-release nicotinic acid, about 50 mg to about 5 g per day of EPA, for example ethyl ester EPA containing no DHA, and/or about 10 mg to about 300 mg per day of a statin.

[0078] In another embodiment, a composition of the invention is administered to a subject in an amount sufficient to provide a daily maintenance dose of nicotinic acid of about 5 mg to about 1500 mg, about 10 mg to about 1000 mg, about 20 mg to about 800 mg, about 50 mg to about 500 mg, or about 75 mg to about 450 mg, for example in a daily amount of about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, about 250 mg, about 275 mg, about 300 mg, about 325 mg, about 350 mg, about 375 mg, about 400 mg, about 425 mg, about 450 mg, about 475 mg, about 500 mg, about 525 mg, about 550 mg, about 575 mg, about 600 mg, about 625 mg, about 650 mg, about 675 mg, about 700 mg, about 725 mg, about 750 mg, about 775 mg, about 800 mg, about 825 mg, about 850 mg, about 875 mg, about 900 mg, about 925 mg, about 950 mg, about 975 mg, about 1000 mg, about 1025 mg, about 1050 mg, about 1075 mg, about 1100 mg, about
1125 mg, about 1150 mg, about 1175 mg, about 1200 mg, about 1225 mg, about 1250 mg, about 1275 mg, about 1300 mg, about 1325 mg, about 1350 mg, about 1375 mg, about 1400 mg, about 1425 mg, about 1450 mg, about 1475 mg, about 1500 mg, about 1525 mg, about 1550 mg, about 1575 mg, about 1600 mg, about 1625 mg, about 1650 mg, about 1675 mg, about 1700 mg, about 1725 mg, about 1750 mg, about 1775 mg, about 1800 mg, about 1825 mg, about 1850 mg, about 1875 mg, about 1900 mg, about 1925 mg, about 1950 mg, about 1975 mg, about 2000 mg, about 2025 mg, about 2050 mg, about 2075 mg, about 2100 mg, about 2125 mg, about 2150 mg, about 2175 mg, about 2200 mg, about 2225 mg, about 2250 mg, about 2275 mg, about 2300 mg, about 2325 mg, about 2350 mg, about 2375 mg, about 2400 mg, about 2425 mg, about 2450 mg, about 2475 mg or about 2500 mg.

[0079] In another embodiment, the statin is administered to a subject in a amount of about 1 to about 300 mg, about 5 mg to about 200 mg, about 10 mg to about 180 mg, about 20 mg to about 150 mg, about 30 mg to about 100 mg, or about 40 mg to about 60 mg.

[0080] In another embodiment, nicotinic acid, EPA and/or a statin can be administered sequentially. For example, EPA can be administered to a subject as a sole agent during an EPA loading period. The loading period can be, for example, 1 day, 2 days, 4 days, 6 days, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks or 10 weeks. Any such loading period, nicotinic acid and/or statin treatment can be initiated together with EPA or in place of EPA treatment.

[0083] In another embodiment, EPA is administered to a subject in the morning, for example from about 4 am to about 10 am, and low dose nicotinic acid (i.e., less than 1500 mg) is administered to the same subject in the afternoon or evening, for example from about 12 pm to about 11 pm.

[0084] In a related embodiment, upon treatment in accordance with the present invention, for example over a period of about 1 to about 200 weeks, about 1 to about 100 weeks, about 1 to about 50 weeks, about 1 to about 20 weeks, about 1 to about 15 weeks, about 1 to about 12 weeks, about 1 to about 10 weeks, about 1 to about 5 weeks, about 1 to about 2 weeks or about 1 week, the subject or subject group exhibits one or more of the following outcomes:

