
DE60128622T220070913
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 601 28 622 T2 2007.09.13

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 161 052 B1
(21) Deutsches Aktenzeichen: 601 28 622.7
(96) Europäisches Aktenzeichen: 01 303 646.2
(96) Europäischer Anmeldetag: 20.04.2001
(97) Erstveröffentlichung durch das EPA: 05.12.2001
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 30.05.2007
(47) Veröffentlichungstag im Patentblatt: 13.09.2007

(51) Int Cl.8: G06F 9/46 (2006.01)
G06F 17/30 (2006.01)
H04L 29/06 (2006.01)

(54) Bezeichnung: Betriebssystem für strukturierte Verarbeitung von Information

(30) Unionspriorität:
556180 21.04.2000 US

(73) Patentinhaber:
Polarlake Ltd., Dublin, IE

(74) Vertreter:
Wablat, W., Dipl.-Chem. Dr.-Ing. Dr.jur., Pat.-Anw.,
14129 Berlin

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE, TR

(72) Erfinder:
Parker, Simon, Shankhill, Dublin 18, IE;
MacCarthy, Diarmuid Micheal, Raheen, Limerick,
IE; McDaid, Georgina, Wicklow Tow, Co Wicklow,
IE; Watson, Charles Ian, Monkstown, Co Dublin,
IE; Baker, Robert Patrick, Dublin 3, IE;
O'Donoghue, Hugh, Killiney, Co Dublin, IE;
Buckley, Patrick Anthony Warren, Listowel, Co
Kerry, IE

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/29

DE 601 28 622 T2 2007.09.13
Beschreibung

HINTERGRUND DER ERFINDUNG

Gebiet der Erfindung

[0001] Die vorliegende Erfindung betrifft allgemein eine erweiterbare und dynamische Software-Betriebs-Um-
gebung, die Anwendungen unterstützt, welche strukturierte Informationen verarbeiten, und insbesondere eine
Umgebung, die XML-Prozessoren unterstützt.

Beschreibung des Standes der Technik

[0002] Ein Computersystem umfasst Hardware und Software, die dazu angeordnet sind, Daten zu speichern
und zu verarbeiten. Die Hardware eines typischen Computersystem umfasst eine zentrale Verarbeitungsein-
heit (CPU), Internspeicher, externen Speicher, Dateneingabegeräte, Datenausgabegeräte und Datenkommu-
nikationsgeräte.

[0003] Die CPU kann Daten manipulieren, die im Internspeicher liegen, Daten zwischen dem Internspeicher
und dem externen Speicher bewegen und die anderen Geräte steuern. Instruktionen, welche ebenfalls im In-
ternspeicher liegen, weisen die CPU an, die Handlungen durchzuführen. Die CPU holt Instruktionen vom In-
ternspeicher und führt sie nacheinander aus. Ein Programm ist eine Abfolge von Instruktionen, um eine Auf-
gabe zu erfüllen, und der Ausdruck Software bezeichnet Programme im allgemeinen.

[0004] In einem Computersystem werden Daten in einer Form kodiert, die der Computer effizient manipulie-
ren kann, gewöhnlich als Gruppen von binären Ziffern. Im externen Speicher werden Daten in größeren Ein-
heiten organisiert, die als Dateien bekannt sind. Programme, welche nicht ausgeführt werden, können im In-
ternspeicher oder im externen Speicher liegen und können als Daten behandelt werden.

[0005] In den frühen Tagen der Computerverarbeitung musste jedes Programm den Computer wie auch die
Erledigung der eigenen Arbeit verwalten. Programme mussten ausführliche Instruktionen zum Steuern von
Geräten, Behandeln von Fehlern, Kommunikation mit dem Operator und anschließendem Aufräumen enthal-
ten.

[0006] Diese Hauswirtschaftsarbeiten machten Programme unflexibel und fehleranfällig. Der Programmierer
musste wissen, welche Geräte mit dem Computer verbunden waren, wo die Daten gespeichert waren, wieviel
Internspeicher zur Verfügung stehen würde und wie Nachrichten an den Operator zu senden waren. Das Pro-
gramm konnte nicht auf einem anderen Computer ablaufen und, wenn die Hardware wechselte, würde das
Programm aufhören zu arbeiten. Die Lösung war, die Arbeit zwischen zwei Arten von Software aufzuteilen:
Systemprogrammen und Anwendungsprogrammen.

[0007] Systemprogramme werden von Programmieren geschrieben, die die Computerhardware verstehen.
Ein Betriebssystem ist eine Sammlung von Systemprogrammen, die einen Computer verwalten. Wenn dem
Computer ein neues Gerät hinzugefügt wird, wird dem Betriebssystem ein neues Systemprogramm hinzuge-
fügt.

[0008] Anwendungsprogramme ("Anwendungen") werden von Programmierern geschrieben, die die Aufgabe
verstehen, die das Computersystem erfüllen soll. Das Betriebssystem stellt eine vollständige Umgebung für
die Anwendung bereit. Wenn die Anwendung einige Hardwareoperationen ausführen muss, wie beispielswei-
se Lesen oder Schreiben von Daten oder mit dem Operator zu kommunizieren, ruft sie das Betriebssystem zur
Hilfe auf.

[0009] Wenn ein Programm ein anderes Programm aufruft, gibt es eine Schnittstelle zwischen ihnen. In vielen
Fällen sind die Einzelheiten der Schnittstelle nicht von Bedeutung, aber wenn verschiedene Programmierer
einbezogen sind oder, wenn viele Programme einander auf ähnliche Weise aufrufen, ist die Schnittstelle wich-
tig und muss präzise definiert werden. In diesem Falle wird sie als Anwendungs-Programmierungs-Schnittstel-
le (API) bezeichnet. Ein Betriebssystem weist eine API auf.

[0010] Es ist oft notwendig, Daten von einem Computer zu einem anderen zu transportieren. Ein einfaches
Verfahren verwendet ein tragbares Speichermedium, wie beispielsweise eine Diskette. Der sendende Compu-
ter schreibt Daten unter Verwendung eines Ausgabegerätes, die Diskette wird physikalisch zum empfangen-
2/29

DE 601 28 622 T2 2007.09.13
den Computer transportiert und der empfangende Computer liest die Daten von der Diskette unter Verwen-
dung eines Eingabegerätes.

[0011] Ein praktischeres Verfahren ist, die zwei Computer durch ein Kabel zu verbinden. Der sendende Com-
puter verwendet ein Datenkommunikationsgerät, um Daten auf das Kabel zu schreiben und der empfangende
Computer verwendet ein ähnliches Gerät, um Daten vom Kabel zu lesen.

[0012] Solche eine Anordnung arbeitet in beiden Richtungen. Jeder Computer kann senden und empfangen,
aber sie müssen sicherstellen, dass, wenn der eine sendet, der andere dann empfängt. Sie bewerkstelligen
dies, indem sie darin übereinstimmen, einem Protokoll zu folgen.

[0013] Eine Kommunikation zwischen zwei Computern ist nützlich, aber eine Kommunikation zwischen meh-
reren Computern ist noch besser. Drei oder mehr Computer können sich ein Kabel teilen und, wenn ein Com-
puter Daten sendet, empfangen sie alle anderen Computer. Dies wird als Broadcasting (Rundsendung) be-
zeichnet und eine Gruppe von Computern, die in ähnlicher Weise verbunden sind, werden als Broadcast-Netz
bezeichnet.

[0014] Für Broadcast-Kommunikation ist ein komplizierteres Protokoll erforderlich. Insbesondere ist es erfor-
derlich, jedem Computer eine eindeutige Adresse zuzuweisen. Wann immer ein Computer Daten an einen an-
deren Computer sendet, umfassen sie seine eigene Adresse und die Adresse des Empfängers. Alle Computer
hören die Übertragung, aber sie alle außer dem Empfänger ignorieren sie.

[0015] Eine Broadcast-Übertragung funktioniert gut, wenn die Anzahl an Teilnehmern begrenzt ist. Wenn zwei
Broadcast-Netze miteinander verbunden werden müssen, ist es besser, einen Computern in jedem Netz die
externe Kommunikation handhaben zu lassen.

[0016] Ein Computer, der diese Rolle zugunsten eines Netzes ausführt, wird als Router bezeichnet. Die Rou-
ter werden direkt miteinander verbunden. Wenn ein Sender Daten an ein anderes Netzwerk rundsendet, sen-
det der Router sie an den anderen Router. Der andere Router sendet sie an den Empfänger.

[0017] Die zwei Broadcast-Netze und die Verbindung zwischen ihnen bilden ein geroutetes Netz, das als ein
"Verbundnetz" (internet) bezeichnet wird. Dieses Verbundnetz kann mit anderen Verbundnetzen verbunden
sein, so dass ein größeres Netz gebildet wird, und so weiter. Das Internet ist ein Beispiel eines großen öffent-
lichen Verbundnetzes.

[0018] Geroutete Netze erfordern kompliziertere Transportprotokolle und Adressen als Broadcast-Netze. Das
am meisten verwendete Protokoll- und Adressierschema ist das Internet Protocol (IP).

