Title: METHODS AND COMPOSITIONS FOR TREATING ATTENTION DEFICIT HYPERACTIVITY DISORDER, ANXIETY AND INSOMNIA USING DEXMEDETOMIDINE TRANSDERMAL COMPOSITIONS

Abstract:

International Application Number: PCT/US2014/059053

International Filing Date: 3 October 2014 (03.10.2014)

Filing Language: English

Publication Language: English

Priority Data: 61/887,862 7 October 2013 (07.10.2013) US

Applicant: TEIKOKU PHARMA USA, INC. [US/US]; 1718 Ringwood Avenue, San Jose, CA 95131 (US).

Inventors: PONGPEERAPAT, Adchara; 235 Pamela Avenue, Apt 5, San Jose, CA 95116 (US). JAIN, Amit; 825 Carino Terrace, Milpitas, CA 95035 (US). BERNER, Bret; 424 Lee Avenue, Half Moon Bay, CA 94019 (US). WEN, Jianye; 847 Colorado Avenue, Palo Alto, CA 94303 (US). SHUDO, Jutaro; 1230 San Tomas Aquino Road, San Jose, CA 95117 (US).

Agent: FIELD, Bret, E.; 1900 University Avenue, Suite 200, East Palo Alto, CA 94303 (US).

Declarations under Rule 4.17:

— if inventorship (Rule 4.17(iv))

Published:

— with declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority
METHODS AND COMPOSITIONS FOR TREATING ATTENTION DEFICIT HYPERACTIVITY DISORDER, ANXIETY AND INSOMNIA USING DEXMEDETOMIDINE TRANSDERMAL COMPOSITIONS

INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is a neurobehavioral disorder characterized primarily by inattention, easy distractibility, disorganization, procrastination, and forgetfulness. Attention Deficit Hyperactivity Disorder is a condition that typically manifests in children in the preschool and early school years making it difficult for these children to control their behavior or pay attention. It is estimated that between 3 and 5 percent of children have attention deficit hyperactivity disorder (ADHD), or approximately 2 million children in the United States. It is believed that in a classroom of 24 to 30 children, there is likely that at least one child will have ADHD. ADHD is characterized by inattention, hyperactivity, and impulsivity. The America Psychiatric Association in the Diagnostic and Statistical Manual of Mental Disorders have established three sub-types of ADHD. ADHD Predominantly Inattentive Type (ADHD-PI) presents with symptoms including being easily distracted, forgetful, daydreaming, disorganization, poor concentration, and difficulty completing tasks. ADHD, Predominantly Hyperactive-Impulsive Type presents with excessive fidgetiness and restlessness, hyperactivity, difficulty waiting and remaining seated, immature behavior; destructive behaviors may also be present. ADHD, Combined Type is a combination of ADHD Predominantly Inattentive Type and ADHD, Predominantly Hyperactive-Impulsive Type.

Anxiety disorder is a psychiatric disorder characterized by excessive rumination, worrying, uneasiness, apprehension and fear about future uncertainties either based on real or imagined events, which may affect both physical and psychological health. The American Psychiatric Association has established that term anxiety includes four aspects or experiences that an individual with anxiety disorder may have: mental apprehension, physical tension, physical symptoms and dissociative anxiety.
Insomnia is a sleep disorder in which there is an inability to fall asleep or to stay asleep as long as desired. Insomnia is often attributed both as a sign and as a symptom of accompanying sleep, medical, and/or psychiatric disorders characterized by a persistent difficulty falling asleep, staying asleep or suffering from sleep of poor quality. Insomnia is typically followed by functional impairment while awake. Insomnia can occur at any age, but it is particularly common in the elderly. Insomnia can be persistent for a short duration (e.g., lasting less than three weeks) or for a long duration (e.g., lasting greater than 3-4 weeks), which often leads to memory problems, depression, irritability and an increased risk of heart disease and automobile related accidents.

Dexmedetomidine is the S-enantiomer of medetomidine and is an agonist of α_2-adrenergic receptors that is used as a sedative medication in intensive care units and by anesthetists for intubated and nonintubated patients requiring sedation for surgery or short term procedures. The α_2-adrenergic receptor is a G-protein coupled receptor associated with the Gi heterotrimeric G-protein that includes three highly homologous subtypes, including α_{2a}, α_{2b} and α_{2c}-adrenergic receptors. Agonists of the α_2-adrenergic receptor are implicated in sedation, muscle relaxation and analgesia through effects on the central nervous system.

Dexmedetomidine is used in clinical settings as a sedative through parenteral, intravenous and oral administration and thus, requires close supervision by a health care professional in a hospital setting. Dexmedetomidine is currently employed for sedation of intubated or mechanically ventilated subjects in an in-clinic (e.g., hospital) setting as well as for the sedation of non-intubated subjects as a part of monitored anesthesia during surgery, radiography or diagnostic procedures. Dexmedetomidine is also approved for continuous intravenous infusion in non-intubated subjects since it does not adversely affect breathing.

SUMMARY

Aspects of the invention include methods of treating ADHD, anxiety or insomnia by applying a transdermal delivery device containing a dexmedetomidine composition formulated to deliver an amount of dexmedetomidine to a subject diagnosed as having ADHD, anxiety or insomnia. In practicing methods according to certain embodiments, a transdermal delivery device having a dexmedetomidine composition is applied to a subject and is maintained in contact with the subject in a manner sufficient to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in the subject. Also provided are transdermal delivery devices configured to deliver an amount of dexmedetomidine sufficient for practicing the subject methods, as well as kits containing the transdermal delivery devices.
BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition with polyisobutylene/polybutene and crosslinked polyvinylpyrrolidone adhesive according to one embodiment.

Figure 2A shows an example of cumulative dexmedetomidine delivered amount with time according to one embodiment. Figure 2B shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a non-functionalized acrylate adhesive according to one embodiment. Figure 2C shows an example of dexmedetomidine utilization with time according to one embodiment.

Figure 3 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a non-functionalized acrylate adhesive according to one embodiment.

Figure 4 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate according to one embodiment.

Figure 5 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive according to another embodiment.

Figure 6 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having hydroxyl functionalized acrylate adhesive and a hydroxyl functionalized acrylate adhesive containing vinyl acetate according to another embodiment.

Figures 7A-7B shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for dexmedetomidine transdermal compositions having a non-functionalized acrylate adhesive, a hydroxyl functionalized acrylate adhesive and a hydroxyl functionalized acrylate adhesive containing vinyl acetate according to another embodiment.

Figure 8 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a carboxylic acid functionalized acrylate adhesive according to another embodiment.

Figure 9 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal
composition having acrylic adhesive with carboxyl group and hydroxyl group as the functional group containing vinyl acetate according to another embodiment.

Figure 10 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a polyisobutylene/polybutene adhesive with a carboxylic acid functionalized acrylate adhesive according to one embodiment.

Figure 11 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a polyisobutylene/polybutene adhesive with the solubility enhancer levulinic acid according to one embodiment.

Figure 12 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a polyisobutylene/polybutene adhesive with the solubility enhancer lauryl lactate according to one embodiment.

Figure 13 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a polyisobutylene/polybutene adhesive with the solubility enhancer propylene glycolmonolaurate according to one embodiment.

Figure 14A shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate with levulinic acid according to one embodiment.

Figure 14B shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate with polyvinylpyrrolidone according to one embodiment.

Figure 14C shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate with a carboxylic acid functionalized acrylate adhesive according to one embodiment.

Figure 15 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having acrylate pressure sensitive adhesive in the absence and presence of levulinic acid, oleic acid or a carboxylic acid functionalized acrylate adhesive according to one embodiment.

Figure 16 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal
composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate with a carboxylic acid functionalized acrylate adhesive according to another embodiment.

Figure 17 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate with oleic acid or a carboxylic acid functionalized acrylate adhesive according to another embodiment.

Figure 18 shows an example of a plot of average dexmedetomidine flux as a function of transdermal delivery device application time for a dexmedetomidine transdermal composition having a hydroxyl functionalized acrylate adhesive containing vinyl acetate with solubility enhancers such as carboxylic acid functionalized acrylate adhesives, lauryl lactate or oleic acid according to another embodiment.

Figure 19 shows the average dexmedetomidine in-vitro skin flux with respect to time from various formulations.

Figures 20 and 21 show the flux on two different skin samples from various formulations.

DETAILED DESCRIPTION

Aspects of the invention include methods of treating ADHD, anxiety or insomnia by applying a transdermal delivery device containing a dexmedetomidine composition formulated to deliver an amount of dexmedetomidine to a subject diagnosed as having ADHD, anxiety or insomnia. In practicing methods according to certain embodiments, a transdermal delivery device having a dexmedetomidine composition is applied to a subject and is maintained in contact with the subject in a manner sufficient to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in the subject. Also provided are transdermal delivery devices configured to deliver an amount of dexmedetomidine sufficient for practicing the subject methods, as well as kits containing the transdermal delivery devices.

Before the present invention is described in greater detail, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that
stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

5 Certain ranges are presented herein with numerical values being preceded by the term "about." The term "about" is used herein to provide literal support for the exact number that it precedes, as well as a number that is near to or approximately the number that the term precedes. In determining whether a number is near to or approximately a specifically recited number, the near or approximating unrecited number may be a number which, in the context in which it is presented, provides the substantial equivalent of the specifically recited number.

10 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.

All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

15 It is noted that, as used herein and in the appended claims, the singular forms "a," "an", and "the" include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation.

20 As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present
invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.