[0085] (a) reduced triglyceride levels compared to baseline;
[0086] (b) reduced Apo B levels compared to baseline;
[0087] (c) increased HDL-C levels compared to baseline;
[0088] (d) no increase in LDL-C levels compared to baseline;
[0089] (e) a reduction in LDL-C levels compared to baseline;
[0090] (f) a reduction in non-HDL-C levels compared to baseline;
[0091] (g) a reduction in VLDL levels compared to baseline;
[0092] (h) an increase in apo A-1 levels compared to baseline;
[0093] (i) an increase in apo A-I/apo B ratio compared to baseline;
[0094] (j) a reduction in lipoprotein a levels compared to baseline;
[0095] (k) a reduction in LDL particle number compared to baseline;
[0096] (l) a reduction in LDL size compared to baseline;
[0097] (m) a reduction in remnant-like particle cholesterol compared to baseline;
[0098] (n) a reduction in oxidized LDL compared to baseline;
[0099] (o) a reduction in fasting plasma glucose (FPG) compared to baseline;
[0100] (p) a reduction in hemoglobin A1c (HbA1c) compared to baseline;
[0101] (q) a reduction in homeostasis model insulin resistance compared to baseline;
[0102] (r) a reduction in lipoprotein associated phospholipase A2 compared to baseline;
[0103] (s) a reduction in intracellular adhesion molecule-1 compared to baseline;
[0104] (t) a reduction in interleukin-2 compared to baseline;
[0105] (u) a reduction in plasminogen activator inhibitor-1 compared to baseline;
[0106] (v) a reduction in high sensitivity C-reactive protein (hsCRP) compared to baseline;
[0107] (w) an increase in serum phospholipid EPA compared to baseline;
[0108] (x) an increase in red blood cell membrane EPA compared to baseline; and/or
[0109] (y) a reduction or increase in one or more of serum phospholipid and/or red blood cell content of docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), arachidonic acid (AA), palmitic acid (PA), stearidonic acid (SA) or oleic acid (OA) compared to baseline.

[0110] In one embodiment, methods of the present invention comprise measuring baseline levels of one or more markers set forth in (a)-(y) above prior to dosing the subject or subject group. In another embodiment, the methods comprise administering a composition as disclosed herein to the subject after baseline levels of one or more markers set forth in (a)-(y) are determined, and subsequently taking an additional measurement of said one or more markers.
In another embodiment, upon treatment with a composition of the present invention, for example over a period of about 1 to about 200 weeks, about 1 to about 100 weeks, about 1 to about 50 weeks, about 1 to about 40 weeks, about 1 to about 20 weeks, about 1 to about 15 weeks, about 1 to about 12 weeks, about 1 to about 10 weeks, about 1 to about 5 weeks, about 1 to about 2 weeks or about 1 week, the subject or subject group exhibits any 2 or more of, any 3 or more of, any 4 or more of, any 5 or more of, any 6 or more of, any 7 or more of, any 8 or more of, any 9 or more of, any 10 or more of, any 11 or more of, any 12 or more of, any 13 or more of, any 14 or more of, any 15 or more of, any 16 or more of, any 17 or more of, any 18 or more of, any 19 or more of, any 20 or more of, any 21 or more of, any 22 or more of, any 23 or more, any 24 or more, or all 25 of outcomes (a)-(y) described immediately above.

In another embodiment, upon treatment with a composition of the present invention, the subject or subject group exhibits one or more of the following outcomes:

(a) a reduction in triglyceride level of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55% or at least about 75% (actual % change or median % change) as compared to baseline;

(b) a less than 30% increase, less than 20% increase, less than 10% increase, less than 5% increase or no increase in non-HDL-C levels or a reduction in non-HDL-C levels of at least about 1%, at least about 3%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55% or at least about 75% (actual % change or median % change) as compared to baseline;

(c) an increase in HDL-C levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55% or at least about 75% (actual % change or median % change) as compared to baseline;

(d) a less than 30% increase, less than 20% increase, less than 10% increase, less than 5% increase or no increase in LDL-C levels or a reduction in LDL-C levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55% or at least about 75% (actual % change or median % change) as compared to baseline;

(e) a decrease in Apo B levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55% or at least about 75% (actual % change or median % change) as compared to baseline;

(f) a reduction in vLDL levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(g) an increase in apo A-I levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(h) an increase in apo A-I/apo B ratio of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(i) a reduction in lipoprotein(a) levels of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(j) a reduction in mean LDL particle number of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(k) an increase in mean LDL particle size of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(l) a reduction in remnant-like particle cholesterol of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(m) a reduction in oxidized LDL of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(n) a reduction in fasting plasma glucose (FPG) of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(o) a reduction in hemoglobin A1c (HbA1c) of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(p) a reduction in homeostasis model index insulin resistance of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