[0019] IP hilft Routern, Daten entlang Netzen zu bewegen und stellt eine Grundlage für eine Familie von Pro-
tokollen für eine spezialisierte Kommunikation bereit. Das Transmission-Control-Protocol (TCP) garantiert ei-
nen zuverlässigen Kanal zwischen zwei Anwendungen auf verschiedenen Computern. Das Simp-
le-Mail-Transport-Protocol (SMTP-Protokoll) (SMTP) verwendet TCP, um elektronische Post von einem Com-
puter zu einem anderen zu befördern. Das Hypertext-Transport-Protocol (HTTP), ebenfalls auf TCP basiert,
bildet die Basis des World-Wide-Web und wird weit unterstützt. Das File-Transfer-Protocol (Dateiübertragungs-
protokoll) (FTP) verwendet zwei oder mehr TCP-Verbindungen, um Dateien zwischen Computern zu bewegen.

[0020] Computersysteme können nur mit Daten arbeiten, aber Menschen sind an den Informationen interes-
siert, welche die Daten darstellen.

[0021] Hier sind einige Daten, dargestellt als Abfolge von Zeichen:
DUB200003220620030000EI123HTWONTIME08001

[0022] Ein menschlicher Beobachter könnte Muster in den Daten erfassen und einige Informationen durch
Schlussfolgerungen und Raten erhalten. Hochentwickelte Computersysteme wurden entworfen, um dasselbe
zu bewerkstelligen, allerdings nicht so gut.

[0023] Für gewöhnliche Zwecke jedoch benötigen Computer und Menschen einige Hinweise hinsichtlich der
Struktur und dem Kontext. Hier sind dieselben Daten, als eine Abfolge von Elementen strukturiert:
DUB,200003220620030000,EI123,HTW,ONTIME,0800,1
3/29

DE 601 28 622 T2 2007.09.13
[0024] Das Strukturieren der Daten auf diese Weise hilft ein wenig. Es ist zu sehen, dass das letzte Element
die Zahl 1 ist, das zweite Element ein Datum sein könnte und "123" zu "EI" im dritten Element gehört.

[0025] Der Kontext, in welchem diese Daten interpretiert werden sollten, ist: "Luftlinien-Flug-Status". Nun sind
die Drei-Zeichen-Flughafenbezeichnungen klar sowie die Flugnummer EI123. Dies erklärt immer noch nicht
die Bedeutung der letzten zwei Felder.

[0026] Die Information, die diese Daten tatsächlich darstellen, ist: "Aer-Lingus-Flug EI123 von Dublin nach
Heathrow um 06:20:03 GMT am 22. März 2000 landete pünktlich und wurde Terminal 1 zugewiesen."

[0027] Diese freie Textdarstellung macht die Information für Menschen sehr klar – wenigstens denen, die ein
wenig vom Luftreisen und der englischen Sprache verstehen. Für Computer ist es jedoch nicht leicht, weil die
Struktur verloren gegangen ist.

[0028] Markup-Sprachen (Auszeichnungssprachen) bieten einen leistungsfähigen Kompromiss zwischen
dem Informationsgehalt von freiem Text und den festgelegten Strukturen, die Computersystem benötigen. Hier
ist dieselbe Information, ausgedrückt unter der Verwendung einer Extensible-Markup-Language (erweiterbare
Auszeichnungssprache) (XML).

[0029] Ein XML-Dokument umfasst Elemente und jedes Element wird durch ein Start-Tag (Startidentifizie-
rungskennzeichen) eingeleitet, das einen Namen enthält, und von einem Ende-Tag, das den selben Namen
mit einem vorangesetzten Schrägstrich enthält, gefolgt. Tags sind durch spitze Klammern begrenzt. Elemente
können Text oder andere Elemente enthalten. In dem Beispiel oben enthält das Element STATUS den Text ON-
TIME und das Element FLIGHT-EVENT enthält sieben andere Elemente.

[0030] Eine Anwendung, welche XML verarbeitet, muss vorbereitet sein, viele Aufgaben auszuführen. Sie
wird das Dokument als einen Zeichenstrom vom Netz oder von einem externen Speichererhalten müssen, das
Dokument hinsichtlich spezieller Zeichen, wie beispielsweise den spitzen Klammern, die Tags begrenzen, ab-
tasten, Elementnamen und die Textinhalte extrahieren, sicherstellen, dass für jedes Ende-Tag ein Start-Tag
vorliegt und sicherstellen, dass die Elemente richtig geschachtelt sind. Um ein XML-Dokument zu schreiben,
muss eine Anwendung Elemente zusammentragen, die richtig verschachtelt und in der richtigen Reihenfolge
sind, die Tags formatieren und Zeichen zum externen Speicher oder das Netz schreiben.

[0031] Wenn die Aufgabe der Anwendung einfach das Identifizieren von Flügen von Dublin oder das Senden
einer Nachricht wann immer sich der Status eines Flugs ändert, wird der Programmierer soviel wie möglich von
diesem Hauswirtschaften vermeiden wollen. Ein Weg, dies zu bewerkstelligen, ist, die Anwendung in mehrere
Programme zu teilen und dann Programme zu verwenden, die bereits geschrieben sind.

[0032] Ein Programm, das einen Strom von Zeichen liest und Tags und Elemente identifiziert, wird als Parser
bezeichnet. Es ist üblich, einen Parser mit anderen Programmen zu verwenden und es wurden Stan-
dard-Schnittstellen für XML-Parser entworfen.

[0033] Der Parser kann das gesamte Dokument in den Internspeicher lesen und dann Teile des Dokuments
in Antwort auf Aufrufe von einem anderen Programm liefern. Dies ist die Document-Object-Model-Schnittstelle
(DOM).
4/29

DE 601 28 622 T2 2007.09.13
[0034] Alternativ kann der Parser ein anderes Programm aufrufen, sobald er etwas Interessantes im Zeichen-
strom erkennt. Diese Schnittstelle ist als Simple API für XML (SAX) bekannt. Jeder Ruf ist als ein Ereignis be-
kannt, eine Abfolge von Aufrufen ist ein Ereignisstrom, und das Programm, welches der Parser aufruft, ist ein
Ereignisprozessor. Ein Ereignisprozessor für eine kleine Anwendung kann schnell geschrieben werden, und
ein Programmierer kann eine komplexe Anwendung durch Zusammenbau einer Kette einfacher Ereignispro-
zessoren erstellen.

[0035] Diese Herangehensweise zu einer Anwendungsentwicklung weist Potential auf, ist aber gegenwärtig
kostenintensiv, zeitintensiv und fehleranfällig, weil es keine unterstützende Softwareumgebung gibt. Der Pro-
grammierer muss immer noch die Kommunikations-, Verwaltungs- und Hauswirtschafts-Einrichtungen bereit-
stellen, die solche Software benötigt, und die sich ergebende Anwendung ist nicht so portierbar oder flexibel
wie sie sein könnte. Was fehlt, ist ein Betriebssystem für Prozessoren für strukturierte Informationen.

[0036] Aus der US 5,983,267 ist bekannt, ein System zur Verarbeitung von Datenstrukturen bereitzustellen,
um ein objektorientiertes Modell bereitzustellen, das die Originaldaten beschreibt, umfassend ein Repository
und Resourcen, die Metadaten enthalten, die auf die Originaldaten zeigen und diese beschreiben.

[0037] Die WO 99/57837 beschreibt ein Verfahren einen Dienst auf einem Heimnetz auszuführen, worin eine
Datenbank einen Satz von Anwendungs-Schnittstellen-Beschreibungs-Daten-Objekten bereitstellt, von denen
jedes Informationen in einem strukturierten Format beinhaltet, um ein Heimgerät durch ein anders Heimgerät,
das mit dem Netz verbunden ist, anzuweisen und zu steuern.

[0038] Erfindungsgemäße Aspekte sind in den angehängten unabhängigen Ansprüchen dargelegt.

[0039] Kurz gesagt umfasst eine erfindungsgemäße Ausführungsform eine erweiterbare und dynamische
Software-Betriebs-Umgebung, die Anwendungen unterstützt, welche strukturierte Informationen verarbeiten
und insbesondere eine Umgebung, die XML-Prozessoren unterstützt.

[0040] Die voranstehenden und andere erfindungsgemäße Aufgaben, Merkmale und Vorteile werden aus der
folgenden ausführlichen Beschreibung der bevorzugten Ausführungsformen offenbar, welche auf mehrere Fi-
guren der Zeichnung Bezug nehmen.

ZEICHNUNGEN

[0041] Fig. 1 zeigt eine Betriebs-Umgebung in Übereinstimmung mit einer erfindungsgemäßen Ausführungs-
form.

[0042] Fig. 2 zeigt verschiedene Informationsflüsse von den Transport-Empfänger-Adaptern 20 von Fig. 1 zu
den Stromprozessoren 14 von Fig. 1.

[0043] Fig. 3 zeigt ein größeres Detail einer Ausführungsform des Dokumentenprozessors 114.

[0044] Fig. 4 zeigt Daten, die von einem Stromprozessor aus der Betriebs-Umgebung 10 der Fig. 1 heraus-
fließen.

[0045] Fig. 5–Fig. 9 zeigen Flussdiagramme von einigen der Schritte, die von der Betriebssystem-Umgebung
der Fig. 1–Fig. 4 ausgeführt werden.