In further describing various embodiments of the invention, methods for applying to a subject diagnosed as having ADHD, anxiety or insomnia a transdermal delivery device having a dexmedetomidine composition and maintaining the transdermal delivery device in contact with the subject in a manner sufficient to deliver an amount of dexmedetomidine to treat ADHD, anxiety or insomnia in the subject are first reviewed in greater detail. Next, transdermal delivery devices suitable for practicing the subject methods are described. Kits that include transdermal delivery devices of interest are then reviewed.

METHODS FOR TREATING ATTENTION DEFICIT HYPERACTIVITY DISORDER (ADHD), ANXIETY OR INSOMNIA WITH DEXMEDETOMIDINE TRANSDERMAL DELIVERY DEVICES

Aspects of the invention include methods of treating ADHD, anxiety or insomnia by applying a transdermal delivery device containing a dexmedetomidine composition formulated to deliver an amount of dexmedetomidine to a subject diagnosed as having ADHD, anxiety or insomnia. In practicing methods according to certain embodiments, a transdermal delivery device having a dexmedetomidine composition is applied to a subject and is maintained in contact with the subject in a manner sufficient to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in the subject. The term "transdermal" is used in its conventional sense to refer to the route of administration where an active agent (i.e., drug) is delivered across the skin (e.g., topical administration) or mucous membrane for systemic distribution. As such, transdermal dexmedetomidine compositions as described herein include compositions which are delivered to the subject through one or more of the subcutis, dermis and epidermis, including the stratum corneum, stratum germinativum, stratum spinosum and stratum basale. Accordingly, extended transdermal delivery devices containing a transdermal dexmedetomidine composition may be applied at any convenient location, such as for example, the arms, legs, buttocks, abdomen, back, neck, scrotum, vagina, face, behind the ear, buccally as well as sublingually. In describing methods of the present invention, the term "subject" is meant the person or organism to which the transdermal composition is applied and maintained in contact. As such, subjects of the invention may include but are not limited to mammals, e.g., humans and other primates, such as chimpanzees and other apes and monkey species; and the like, where in certain embodiments the subject are humans. The term subject is also meant to include a person or organism of any age, weight or other physical characteristic, where the subjects may be an adult, a child, an infant or a newborn. Methods for treating ADHD or an associated disorder, anxiety or insomnia according to certain embodiments
includes treatment of a juvenile subject. In these embodiments, the subject may be a child under the age of 8 years, such as a child under the age of 5 years.

Transdermal administration of dexmedetomidine may be passive or active. By "passive" transport is meant that the dexmedetomidine composition is delivered across the skin or mucous membrane in the absence of applied energy (e.g., rubbing or heat) and is primarily dependent on the permeability of the barrier (e.g., skin or mucous membrane) and by entropy of delivery. However, transdermal administration according to certain embodiments may also include active transport of the dexmedetomidine composition across the skin or mucous membrane. Active transport can be any convenient protocol sufficient to transport the composition through the skin or mucous membrane in conjunction with applied energy and may include, but is not limited to microneedle delivery, facilitated diffusion, electrochemically-produced gradients, iontophoretic systems, among other protocols.

As summarized above, in practicing methods according to embodiments of the invention a transdermal delivery device having a dexmedetomidine composition is applied to a subject and is maintained in contact with the subject in a manner sufficient to deliver an amount of dexmedetomidine to treat ADHD, anxiety or insomnia in the subject. The term "ADHD" refers to the psychiatric disorder or neurobehavioral disorder characterized by significant difficulties either of inattentiveness or hyperactivity and impulsiveness or a combination thereof. ADHD as used herein includes the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) designation of the three subtypes of the disorder which include being predominantly inattentive (ADHD-PI or ADHD-I), predominantly hyperactive-impulsive (ADHD-HI or ADHD-H), or the two combined (ADHD-C). In certain embodiments, disorders associated with ADHD may also be treated by the subject methods, the associated disorders including but not limited to restless legs syndrome, oppositional defiant and conduct disorder, bipolar disorder, major depressive disorder, anxiety disorders, obsessive compulsive disorder as well as sleep disorders including insomnia, obstructive sleep apnea syndrome. The term "anxiety disorder" is used herein in its conventional sense to refer to the psychiatric disorder characterized by excessive rumination, worrying, uneasiness, apprehension and fear about future uncertainties either based on real or imagined events, which may affect both physical and psychological health (e.g., in accordance with the American Psychiatric Association establishment of anxiety which includes mental apprehension, physical tension, physical symptoms and dissociative anxiety) and may include the anxiety disorders generalized anxiety disorder (GAD), panic disorder, phobias and separation anxiety disorder. Furthermore, the term "insomnia" is used herein in its conventional sense to refer the disorder characterized by the inability to fall asleep or to stay asleep as long as desired. Insomnia may include any of several several sleep, medical, and...
psychiatric disorders which is characterized by a persistent difficulty falling asleep, staying asleep or suffering from sleep of poor quality.

In embodiments of the invention, a subject is diagnosed as having one or more of ADHD, anxiety and insomnia. A subject may be diagnosed as having ADHD, anxiety or insomnia by a qualified health care professional using any suitable protocol, such as for example protocols set forth by the American Psychiatric Association. In certain instances, ADHD, anxiety and insomnia are diagnosed according to criteria provided by the Diagnostic and Statistical Manual of Mental Disorders (e.g., DSM-V, released May 2013).

In certain instances, a subject is diagnosed as having one of the three subtypes of ADHD designated by the Diagnostic and Statistical Manual of Mental Disorders (e.g., DSM-V, released May 2013): predominantly inattentive (ADHD-PI or ADHD-I), predominantly hyperactive-impulsive (ADHD-HI or ADHD-H), or the two combined (ADHD-C). In certain embodiments, disorders associated with ADHD may also be diagnosed in the subject, the associated disorders including but not limited to restless legs syndrome, oppositional defiant and conduct disorder, bipolar disorder, major depressive disorder, anxiety disorders, obsessive compulsive disorder as well as sleep disorders including insomnia, obstructive sleep apnea syndrome.

In other instances, subjects are diagnosed as having insomnia according to the Epworth Sleepiness Scale, the Sleep Disorders Questionnaire, the Pittsburgh Sleep Quality Index, the Insomnia Severity Index, the use of sleep diary to track sleeping patterns, a polysomnogram to measure activity during sleep, actigraphy for assess sleep-wake patterns, among other convenient protocols for diagnosing insomnia.

In yet other instances, a subject is diagnosed as having anxiety according to the Diagnostic and Statistical Manual of Mental Disorders (e.g., DSM-V, released May 2013) such as according to diagnosis criteria for evaluating generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive compulsive disorder and separation anxiety disorder in children.

In some embodiments, methods further include diagnosing a subject as having one or more of ADHD, anxiety and insomnia. In certain instances, diagnosing ADHD, anxiety and insomnia may include conducting a medical examination such as to rule out other causes of observable symptoms. For example, diagnosing ADHD may include gathering information from the subject such through an interview, questionnaire or by review of previous medical conditions, diaries of sleep, nighttime activity, family history and behavioral records. This may include gathering information may include observing symptoms of inattention in the subject, hyperactivity, impulsivity or restlessness.

Diagnosing insomnia may include medical examination, interview, questionnaire and sleep tests according to the Epworth Sleepiness Scale, the Sleep Disorders Questionnaire,
the Pittsburgh Sleep Quality Index, the Insomnia Severity Index as well as the use of sleep
diary to track sleeping patterns, a polysomnogram to measure activity during sleep,
actigraphy for assess sleep-wake patterns, among other convenient protocols for diagnosing
insomnia.

Diagnosing anxiety may include gathering information from the subject such through
an interview, questionnaire or by review of previous medical conditions, family history and
behavioral records. In these embodiments, a subject diagnosed as having anxiety may be
further evaluate to determine if the subject has one or more of generalized anxiety disorder,
panic disorder, post-traumatic stress disorder or obsessive compulsive disorder. Where the
subject is a child, diagnosing may include determining that the subject has separation
anxiety disorder.

As discussed above, methods include applying to a skin surface of a subject
diagnosed as having ADHD, anxiety or insomnia a transdermal delivery device having a
dexmedetomidine composition that contains dexmedetomidine and a pressure sensitive
adhesive and maintaining the transdermal delivery device in contact with the subject in a
manner sufficient to deliver dexmedetomidine over a period of time to treat ADHD, anxiety or
insomnia in the subject. By "treating" or "treatment" is meant at least a suppression or
amelioration of the symptoms associated with the condition affecting the subject, where
suppression and amelioration are used in a broad sense to refer to at least a reduction in the
magnitude of a parameter, e.g., symptom, associated with ADHD, anxiety or insomnia. As
such, treatment of ADHD, anxiety or insomnia includes situations where ADHD, anxiety or
insomnia is completely inhibited, e.g., prevented from happening, or stopped, e.g.,
terminated, such that the subject no longer experiences ADHD, anxiety or insomnia.

In embodiments of the invention, methods include applying a transdermal delivery
device having a dexmedetomidine composition to a subject and maintaining the transdermal
delivery device in contact with the subject in a manner to deliver an amount of
dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in the subject. In certain
embodiments, methods include maintaining the transdermal delivery device in contact with
the subject in a manner sufficient to deliver a sedative amount of dexmedetomidine. By
"sedative" is meant that the dexmedetomidine composition is formulated to deliver an
amount of dexmedetomidine to the subject which causes at least partial sedation. For
example, in some instances methods include delivering an amount of dexmedetomidine to
the subject such that the subject is characterized as being in a state where the subject can
exhibit brisk response to light glabellar tap or loud auditory stimulus. In other instances,
methods include delivering an amount of dexmedetomidine to the subject such that the
subject is characterized as being in a state where the subject exhibits a sluggish response to
light glabellar tap or loud auditory stimulus. In certain instances, dexmedetomidine
compositions of interest are formulated to deliver an amount of dexmedetomidine which is
fully sedative and the subject is characterized as being in a state where the subject exhibits
no response to touch or auditory stimulus.

