Title: DRILL BIT WITH ECCENTRIC BODY

Abstract:
A rotary drill bit for drilling a borehole into an earth formation is provided. The drill bit comprises a drill bit body provided with means for connecting the drill bit to a drill string, the drill bit having a longitudinal axis of rotation during drilling with the drill string and the
Abstract (continued):

Drill bit connected thereto, and a cutting member provided with cutting means at the outer surface thereof. The cutting member is rotatable relative to the bit body between a first rotational position and a second rotational position, wherein the cutting means is arranged at a larger radial distance from said longitudinal axis of rotation when the cutting member is in the second rotational position than when the cutting member is in the first rotational position.
Title: DRILL BIT WITH ECCENTRIC BODY

Abstract: A rotary drill bit for drilling a borehole into an earth formation is provided. The drill bit comprises a drill bit body provided with means for connecting the drill bit to a drill string, the drill bit having a longitudinal axis of rotation during drilling with the drill string and the drill bit connected thereto, and a cutting member provided with cutting means at the outer surface thereof. The cutting member is rotatable relative to the bit body between a first rotational position and a second rotational position, wherein the cutting means is arranged at a larger radial distance from said longitudinal axis of rotation when the cutting member is in the second rotational position than when the cutting member is in the first rotational position.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
DRILL BIT WITH ECCENTRIC BODY

The present invention relates to a drill bit for use in combination with a drill string for drilling a borehole into an earth formation. In the practice of drilling wellbores it is sometimes required to drill a lower section of a borehole at a larger diameter than an upper section of the borehole. This is for example the case in applications whereby a section of the borehole is to be underreamed, or whereby narrowing of the borehole in downward direction is to be avoided. In conventional practice boreholes are drilled at stepwise decreasing diameters in downward direction. This is normally a consequence of the casing or liner program whereby casing or liner sections of stepwise decreasing diameters are installed in the wellbore. In such arrangement each next lower casing or liner section extends through a previously installed section. As a result the upper part of the wellbore has to be drilled at a significantly larger diameter than the lower parts of the wellbore, thereby increasing the costs of drilling.

In conventional practice bi-centred drill bits are used to drill relative large diameter borehole sections while such bits still can pass through narrower sections of the borehole. However, bi-centred bits do not always drill uniformly, and there are frequently problems with when such pass through narrower borehole sections.

It is an object of the invention to provide an improved drill bit which overcomes the drawbacks of the prior art drill bits.

Furthermore, it is desirable to provide a drill bit which is capable of underreaming an existing borehole, and which can drill relatively large diameter borehole
sections while being capable of passing through relative small diameter borehole sections.

In accordance with the invention there is provided a rotary drill bit for drilling a borehole into an earth formation, comprising: a drill bit body provided with means for connecting the drill bit to a drill string, the drill bit having a longitudinal axis of rotation during drilling with the drill string and the drill bit connected thereto; and a cutting member provided with cutting means at an outer surface of the cutting member, the cutting member being rotatable relative to the bit body between a first rotational position and a second rotational position, wherein the cutting means is arranged at a larger radial distance from said longitudinal axis of rotation when the cutting member is in the second rotational position than when the cutting member is in the first rotational position, characterised in that the cutting member is arranged so that, when the cutting member rotates from the first to the second rotational position, at least a component of the rotation of the cutting member has a direction coinciding with the direction of rotation of the drill string.

It is thereby achieved that by rotating the cutting member from the first rotational position to the second rotational position, the cutting diameter of the drill bit increases.

In an attractive application the drill string with the drill bit connected thereto, is lowered through a casing of an upper borehole portion to an uncased lower borehole portion while the cutting member is in the first rotational position. Thereafter a further borehole section is drilled with the cutting member in the second rotational position, whereby the diameter of the newly drilled portion is larger
than the internal diameter of the casing through which the drill bit was lowered. A new casing section is then lowered through the upper casing into the lower borehole portion, which new casing section then is expanded against the borehole wall. Thus, the borehole diameter is allowed to remain unchanged in downward direction.

It is noted that the cutting member is arranged so that, when the cutting member rotates from the first to the second rotational position, at least a component of the rotation of the cutting member has a direction coinciding with the direction of rotation of the drill string. This has the effect that during drilling, drag forces exerted by the borehole wall to the cutting member tend to bias the cutting member to its first rotational position, so that undesired opening of the cutting member to its second rotational position by the action of such drag forces is prevented.

In a preferred embodiment the cutting member is arranged to rotate from the first to the second rotational position about a rotational axis extending substantially parallel to, and radially displaced from, said longitudinal axis of rotation and in the same direction as the direction of rotation of the drill bit during drilling with the drill bit.