AUSFÜHRLICHE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN

[0046] Bezugnehmend auf Fig. 1 wird gezeigt, dass eine Betriebssystem-Umgebung 10 in Übereinstimmung
mit einer erfindungsgemäßen Ausführungsform eine Sammlung von Transport-Übermittler-Adaptern 12, eine
Sammlung von Stromprozessoren 14, eine Sammlung von Ereignisquellen 16, eine Sammlung von Anforde-
rungsprozessoren 18 und eine Sammlung von Transport-Empfänger-Adaptern 20 umfasst.

[0047] Es ist gezeigt, dass die Sammlung von Transport-Übermittler-Adaptern 12 einen HTTP-Trans-
port-Übermittler-Adapter 24 und einen SMTP-Transport-Übermittler-Adapter 22 umfasst. Die Sammlung von
Stromprozessoren 14 enthält einen oder mehrere Stromprozessoren, von denen jeder mit 26 bezeichnet ist.
Es ist gezeigt, dass die Sammlung von Ereignisquellen 16 eine Ereignisquelle 28 umfasst. Es ist gezeigt, dass
die Sammlung von Anforderungsprozessoren 18 einen Anforderungsprozessor 32 umfasst. Es ist gezeigt,
5/29

DE 601 28 622 T2 2007.09.13
dass der SAX-Parser 30 sowohl in der Sammlung der Anforderungsprozessoren 18 als auch in der Sammlung
von Ereignisquellen 16 enthalten ist. Es ist gezeigt, dass die Sammlung von Transport-Empfänger-Adaptern
20 einen HTTP-Transport-Empfänger-Adapter 34 und einen SMTP-Transport-Empfänger-Adapter 36 umfasst.

[0048] Es sollte bemerkt werden, dass in verschiedenen erfindungsgemäßen Ausführungsformen jeglicher
Anforderungsprozessor, wie beispielsweise 32, erfolgreich mit jeglichem Transport-Empfänger-Adapter, wie
beispielsweise Transport-Empfänger-Adapter 34 oder 36, arbeiten kann. In ähnlicher Weise kann jeglicher
Stromprozessor 26 erfolgreich mit jeglicher Ereignisquelle, wie beispielsweise Ereignisquelle 28 oder
SAX-Parser 30, arbeiten.

[0049] In einer erfindungsgemäßen Ausführungsform ist der Anforderungsprozessor 30 ein SAX-Parser zum
Parsen von XML-Dokumenten. In anderen erfindungsgemäßen Ausführungsformen können andere Typen
strukturierter Informationen, ohne von dem Bereich der Erfindung abzuweichen, verarbeitet werden. Die Funk-
tionen der in Fig. 1 gezeigten Komponenten werden mit der folgenden Diskussion in Bezug auf andere Figuren
deutlicher werden. Wie von der folgenden Diskussion offensichtlich wird, ist die Betriebssystem-Umgebung 10
eine dynamische Betriebs-Umgebung, die hinreichend flexibel ist, um verschiedene Protokolle und Prozesso-
ren für strukturierte Informationen zu handhaben. In einer erfindungsgemäßen Ausführungsform wird die Be-
triebs-Umgebung 10 für XML-Prozessoren verwendet.

[0050] Im Betrieb werden Informationen durch eine Kombination von Prozessoren verarbeitet, die spezifisch
ausgewählt und konfiguriert wurden, um die Informationen zu verarbeiten. Sie können von einem Trans-
port-Empfänger-Adapter 34 oder 36 empfangen werden, durch einen Anforderungsprozessor, wie beispiels-
weise dem SAX-Parser 30 und mehrere Stromprozessoren (26) hindurchgehen und schließlich durch einen
Transport-Übermittler-Adapter, wie beispielsweise 22 oder 24, gesendet werden.

[0051] Fig. 2–Fig. 4 zeigen weitere Einzelheiten der Umgebung 10, indem der Fluss von Informationen durch
die Umgebung gezeigt ist. Fig. 2 bis Fig. 4 zeigen lediglich eine der vielen erfindungsgemäßen Ausführungs-
formen. Es sollte jedoch verstanden werden, dass andere bekannte Verarbeitungstypen durch die vorliegende
Erfindung erreicht werden, ohne von dem Bereich der vorliegenden Erfindung abzuweichen.

[0052] In Fig. 2 ist ein Informationsfluss von einem Transport-Empfänger-Adapter 103 zu einem Dokumen-
tenprozessor 110 und ein anderer Fluss vom Anforderungskanal-Behandler 104 zu einem Anforderungspro-
zessor 119 und ein anderer Fluss von einer Ereignisquelle 118 zu einem Dokumentenprozessor 114 gezeigt.

[0053] In Fig. 2 erzeugt ein XML-Strom-Sender 101 außerhalb der Umgebung ein XML-Dokument oder leitet
es an einen Transport-Empfänger-Adapter 101 als einen Zeichenstrom 102 weiter, wobei er ein Transportpro-
tokoll verwendet. Jeder Transport-Empfänger-Adapter implementiert ein oder mehrere Transportprotokolle und
kann Zeichenströme von mehreren Quellen gleichzeitig empfangen. Sobald der Transport-Empfänger-Adapter
anfängt, einen Zeichenstrom zu empfangen, teilt er einen Anforderungskanal 105 zu, um den Zeichenstrom
darzustellen und reicht ihn zum Anforderungskanal-Behandler 104 weiter. Anforderungskanäle gestatten es,
dass Anforderungsprozessoren Zeichenströme lesen ohne Einzelheiten der Transportprotokolle zu kennen,
die verwendet werden, sie zu empfangen. Ein Anforderungskanal ist kein permanenter Teil des Betriebssys-
tems. Vielmehr stellt er ein eingehendes Dokument dar. Er wird erzeugt, wenn das Dokument eintrifft und wird
verworfen, wenn das Dokument verarbeitet wurde. Manchmal gibt es viele Kanäle mit Dokumenten in unter-
schiedlichen Verarbeitungsstufen. Wenn das System im Leerlauf ist, gibt es keine Anforderungskanäle.

[0054] In Fig. 2 erhält der Anforderungskanal-Verteiler 107 den Anforderungskanal 105 vom Anforderungs-
kanal-Behandler 104 und teilt ihn dem Anforderungsprozessor 109 zu. Der Anforderungskanal-Verteiler 107
konsultiert das Anforderungsprozessor-Wörterbuch 108, um einen geeigneten Anforderungsprozessor auszu-
wählen, um jeden Anforderungskanal zu bearbeiten. Der Anforderungsprozessor 109 wurde für den Anforde-
rungskanal 105 ausgewählt und der Anforderungsprozessor 119 wurde für den Anforderungskanal 106 ausge-
wählt.

[0055] Fig. 5 ist ein Flussdiagramm, das die Schritte in diesem Prozess zeigt. Der Prozess startet beim Schritt
500 und fährt bis zum Schritt 502 fort, an welchem Punkt ein Zeichenstrom erhalten wird oder die Verbindung
(zum Transport-Empfänger-Adapter) akzeptiert wird. Als nächstes, bei Schritt 504, wird ein Anforderungskanal
erzeugt, gefolgt vom Schritt 506, welcher unter Verwendung des Anforderungsprozessor-Wörterbuchs 508
nach einem Anforderungsprozessor sucht. Als nächstes, beim Schritt 510, wird der Anforderungsprozessor,
der im Schritt 506 gefunden wurde, dem Anforderungskanal zugewiesen. Schließlich, beim Schritt 512, wird
der Anforderungsprozessor ausgeführt und die Verarbeitung eines eingehenden Zeichenstroms wird bei 514
6/29

DE 601 28 622 T2 2007.09.13
vervollständigt.

[0056] Dieser Zuteilungsmechanismus gestattet es der Umgebung, auf verschiedene Arten von Informatio-
nen auf geeignete Weisen zu antworten. Die Umgebung kann eine beliebige Anzahl an Anforderungsprozes-
soren unterstützen, wobei jeder die Fähigkeit der Umgebung, Anforderungskanäle zu bearbeiten, verbessert.
Anforderungsprozessoren könne dynamisch zu jeder Zeit hinzugefügt werden.

[0057] Eine Anwendung, die strukturierte Informationen in der Form eines Zeichenstroms verarbeitet, kann in
der Umgebung als ein Anforderungsprozessor installiert werden. Ein Anforderungsprozessor muss nicht Infor-
mationen an andere Komponenten der Umgebung für eine weitere Verarbeitung befördern. In Fig. 2 verarbei-
tet der Anforderungsprozessor 119 die Informationen, die er vom Anforderungskanal 106 empfangen hat.

[0058] Wenn eine weitere Verarbeitung erforderlich ist, konvertiert der Anforderungsprozessor den eingehen-
den Zeichenstrom (wobei er seinen Input von den Anforderungskanälen des Anforderungskanal-Behandlers
104 erhalten hat) in einen Ereignisstrom.

[0059] Eine Ereignisroutine ist eine Softwareprogrammroutine (Code), die aufgerufen (aktiviert) werden kann,
um ein spezielles Konstrukt eines Dokuments (beispielsweise eines XML-Dokumentes) darzustellen. Ein Er-
eignisstrom ist eine geordnete Abfolge von Routinenaufrufen (ein Routinenaufruf ist die Aktivierung der Routi-
ne), welche ein Dokument darstellen. Ein Beispiel eines Standardsatzes von Ereignisroutinen, die verwendet
werden, um XML-Dokumente darzustellen, ist durch den SRX-Standard spezifiziert.