(q) a reduction in lipoprotein associated phospholipase A2 of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;
[0130] (r) a reduction in intracellular adhesion molecule-1 of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

[0131] (s) a reduction in interleukin-2 of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

[0132] (t) a reduction in plasminogen activator inhibitor-1 of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

[0133] (u) a reduction in high sensitivity C-reactive protein (hsCRP) of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 100% (actual % change or median % change) compared to baseline;

[0134] (v) an increase in serum phospholipid EPA of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 100%, at least about 200% or at least about 400% (actual % change or median % change) compared to baseline;

[0135] (w) an increase in serum phospholipid and/or red blood cell membrane EPA of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, r at least about 50%, at least about 100%, at least about 200%, or at least about 400% (actual % change or median % change) compared to baseline;

[0136] (x) a reduction or increase in one or more of serum phospholipid and/or red blood cell DHA, EPA, AA, PA and/or OA of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 100%, at least about 200%, or at least about 400% (actual % change or median % change) compared to baseline; and/or

[0137] (y) reduction in total cholesterol of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, or at least about 75% (actual % change or median % change) compared to baseline; and/or

[0138] In one embodiment, methods of the present invention comprise measuring baseline levels of one or more markers set forth in (a)-(y) prior to dosing the subject or subject group. In another embodiment, the methods comprise administering a composition as disclosed herein to the subject after baseline levels of one or more markers set forth in (a)-(y) are determined, and subsequently taking a second measurement of the one or more markers as measured at baseline for comparison thereto.

[0139] In another embodiment, upon treatment with a composition of the present invention, for example over a period of about 1 to about 200 weeks, about 1 to about 100 weeks, about 1 to about 80 weeks, about 1 to about 50 weeks, about 1 to about 40 weeks, about 1 to about 20 weeks, about 1 to about 15 weeks, about 1 to about 12 weeks, about 1 to about 10 weeks, about 1 to about 5 weeks, about 1 to about 2 weeks or about 1 week, the subject or subject group exhibits any 2 or more of, any 3 or more of, any 4 or more of, any 5 or more of, any 6 or more of, any 7 or more of, any 8 or more of, any 9 or more of, any 10 or more of, any 11 or more of, any 12 or more of, any 13 or more of, any 14 or more of, any 15 or more of, any 16 or more of, any 17 or more of, any 18 or more of, any 19 or more of, any 20 or more of, any 21 or more of, any 22 or more of, any 23 or more of, any 24 or more of, or all 26 or more of outcomes (a)-(y) described immediately above.

[0140] Parameters (a)-(y) can be measured in accordance with any clinically acceptable methodology. For example, triglycerides, total cholesterol, HDL-C and fasting blood sugar can be sample from serum and analyzed using standard photometry techniques. VLDL-TG, LDL-C and VLDL-C can be calculated or determined using serum lipoprotein fractionation by preparative ultracentrifugation and subsequent quantitative analysis by refractometry or by analytic ultracentrifugal methodology. Apo A1, Apo B and hsCRP can be determined from serum using standard nephelometry techniques. Lipoprotein (a) can be determined from serum using standard turbidimetric immunoassay techniques. LDL particle number and particle size can be determined using nuclear magnetic resonance (NMR) spectrometry. Remnants lipoproteins and LDL-phospholipase A2 can be determined from EDTA plasma or serum, respectively, using enzymatic immunoassay techniques. Oxidized LDL, intercellular adhesion molecule-1 and interleukin-2 levels can be determined from serum using standard enzyme immunoassay techniques. These techniques are described in detail in standard textbooks, for example Tietz Fundamentals of Clinical Chemistry, 6th Ed. (Burris, Ashwood and Borter Eds.), WB Saunders Company.

[0141] In one embodiment, subjects fast for up to 12 hours prior to blood sample collection, for example about 10 hours.