Advantageously the cutting member is axially movable relative to the bit body between a primary axial position and a secondary axial position, wherein in the primary axial position the cutting member is located closer to the lower end of the drill bit than in the secondary axial position, and wherein the bit body and the cutting member are provided with co-operating guide means for guiding the cutting member from the first rotational
position to the second rotational position upon movement of the cutting member from the primary axial position to the secondary axial position. Thus, the cutting member can be moved from the first to the second rotational position by, for example, applying weight to the drill string resulting in lowering of the string whereby the drag forces from the borehole wall induce the cutting member to move from the primary to the secondary axial position. Alternatively, or in addition, such axial
movement can be achieved by operating a hydraulic actuator incorporated in the drill string.

The invention will be described hereinafter in more detail and by way of example, with reference to the accompanying drawings in which:

Fig. 1 schematically shows a longitudinal view, partially in cross-section, of an embodiment of the drill bit according to the invention in a first mode of operation;

Fig. 2 schematically shows a longitudinal view, partially in cross-section, of a cutting member applied in the embodiment of Fig. 1;

Fig. 3 schematically shows a longitudinal view, partially in cross-section, of the embodiment of Fig. 1 in a second mode of operation, and

Fig. 4 schematically shows a partial side view of an alternative embodiment of the drill bit of the invention, with the cutting member removed therefrom.

In the Figures like reference numerals relate to like components.

Referring to Figs. 1 and 3 there is shown a drill bit 1 for use in combination with a drill string (not shown) for drilling a borehole into an earth formation, the drill bit having a longitudinal axis of rotation 2 coinciding with the central longitudinal axis of the drill string during drilling with the drill bit and drill string. The drill bit 1 includes a bit body 3 of substantially circular cross-section, provided with a connector 4 for connecting the drill bit 1 to the drill string. The drill bit 1 furthermore includes a tubular shank 6 connected to the bit body 3 at the side thereof opposite the connector 4, the shank having a central longitudinal axis 8 extending substantially parallel to the axis of rotation 2. Thus, the shank 6 extends eccentrically relative to the drill string when the drill
bit 1 is connected to the drill string by connector 4. A pilot bit 10 provided with cutting inserts 11 is connected to the shank 6 at the end thereof opposite the bit body 3. The pilot bit 10 is of substantially circular cross-sectional shape with a diameter slightly larger than the diameter of the bit body 3 and has a central longitudinal axis 12 coinciding with the longitudinal axis of rotation 2.

A cutting member 14 is arranged between the bit body 3 and the pilot bit 10, which cutting member 14 is provided with a longitudinal bore 16 through which the shank 6 extends in a manner allowing rotation and axial translation of the cutting member 14 relative to the shank 6. The cutting member 14 has a substantially circular cross-section and is provided with a plurality of cutting inserts 18 arranged at the outer surface thereof, the outer diameter of the cutting member 14 being substantially equal to the diameter of the pilot bit 10. The bore 16 is eccentrically arranged in the cutting member 14 so that in a first rotational position thereof relative to the bit body 3, the cutting member 14 is substantially aligned with the pilot bit 10 (Fig. 1), and in a second rotational position thereof relative to the bit body 3, the cutting member 14 is radially displaced from the pilot bit 10 (Fig. 3). Hereinafter, the first rotational position is also referred to as the retracted position and the second rotational position is also referred to as the extended position. The cutting member 14, when in the extended position, is rotated about 180° from the retracted rotational position. In terms of eccentricity of the cutting member 14 relative to the pilot bit 10, this implies that in the retracted rotational position the eccentricity is non-existing whereas in the extended rotational position the eccentricity is maximal.
Furthermore, the cutting member 14 is movable in axial direction along the shaft 6 between a primary axial position and a secondary axial position, wherein in the primary axial position the cutting member 14 is positioned near the pilot bit and in the secondary axial position the cutting member 14 is positioned remote from the pilot bit.

Referring further to Fig. 2, the bore 16 of the cutting member 14 is provided with a helical thread 20 extending along the length of the bore. The thread 20 is indicated in more detail in Fig. 2 showing the cutting member 14 removed from the shank. The shank 6 is provided with a number of protrusions in the form of dogs 22 (only one of which is shown) extending into the helical thread 20. The orientation of the thread 20 is such that when the cutting member 14 rotates from the retracted rotational position to the extended rotational position in the direction in which the drill string rotates during normal drilling, the co-operating thread 20 and dogs 22 guide the cutting member 14 from the primary axial position to the secondary axial position. A helical spring 23 is arranged between the bit body 3 and the cutting member 14 so as to bias the cutting member 14 to the primary axial position thereof.