Suitable protocols for determining level of sedation may include but are not limited to
the Ramsay Sedation Scale, the Vancouver Sedative Recovery Scale, the Glasgow Coma
Scale modified by Cook and Palma, the Comfort Scale, the New Sheffield Sedation Scale,
the Sedation-Agitation Scale, and the Motor Activity Assessment Scale, among other
convenient protocols for determining the level of sedation.

In some embodiments, methods may further include evaluating the level of sedation
of the subject to determine whether any reduction in responsiveness or cognitive or motor
activity has resulted from administration of a transdermal delivery device. The level of
sedation may be evaluated by any convenient protocol, such as with those mentioned
above. In certain embodiments, the level of sedation is evaluated using the Ramsey
Sedation Scale, (as disclosed in Ramsay, et al. Controlled sedation with alphaxalone-
alphadolone, British Med Journal1974; 2:656-659, the disclosure of which is herein
incorporated by reference). For example, each subject may be evaluated by a qualified
health care professional and assigned a score for the level of sedation according to the
Ramsey Sedation Scale, summarized below.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description of Responsiveness, Cognitive and Motor Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient is anxious and agitated or restless, or both</td>
</tr>
<tr>
<td>2</td>
<td>Patient is co-operative, oriented, and tranquil</td>
</tr>
<tr>
<td>3</td>
<td>Patient responds to commands only</td>
</tr>
<tr>
<td>4</td>
<td>Patient exhibits brisk response to light glabellar tap or loud auditory stimulus</td>
</tr>
<tr>
<td>5</td>
<td>Patient exhibits a sluggish response to light glabellar tap or loud auditory stimulus</td>
</tr>
<tr>
<td>6</td>
<td>Patient exhibits no response</td>
</tr>
</tbody>
</table>

In some embodiments, during administration of subject dexmedetomidine
transdermal compositions the level of sedation of a subject is evaluated and the subject is
assigned a Ramsey score of 2 or higher, such as 3 or higher, such as 4 or higher and
including a Ramsey score of 5. For example, methods may include delivering an amount of
dexmedetomidine to the subject in manner sufficient to maintain a Ramsay score of between
2 and 5 in the subject, such as between 3 and 5 and including a Ramsay score of between 4
and 5.
In certain instances, throughout administration of the dexmedetomidine transdermal composition, the subject exhibits brisk response to light glabellar tap or loud auditory stimulus. In other instances, throughout administration of the dexmedetomidine transdermal composition, the subject exhibits a sluggish response to light glabellar tap or loud auditory stimulus. In yet other instances, throughout administration of the dexmedetomidine transdermal composition, the subject is fully sedated and exhibits no response to touch or auditory stimulus.

The level of sedation of a subject may be evaluated at any time during the methods. In some instances, the level of sedation is evaluated while maintaining the extended transdermal delivery device in contact with the subject at regular intervals, e.g., every 0.25 hours, every 0.5 hours, every 1 hour, every 2 hours, every 4 hours or some other interval. For instance, the level of sedation may be evaluated while maintaining the transdermal delivery device in contact with the subject, such as 15 minutes after applying the transdermal delivery device to the subject, 30 minutes after applying the transdermal delivery device, 1 hour after applying the transdermal delivery device, 2 hours after applying the transdermal delivery device, 4 hours after applying the transdermal delivery device including 8 hours after applying the transdermal delivery device.

The level of sedation of the subject may be evaluated one or more times during a dosage interval, such as 2 or more times, such as 3 or more times, including 5 or more times before, during or after a dosage interval. An upper limit for the number of times the subject may be evaluated during a dosage interval is, in some instances, 10 times or fewer, such as 7 times or fewer, such as 5 times or fewer, such as 3 times or fewer and including 2 times or fewer. In certain embodiments, the number of times the subject may be evaluated during a dosage interval ranges such as from 2 times to 10 times, such as from 3 times to 9 times, such as from 4 times to 8 times and including from 5 times to 7 times.

In certain embodiments, sedation level may be monitored throughout the entire time the transdermal delivery device is maintained in contact with the subject, such by heart rate monitors, breathing monitors or by visual observation, including with the aid of a video monitor.

Depending on the specific protocol employed, treatment of ADHD, anxiety or insomnia according to embodiments of the invention may include one or more dosage intervals. Dosage intervals may last about 2 hours or longer, such as 3 hours or longer, such as 4 hours or longer, such as 6 hours or longer, such as 8 hours or longer, such as 12 hours or longer and including 16 hours or longer. Upper limits for dosage intervals are, in some instances 24 hours or shorter, such as 16 hours or shorter, such as 12 hours or shorter, such as 8 hours or shorter and including 4 hours or shorter. In certain embodiments, dosage
intervals range from 4 hours to 24 hours, such as from 6 hours to 24 hours, such as from 8 hours to 14 hours and including from 12 hours to 16 hours.

In certain embodiments, dosage intervals may be overnight dosage intervals where the dosage interval begins prior to when the subject sleeps and concludes with the waking of the subject. Depending on the physiology and age of the subject and the desired therapeutic effect, the duration of dosage intervals and treatment protocols may vary, as described in greater detail below. In some embodiments, at the beginning of the dosage interval the subject being treated is in a non-sedated state and is awake, alert, oriented, coherent and capable of responding to oral or written commands including questions or requests. Delivery of dexmedetomidine to the subject according to certain methods results in the partial or fully sedation of the subject.

In some embodiments, sustained release transdermal administration of the dexmedetomidine composition includes multi-day delivery of a therapeutically effective amount of the dexmedetomidine active agent that is applied to the skin of a subject. By multi-day delivery is meant that the transdermal composition is formulated to provide a therapeutically effective amount to a subject when the transdermal delivery device is applied to the skin of a subject for a period of time that is 1 day or longer, such as 2 days or longer, such as 4 days or longer, such as 7 days or longer, such as 14 days and including 30 days or longer. In certain embodiments, transdermal delivery devices provide a therapeutically effective amount of dexmedetomidine to a subject for a period of 10 days or longer. For multi-day delivery, an upper limit period of time is, in some instances, 30 days or shorter, such as 28 days or shorter, such as 21 days or shorter, such as 14 days or shorter, such as 7 days or shorter and including 3 days or shorter. In certain embodiments, multi-day transdermal delivery ranges such as from 2 days to 30 days, such as from 3 days to 28 days, such as from 4 days to 21 days, such as from 5 days to 14 days and including from 6 days to 10 days.

The term "treatment protocol" as used herein refers to one or more sequential dosage intervals sufficient to produce the desired therapeutic effect of transdermal dexmedetomidine composition. In certain embodiments, protocols may include multiple dosage intervals. By "multiple dosage intervals" is meant more than one transdermal delivery device is applied and maintained in contact with the subject in a sequential manner. As such, a transdermal delivery device is removed from contact with the subject and a new transdermal delivery device is reapplied to the subject. In practicing methods of the invention, treatment regimens may include two or more dosage intervals, such as three or more dosage intervals, such as four or more dosage intervals, such as five or more dosage intervals, including ten or more dosage intervals.
The duration between dosage intervals in a multiple dosage interval treatment protocol may vary, depending on the physiology of the subject or by the treatment protocol as determined by a health care professional. For example, the duration between dosage intervals in a multiple dosage treatment protocol may be predetermined and follow at regular intervals. As such, the time between dosage intervals may vary and may be 1 day or longer, such as 2 days or longer, such as 3 days or longer, such as 4 days or longer, such as 5 days or longer, such as 6 days or longer, such as 7 days or longer, such as 10 days or longer, including 30 days or longer. An upper limit period of time between dosage intervals is, in some instances, 30 days or shorter, such as 28 days or shorter, such as 21 days or shorter, such as 14 days or shorter, such as 7 days or shorter and including 3 days or shorter. In certain embodiments, the time between dosage intervals ranges such as from 2 days to 30 days, such as from 3 days to 28 days, such as from 4 days to 21 days, such as from 5 days to 14 days and including from 6 days to 10 days.

In certain instances, the duration between dosage intervals may depend on the plasma concentration of dexmedetomidine during the time the transdermal delivery device is not in contact with the subject between dosage intervals. For example, a subsequent dosage interval may commence when the plasma concentration of dexmedetomidine reaches below a particular threshold.

Methods for treating ADHD, anxiety and insomnia in a subject according to some embodiments may include applying a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal delivery device in contact with the subject in a manner sufficient to deliver dexmedetomidine to a subject at a rate which averages from 1 µg/hour to 10 µg/hour over the course of the dosage interval (e.g., a 8 hour dosage interval), such as from 1.5 µg/hour to 9.5 µg/hour, such as from 2 µg/hour to 9 µg/hour, such as from 2.5 µg/hour to 8.5 µg/hour, such as from 3 µg/hour to 8 µg/hour and including from 3.5 µg/hour to 7.5 µg/hour over the course of the dosage interval.