[0060] Eine Anwendung, die strukturierte Informationen in der Form eines Ereignisstroms erzeugen kann, ist
als eine Ereignisquelle bekannt. Eine Anwendung, die strukturierte Informationen in der Form eines Ereig-
nisstromes verarbeitet, ist als ein Stromprozessor bekannt. In Fig. 2 befördert die Ereignisquelle 118 einen Er-
eignisstrom zum Stromprozessor 117.

[0061] Fig. 6 ist ein Flussdiagramm, das zeigt, wie eine Ereignisquelle arbeitet. Im Schritt 518 bestimmt die
Ereignisquelle, ob mehr Ereignisse erzeugt werden sollten. Falls nicht, hält die Ereignisquelle an. Sonst er-
zeugt die Ereignisquelle beim Schritt 522 ein neues Ereignis und verarbeitet das neue Ereignis im Schritt 524
durch Aufrufen eines Stromprozessors. Die Prozedur fährt beim Schritt 518 fort.

[0062] Einer der eingebauten Anforderungsprozessoren im XML-Betriebssystem ist der XML-Zeichen-
strom-Anforderungsprozessor 109. Dieser verarbeitet unter Verwendung eines XML-Parsers den XML-Zei-
chenstrom von einem Anforderungskanal 105 und erzeugt einen Ereignisstrom, während der XML-Parser
parst. Der Ereignisstrom wird dann zum anfänglichen Stromprozessor in einem Dokumentenprozessor 14, wie
beispielsweise dem Stromprozessor 111, befördert. Dieser Anforderungsprozessor ist daher auch eine Ereig-
nisquelle.

[0063] Ein Stromprozessor kann einen anderen Stromprozessor aufrufen, so dass der Ereignisstrom durch
mehrere Stromprozessoren hindurchgehen kann. Um ein Ereignis vom Ereignisstrom zu entfernen, unterlässt
ein Stromprozessor es einfach, den nächsten Stromprozessor aufzurufen. Um ein Ereignis in den Ereig-
nisstrom einzufügen, führt ein Stromprozessor einen extra (Routinen-)Aufruf auf den nächsten Stromprozessor
aus. Beispielsweise befördert in Fig. 2 der Stromprozessor 111 Ereignisse an einen der Stromprozessoren
111, 112 und 113. Jeder der Prozessoren 111, 112 und 113 kann wiederum Ereignisse zu jedem anderen be-
fördern. Der Stromprozessor 117 befördert Ereignisse zum Stromprozessor 116, welcher Ereignisse zum
Stromprozessor 115 befördert.

[0064] Ein Dokumentenprozessor stellt den Kontext bereit, in welchem Stromprozessoren auf einem Ereig-
nisstrom arbeiten. In Fig. 2 stellt der Dokumentenprozessor 110 einen Kontext für die Stromprozessoren 111,
112 und 113 bereit, um auf dem Ereignisstrom zu arbeiten, der durch die Ereignisquelle 109 erzeugt wurde. In
Abhängigkeit von der Konfiguration des Betriebssystems und den Anforderungen der Ereignisquelle arbeiten
ein oder mehr der Stromprozessoren im Kontext jedes Dokumentenprozessors. Im Kontext eines Dokumen-
tenprozessors können Stromprozessoren in verschiedenen Konfigurationen angeordnet sein. Sie können den
Ereignisstrom in Reihe oder parallel verarbeiten. Die Umgebung bestimmt einen Stromprozessor im Kontext
jedes Dokumentenprozessors als den anfänglichen Stromprozessor. Die Ereignisquelle befördert den Ereig-
nisstrom zum anfänglichen Stromprozessor.

[0065] Fig. 2 zeigt zwei Ereignisströme von den Ereignisquellen 109 und 118, von denen jeder im Kontext
von zwei Dokumentenprozessoren verarbeitet wird. Die Umgebung erzeugt auf die Anforderung einer Ereig-
7/29

DE 601 28 622 T2 2007.09.13
nisquelle einen Dokumentenprozessor und teilt dem Dokumentenprozessor Stromprozessoren aus der Samm-
lung von Stromprozessoren 14 zu. In Fig. 2 ist der Stromprozessor 111 der anfängliche Stromprozessor des
Dokumentenprozessors 110 und der Stromprozessor 117 ist der anfängliche Stromprozessor des Dokumen-
tenprozessors 114.

[0066] Es ist zu verstehen, dass Fig. 2 eine einzelne Konfiguration der Umgebung 10 zeigt, welche eine
gleichzeitige Bearbeitung von drei Dokumenten ist. Das erste Dokument wird gelesen (102), während der Pro-
zessor 109 es parst und mehrere Stromprozessoren (111, 112, 113) es bearbeiten. Der Dokumentenprozessor
110 und die Instanzen des Stromprozessors können nur für diesen Ereignisstrom erzeugt worden sein, und sie
können verworfen werden, wenn das Dokument beendet wird.

[0067] Zur selben Zeit wird nun der Anforderungskanal 106 durch den Anforderungsprozessor 119 bearbeitet.

[0068] Ebenfalls zur selben Zeit erzeugt die Ereignisquelle 118 Ereignisse und die Stromprozessoren 115,
116 und 117 verarbeiten den Ereignisstrom. Der Dokumentenprozessor 114 und die Instanzen des Strompro-
zessors können nur für diesen Ereignisstrom erzeugt worden sein, und sie können verworfen werden, wenn
das Dokument beendet wird.

[0069] Es sollte bemerkt werden, dass 112 und 116 verschiedene Instanzen desselben Stromprozessors sein
können.

[0070] In Abhängigkeit von den Ressourcen, die dem Betriebssystem zur Verfügung stehen sind, und dem
Arbeitsaufkommen, welches es zu bewältigen hat, kann eine beliebige Zahl von Dokumentenprozessoren vor-
liegen. Ein bestimmter Dokumentenprozessor wird nicht mehr als ein Dokument zur Zeit behandeln und jedes
Dokument wird nur durch einen Dokumentenprozessor hindurchgehen.

[0071] Die Wörterbücher enthalten Muster oder Referenzen auf Muster, um Instanzen von verschiedenen
Stromprozessoren, Anforderungsprozessoren und Instruktionen zu erstellen. Instanzen können auf Anforde-
rung erzeugt werden. Beispielsweise können, wenn fünf identische Dokumente auf einmal empfangen werden,
fünf Instanzen von einem Stromprozessor-Muster erzeugt werden, um die Dokumente zu handhaben.

[0072] Die Fähigkeit, dynamische Kontexte aufzubauen, in welchen Stromprozessoren arbeiten, stellen eine
leistungsfähige und flexible Infrastruktur für Anwendungen, die strukturierte Informationen verarbeiten, bereit.

[0073] Ein Stromprozessor kann auf viele Weisen auf Ereignisse in einem Ereignisstrom antworten, die fol-
genden sind einige dieser Wege:
• Erfassen von Strukturen, Mustern, Namen oder Schlüsselwörtern in einem Satz von Ereignissen.
• Einfügen neuer Ereignisse in den Ereignisstrom
• Entfernen von Ereignissen vom Ereignisstrom
• Replizieren des Ereignisstroms oder von Teilen davon, wobei jedes Ereignis zu verschiedenen Strompro-
zessoren geleitet wird
• Kommunizieren mit oder Teilnehmen an einem externen System; beispielsweise:
• Erzeugen einer Ausgabe in ein Fenster, eine Datei, ein Netzziel oder ein anderes System
• Aufruf der Programmierschnittstelle eines externen Systems
• Zugriff auf eine Datenbank zum Speichern oder Wiederauffinden
• Ändern der Konfiguration des Dokumentenprozessors oder von Komponenten des XML-Betriebssystems
selbst
• Nachschlagen und Aufrufen von eingebauten oder benutzerdefinierten Kommandos.

[0074] Wenn Stromprozessoren zusammenarbeiten, um eine komplexe Aufgabe auszuführen, kann es erfor-
derlich sein, dass sie miteinander kommunizieren. Sie können den Ereignisstrom verwenden, um private Infor-
mationen zu tragen. Der sendende Stromprozessor (UpStream-Prozessor) drückt die privaten Informationen
als Ereignis-Routinenaufrufe aus. Der empfangende Stromprozessor (DownStream-Prozessor) extrahiert die
Informationen von den Ereignis-Routinenaufrufen.

[0075] Diese Technik kann verwendet werden, um Stromprozessoren Instruktionen und Konfigurationsinfor-
mationen von außerhalb der Umgebung als auch von UpStream-Prozessoren bereitzustellen.

[0076] In einer typischen Konfiguration enthält die Umgebung einen Satz von eingebauten Stromprozesso-
ren. Diese stellen Basiseinrichtungen bereit, einschließlich der Fähigkeit, das XML-Betriebssystem mit neuen
8/29

DE 601 28 622 T2 2007.09.13
Stromprozessoren zu erweitern.

[0077] Fig. 3 zeigt detaillierter eine Ausführungsform eines Dokumentenprozessors, wie beispielsweise 114
in Fig. 2. Es ist gezeigt, dass der Dokumentenprozessor 114 auf ein Instruktions-Wörterbuch 210, ein Strom-
prozessor-Wörterbuch 211 und ein Anforderungsprozessor-Wörterbuch 108 verweist, und, dass er einen An-
forderungsprozessorlader 209, einen Stromprozessorlader 208, einen Instruktionslader 207, einen Instrukti-
onsinterpreter-Stromprozessor 206, einen benutzerdefinierten Stromprozessor 205, einen Transportstrompro-
zessor 204 und einen Interpreter-Stromprozessor 203 umfasst. Es ist gezeigt, dass der Dokumentenprozessor
114 mit der Ereignisquelle 118 gekoppelt ist.