The bore 16 has a large diameter part 24 at the side of the pilot bit 10 and a small diameter part 26 at the side of the bit body 3, with an annular shoulder 28 between the large diameter part 24 and the small diameter part 26. Similarly, the shank has a large diameter part 30 extending into the large diameter part 24 of the bore, and a small diameter part 32 extending into the small diameter part 26 of the bore, with an annular shoulder 33 between the large diameter part 30 and the small diameter part 32. The relative position of the annular shoulders 28, 33 is such that in the primary
axial position of the cutting member 14 a relatively small annular space 34 is formed between the shoulders 28, 33. The bore 16 is sealed relative to the shank 6 by annular seals 36, 38 arranged along the bore 16. The drill bit is provided with a drilling fluid passage 40 for the supply of drilling fluid to conventional nozzles 42 arranged at the pilot bit 10, which passage 38 extends through the shank 6 and is in fluid communication with the space 34 by two ports 44 provided in the wall of the shank 6.

In Fig. 4 is shown, in part, an alternative embodiment of the drill bit whereby the shank 6 is provided with a helical thread 50 and the cutting member (not shown) is provided with a dog which extends into the thread 50 so that the co-operating thread 50 and dog induce the cutting member to rotate in right-hand direction relative to the bit body 3 (when seen from the top of the drill bit) during upward axial movement of the cutting member along shank 6. Note that the drill string (not shown) also rotates in right hand-direction during drilling. A short upper section 52 of the thread 50 changes orientation so that the cutting member rotates in left-hand direction relative to the bit body 3 when the dog enters the thread section 50.

The lower end of the bit body 3 is provided with a set of primary teeth 54, and the upper end of the cutting member is provided with a corresponding set of secondary teeth (not shown). The two set of teeth, when engaged with each other, allow right-hand rotation and prevent left-hand rotation of the cutting member relative to the bit body 3. Furthermore, the arrangement of the thread 50, the dog, and the two sets of teeth is such that the sets of teeth engage with each other when the dog arrives in the upper thread section 52.
During normal operation of the embodiment of Figs. 1-3, the drill bit 1 is connected to the drill string by means of the connector 4 and the drill string is lowered into a borehole (not shown) formed into an earth formation. The borehole has been cased to a certain depth whereby an uncased borehole section extends below the casing, and the internal diameter of the casing is smaller than the diameter of the uncased borehole section. Lowering is proceeded until the drill bit 1 is positioned in the uncased borehole section, whereby during lowering the spring holds the cutting member 14 in the primary axial position and related retracted rotational position (Fig. 1) so that the drill bit 1 fits within the casing.

After the drill bit 1 has been positioned in the uncased borehole section, drilling fluid is pumped through the drilling fluid passage 40 and the drill string is rotated so as to start drilling of a further borehole section. Upon pumping drilling fluid through the passage 40, drilling fluid is pumped through the ports 44 into the annular space 34. As a result the fluid pressure on the annular shoulder of the cutting member 14 rises and thereby the fluid pressure biases the cutting member 14 to the secondary axial position and related extended rotational position. Thus, the bore 16 and the shank 6 act as a hydraulic actuator for moving the cutting member 14 from the primary axial position to the secondary axial position upon application of fluid pressure in the fluid passage 40. The drill bit 1 with the cutting member 14 in the extended rotational position and in the secondary axial position is shown in Fig. 3.

Uncontrolled movement of the cutting member 14 from the retracted position to the extended position due to drag forces from the borehole wall, is prevented by virtue of the orientation of the thread 20 such that the
cutting member 14 rotates from the retracted to the extended position in the direction of rotation of the drill string. Thereby, such drag forces tend to bias the closure member 14 into its retracted position.

Movement of the cutting member 14 from the primary axial position to the secondary axial position is limited by a suitable stop surface (not shown) provided in the thread 20 which prevents further axial and rotational movement of the cutting member 14. In this position the cutting member 14 is at maximum eccentricity relative the pilot bit 10. Rotation of the drill string is proceeded and, as a result, the borehole is further drilled to a larger diameter than the internal diameter of the casing through which the drill string was lowered.

Once drilling of the new borehole section is finalised, rotation of the drill string is stopped an pumping of drilling fluid is stopped. The cutting member 14 then is no longer biased to the secondary axial position, and the spring acts to move the cutting member 14 back to the primary axial position and related retracted rotational position. The drill string can now be removed from the borehole through the earlier installed casing.