[0142] In another embodiment, the invention provides the use of nicotinic acid, EPA and optionally a statin or fibrate in the manufacture of a medicament for treatment or prevention of a cardiovascular-related disease or disorder such as hypertriglyceridemia, hypercholesterolemia, mixed dyslipidemia, coronary heart disease, vascular disease, stroke, atherosclerosis, arrhythmia, hypertension, myocardial infarction, and other cardiovascualar events. In one embodiment, the composition contains not more than 10% DHA, if any. In another embodiment, the composition contains no DHA.

[0143] In another embodiment, the invention provides a pharmaceutical composition comprising nicotinic acid and EPA for the treatment and/or prevention of a cardiovascular-related disease or disorder, wherein the composition contains not more than 10% DHA, if any. In a related embodiment, the composition contains no DHA.

[0144] In one embodiment, the invention provides a method of treating a cardiovascular-related disease or disorder in a subject in need thereof comprising providing the subject with EPA pre-treatment followed by one or more doses of nicotinic acid. In one embodiment, the dose of nicotinic acid is sufficient to provide the subject with not more than 3000 mg, not more than 2000 mg, not more than 1000 mg, not more than 750 mg, not more than 500 mg, or not more than 250 mg of nicotinic acid. The term "pre-treatment" in the present context means providing the subject with one or more
doses of EPA about 0.1 to about 96 hours, about 1 to about 48 hours, about 2 to about 24 hours, about 3 to about 15 hours, or about 4 to about 12 hours prior to providing the subject with an initial dose of nicotinic acid as set forth herein, for example a dose of not more than 3000 mg, not more than 2000 mg, not more than 1000 mg, not more than 750 mg, not more than 500 mg, or not more than 250 mg of nicotinic acid. In a related embodiment, the subject is pre-treated with EPA in an amount of about 1 mg to about 5000 mg per day, 1 mg to about 4000 mg per day, 1 mg to about 3000 mg per day, 1 mg to about 2000 mg per day, or 1 mg to about 1000 mg per day for a period of about 1 to about 30 days, 1 to about 20 days, 1 to about 15 days, 1 to about 10 days, 1 to about 8 days, 1 to about 6 days, 1 to about 4 days or 1 to about 2 days.

[0145] In another embodiment, the invention provides a method of preventing or reducing niacin-induced flushing in a subject comprising (a) providing a subject that is to begin niacin therapy, (b) pre-treating the subject with EPA and (c) administering niacin to the subject after said pre-treatment. In one embodiment, the niacin is administered at a dose of not more than 3000 mg, not more than 2000 mg, not more than 1000 mg, not more than 750 mg, not more than 500 mg, or not more than 250 mg per day. In another embodiment, the subject is pre-treated with EPA in an amount of about 1 mg to about 5000 mg per day, 1 mg to about 4000 mg per day, 1 mg to about 3000 mg per day, 1 mg to about 2000 mg per day, or 1 mg to about 1000 mg per day for a period of about 1 to about 30 days, 1 to about 20 days, 1 to about 15 days, 1 to about 10 days, 1 to about 8 days, 1 to about 6 days, 1 to about 4 days or 1 to about 2 days.

[0146] In another embodiment, the invention provides a method of reducing or attenuating niacin-induced flushing in a subject on niacin therapy, comprising (a) identifying a subject on niacin therapy and that is experiencing flushing and (b) administering EPA to the subject. In one embodiment, the niacin is administered at a dose of not more than 3000 mg, not more than 2000 mg, not more than 1000 mg, not more than 750 mg, not more than 500 mg, or not more than 250 mg per day. In another embodiment, the EPA is administered to the subject in an amount of about 1 mg to about 5000 mg per day, 1 mg to about 4000 mg per day, 1 mg to about 3000 mg per day, 1 mg to about 2000 mg per day, or 1 mg to about 1000 mg per day.

[0147] In other embodiments, any of the methods disclosed herein are used in treatment or prevention of a subject or subjects that consume a traditional Western diet. In one embodiment, the methods of the invention include a step of identifying a subject as a Western diet consumer or prudent diet consumer and then treating the subject if the subject is deemed to consume a Western diet. The term “Western diet” herein refers generally to a typical diet consisting of, by percentage of total calories, about 45% to about 50% carbohydrate, about 35 to about 40% fat, and about 10% to about 15% protein. A Western diet may further be characterized by relatively high intakes of red and processed meats, sweets, refined grains, and desserts, for example where half or more or 70% or more calories come from these sources.