[0078] Die Fig. 7, Fig. 8 und Fig. 9 zeigen, wie Stromprozessoren arbeiten. Die Stromprozessoren empfan-
gen ein Ereignis zur Zeit, daher zeigt jedes Flussdiagramm, wie ein Stromprozessor ein einzelnes Ereignis
handhabt. Fig. 7 zeigt die allgemeine Logik eines Stromprozessors, und Fig. 8 und Fig. 9 zeigen die Details
von zwei der eingebauten Stromprozessoren.

[0079] In Fig. 7 entscheidet der Stromprozessor im Schritt 528, ob das Ereignis relevant für diesen Strompro-
zessor ist. Falls dies der Fall ist, verarbeitet er im Schritt 530 das Ereignis entsprechend dem Entwurf des
Stromprozessors. Der Schritt 532 bestimmt, ob dieses Ereignis vom Ereignisstrom entfernt werden soll, und
falls dies der Fall ist, endet der Prozess. Falls der Schritt 528 bestimmt, dass das Ereignis nicht relevant war,
oder der Schritt 532 bestimmte, dass es nach der Bearbeitung weiter befördert werden sollte, dann bestimmt
der Schritt 534, ob im Dokumentenprozessor ein anderer Stromprozessor diesem Stromprozessor folgt. Falls
dies der Fall st, ruft der Stromprozessor im Schritt 536 den nächsten Stromprozessor auf, bevor der Prozess
endet.

[0080] In einer typischen Konfiguration kann das Stromprozessor-Wörterbuch 211 Referenzen auf die folgen-
den (Komponenten) enthalten:
• Stromprozessorlader 208
• Instruktionslader 207
• Anforderungsprozessorlader 209
• Instruktionsinterpreter 206
• Transportstromprozessor 204
• Interpreterstromprozessor 203

[0081] Das Stromprozessor-Wörterbuch 211 bedient das gesamte XML-Betriebssystem. Es kann auf einem
externen Speicher gehalten werden, so dass es verfügbar bleibt, nachdem das Betriebssystem heruntergefah-
ren und wieder hochgefahren wurde. Diese Fähigkeit wird als "Persistenz" bezeichnet.

[0082] In einer typischen Konfiguration enthält das Instruktions-Wörterbuch 210 anfänglich Referenzen auf
verschiedene Gruppen von Instruktionen:
• Konfigurations-Instruktionen verwalten den Status des XML-Betriebssystems, insbesondere zur Zeit des
Hochfahrens.
• Stromprozessorsteuerungs-Instruktionen warten das Stromprozessor-Wörterbuch.
• Instruktionssteuerungs-Instruktionen warten das Instruktions-Wörterbuch.
• Interpretersteuerungs-Instruktionen verwalten den Status des Interpreterstromprozessors.
• Anforderungsprozessorsteuerungs-Instruktionen warten das Anforderungsprozessor-Wörterbuch.

[0083] Das Instruktions-Wörterbuch bedient das gesamte XML-Betriebssystem und kann persistent sein.

[0084] Die Funktionen und Wechselwirkungen der Lader 209, 208 und 207 und der Prozessoren 206, 205,
204 und 203 von Fig. 3 sind hier untenstehend dargestellt.

[0085] Ein Interpreter-Stromprozessor 203 erfasst Kommandos und Parameter im Ereignisstrom, initiiert die
geeigneten Aktionen und kann Ereignisse vom Strom entfernen.

[0086] Ein Interpreter-Stromprozessor erkennt Konstrukte, die einer bestimmten Syntax entsprechen. Wenn
er solch ein Konstrukt antrifft, schlägt er einen Eintrag in einem Stromprozessor-Wörterbuch 211 nach. Falls
eine Übereinstimmung vorliegt, richtet er den Ereignisstrom zum entsprechenden Stromprozessor. Beispiel 5,
hier untenstehend dargestellt, ist ein Beispiel, wie der Interpreter Ereignisse entfernt. Der Instruktionsinterpre-
ter-Stromprozessor 206 erkennt Konstrukte, die der Syntax für Instruktionen entsprechen. Wenn er eine mög-
liche Instruktion erkennt, schlägt er einen Eintrag im Instruktions-Wörterbuch 210 nach. Wenn eine Überein-
9/29

DE 601 28 622 T2 2007.09.13
stimmung vorliegt, initiiert er die entsprechende Aktion. Im Beispiel 4, hier untenstehend dargestellt, werden
zwei Instruktionen aufgerufen.

[0087] Fig. 8 zeigt die Schritte zur Verarbeitung eines Ereignisses durch die Interpreter 203 und 206. Im
Schritt 540 startet der Prozess, und danach wird eine Bestimmung bei 542 durchgeführt, ob oder ob nicht das
gegenwärtige Ereignis ein Kommando ist, um den Stromprozessor zu initiieren. Falls dies der Fall ist, wird im
Schritt 544 durch das Stromprozessor-Wörterbuch eine Suche nach einem Stromprozessor durchgeführt.

[0088] Danach wird der aufgefundene Stromprozessor im Schritt 548 mit der Kette von Stromprozessoren
verbunden und der Prozess hält bei 562 an.

[0089] Wenn der Schritt 542 bestimmte, dass das Ereignis kein Stromprozessorkommando war, dann be-
stimmt der Schritt 550, ob das Ereignis eine Instruktion ist. Falls dies der Fall ist, lädt der Interpreter den In-
struktionsinterpreter-Stromprozessor. Der Instruktionsinterpreter durchsucht im Schritt 522 das Instrukti-
ons-Wörterbuch und die aufgefundene Instruktion vom Wörterbuch wird im Schritt 556 aufgerufen und der Pro-
zess hält an. Ansonsten wird das Ereignis zum nächsten Stromprozessor in der Kette weitergereicht, falls vor-
handen (Schritte 558 und 560).

[0090] Der Instruktionslader 207 liest eine Instruktion vom Ereignisstrom und installiert dieselbe im Instrukti-
ons-Wörterbuch 210.

[0091] Der eingebaute Stromprozessorlader 208 liest Informationen, die vom Stromprozessormodul vom Er-
eignisstrom bereitgestellt sind und installiert diese im Stromprozessor-Wörterbuch 211.

[0092] Der Anforderungsprozessorlader 209 liest einen Anforderungsprozessor vom Ereignisstrom ein und
installiert diesen im Anforderungsprozessor-Wörterbuch 108 (gezeigt in Fig. 2).

[0093] Instruktionen, Stromprozessoren und Anforderungsprozessoren sind Muster für ausführbare Module,
die veröffentlichten Schnittstellen entsprechen. Jedes Muster ist zur Verwendung durch den entsprechenden
Lader 207, 208 oder 209 in einem XML-Dokument kodiert.

[0094] Ein oder mehrere benutzerdefinierte Stromprozessoren, wie beispielsweise der benutzerdefinierte
Stromprozessor 205, die vom Stromprozessorlader installiert sind, sind zur unmittelbaren Verwendung vom
Strom-Wörterbuch 211 verfügbar.

[0095] In Fig. 3 sind die drei "Lader"-Stromprozessoren (Lader 209, 208 und 207) Teil des Erweiterungsme-
chanismus', welcher es dem Betriebssystem gestattet, zu wachsen und sich verschiedenen Aufgaben anzu-
passen.

[0096] Eine Analogie kann den Mechanismus erklären. Betrachtet sei der Fall, wo ein Angestellter in einem
Büro eingehende Papierdokumente entsprechend einem Satz gedruckter Instruktionen, die an der Wand an-
gebracht sind, bearbeitet. Ein Satz von Instruktionen erklärt, was mit Papierdokumenten zu tun ist, die neue
Instruktionen enthalten. Von Zeit zu Zeit kommt ein Papierdokument an, das neue Instruktionen enthält. Der
Angestellte bringt das Instruktionsblatt an der Wand zusammen mit vorhergehenden Instruktionen an und fährt
dann fort, Papierdokumente zu bearbeiten, wobei er vielleicht die neuen Instruktionen verwendet.

[0097] Gleichermaßen wird ein Lader aufgerufen, wenn der Interpreter eine/n neue/n Stromprozessor, Anfor-
derungsprozessor oder Instruktion im Strom erfasst. Der Lader sichert das Muster im geeigneten Wörterbuch.

[0098] Der eingebaute Transportstromprozessor 204 konvertiert den Ereignisstrom in einen Zeichenstrom.
Jeglicher Stromprozessor kann die Transportfähigkeiten des XML-Betriebssystem verwenden. Der Transport-
stromprozessor ist ein Allzweckstromprozessor, welcher durch Einbetten von Kommandos im Ereignisstrom
gesteuert werden kann. Er ist als eine praktische Methode für Stromprozessoren bereitgestellt, um die Trans-
portfähigkeiten zu verwenden.