In certain embodiments, methods include maintaining the transdermal delivery device in contact with the subject in a manner sufficient to provide a peak rate of dexmedetomidine delivery at specific times during treatment. For instance, methods may include applying a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal delivery device in contact with the subject in a manner sufficient to achieve a peak rate of dexmedetomidine delivery to the subject at about 0.5 hours or later after applying the transdermal delivery device to the subject, such as at about 1 hour or later, such as at about 1.5 hours or later, such as at about 2 hours or later, such as at about 2.5 hours or later, such as at about 3 hours or later, such as at about 3.5 hours or later and including maintaining the transdermal delivery device in contact with the subject in a manner sufficient to achieve a peak rate of dexmedetomidine delivery to the subject at about 4 hours.
or later after applying the transdermal delivery device to the subject. In some instances, the method include applying a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal delivery device in contact with the subject in a manner sufficient to achieve a peak rate of dexmedetomidine delivery to the subject at from 0.5 hours to 4 hours after applying the transdermal delivery device to the subject, such as from about 0.75 hours to 3.75 hours, such as from about 1 hour to about 3.5 hours, such as from about 1.25 hours to about 3.25 hours and including as from about 1.5 hours to about 3 hours after applying the transdermal delivery device to the subject.

In some embodiments, a peak concentration of dexmedetomidine delivery to the subject is achieved at about 3 hours after applying the transdermal delivery device to the subject. In other embodiments, a peak concentration of dexmedetomidine delivery to the subject is achieved at about 4 hours after applying the transdermal delivery device to the subject. The peak rate of delivery may vary depending on the physiology of the subject and desired treatment protocol and may be 0.1 µg/cm²/hr or greater, such as 0.2 µg/cm²/hr or greater, such as 0.3 µg/cm²/hr or greater, such as 0.5 µg/cm²/hr, such as 0.9 µg/cm²/hr, such as 1.5 µg/cm²/hr or greater, such as 2.5 µg/cm²/hr or greater, such as 1.75 µg/cm²/hr or greater and including 4.5 µg/cm²/hr or greater. For peak flux of transdermal dexmedetomidine delivery, an upper limit is, in some instances, 10 µg/cm²/hr or or less, such as 9 µg/cm²/hr or or less, such as 8 µg/cm²/hr or or less, such as 7 µg/cm²/hr or or less, 6 µg/cm²/hr or or less, such as 5 µg/cm²/hr or or less and including 2 µg/cm²/hr or or less. In certain embodiments, the peak flux of transdermal dexmedetomidine delivery ranges such as from 0.5 µg/cm²/hr to 10 µg/cm²/hr, such as from 1 µg/cm²/hr to 9 µg/cm²/hr and including from 2 µg/cm²/hr to 8 µg/cm²/hr.

Methods according to certain embodiments may include applying to the subject a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal dexmedetomidine composition in contact with the subject in a manner sufficient to maintain a transdermal dexmedetomidine flux which is within 30% or more of the peak transdermal dexmedetomidine flux after reaching the peak transdermal flux. As such, once transdermal delivery devices of interest reach peak transdermal dexmedetomidine flux, the transdermal delivery device is configured to maintain a flux of dexmedetomidine to the subject that is at least 30% of peak flux during the course of any given dosage interval, such as at least 35%, such as at least 40% and including at least 50% of peak flux during the course of any given dosage interval. In other words, once peak flux is reached by the transdermal delivery device according to these particular embodiments, the transdermal flux of dexmedetomidine to the subject does not fall below 30% or more of the peak flux at any time during the dosage interval.
For example, the transdermal dexmedetomidine composition may be maintained in contact with the subject in a manner sufficient to maintain the transdermal dexmedetomidine flux which is within 80% or more of peak transdermal dexmedetomidine flux, such as within 85% or more, such as within 90% or more, such as within 95% and including within 99% of peak transdermal dexmedetomidine flux after reaching peak transdermal flux. In certain embodiments, the transdermal dexmedetomidine flux does not decrease at all after reaching peak flux and maintains a rate of 100% of peak dexmedetomidine flux from the moment it reaches peak flux until the end of a given dosage interval.

In certain embodiments, methods include determining the transdermal dexmedetomidine flux. The transdermal dexmedetomidine flux may be determined using any convenient protocol, such for example by protocols employing human cadaver skin with epidermal layers (stratum corneum and epidermis) in a Franz cell having donor and receptor sides clamped together and receptor solution containing phosphate buffer. In some instances, the flux of the dexmedetomidine can be determined by the equation:

\[J_{\text{skin flux}} = P \times C \]

where \(J \) is the skin flux, \(C \) is the concentration gradient across the skin or mucous membrane and \(P \) is the permeability coefficient. Skin flux is the change in cumulative amount of drug entering the body across the skin or mucous membrane with respect to time.

The amount of permeated dexmedetomidine can further be characterized by liquid chromatography. The transdermal dexmedetomidine flux may be determined at any time during methods of the invention. In some embodiments, the transdermal dexmedetomidine flux may be monitored throughout the entire time the transdermal dexmedetomidine composition is maintained in contact with the permeation barrier (e.g., human cadaver skin), such by real-time data collection. In other instances, the transdermal dexmedetomidine flux is monitored by collecting data at regular intervals, e.g., collecting data every 0.25 hours, every 0.5 hours, every 1 hour and including every 2 hours or some other interval. In yet other instances, the transdermal dexmedetomidine flux is monitored by collecting data according to a particular time schedule. For instance, the transdermal dexmedetomidine flux may be determined 15 minutes after applying the transdermal delivery device, 30 minutes after applying the transdermal delivery device, 1 hour after applying the transdermal delivery device, 2 hours after applying the transdermal delivery device and including 3 hours after applying the transdermal delivery device.

The transdermal dexmedetomidine flux may be determined one or more times at any given measurement period, such as 2 or more times, such as 3 or more times, including 5 or more times at each measurement period. An upper limit for the number of times the
transdermal dexmedetomidine flux is determined is, in some instances, 10 times or fewer, such as 7 times or fewer, such as 5 times or fewer, such as 3 times or fewer and including 2 times or fewer. In certain embodiments, the number of times the transdermal dexmedetomidine flux is determined ranges such as from 2 times to 10 times, such as from 3 times to 9 times, such as from 4 times to 8 times and including from 5 times to 7 times.

As such, where the transdermal dexmedetomidine composition is maintained in contact with the subject in a manner sufficient to provide a transdermal dexmedetomidine flux which is within at least 30% of peak transdermal dexmedetomidine flux, the transdermal composition may be maintained in contact with the subject in a manner sufficient to provide a flux which is 0.15 μg/cm²/hr or greater after reaching a peak transdermal flux of 0.5 μg/cm²/hr, such as 0.18 μg/cm²/hr or greater after reaching a peak transdermal flux of 0.6 μg/cm²/hr, such as 0.225 μg/cm²/hr or greater after reaching a peak transdermal flux of 0.75 μg/cm²/hr, such as 0.27 μg/cm²/hr or greater after reaching a peak flux of 0.9 μg/cm²/hr, such as 0.3 μg/cm²/hr or greater after reaching a peak flux of 1.0 μg/cm²/hr, such as 1.5 μg/cm²/hr after reaching a peak flux of 5 μg/cm²/hr or greater and including maintaining the transdermal dexmedetomidine composition in contact with the subject in a manner sufficient to provide a flux which is 3.0 μg/cm²/hr or greater after reaching a peak flux of 10.0 μg/cm²/hr.

In certain embodiments, during treatment the transdermal composition is maintained in contact with the subject sufficient to provide a steady state average flux of dexmedetomidine to the subject. The term "steady state" is used in its conventional sense to mean that the amount of dexmedetomidine released from the transdermal composition maintains a substantially constant average flux of dexmedetomidine. As such, the dexmedetomidine flux from transdermal delivery devices of interest increases or decreases by 30% or less at any time while the transdermal delivery device is maintained in contact with the subject, such as 20% or less, such as 15% or less, such as 12% or less, such as 10% or less, such as 6% or less, such as 5% or less, such as 4% or less, and including 1% or less at any time while the transdermal delivery device is maintained in contact with the subject.

In these embodiments, the transdermal delivery device is configured to provide a constant flux, such as by introducing a concentration gradient across the skin or mucous membrane or providing an excess in dexmedetomidine dosage amount. For example, dexmedetomidine transdermal compositions of interest may include a dexmedetomidine dosage that is 5% or greater in excess of the normal dosage amount, such as 10% or greater, such as 15% or greater, such as 20% or greater, and including 25% or greater in excess of the normal dosage amount. For amount of excess dexmedetomidine present in the transdermal delivery device to provide a constant flux, an upper limit is, in some
instances 50% or less in excess, such as 45% or less in excess, such as 25% or less in excess, such as 20% or less in excess and including 10% or less in excess of the normal dosage amount. While dexmedetomidine transdermal compositions of interest may include an excess in order to provide a constant flux, the excess dosage amount is not absorbed as part of the dosage interval. As such, in some embodiments where the transdermal dexmedetomidine composition is maintained in a manner sufficient to provide a constant flux, 25% or less of the available dexmedetomidine in the transdermal composition may not be utilized, such as 20% or less, such as 15% or less, such as 10% or less, such as 5% or less and including 1% or less of the available dexmedetomidine in the transdermal composition may not be utilized during the dosage interval.

In some embodiments, in maintaining the dexmedetomidine transdermal composition in contact with the subject the average cumulative amount of permeated dexmedetomidine increases at a substantially linear rate over the course of the dosage interval (e.g., 7 days or longer). By "substantially linearly" is meant that the cumulative amount of dexmedetomidine released from the transdermal composition increases at a substantially constant rate (i.e., defined by zero-order kinetics). As such, the change in rate of cumulative permeated dexmedetomidine increases or decreases by 10% or less at any given time while maintaining the transdermal composition in contact with the subject, such as 8% or less, such as 7% or less, such as 6% or less, such as 5% or less, such as 3% or less, such as 2.5% or less, such as 2% or less, and including 1% or less at any time while maintaining the dexmedetomidine transdermal composition in contact with the subject.