EXAMPLES

[0148] The following example is for illustrative purposes and is not to be construed as limiting the invention in any manner.

[0149] An analysis was performed to assess the impact of red blood cell (RBC) EPA incorporation on arachidonic acid formation. In various studies, patients were randomized, on a double-blind basis, to receive either placebo (liquid paraffin) or 0.5, 1, 2 or 4 g of 97% pure ethyl-EPA/day for 12 weeks. All the doses were administered in eight identical appearing capsules. RBCs were analyzed for EPA and AA following the methodology of Manku et al. M. S. Manku, D. F. Horrobin, Y. S. Huang and N. Morse, Fatty acids in plasma and red cell membranes in normal humans. Lipids 18 (1983), pp. 906-908.

[0150] Venous blood was collected into a tube pretreated with EDTA and centrifuged at 1500 gav for 15 min. The plasma layer and theuffy coat were separated off and the red cells washed with an equal volume of 0.9% saline. Samples were stored at –80° C. prior to analysis. On thawing, the RBCs were suspended in NaCl/H2SO4aq, (17 mmol/l NaCl, 1 mmol/l Sulfuric acid, 1.8 ml), then shaken with methanol (3 ml). Chloroform (6 ml) and C17:0 internal standard were added and the sample was stirred vigorously using a vortex mixer. After centrifugation at 2000 gav for 10 min, the lower layer containing the total lipid extract was carefully removed and filtered through anhydrous sodium sulphate before evaporation to dryness. The lipids were transesterified using Sulfuric acid/methanol. The methyl esters were purified by loading onto an isohexane-washed silica column prior to elution with isohexane:diethyl ether (95:5). The resulting methyl esters of the fatty acids were separated and measured using a Hewlett-Packard HP5890 Series II Plus Gas chromatograph (cp-wax 52CB 25m capillary column, Chrompack UK). The carrier gas was hydrogen (1 ml/min). The oven temperature was programmed to rise from 1701 to 2201 C. at 41°C/min. The detector temperature was 300°C and injector temperature 230°C. Retention times and peak areas were automatically computed by Hewlett-Packard HP 3365 Chem. Station.

[0151] As shown in Fig. 1, increasing RBC EPA incorporation results in decreasing arachidonic acid formation. The figure below is a average for all data collected from several clinical studies.

1. A pharmaceutical composition comprising nicotinic acid in an amount of not more than about 1200 mg and eicosapentaenoic acid or a derivative thereof, wherein the composition contains not more than 10%, by weight, docosahexaenoic acid, if any.

2. The composition of claim 1 wherein the composition contains substantially no docosahexaenoic acid.

3. The composition of claim 1 wherein the eicosapentaenoic acid or derivative thereof is present in an amount of about 100 mg to about 5000 mg.

4. The composition of claim 1 wherein the eicosapentaenoic acid or derivative thereof is present in an amount of about 100 mg to about 1000 mg.

5. The composition of claim 1 wherein the eicosapentaenoic acid or derivative thereof comprises an eicosapentaenoic acid ethyl ester.

6. The composition of claim 1 wherein the nicotinic acid is suspended in the eicosapentaenoic acid or derivative thereof to form a suspension.

7. The composition of claim 6 wherein the suspension is present in a capsule.

8. The composition of claim 1 wherein the composition further comprises a statin.

9. A pharmaceutical composition comprising nicotinic acid in an amount of not more than about 800 mg and eicosa-
pentaenoic acid ethyl ester, wherein the composition contains substantially no amount of docosahexaenoic acid or derivative thereof.

10. A pharmaceutical composition comprising nicotinic acid in an amount of not more than about 500 mg and about 100 mg to about 1000 mg of eicosapentaenoic acid ethyl ester, wherein the composition contains no docosahexaenoic acid, the nicotinic acid is suspended in the eicosapentaenoic acid ethyl ester, and the composition is present in a capsule.

11. The composition of claim 10 wherein the nicotinic acid is present in an amount of about 50 mg to about 400 mg and the eicosapentaenoic acid ethyl ester is present in an amount of about 300 to about 800 mg.