[0099] In Fig. 4 ist ein Datenfluss von einem Stromprozessor in der Betriebsumgebung 10 (von Fig. 1), näm-
lich Stromprozessor 204, an einen Empfänger außerhalb der Umgebung, nämlich den Empfänger 308, ge-
zeigt. Jeglicher Stromprozessor kann mit dem Antwortkanallieferanten (Response Channel provider) 303 zu-
sammenarbeiten, um einen Zeichenstrom an ein oder mehrere Ziele außerhalb der Umgebung zu senden.
10/29

DE 601 28 622 T2 2007.09.13
[0100] Der Transportstromprozessor 204 erfasst Kommandos, die in den Ereignisstrom durch andere Strom-
prozessoren eingefügt sind. Wenn er ein Öffnen-Kommando erfasst, fordert der Transportstromprozessor ei-
nen Antwortkanal 305 vom Antwortkanallieferanten 303. Es gibt auch Kommandos, um Output an einen oder
mehrere auszusetzen (suspend) und wiederaufzunehmen (resume), sowie einen Kanal zu schließen (close).
Dies gestattet es, dass überlappende oder nicht-überlappende Segmente des Zeichenstroms an mehr als ein
Ziel verteilt werden.

[0101] Beispiel 7, hier untenstehend dargestellt, dient als ein Beispiel für den Transportstromprozessor, der
auf zwei Kanälen auf einmal schreibt.

[0102] Die Funktionen der in Fig. 4 gezeigten Blöcke sind unten aufgeführt:
Der Antwortkanallieferant 303 erzeugt einen Antwortkanal 305 für eine Einheit, die durch eine Adresse identi-
fiziert wird. Der Antwortkanal kann dann verwendet werden, um Informationen an die Einheit zu senden.

[0103] Die Adresse, die verwendet wird, um den Antwortkanal vom Antwortkanallieferanten anzufordern,
kann eine transportspezifische Adresse sein. Eine transportspezifische Adresse identifiziert ein Transportpro-
tokoll und enthält Verbindungsinformationen in einem protokollspezifischen Format. Ein Beispiel einer
SMTP-Protokolladresse ist: "SMTP://router@xiam.com" und ein Beispiel einer HTTP-Protokolladresse ist
"HTTP://router.xiam.com:81".

[0104] Es ist nützlich, eine Einheit durch eine Adresse zu identifizieren, die nicht transportspezifisch ist, um
es zu gestatten, dass der Transportmechanismus ausgewechselt wird, ohne die Adresse der Einheit zu än-
dern. Solch eine Adresse muss zu einer oder mehreren transportspezifischen Adressen aufgelöst werden, be-
vor ein Antwortkanal erzeugt werden kann.

[0105] In dieser erfindungsgemäßen Ausführungsform ist eine Adresse im Format "XMLR://xiam.com" nicht
transportspezifisch, und der Adressenauflöser 302 wandelt diese Adresse in eine transportspezifische Adresse
um. Jeder Antwortkanal ist mit einem Übermittler-Transport-Adapter (306) verbunden. Jeder Transport-Über-
mittler-Adapter kann ein oder mehrere Protokolle implementieren.

[0106] Der Transport-Übermittler-Adapter verbindet sich mit dem Empfänger 308 (welches ein Verbraucher
sein kann) und übermittelt den Zeichenstrom 307. Der Transport-Übermittler-Adapter 306 kann anfangen, ei-
nen XML-Strom zu senden, während ein Dokumentenprozessor immer noch den Ereignisstrom bearbeitet und,
während ein Transport-Empfänger-Adapter immer noch einen Zeichenstrom empfängt.

[0107] In dieser erfindungsgemäßen Ausführungsform sehen Adressen, die nicht transportspezifisch sind,
wie folgt aus:
XMLR://<Domain>

[0108] Der Adressenauflöser befragt den bezeichneten Domain-Namenserver der XML-Maschine nach
TXT-Einträgen nach der Domain in der Adresse. Alle TXT-Rückantworten, die dem Adressantwortformat ent-
sprechen, werden geparst, um Protokolladressen zu extrahieren. Das Adressenantwortformat ist
XMLR:<Präferenzzahl>:<Protokolladresse>

[0109] Die Präferenzzahl zeigt die Präferenzordnung für jede Protokolladresse an. Je niedriger die Präferenz-
zahl desto höher die Präferenz.

[0110] Der Antwortkanallieferant 303 stellt einen Antwortkanal 305 bereit, der in der Lage ist, mit der höchsten
Präferenz, die vom verfügbaren Transport-Übermittler-Adapter 306 – falls vorhanden – unterstützt wird, an die
Protokolladresse zu liefern.

[0111] Fig. 9 zeigt die Schritte zum Verarbeiten eines Ereignisses durch den Transportstromprozessor. Im
Schritt 570 beginnt der Prozess und setzt zu 572 fort, an welchem Punkt eine Bestimmung durchgeführt wird,
ob das vorliegende Ereignis ein "Öffnen"-Kommando ist, und, falls dies der Fall ist, setzt der Prozess zum
Schritt 574 fort, wo ein Antwortkanal erhalten wird. Der Kanal wird zur Kanalliste (Schritt 576) und zur Aktivliste
(Schritt 578) hinzugefügt, und der Prozess endet.

[0112] Wenn das vorliegende Ereignis nicht ein "Öffnen"-Kommando ist, entscheidet der Schritt 580, ob es
ein "Schließen"-Kommando ist. Falls dies der Fall ist, schließt der Stromprozessor den Antwortkanal und ent-
fernt ihn von der Aktivliste und von der Kanalliste (Schritte 582, 584, bzw. 586), und der Prozess endet.
11/29

DE 601 28 622 T2 2007.09.13
[0113] Wenn ein Kommando noch nicht erkannt wurde, bestimmt der Schritt 588 ob das Kommando ein "Pau-
se"-Kommando ist. Falls dies der Fall ist, entfernt der Schritt 590 den Kanal, der durch das Kommando spezi-
fiziert wurde, von der Aktivliste, und der Prozess endet. Ansonsten entscheidet der Schritt 592, ob das Ereignis
ein "Wiederaufnahme"-Kommando ist. Falls dies der Fall ist, fügt der Schritt 594 den spezifizierten Kanal zur
Aktivliste hinzu.

[0114] Wenn kein Kommando erkannt wurde, schreibt der Transportstromadapter auf den Zeichenstrom in
jedem der Kanäle in der Aktivliste (Schritt 596).

[0115] Schließlich wird das Ereignis zum nächsten Stromprozessor in der Kette, falls vorhanden, befördert
(Schritte 598 und 600).

Beispiele

[0116] Eine Anzahl von Szenarien wird unten dargestellt, um, wie folgt, als Beispiele einiger der hierin oben-
stehend diskutierten Blöcke und Funktionen zu dienen:
Wie zuvor hierin angemerkt, unter Rückbezug auf Fig. 2, erzeugen ein oder mehrere Stromsender 101 (außer-
halb der Umgebung) XML-Dokumente oder leiten diese an das XML-Betriebssystem als einen Zeichenstrom
102 unter Verwendung eines Transportprotokolls weiter. Ein Beispiel solch eines Zeichenstroms ist durch Bei-
spiel 1 vorgestellt, worin der Status eines Flugs überprüft wird, der aus Dublin zu einer Zeit startet, die im Bei-
spiel mit anderen entsprechenden Parametern notiert ist.

[0117] Wie zuvor angemerkt, ist ein Ereignisstrom eine geordnete Abfolge von Ereignisroutinenaufrufen, wel-
che ein Dokument darstellen. Ein Beispiel eines Ereignisstroms, der auf den vom Beispiel 1 bezogen ist, ist
durch Beispiel 2 dargestellt.

Beispiel 1
12/29

DE 601 28 622 T2 2007.09.13

(characters – Zeichen)

[0118] Im Beispiel 3 wird ein privates Kommando mit zwei Argumenten in den Ereignisstrom eingefügt. Die
private Information ist ein Kommando an den Transportstromprozessor, den Kanal (channel) "A" pausieren zu
lassen (pause). Ein Interpreterstromprozessor schlägt ""xiam:channel" im Stromprozessor-Wörterbuch nach
und befördert den Ereignisstrom als ein Ergebnis an den Transportstromprozessor

[0119] Beispiel 4 enthält ein XML-Dokument in der Form eines Zeichenstroms. Es enthält zwei auszuführen-

Beispiel 2

Beispiel 3
13/29

DE 601 28 622 T2 2007.09.13
de Kommandos; eines mit Parametern und eines ohne. Der Zeichenstrom wird in einen geeigneten Ereig-
nisstrom konvertiert, welcher vom Instruktionsinterpreterstromprozessor interpretiert wird. Dieser Strompro-
zessor wird den relevanten Instruktionsnamen und Parameter extrahieren und die Instruktion aufrufen. Das
erste Kommando konfiguriert den Adressenauflöser (XARP) unter Verwendung der Instruktion namens "Trans-
port.XARP.Config", den DNS-Server 10.20.1.1 zu verwenden. Dieser Instruktionsname erscheint im Instrukti-
ons-Wörterbuch.

(action – Handlung)

[0120] Beispiel 5 ist ein Beispiel, wie der Interpreter Ereignisse entfernt.

[0121] Beispiel 6 zeigt eine Adressauflösung und eine SMTP-Verbindung.

Beispiel 6

[0122] Ein Stromprozessor möchte Informationen an die Organisation Xiam senden und weiss, dass die
Adresse dieser Organisation XMLR://xiam.com ist. Er fragt nach einem Antwortkanal, wobei er die Adresse
XMLR://xiam.com angibt.