Methods for treating ADHD, anxiety and insomnia in a subject according to certain embodiments may also include applying a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal dexmedetomidine composition in contact with the subject in a manner sufficient to deliver an amount of dexmedetomidine to a subject which provides a mean plasma concentration which ranges from 0.01 ng/mL to 0.4 ng/mL over the course of a dosage interval, such as from 0.05 ng/mL to 0.35 ng/mL, such as from 0.15 ng/mL to 0.4 ng/mL, such as from 0.2 ng/mL to 0.35 ng/mL and including from 0.25 ng/mL to 0.3 ng/mL over the course of the dosage interval. For example, the transdermal delivery device may be maintained in contact with the subject in a manner sufficient to provide a mean plasma concentration which ranges from 0.16 ng/mL to 0.36 ng/mL over the course of a dosage interval (e.g., an 8 hour or longer dosage interval).

In certain embodiments, methods include maintaining the transdermal delivery device in contact with the subject in a manner sufficient to provide a desired plasma concentration of dexmedetomidine at specific times during treatment. For instance, methods may include applying to the subject a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal delivery device in contact with a subject in a
manner sufficient to achieve a peak plasma concentration of dexmedetomidine in the subject at about 2 hours or later after applying the transdermal delivery device to the subject, such as at about 2.5 hours or later, such as at about 3 hours or later, such as at about 3.5 hours or later, such as at about 4 hours or later, such as at about 4.5 hours or later and including maintaining the transdermal delivery device in contact with a subject in a manner sufficient to achieve a peak plasma concentration of dexmedetomidine in the subject at about 5 hours or later after applying the transdermal delivery device to the subject. In some embodiments, a peak plasma concentration of dexmedetomidine in the subject is achieved at about 3 hours or later after applying the transdermal delivery device to the subject. In other embodiments, a peak plasma concentration of dexmedetomidine in the subject is achieved at about 5 hours or later after applying the transdermal delivery device to the subject.

In certain embodiments, methods may also include determining the plasma concentration of dexmedetomidine during treatment. The plasma concentration may be determined using any convenient protocol, such for example by liquid chromatography-mass spectrometry (LCMS). The plasma concentration of the dexmedetomidine may be determined at any time desired. In some embodiments, the plasma concentration of dexmedetomidine may be monitored throughout the entire time the transdermal delivery device is maintained in contact with the subject, such by real-time data collection. In other instances, the plasma concentration of dexmedetomidine is monitored while maintaining the transdermal delivery device in contact with the subject by collecting data at regular intervals, e.g., collecting data every 0.25 hours, every 0.5 hours, every 1 hour including every 2 hours, or some other interval. In yet other instances, the plasma concentration of dexmedetomidine is monitored while maintaining the transdermal delivery device in contact with the subject by collecting data according to a particular time schedule after applying the transdermal delivery device to the subject. For instance, the plasma concentration of dexmedetomidine may be determined 15 minutes after applying the transdermal delivery device to the subject, 30 minutes after applying the transdermal delivery device to the subject, 1 hour after applying the transdermal delivery device to the subject, 2 hours after applying the transdermal delivery device to the subject and including 3 hours after applying the transdermal delivery device to the subject.

In certain embodiments, the plasma concentration of dexmedetomidine is determined before the transdermal delivery device is applied to a subject, such as for example, to determine the basal plasma concentration of the dexmedetomidine. For example, the plasma concentration may be determined 5 minutes before applying the transdermal delivery device, such as 10 minutes before, such as 30 minutes before, such as 60 minutes before and including 120 minutes before applying the transdermal delivery device. As described above, methods may include multiple dosage intervals where applying and maintaining the
transdermal delivery device in contact with the subject may be repeated. In these embodiments, the plasma concentration may be determined after a first transdermal delivery device is removed and before a second transdermal delivery device is applied.

The blood plasma concentration of the dexmedetomidine may be determined one or more times at any given measurement period, such as 2 or more times, such as 3 or more times, including 5 or more times at each measurement period. An upper limit for the number of times the blood plasma concentration of dexmedetomidine is determined at any given measurement period is, in some instances, 10 times or fewer, such as 7 times or fewer, such as 5 times or fewer, such as 3 times or fewer and including 2 times or fewer. In certain embodiments, the number of times the blood plasma concentration of dexmedetomidine is determined at any given measurement period ranges such as from 2 times to 10 times, such as from 3 times to 9 times, such as from 4 times to 8 times and including from 5 times to 7 times.

As described above, aspects of the invention include treating ADHD, anxiety or insomnia in a subject by applying a transdermal delivery device containing a dexmedetomidine composition and maintaining the transdermal dexmedetomidine composition in contact with the subject. In some embodiments, methods for treating ADHD, anxiety or insomnia in a subject may include maintaining the transdermal composition in contact with the subject in a manner sufficient to deliver a predetermined amount of dexmedetomidine to the subject. Where protocols include delivering a predetermined amount of dexmedetomidine to the subject, the amount of dexmedetomidine in the compositions of interest may range from 0.001 mg to 10 mg, such as 0.005 to 9.5 mg, such as 0.01 mg to 8.5 mg, such as 0.05 to 8 mg, such as 0.1 mg to 7.5 mg, such as 0.5 mg to 7 mg and including from 1 mg to 5 mg.

In certain embodiments, the predetermined amount of dexmedetomidine delivered to the subject may be a percentage of the total amount of dexmedetomidine present in the compositions. For instance, the predetermined amount of dexmedetomidine delivered to the subject may be 5% or greater of the total amount of dexmedetomidine present in the composition, such as 10% or greater, such as 25% or greater, such as 40% or greater, such as 45% or greater and including 50% or greater of the total amount of dexmedetomidine present in the composition. For utilization percentage, an upper limit over the course of a dosage interval is, in some instances, 90% or less, such as 75% or less, such as 50% or less and including 25% or less over the course of a dosage interval.

For example, where the transdermal dexmedetomidine composition contains 10 mg of dexmedetomidine, methods may include maintaining the transdermal delivery device in contact with the subject in a manner sufficient to deliver 0.5 mg or more of dexmedetomidine in the transdermal composition over the course of the dosage interval, such as 1.0 mg or
more, such as 2.5 mg or more, such as 4.5mg or more, such as 5.5 mg or more and including maintaining the transdermal delivery device in contact with the subject in a manner sufficient to deliver 5 mg or more of dexmedetomidine in the transdermal composition.

In certain embodiments, the predetermined amount of dexmedetomidine delivered to the subject may be a percentage of the total amount of dexmedetomidine present in the dexmedetomidine transdermal compositions. For instance, the predetermined amount of dexmedetomidine delivered to the subject may be 1% or greater of the total amount of dexmedetomidine present in the dexmedetomidine transdermal composition, such as 2% or greater, such as 5% or greater, such as 10% or greater, such as 25% or greater and including 50% or greater of the total amount of dexmedetomidine present in the dexmedetomidine transdermal composition. In other words, methods may include maintaining the dexmedetomidine transdermal composition in contact with the subject in a manner sufficient to deliver 5% or greater of the dexmedetomidine in the dexmedetomidine transdermal composition to the subject over the course of a single dosage interval. In these embodiments, the utilization percentage of dexmedetomidine is 5% or greater during the time the transdermal delivery device is maintained in contact with the subject. As such, 95% or less of the original amount of dexmedetomidine remains in the dexmedetomidine transdermal composition after a dosage interval. As described in greater detail below, the subject transdermal delivery devices are capable of high utilization percentage. In other words, the subject transdermal delivery devices are capable of delivering dexmedetomidine to the subject leaving little residual dexmedetomidine in the transdermal delivery device after a given dosage interval. The utilization percentage may be 5% or greater over the course of a dosage interval, such as 10% or greater, such as 25% or greater, such as 40% or greater, such as 45% or greater and including 50% or greater of the dexmedetomidine over the course of a dosage interval. For utilization percentage, an upper limit over the course of a dosage interval is, in some instances, 90% or less, such as 50% or less, such as 25% or less and including 5% or less over the course of a dosage interval.

For instance, where the subject dexmedetomidine transdermal composition contains 1 mg of dexmedetomidine, methods may include maintaining the transdermal delivery device in contact with the subject in a manner sufficient to deliver 0.05 mg or more of dexmedetomidine in the dexmedetomidine transdermal composition over the course of the dosage interval (e.g., 7 days or longer), such as 0.1 mg or more, such as 0.25 mg or more, such as 0.4 mg or more, such as 0.45 mg or more and including maintaining the transdermal delivery device in contact with the subject in a manner sufficient to deliver 0.5 mg or more of dexmedetomidine in the dexmedetomidine composition. As such, 0.95 mg or less of dexmedetomidine remains in the dexmedetomidine transdermal composition after 7 days or longer, such as 0.9 mg or less, such as 0.75 mg or less, such as 0.6 mg or less and
including 0.5 mg or less of dexmedetomidine remains in the dexmedetomidine transdermal composition after the dosage interval.

As described in greater detail below, in certain embodiments transdermal delivery devices include a single layer matrix dexmedetomidine composition which is configured to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in a subject. As such, methods according to certain instance include applying a transdermal delivery device having a single layer matrix dexmedetomidine composition and maintaining the single layer dexmedetomidine composition in contact with the subject over a period of time sufficient to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety and insomnia in the subject.