12. A method of treating or preventing a cardiovascular-related disease or disorder in a subject in need thereof, comprising: administering to the subject a pharmaceutical composition according to claim 1.

13. A method of treating a cardiovascular-related disease or disorder in a subject in need thereof, comprising: co-administering to the subject a first pharmaceutical composition comprising nicotinic acid in an amount of not more than about 800 mg and a second pharmaceutical composition comprising eicosapentaenoic acid or a derivative thereof wherein said second pharmaceutical composition contains substantially no docosahexaenoic acid or derivative thereof.

14. The method of claim 13 wherein the co-administering step comprises administering the first and second pharmaceutical compositions to the subject within a period of about 24 hours.

15. The method of claim 13 wherein the co-administering step comprises administering the first and second pharmaceutical compositions to the subject within a period of about 12 hours.

16. The method of claim 13 wherein the co-administering step comprises administering the first and second pharmaceutical compositions to the subject substantially simultaneously.

17. The method of claim 13 wherein the subject does not ingest a non-steroidal anti-inflammatory agent within about 3 hours prior to or after said co-administration step.

18. The method of claim 13 wherein the eicosapentaenoic acid or a derivative thereof is present in the second pharmaceutical composition in an amount of about 100 mg to about 2000 mg.

19. The method of claim 13 wherein the eicosapentaenoic acid or a derivative thereof comprises eicosapentaenoic acid ethyl ester.

20. A method of decreasing serum low-density lipoprotein-C and serum triglyceride levels and increasing serum high-density lipoprotein-C levels in a subject in need thereof, the method comprising administering to the subject a pharmaceutical composition comprising: (a) nicotinic acid in an amount of not more than 1000 mg and (b) an oil comprising at least about 95%, by weight, eicosapentaenoic acid ethyl ester; wherein the pharmaceutical composition contains no docosahexaenoic acid or derivative thereof.

21. The method of claim 20 wherein the eicosapentaenoic acid ethyl ester is present in the composition in an amount of about 100 mg to about 2000 mg.

22. The method of claim 21 where the composition is administered to the subject in about 1 to about 4 dosage units per day.

23. A pharmaceutical composition comprising nicotinic acid in an amount of about 1 mg to about 200 mg dispersed in about 100 mg to about 1000 mg of an oil comprising at least about 95%, by weight, eicosapentaenoic acid ethyl ester, wherein the composition contains no docosahexaenoic acid or derivative thereof and is enclosed in a capsule shell.

24. A method of reducing risk of cardiac arrest in a subject in need thereof, the method comprising administering to the subject a pharmaceutical composition comprising (a) nicotinic acid in an amount of not more than 1000 mg and (b) an oil comprising at least about 95%, by weight, eicosapentaenoic acid ethyl ester, wherein the composition contains no docosahexaenoic acid or derivative thereof.

25. A kit comprising a first pharmaceutical composition comprising nicotinic acid in an amount of not more than 1200 mg and a second pharmaceutical composition comprising eicosapentaenoic acid or a derivative thereof, wherein the second pharmaceutical composition contains not more than 10%, by weight, docosahexaenoic acid, if any.

26. A method of preventing or reducing incidence or severity of niacin-induced flushing in a subject, comprising: (a) providing a subject that has not yet initiated niacin therapy, (b) pre-treating the subject with a pharmaceutical composition comprising at least about 95% by weight EPA or derivative thereof and (c) subsequently administering niacin to the subject.

27. The method of claim 26 wherein the subject is pre-treated with the pharmaceutical composition in an amount sufficient to provide about 1 mg to about 5000 mg of EPA or derivative thereof per day for a period of about 1 to about 30 days.

28. The method of claim 26 wherein the subject is pre-treated with the pharmaceutical composition in an amount sufficient to provide about 1 mg to about 2000 mg of EPA or derivative thereof per day for a period of about 1 to about 10 days.

29. A method of treating or reducing severity of niacin-induced flushing in a subject comprising: (a) providing a subject on niacin therapy that experiences flushing and (b) treating the subject with a pharmaceutical composition comprising at least about 95% by weight EPA or derivative thereof in an amount sufficient to prevent reduce severity of said flushing.

* * * * *