[0123] Die DNS (Domain Name Service, Domainnamendienst)-Datenbank für die Zone "xiam.com" enthält
diese Ressourcendatensätze:

in mx 20 backup.isp.net

[0124] Angenommen sei, dass keiner der im XML-Betriebssystem installierten Transport-Übermittler-Adapter
unter Verwendung von HTTP senden kann, aber einer da ist, der unter Verwendung von SMTP senden kann.

Beispiel 4

Beispiel 5
14/29

DE 601 28 622 T2 2007.09.13
[0125] Der Adressenauflöser umgeht die HTTP-Adressen im DNS und gibt die Protokolladresse zurück:
SMTP://xmlr@xiam.com.

[0126] Der Adapter verbindet sich mit Port 25 (der Standardport für SMTP) auf dem Host mail.xiam.com und
initiiert eine Nachricht zur Mailbox "xmlr@xiam.com".

[0127] Der Antwortkanallieferant gibt einen Antwortkanal zurück, der diese Verbindung zum Stromprozessor
darstellt.

[0128] Jegliche Informationen, die vom Stromprozessor zu diesem Kanal gesendet werden, werden unter
Verwendung von SMTP gesendet.

[0129] Wenn der Stromprozessor den Kanal schließt, beendet der Adapter die SMTP-Nachricht und schließt
die Verbindung.

[0130] Beispiel 7 zeigt die Ereignisstrommanipulation.
15/29

DE 601 28 622 T2 2007.09.13

1 Der Interpreter antwortet auf dieses Ereignis, indem er den Ereignisstrom zum Verteilerstromprozessor
(Distributor Stream Processor) richtet, welchen er im Stromprozessor-Wörterbuch findet. Er verbraucht das
Start-Ereignis.
2 Der Verteiler antwortet auf den Start eines Memos, indem er den Ereignisstrom zum Transportstrompro-

Beispiel 7
16/29

DE 601 28 622 T2 2007.09.13
zessor (Transport Stream Processor) richtet und Kommandos im Ereignisstrom einfügt. Er fügt auch ein Ti-
telereignis ein. Der Transport öffnet zwei Antwortkanäle (Response Channels) und schreibt den Titel in bei-
de.
3 Die Priorität (priority) ist nicht relevant, daher entfernt der Verteiler diese Ereignisse vom Strom.
4 Der Body des Memos tritt durch alle Stromprozessoren hindurch. Der Transport schreibt den Text in beide
Kanäle.
5 Am Ende des Memos schließt der Transport die Kanäle.
6 Der Interpreter erkennt, dass der Verteiler nicht mehr erforderlich ist und stoppt das Senden von Ereig-
nissen an diesen.

[0131] Die in den Fig. 1–Fig. 9 gezeigten Komponenten sind in einer bevorzugten erfindungsgemäßen Aus-
führungsform in Softwarecode implementiert. Dieselben können jedoch auch in Hardware implementiert sein,
ohne vom Bereich der Erfindung abzuweichen.

[0132] Obwohl die vorliegende Erfindung hinsichtlich besonderer Ausführungsformen beschrieben wurde,
wird vorweggenommen, dass Änderungen und Abweichungen hiervon dem Fachmann zweifellos offensicht-
lich werden. Es ist daher beabsichtigt, dass die folgenden Ansprüche dahingehend interpretiert werden, dass
sie all solche Änderungen und Abweichungen, die in den wahren Umfang der Erfindung fallen, abdecken.

[0133] Die vorliegende Erfindung kann durch ein Computerprogramm implementiert werden, das auf einem
Computer arbeitet. Ein erfindungsgemäßer Aspekt stellt daher ein Speichermedium bereit, das implementier-
bare Prozessorinstruktionen speichert, um einen Prozessor zum Ausführen des hierin oben beschriebenen
Verfahrens zu steuern.

[0134] Ferner kann das Computerprogramm in elektronischer Form erhalten werden, indem der Code bei-
spielsweise über ein Netz, wie beispielsweise das Internet, heruntergeladen wird. Entsprechend wird in Über-
einstimmung mit einem anderen erfindungsgemäßen Aspekt ein elektrisches Signal, das implementierbare
Prozessorinstruktionen zum Steuern eines Prozessors enthält, bereitgestellt, um das hierin oben beschriebene
Verfahren auszuführen.

Patentansprüche

1. Betriebssystem (10) zur Verwendung in Netzumgebungen, um Informationen in der Form von Dokumen-
ten zu verarbeiten, umfassend:
einen oder mehrere Transport-Empfänger-Adapter (20), um die Dokumente als empfangene Zeichenströme
zu empfangen und, um ein oder mehrere Transportprotokolle zu implementieren, wobei die Transport-Empfän-
ger-Adapter Mittel zum gleichzeitigen Empfangen von Zeichenströmen von mehreren Quellen umfassen;
einen Parser (30), um Informationen von jeder Zeichenkette zu extrahieren;
und einen Zuteilungsmechanismus, um dynamisch Instanzen von Elementen des Betriebssystems zu erzeu-
gen und die Elemente zum Verarbeiten der Zeichenkette auf der Grundlage der extrahierten Informationen zu
verbinden,
worin die Instanzen der Elemente für jedes Dokument umfassen:
eine Ereignisquelle (16), um auf der Grundlage der empfangenen Informationen strukturierte Informationen in
der Form eines Ereignisstroms zu erzeugen;
einen oder mehrere Stromprozessoren (14), um den ein oder mehrere Ereignisse umfassenden Ereignisstrom
zu verarbeiten; und
einen Transport-Übermittler-Adapter (12) zum Verbinden mit einem Empfänger, um die strukturierten Informa-
tionen in der Form eines Übermittlungszeichenstroms zu übermitteln.

2. Betriebssystem nach Anspruch 1, worin der Transport-Empfänger dazu ausgebildet ist, Informationen in
der Form eines Extensible-Markup-Language-(erweiterbare Auszeichnungs-Sprache-) (XML-) Dokuments zu
empfangen.

3. Betriebssystem nach Anspruch 2, umfassend einen XML-Sender (101), der dazu ausgebildet ist, das
XML-Dokument zum Empfang durch den ein oder mehreren Transport-Empfänger-Adapter unter Verwendung
eines Transportprotokolls als einen Zeichenstrom zu übermitteln.

4. Betriebssystem nach Anspruch 3, worin der eine oder mehrere Transport-Empfänger-Adapter dazu aus-
gebildet ist (sind), den Zeichenstrom zu empfangen und bei Beginn des Empfangs davon einen Anforderungs-
kanal (105) zuzuteilen, um den Zeichenstrom darzustellen.
17/29

DE 601 28 622 T2 2007.09.13
5. Betriebssystem nach Anspruch 4, worin der Anforderungskanal dazu ausgebildet ist, es Anforderungs-
prozessoren (119) zu gestatten, den Zeichenstrom ohne Kenntnis von Einzelheiten des Transportprotokolls zu
lesen.

6. Betriebssystem nach Anspruch 4, umfassend Mittel zum Erzeugen des Anforderungskanals, wenn das
Dokument durch den ein oder mehreren Transport-Empfänger-Adapter empfangen wird.

7. Betriebssystem nach Anspruch 4, das dazu ausgebildet ist, den Anforderungskanal zu verwerfen, wenn
das Dokument verarbeitet wurde.

8. Betriebssystem nach Anspruch 6, umfassend Mittel zum Darstellen einer Vielzahl von Zeichenströmen
durch eine Vielzahl von Anforderungskanälen, wobei jeder Zeichenstrom mit einem eindeutigen Dokument ver-
bunden ist und die Dokumente in verschiedenen Stufen verarbeitet werden.

9. Betriebssystem nach Anspruch 4, worin jeder der ein oder mehreren Transport-Empfänger-Adapter
dazu ausgebildet ist, Zeichenströme von verschiedenen Quellen gleichzeitig zu empfangen.

10. Betriebssystem nach Anspruch 4, worin der ein oder mehrere Transport-Empfänger-Adapter dazu aus-
gebildet ist, den dargestellten Zeichenstrom einem Anforderungskanal-Behandler zu übergeben.

11. Betriebssystem nach Anspruch 10, worin ein Anforderungsprozessor-Behandler dazu ausgebildet ist,
einen Anforderungsprozessor auszuwählen, der einem bestimmten Anforderungskanal zuzuteilen ist, wobei
der Anforderungsprozessor dazu ausgebildet ist, dann den dargestellten Zeichenstrom zu verarbeiten.

12. Betriebssystem nach Anspruch 11, worin der Anforderungsprozessor eine Ereignisquelle ist, die dazu
ausgebildet ist, den verarbeiteten Zeichenstrom zur weiteren Verarbeitung in einen Ereignisstrom umzuwan-
deln.

13. Betriebssystem nach Anspruch 4, worin ein oder mehrere bestimmte der Stromprozessoren dazu aus-
gebildet sind, einen oder mehrere andere der Stromprozessoren aufzurufen.

14. Betriebssystem nach Anspruch 1, umfassend zwei oder mehr Ereignisquellen, wobei jede zur Erzeu-
gung eines Ereignisstroms vorgesehen ist, um zwei oder mehr Dokumente gleichzeitig zu verarbeiten.