In certain embodiments, each of the subject methods described in greater detail below may further include the step of removing the transdermal delivery device from contact with the subject at the conclusion of a dosage interval. For example, the transdermal delivery device may be removed from contact with the subject after maintaining the transdermal delivery device in contact with the subject for 0.5 hours or more, such as 1 hour or more, such as 2 hours or more, such as 4 hours or more, such as 8 hours or more, such as 12 hours or more and including 24 hours or more. An upper limit for the amount of time the transdermal delivery device is maintained in contact with a subject before removal is, in some instances, 24 hours or shorter, such as 20 hours or shorter, such as 16 hours or shorter, such as 12 hours or shorter, such as 8 hours or shorter, such as 4 hours or shorter, such as 3 hours or shorter, such as 2 hours or shorter and including 1 hour or shorter.

By “removing” the transdermal delivery device from contact with the subject is meant that no amount of dexmedetomidine from the transdermal composition remains in contact with the subject, including any residual amount of dexmedetomidine left behind on the surface of the skin or mucous membrane when the transdermal delivery device was applied. In other words, when the transdermal delivery device is removed all traces of dexmedetomidine are no longer on the surface of the skin or mucous membrane at the application site, resulting in zero transdermal flux of dexmedetomidine into the subject.

As described above, a dosage interval is a single administration of applying and maintaining the transdermal delivery device in contact with the subject which begins with applying the transdermal dexmedetomidine composition to the skin or mucous membrane of the subject and ends with the removal of the transdermal delivery device from contact with the subject. In certain embodiments, protocols for may include multiple dosage intervals. By “multiple dosage intervals” is meant more than one transdermal delivery device is applied and maintained in contact with the subject in a sequential manner. As such, a transdermal delivery device is removed from contact with the subject and a new transdermal delivery device is reapplied to the subject. In practicing methods of the invention, treatment
regimens may include two or more dosage intervals, such as three or more dosage intervals, such as four or more dosage intervals, such as five or more dosage intervals, including ten or more dosage intervals.

The location on the subject for reapplying subsequent transdermal delivery devices in multiple dosage treatment regimens may be the same or different from the location on the subject where the previous transdermal delivery device was removed. For example, if a first transdermal delivery device is applied and maintained on the leg of the subject, one or more subsequent transdermal delivery devices may be reapplied to the same position on the leg of the subject. On the other hand, if a first transdermal delivery device was applied and maintained on the leg of the subject, one or more subsequent transdermal delivery device may be reapplied to a different position, such as the abdomen or back of the subject. Subsequent dosages applied in multiple dosage interval regimens may have the same or different formulation of dexmedetomidine. In certain instances, a subsequent dosage interval in a treatment regimen may contain a higher or lower concentration of dexmedetomidine than the previous dosage interval. For example, the concentration of dexmedetomidine may be increased in subsequent dosage intervals by 10% or greater, such as 20% or greater, such as 50% or greater, such as 75% or greater, such as 90% or greater and including 100% or greater. An upper limit for the increase in concentration of dexmedetomidine in subsequent dosage intervals is, in some instances, 10-fold or less, such as 5-fold or less, such as 2-fold or less, such as 1-fold or less, such as 0.5-fold or less and including 0.25-fold or less.

On the other hand, the concentration of dexmedetomidine may be decreased in subsequent dosage intervals, such as by 10% or greater, such as 20% or greater, such as 50% or greater, such as 75% or greater, such as 90% or greater and including 100% or greater. An upper limit for the decrease in concentration of dexmedetomidine in subsequent dosage intervals is, in some instances, 10-fold or less, such as 5-fold or less, such as 2-fold or less, such as 1-fold or less, such as 0.5-fold or less and including 0.25-fold or less.

In other instances, a subsequent dosage interval may contain a different formulation of dexmedetomidine than the previous dosage interval, such as a different pressure sensitive adhesive or the presence or absence of a permeation enhancer, as described in greater detail below.

In certain embodiments, compositions of the invention can be administered prior to, concurrent with, or subsequent to other therapeutic agents for treating the same or an unrelated condition. If provided at the same time as another therapeutic agent, the subject dexmedetomidine compositions may be administered in the same or in a different composition. Thus, dexmedetomidine compositions of interest and other therapeutic agents can be administered to the subject by way of concurrent therapy. By "concurrent therapy" is
intended administration to a subject such that the therapeutic effect of the combination of the substances is caused in the subject undergoing therapy. For example, concurrent therapy may be achieved by administering dexametomidine compositions of the invention with a pharmaceutical composition having at least one other agent, such as an analgesic (such as an opioid), anesthetic, antihypertensive, chemotherapeutic, among other types of therapeutics, which in combination make up a therapeutically effective dose, according to a particular dosing regimen. Administration of the separate pharmaceutical compositions can be performed simultaneously or at different times (i.e., sequentially, in either order, on the same day, or on different days), so long as the therapeutic effect of the combination of these substances is caused in the subject undergoing therapy.

Where dexametomidine is administered concurrently with a second therapeutic agent to treat the same condition, the weight ratio of dexametomidine to second therapeutic agent may range from 1:2 and 1:2.5; 1:2.5 and 1:3; 1:3 and 1:3.5; 1:3.5 and 1:4; 1:4 and 1:4.5; 1:4.5 and 1:5; 1.5 and 1:10; and 1:10 and 1:25 or a range thereof. For example, the weight ratio of dexametomidine to second therapeutic agent may range between 1:1 and 1:5; 1:5 and 1:10; 1:10 and 1:15; or 1:15 and 1:25. Alternatively, the weight ratio of the second therapeutic agent to dexametomidine ranges between 2:1 and 2.5:1; 2.5:1 and 3:1; 3:1 and 3.5:1; 3.5:1 and 4:1; 4:1 and 4.5:1; 4.5:1 and 5:1; 5:1 and 10:1; and 10:1 and 25:1 or a range thereof. For example, the ratio of the second therapeutic agent dexametomidine may range between 1:1 and 5:1; 5:1 and 10:1; 10:1 and 15:1; or 15:1 and 25:1.

DEXMEDETOMIDINE TRANSDERMAL DELIVERY DEVICES CONTAINING A DEXMEDETOMIDINE COMPOSITION FOR TREATING A SUBJECT FOR ADHD, ANXIETY OR INSOMNIA

Aspects of the invention also include dexametomidine transdermal delivery devices for delivering an amount of dexametomidine to a subject suitable for practicing the subject methods. Transdermal delivery devices of interest include a composition having dexametomidine and a pressure sensitive adhesive. Dexametomidine is the S-enantiomer of medetomidine described by the formula:
Dexmedetomidine according to embodiments of the invention may be in the form of a free base, salt, solvate, hydrate or complex. For example, dexmedetomidine may be in the form of a pharmaceutically acceptable salt including, but not limited to, a mesylate, maleate, fumarate, tartrate, hydrochloride, hydrobromide, esylate, p-toluenesulfonate, benzoate, acetate, phosphate and sulfate salt. Dexmedetomidine according to some embodiments may be a free base. In other instances, dexmedetomidine may form a complex.

Depending on the site of application and the physiology of the subject (e.g., body mass), the amount of dexmedetomidine in compositions of interest may vary, in some instances, the amount of dexmedetomidine ranges from 0.001 mg to 50 mg, such as 0.005 mg to 40 mg, such as 0.01 to 30 mg, such as 0.05 to 20 mg, and including 0.1 mg to 10 mg. In some embodiments, the amount of dexmedetomidine in the transdermal composition ranges from 0.1% to 20% w/w, such as 0.5% to 18% w/w, such as 1% to 15%, such as 2% to 12.5% w/w and including 3% to 10% w/w. In other embodiments, the amount of dexmedetomidine in the subject transdermal compositions is 10% by weight or less of the total weight of the transdermal composition, such as 9% by weight or less, such as 8% by weight or less, such as 7% by weight or less, such as 6% by weight or less, such as 5% by weight or less and including 3% by weight or less of the total weight of the transdermal composition. In certain embodiments, dexmedetomidine compositions include an amount which is below the saturation point of dexmedetomidine. In other embodiments, dexmedetomidine compositions include a saturated amount of dexmedetomidine. In yet other embodiments, dexmedetomidine compositions include a supersaturated amount of dexmedetomidine.

In certain embodiments, dexmedetomidine compositions described herein are formulated to deliver a sedative amount of dexmedetomidine. As described above, by sedative is meant that the dexmedetomidine composition is formulated to deliver an amount of dexmedetomidine to the subject which causes at least partial sedation. In certain embodiments, transdermal delivery devices include dexmedetomine compositions formulated to deliver an amount of dexmedetomidine to the subject such that the subject is characterized as being in a state where the subject can exhibit brisk response to light glabellar tap or loud auditory stimulus. In other instances, transdermal delivery devices include dexmedetomine compositions formulated to deliver an amount of dexmedetomidine to the subject such that the subject exhibits a sluggish response to light glabellar tap or loud auditory stimulus. In certain instances, transdermal delivery devices include a dexmedetomidine composition formulated to deliver an amount of dexmedetomidine which is fully sedative and the subject is characterized as being in a state where the subject exhibits no response to touch or auditory stimulus.
As described in greater detail below, in some embodiments dexmedetomidine transdermal compositions of interest are formulated such that throughout transdermal administration the subject may be evaluated according to the Ramsey Sedation Scale and assigned a Ramsey score of 2 or higher, such as 3 or higher, such as 4 or higher and including a Ramsey score of 5. For example, methods may include delivering an amount of dexmedetomidine to the subject in manner sufficient to maintain a Ramsay score of between 2 and 5 in the subject, such as between 3 and 5 and including a Ramsay score of between 4 and 5.