Subsequently a new casing section is lowered through the casing installed earlier, which casing section obviously has a smaller outer diameter than the inner diameter of the earlier installed casing. After the new casing section has arrived in the newly drilled borehole section, the new casing section is expanded in a known manner to a diameter substantially equal to the diameter of the casing installed earlier. In this manner it is achieved that the internal diameter of the casing in the borehole remains more or less constant throughout the depth of the borehole, instead of the nested arrangement of casings in conventional boreholes.
Normal operation of the alternative embodiment is similar to normal operation of the embodiment of Figs. 1-3, except that during the upward movement of the cutting member along the shank 6 the dog of the cutting member arrives in the short thread section 52 and thereby changes rotation of the cutting member from right-hand to left-hand relative to the bit body 3. As a result the teeth of the cutting member firmly engage the teeth 54 of the bit body 3, so that the cutting member becomes secured against undesired left-hand rotation of the cutting member relative to the bit body 3 during further drilling of the borehole (whereby the drill string rotates in right-hand direction).

Instead of applying the aforementioned dogs for guiding the cutting member along the shank, the shank is suitably provided with one or more threads which correspond in number and orientation to the threads of the cutting member in a manner that each thread of the shank extends opposite a corresponding thread of the cutting member, and wherein one or more bearing balls extend in the oppositely arranged threads.
CLAIMS:

1. A rotary drill bit for drilling a borehole into an earth formation, comprising:

 a drill bit body provided with means for connecting the drill bit to a drill string, the drill bit having a longitudinal axis of rotation during drilling with the drill string and the drill bit connected thereto; and a cutting member provided with cutting means at an outer surface of the cutting member, the cutting member being rotatable relative to the bit body between a first rotational position and a second rotational position, wherein the cutting means is arranged at a larger radial distance from said longitudinal axis of rotation when the cutting member is in the second rotational position than when the cutting member is in the first rotational position, characterised in that the cutting member is arranged so that, when the cutting member rotates from the first to the second rotational position, at least a component of the rotation of the cutting member has a direction coinciding with the direction of rotation of the drill string.

2. The drill bit of claim 1, wherein the cutting member is arranged to rotate from the first to the second rotational position about a rotational axis extending substantially parallel to, and radially displaced from, said longitudinal axis of rotation and in the same direction as the direction of rotation of the drill bit during drilling with the drill bit.

3. The drill bit of claim 1 or 2, wherein the cutting member is axially movable relative to the bit body between a primary axial position and a secondary axial position, wherein in the primary axial position the cutting member is
located closer to a lower end of the drill bit than in the secondary axial position, and wherein the bit body and the cutting member are provided with co-operating guide means for guiding the cutting member from the first rotational position to the second rotational position upon movement of the cutting member from the primary axial position to the secondary axial position.

4. The drill bit of claim 3, wherein the cutting member is provided with a bore and the bit body is provided with a shank passing through the bore so as to allow the cutting member to rotate between said rotational positions about the shank and to move between said axial positions along the shank, and wherein said guide means includes at least one helical guide surface provided at one of the cutting member and the shank.

5. The drill bit of claim 4, wherein said helical guide surface is formed by a helical thread and the guide means further includes a guide member provided at the other of the cutting member and the shank and extending into the helical thread.

6. The drill bit of claim 4, wherein the guide surface forms a first helical thread provided at the shank, and wherein the guide means further includes a second helical thread provided at the cutting member and extending opposite the first helical thread, and at least one bearing ball extending into the first and second helical threads.

7. The drill bit of any one of claims 3-6, further comprising hydraulic actuator means for moving the cutting member from the primary axial position to the secondary axial position by the action of fluid pressure of a body of drilling fluid present in a drilling fluid passage of the drill string.
8. The drill bit of claim 5 further comprising hydraulic actuator means for moving the cutting member from the primary axial position to the secondary axial position by the action of fluid pressure of a body of drilling fluid present in a drilling fluid passage of the drill string, wherein the hydraulic actuator means includes an annular space formed between the bore and the shank and in fluid communication with the drilling fluid passage, and wherein the cutting member is provided with a pressure surface formed in the bore and being oriented so as to bias the cutting member from the primary axial position to the second axial position upon application of fluid pressure in the fluid passage.

9. The drill bit of any one of claims 3-8, further comprising spring means arranged to bias the cutting member from the secondary axial position to the primary axial position.

10. The drill bit of any one of claims 4-9, wherein the bit body is provided with a pilot bit arranged at a front end of the drill bit and connected to a lower end of the shank.

11. The drill bit of claim 10, wherein when the cutting member is in the first rotational position, said cutting means has a cutting envelope substantially equal to a cutting envelope of the pilot bit.

SMART & BIGGAR
OTTAWA, CANADA
PATENT AGENTS
Fig. 2.