15. Betriebssystem nach Anspruch 14, das dazu ausgebildet ist, jedes Dokument durch einen anderen
Stromprozessor zu verarbeiten.

16. Betriebssystem nach Anspruch 14, worin jeweilige Instanzen desselben Stromprozessors dazu ausge-
bildet sind, jedes Dokument zu verarbeiten.

17. Betriebssystem nach Anspruch 1, worin der Transport-Übermittler-Adapter dazu ausgebildet ist, einen
ersten Zeichenstrom zu übertragen, während einer der ein oder mehreren Stromprozessoren einen mit einem
zweiten Zeichenstrom verbundenen Ereignisstrom verarbeitet und, während ferner der Transport-Empfän-
ger-Adapter einen dritten Zeichenstrom empfängt.

18. Betriebssystem nach Anspruch 1, umfassend Wörterbücher (108) mit Mustern oder Verweisen auf
Muster, um Instanzen (111-117) des ein oder mehreren Stromprozessors für jedes der empfangenen Doku-
mente zu erzeugen.

19. Betriebssystem nach Anspruch 18, das dazu ausgebildet ist, die Instanzen auf Anforderung zu erzeu-
gen.

20. Betriebssystem nach Anspruch 18, worin eines der Wörterbücher ein außerhalb des Betriebssystems
gespeichertes Stromprozessor-Wörterbuch ist.

21. Betriebssystem nach Anspruch 1, worin:
jeder der ein oder mehreren Stromprozessoren Mittel zum Antworten auf ein Ereignis in einem Ereignisstrom
durch Erfassen von Strukturen, Mustern, Namen oder Schlüsselwörtern im Ereignis;
zum Einfügen neuer Ereignisse in den Ereignisstrom;
zum Entfernen von Ereignissen aus dem Ereignisstrom;
18/29

DE 601 28 622 T2 2007.09.13
zum Replizieren des Ereignisstroms oder Teilen davon, wobei jedes Ereignis an verschiedene Stromprozes-
soren gerichtet wird;
zum Kommunizieren mit oder Teilnehmen an einem externen System;
zum Ändern der Konfiguration des Dokumentenprozessors; oder
zum Aufrufen von eingebauten oder benutzerdefinierten Kommandos umfasst.

22. Verfahren zum Betrieb eines Betriebssystems (10) zur Verwendung in Netzumgebungen zum Verar-
beiten von Informationen in der Form von Dokumenten, umfassend:
einen oder mehrere Transport-Empfänger-Adapter (20), der die Dokumente als empfangene Zeichenströme
empfängt und ein oder mehrere Transportprototkolle implementiert, wobei die Transport-Empfänger-Adapter
Mittel zum gleichzeitigen Empfangen von Zeichenströmen von mehreren Quellen umfassen;
einen Parser (30), der Informationen von jeder Zeichenkette extrahiert; und
einen Zuteilungsmechanismus, der dynamisch Instanzen von Elementen des Betriebssystems erzeugt und die
Elemente zum Verarbeiten der Zeichenkette auf der Grundlage der extrahierten Informationen verbindet,
worin die Instanzen der Elemente für jedes Dokument umfassen:
eine Ereignisquelle (16), die auf der Grundlage der empfangenen Informationen strukturierte Informationen in
der Form eines Ereignisstroms erzeugt;
einen oder mehrere Stromprozessoren (14), die den Ereignisstrom, der ein oder mehrere Ereignisse umfasst,
verarbeiten; und
einen mit einem Empfänger verbundenen Transport-Übermittler-Adapter (12), der die Strukturinformationen in
der Form eines Zeichenstroms übermittelt.

23. Verfahren nach Anspruch 22, worin die durch den Transport-Empfänger empfangenen Informationen
ein Extensible-Markup-Language-Dokument sind.

24. Verfahren nach Anspruch 23, worin ein XML-Sender unter Verwendung eines Transportprotokolls das
XML-Dokument als einen Zeichenstrom zum Empfang durch den einen oder mehreren Transport-Empfän-
ger-Adapter übermittelt.

25. Verfahren nach Anspruch 24, worin der eine oder mehrere Transport-Empfänger-Adapter den Zeichen-
strom empfängt und beim Beginn des Empfangs davon einen Anforderungskanal zuteilt, um den Zeichenstrom
darzustellen.

26. Verfahren nach Anspruch 25, worin der Anforderungskanal es Anforderungsprozessoren ermöglicht,
den Zeichenstrom ohne Kenntnis von Einzelheiten des Transportprotokolls zu lesen.

27. Verfahren nach Anspruch 25, worin ein Anforderungskanal erzeugt wird, wenn das Dokument durch
den ein oder mehreren Transport-Empfänger-Adapter empfangen wird.

28. Verfahren nach Anspruch 25, worin der Anforderungskanal verworfen wird, wenn das Dokument ver-
arbeitet wurde.

29. Verfahren nach Anspruch 27, worin eine Vielzahl von Anforderungskanälen eine Vielzahl von Zeichen-
strömen darstellen, wobei jeder Zeichenstrom mit einem eindeutigen Dokument verbunden ist und die Doku-
mente in verschiedenen Stufen verarbeitet werden.

30. Verfahren nach Anspruch 25, worin jeder der ein oder mehreren Transport-Empfänger-Adapter Zei-
chenströme von mehreren Quellen gleichzeitig empfängt.

31. Verfahren nach Anspruch 25, worin der ein oder mehrere Transport-Empfänger-Adapter den darge-
stellten Zeichenstrom einem Anforderungskanal-Behandler übergibt.

32. Verfahren nach Anspruch 31, worin ein Anforderungsprozessor-Behandler einen Anforderungsprozes-
sor auswählt, der einem bestimmten Anforderungskanal zuzuteilen ist, wobei der Anforderungsprozessor den
dargestellten Zeichenstrom verarbeitet.

33. Verfahren nach Anspruch 32, worin der Anforderungsprozessor eine Ereignisquelle ist, die den verar-
beiteten Zeichenstrom zur weiteren Verarbeitung in einen Ereignisstrom umwandelt.

34. Verfahren nach Anspruch 25, worin ein oder mehrere bestimmte der Stromprozessoren einen oder
19/29

DE 601 28 622 T2 2007.09.13
mehrere andere der Stromprozessoren aufruft.

35. Verfahren nach Anspruch 22, umfassend zwei oder mehr Ereignisquellen, von denen jede für das Er-
zeugen eines Ereignisstroms vorgesehen ist, um zwei oder mehr Dokumente gleichzeitig zu verarbeiten.

36. Verfahren nach Anspruch 35, worin jedes Dokument durch einen anderen Stromprozessor verarbeitet
wird.

37. Verfahren nach Anspruch 35, worin jedes Dokument durch eine jeweilige Instanz desselben Strompro-
zessors verarbeitet wird.

38. Verfahren nach Anspruch 22, worin der Transport-Übermittler-Adapter einen ersten Zeichenstrom
übermittelt, während einer der ein oder mehreren Stromprozessoren einen Ereignisstrom verarbeitet, der mit
einem zweiten Zeichenstrom verbunden ist und während ferner der Transport-Empfänger-Adapter einen drit-
ten Zeichenstrom empfängt.

39. Verfahren nach Anspruch 22, umfassend Wörterbücher mit Mustern oder Verweisen auf Muster, um
Instanzen von den ein oder mehreren Stromprozessoren für jedes der empfangenen Dokumente zu erzeugen.

40. Verfahren nach Anspruch 39, worin die Instanzen auf Anforderung erzeugt werden.

41. Verfahren nach Anspruch 39, worin eines der Wörterbücher ein Stromprozessor-Wörterbuch ist, das
außerhalb des Betriebssystems gespeichert ist.

42. Verfahren nach Anspruch 22, worin:
jeder der ein oder mehreren Stromprozessoren auf ein Ereignis in einem Ereignisstrom durch Erfassen von
Strukturen, Mustern, Namen oder Schlüsselwörtern in dem Ereignis antwortet;
neue Ereignisse in den Ereignisstrom einfügt;
Ereignisse von dem Ereignisstrom entfernt;
den Ereignisstrom oder Teile davon repliziert und jedes Ereignis an verschiedene Stromprozessoren richtet;
mit einem externen System kommuniziert oder an dem externen System teilnimmt;
die Konfiguration des Dokumentenprozessors ändert; oder eingebaute oder benutzerdefinierte Kommandos
aufruft.

43. Speichermedium zum Speichern von implementierbaren Prozessorinstruktionen, um einen Prozessor
zum Ausführen des Verfahrens nach einem der Ansprüche 22 bis 42 zu steuern.

44. Elektrisches Signal zum Übertragen von implementierbaren Prozessorinstruktionen, um einen Prozes-
sor zum Ausführen des Verfahrens nach einem der Ansprüche 22 bis 42 zu steuern.

Es folgen 9 Blatt Zeichnungen
20/29

DE 601 28 622 T2 2007.09.13
Anhängende Zeichnungen
21/29

DE 601 28 622 T2 2007.09.13
22/29

DE 601 28 622 T2 2007.09.13
23/29

DE 601 28 622 T2 2007.09.13
24/29

DE 601 28 622 T2 2007.09.13
25/29

DE 601 28 622 T2 2007.09.13
26/29

DE 601 28 622 T2 2007.09.13
27/29

DE 601 28 622 T2 2007.09.13
28/29

DE 601 28 622 T2 2007.09.13
29/29

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