In embodiments of the present invention, transdermal dexmedetomidine compositions also include a pressure sensitive adhesive. Pressure sensitive adhesives may include, but are not limited to, poly-isobutene adhesives, poly-isobutylene adhesives, poly-isobutene/polysobutylene adhesive mixtures, carboxylated polymers, acrylic or acrylate copolymers, such as carboxylated acrylate copolymers.

Where the pressure sensitive adhesive includes polybutene, the polybutene may be saturated polybutene. Alternatively, the polybutene may be unsaturated polybutene. Still further, the polybutene may be a mixture or combination of saturated polybutene and unsaturated polybutene. In some embodiments, the pressure sensitive adhesive may include a composition that is, or is substantially the same as, the composition of Indopol® L-2, Indopol® L-3, Indopol® L-6, Indopol® L-8, Indopol® L-14, Indopol® H-7, Indopol® H-8, Indopol® H-15, Indopol® H-25, Indopol® H-35, Indopol® H-50, Indopol® H-100, Indopol® H-300, Indopol® H-1200, Indopol® H-1500, Indopol® H-1900, Indopol® H-2100, Indopol® H-6000, Indopol® H-18000, Panalane® L-14E, Panalane® H-300E and combinations thereof. In certain embodiments, the polybutene pressure-sensitive adhesive is Indopol® H-1900. In other embodiments, the polybutene pressure-sensitive adhesive is Panalane® H-300E.

Acrylate copolymers of interest include copolymers of various monomers, such as "soft" monomers, "hard" monomers or "functional" monomers. The acrylate copolymers can be composed of a copolymer including bipolymer (i.e., made with two monomers), a terpolymer (i.e., made with three monomers), or a tetrapolymer (i.e., made with four monomers), or copolymers having greater numbers of monomers. The acrylate copolymers may be crosslinked or non-crosslinked. The polymers can be cross-linked by known methods to provide the desired polymers. The monomers from of the acrylate copolymers may include at least two or more exemplary components selected from the group including acrylic acids, alkyl acrylates, methacrylates, copolymerizable secondary monomers or monomers with functional groups. Monomers ("soft" and "hard" monomers) may be methoxymethyl acrylate, ethyl acrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl methacrylate, 2-ethylbutyl acrylate, 2-ethylbutyl methacrylate, iso-octyl acrylate, iso-octyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, decyl acrylate, decyl...
methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, acrylonitrile, methoxymethyl acrylate, methoxymethyl methacrylate, and the like. Additional examples of acrylic adhesive monomers are described in Satas, "Acrylic Adhesives," Handbook of Pressure-Sensitive Adhesive Technology, 2nd ed., pp. 396-456 (D. Satas, ed.), Van Nostrand Reinhold, New York (1989), the disclosure of which is herein incorporated by reference. In some embodiments, the pressure sensitive adhesive is an acrylate-vinyl acetate copolymer. In some embodiments, the pressure sensitive adhesive may include a composition that is, or is substantially the same as, the composition of Duro-Tak® 87-9301, Duro-Tak® 87-200A, Duro-Tak®87-2353, Duro-Tak®87-2100, Duro-Tak®87-2051, Duro-Tak®87-2052, Duro-Tak®87-2194, Duro-Tak®87-2677, Duro-Tak®87-201A, Duro-Tak®87-2979, Duro-Tak®87-2510, Duro-Tak®87-2516, Duro-Tak®87-387, Duro-Tak®87-4287, Duro-Tak®87-2287, and Duro-Tak®87-2074 and combinations thereof. The term "substantially the same" as used herein refers to a composition that is an acrylate-vinyl acetate copolymer in an organic solvent solution. In certain embodiments, the acrylic pressure-sensitive adhesive is Duro-Tak® 87-2054.

In certain embodiments, the pressure sensitive adhesive is an acrylate adhesive that is a non-functionalized acrylate, hydroxyl-functionalized acrylate or an acid functionalized acrylate. For example, the acrylate adhesive may be an acrylate adhesive having one or more -OH functional groups. Where the acrylate adhesive has one or more -OH functional groups, in some instances, the pressure sensitive adhesive may be a composition that is, or is substantially the same as, the composition of Duro-Tak® 87-4287, Duro-Tak® 87-2287, Duro-Tak® 87-2510 and Duro-Tak® 87-2516 and combinations thereof. The acrylate adhesive may alternatively be an acrylate adhesive having one or more -COOH functional groups. Where the acrylate adhesive has one or more -COOH functional groups, in some instances, the pressure sensitive adhesive may be a composition that is or is substantially the same as, the composition of Duro-Tak® 87-387, Duro-Tak® 87-2979 and Duro-Tak® 87-2353 and combinations thereof. Still further, the acrylate adhesive may be a non-functionalized acrylate adhesive. Where the acrylate adhesive is non-functionalized, in some instances the pressure sensitive adhesive may be a composition that is or is substantially the same as, the composition of Duro-Tak® 87-9301.

The amount of pressure sensitive adhesive in transdermal dexmedetomidine compositions of interest may vary, the amount of pressure sensitive adhesive ranging from 0.1 mg to 2000 mg, such as 0.5 mg to 1500 mg, such as 1 to 1000 mg, such as 10 to 750 mg, and including 10 mg to 500 mg. As such, the amount of pressure sensitive adhesive in the transdermal composition ranges from 1% to 99% w/w, such as 5% to 95% w/w, such as 10% to 95%, such as 15% to 90% w/w and including 20% to 85% w/w. In other embodiments, the amount of pressure sensitive adhesive in the subject transdermal
compositions is 70% by weight or greater of the total weight of the transdermal composition, such as 75% by weight or greater, such as 80% by weight or greater, such as 85% by weight or greater, such as 90% by weight or greater, such as 95% by weight or greater and including 97% by weight or greater of the total weight of the transdermal composition.

The weight ratio of pressure sensitive adhesive to dexmedetomidine in the subject compositions may range from 1:2 and 1:2.5; 1:2.5 and 1:3; 1:3 and 1:3.5; 1:3.5 and 1:4; 1:4 and 1:4.5; 1:4.5 and 1:5; 1:5 and 1:10; 1:10 and 1:25; 1:25 and 1:50; 1:50 and 1:75; and 1:75 and 1:99 or a range thereof. For example, the weight ratio of pressure sensitive adhesive to dexmedetomidine in compositions of interest may range between 1:1 and 1:5; 1:5 and 1:10; 1:10 and 1:15; 1:15 and 1:25; 1:25 and 1:50; 1:50 and 1:75 or 1:75 and 1:99. Alternatively, the weight ratio of dexmedetomidine to pressure sensitive adhesive in the subject compositions ranges between 2:1 and 2.5:1; 2.5:1 and 3:1; 3:1 and 3.5:1; 3.5:1 and 4:1; 4:1 and 4.5:1; 4.5:1 and 5:1; 5:1 and 10:1; 10:1 and 25:1; 25:1 and 50:1; 50:1 and 75:1; and 75:1 and 99:1 or a range thereof. For example, the ratio of dexmedetomidine to pressure sensitive adhesive in compositions of interest may range between 1:1 and 5:1; 5:1 and 10:1; 10:1 and 15:1; 15:1 and 25:1; 25:1 and 50:1; 50:1 and 75:1; or 75:1 and 99:1.

In some embodiments, transdermal dexmedetomidine compositions may further include one or more crosslinked hydrophilic polymers. For example, the crosslinked polymer may be an amine-containing hydrophilic polymer. Amine-containing polymers may include, but are not limited to, polyethyleneimine, amine-terminated polyethylene oxide, amine-terminated polyethylene/polypropylene oxide, polymers of dimethyl amino ethyl methacrylate, and copolymers of dimethyl amino ethyl methacrylate and vinyl pyrrolidone. In certain embodiments, the crosslinked polymer is crosslinked polyvinylpyrrolidone, such as for example PVP-CLM.

The matrix may contain other additives depending on the adhesive used. For example, materials, such as PVP-CLM, PVP K17, PVP K30, PVP K90, that inhibit drug crystallization, have hygroscopic properties that improve the duration of wear, and improve the physical properties, e.g., cold flow, tack, cohesive strength, of the adhesive.

The amount of crosslinked polymer in dexmedetomidine compositions of interest may vary, the amount of crosslinked polymer ranging from 0.1 mg to 500 mg, such as 0.5 mg to 400 mg, such as 1 to 300 mg, such as 10 to 200 mg, and including 10 mg to 100 mg. As such, the amount of crosslinked polymer in the transdermal composition ranges from 2% to 30% w/w, such as 4% to 30% w/w, such as 5% to 25%, such as 6% to 22.5% w/w and including 10% to 20% w/w. In other embodiments, the amount of crosslinked polymer in the subject transdermal compositions is 8% by weight or greater of the total weight of the transdermal composition, such as 10% by weight or greater, such as 12% by weight or greater, such as 15% by weight or greater, such as 20% by weight or greater, such as 25%
by weight or greater and including 30% by weight crosslinked polymer or greater of the total weight of the transdermal composition.

In certain embodiments, the subject transdermal dexmedetomidine compositions further include a dexmedetomidine solubility enhancer. By "solubility enhancer" is meant a compound or composition which increases the dexmedetomidine solubility in the subject compositions, such as, for example, to prevent any unwanted crystallization of dexmedetomidine in the composition. The dexmedetomidine solubilization enhancer is incorporated into the dexmedetomidine composition in an amount ranging from 0.01% to 20% (w/w), such as from 0.05% to 15% (w/w), such as from 0.1% to 10% (w/w), such as from 0.5% to 8% (w/w) and including from 1% to 5% (w/w).

Example solubility enhancers include, but are not limited to acids including linolic acid, oleic acid, linolenic acid, stearic acid, isostearic acid, levulinic acid, palmitic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid (i.e., stearic acid), N-lauroyl sarcosine, L-pyoglutamic acid, lauric acid, succinic acid, pyruvic acid, glutaric acid, sebacic acid, cyclopentane carboxylic acid; acylated amino acids. Other solubility enhancers of interest may include, but is not limited to aliphatic alcohols, such as saturated or unsaturated higher alcohols having 12 to 22 carbon atoms (e.g., oleyl alcohol or lauryl alcohol); fatty acid esters, such as isopropyl myristate, diisopropyl adipate, lauryl lactate, propyl laurate, ethyl oleate and isopropyl palmitate; alcohol amines, such as triethanolamine, triethanolamine hydrochloride, and diisopropanolamine; polyhydric alcohol alkyl ethers, such as alkyl ethers of polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, 1,3-butylene glycol, diglycerol, polyglycerol, diethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, polypropylene glycol monolaurate, sorbitan, sorbitol, isosorbide, methyl glucoside, oligosaccharides, and reducing oligosaccharides, where the number of carbon atoms of the alkyl group moiety in the polyhydric alcohol alkyl ethers is preferably 6 to 20; polyoxyethylene alkyl ethers, such as polyoxyethylene alkyl ethers in which the number of carbon atoms of the alkyl group moiety is 6 to 20, and the number of repeating units (e.g. -O-CH \textsubscript{2}CH\textsubscript{2}O \textsubscript{n}) of the polyoxyethylene chain is 1 to 9, such as but not limited to polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; glycerides (i.e., fatty acid esters of glycerol), such as glycerol esters of fatty acids having 6 to 18 carbon atoms, where the glycerides may be monoglycerides (i.e., a glycerol molecule covalently bonded to one fatty acid chain through an ester linkage), diglycerides (i.e., a glycerol molecule covalently bonded to two fatty acid chains through ester linkages), triglycerides (i.e., a glycerol molecule covalently bonded to three fatty acid chains through ester linkages), or combinations thereof, where the fatty acid components forming the glycerides include octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid,
hexadecanoic acid, octadecanoic acid (i.e., stearic acid) and oleic acid; middle-chain fatty acid esters of polyhydric alcohols; lactic acid alkyl esters; dibasic acid alkyl esters; acylated amino acids; pyrrolidone; pyrrolidone derivatives and combinations thereof. Additional types of solubility enhancers may include lactic acid, tartaric acid, 1,2,6-hexanetriol, benzyl alcohol, lanoline, potassium hydroxide (KOH), tris(hydroxymethyl)aminomethane, glycerol monooleate (GMO), sorbitan monolaurate (SML), sorbitan monooleate (SMO), laureth-4 (LTH), and combinations thereof. In certain embodiments, the solubility absorption enhancer is levulonic acid, lauryl lactate or propylene glycol monolaurate.

The formulation of the subject transdermal dexmedetomidine composition may vary.

For example, compositions of the invention may be in the form of a liquid solution or suspension, syrup, gel, foam or any combination thereof for application by the transdermal delivery device.

In some embodiments, the transdermal delivery device is configured to include a single layer matrix dexmedetomidine composition. By "single layer" is meant that the transdermal delivery device includes only a single layer of dexmedetomidine composition disposed on the surface of a substrate of the transdermal delivery device and does not include separate distinct layers for the pressure sensitive adhesive, transdermal dexmedetomidine composition, or if present any solubility enhancers. Likewise, single layer transdermal delivery devices of the present invention do not further include a separate dexmedetomidine reservoir (i.e., active agent reservoir) separate from the pressure sensitive adhesive. As such, single layer transdermal delivery devices of the present invention may include in a single matrix an amount of each of the components of the transdermal dexmedetomidine compositions necessary for practicing the subject methods, as described in greater detail below. For example, in some embodiments, single layer transdermal delivery devices of interest include a single layer matrix of dexmedetomidine and a pressure sensitive adhesive which is configured to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in a subject. In another embodiment, single layer transdermal delivery devices of interest include a single layer matrix of dexmedetomidine, a pressure sensitive adhesive and a solubility enhancer which is configured to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in a subject. In another embodiment, single layer transdermal delivery devices of interest include a single layer matrix of dexmedetomidine, a pressure sensitive adhesive and a fatty acid ester which is configured to deliver an amount of dexmedetomidine sufficient to treat ADHD, anxiety or insomnia in a subject. In certain embodiments, single layer transdermal delivery devices of interest include a single layer matrix having only dexmedetomidine and a pressure sensitive adhesive. Depending on the length of the dosage interval and the desired target dosage, the thickness of single layer matrices of interest may vary, in some instances ranging in
thickness from 10 to 260 microns, such as 15 to 250 microns, such as 25 to 225 microns,
such as 50 to 200 microns, such as 75 to 175 microns and including 20 to 130 microns such
as 35 to 110 microns.

The size of subject transdermal delivery devices may vary, in some instances sized
to cover the entire application site on the subject. As such, the transdermal delivery device
may have a length ranging from 1 to 100 cm, such as from 1 to 60 cm and a width ranging
from 1 to 100 cm, such as from 1 to 60 cm. As such, the area of the transdermal delivery
device may range from 4 cm² to 10,000 cm², such as from 5 cm² to 1000 cm², such as from
10 cm² to 100 cm², such as from 15 cm² to 50 cm² and including from 20 cm² to 40 cm². In
certain embodiments, the transdermal delivery device is sized to have an area of 30 cm². In
certain instances, the transdermal delivery device is insoluble in water. By insoluble in water
is meant that that the transdermal delivery device may be immersed in water for a period of
1 day or longer, such as 1 week or longer, including 1 month or longer, and exhibit little if
any dissolution, e.g., no observable dissolution.

In certain embodiments, the transdermal delivery device as described above furthers
includes an overlay backing layer. The overlay backing may be flexible, such as so that it
can be brought into close contact with the desired application site on the subject. The
overlay backing may be fabricated from a material that does not absorb the
dexmedetomidine, and does not allow the dexmedetomidine to be leached from the matrix.
Overlay backing layers of interest may include, but are not limited to, non-woven fabrics,
woven fabrics, films (including sheets), porous bodies, foamed bodies, paper, composite
materials obtained by laminating a film on a non-woven fabric or fabric, and combinations
thereof.

Non-woven fabric may include polyolefin resins such as polyethylene and
polypropylene; polyester resins such as polyethylene terephthalate, polybutylene
terephthalate and polyethylene naphthalate; rayon, polyamide, poly(ester ether),
polyurethane, polyacrylic resins, polyvinyl alcohol, styrene-isoprene-styrene copolymers, and
styrene-ethylene-propylene-styrene copolymers; and combinations thereof. Fabrics may
include cotton, rayon, polyacrylic resins, polyester resins, polyvinyl alcohol, and
combinations thereof. Films may include polyolefin resins such as polyethylene and
polypropylene; polyacrylic resins such as polymethyl methacrylate and polyethyl
methacrylate; polyester resins such as polyethylene terephthalate, polybutylene
terephthalate and polyethylene naphthalate; and besides cellophane, polyvinyl alcohol,
ethylene-vinyl alcohol copolymers, polyvinyl chloride, polystyrene, polyurethane,
polyacrylonitrile, fluororesins, styrene-isoprene-styrene copolymers, styrene-butadiene
rubber, polybutadiene, ethylene-vinyl acetate copolymers, polyamide, and polysulfone; and
combinations thereof. Papers may include impregnated paper, coated paper, wood free

Depending on the dosage interval and the desired target dosage, the size of the overlay backing may vary, and in some instances sized to cover the entire application site on the subject. As such, the backing layer may have a length ranging from 2 to 100 cm, such as 4 to 60 cm and a width ranging from 2 to 100 cm, such as 4 to 60 cm. In certain instances, the overlay backing layer may insoluble in water. By insoluble in water is meant that that the backing layer may be immersed in water for a period of 1 day or longer, such as 1 week or longer, including 1 month or longer, and exhibit little if any dissolution, e.g., no observable dissolution.

Transdermal delivery devices having a dexmedetomidine composition according to embodiments of the invention are non-irritable to the skin of the subject at the site of application. Irritation of the skin is referred to herein in its general sense to refer to adverse effects, discoloration or damage to the skin, such as for example, redness, pain, swelling or dryness. As such, in practicing methods with the subject transdermal delivery devices the quality of the skin remains normal and transdermal delivery is consistent throughout the entire dosage interval.

In some embodiments, skin irritation is evaluated to determine the quality and color of the skin at the application site and to determine whether any damage, pain, swelling or dryness has resulted from maintaining the transdermal composition in contact with the subject. The skin may be evaluated for irritation by any convenient protocol, such as for example using the Draize scale, as disclosed in Draize, J. H., *Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics*, pp. 46-49, The Association of Food and Drug Officials of the United States: Austin, Texas, the disclosure of which is herein incorporated by reference. In particular, the skin may be evaluated at the transdermal application site for erythema or edema. For example, grades for erythema and edema may be assigned based on visual observation or palpation:

Erythema:

- 0 = no visible redness; 1 = very slight redness (just perceptible); 2 = slight but defined redness; 3 = moderately intense redness; 4 = severe erythema (dark red discoloration of the skin)
- 5 = eschar formation

Edema:

- 0 = no visible reactions or swelling; 1 = very mild edema (just perceptible swelling); 2 = mild edema (corners of area are well defined due to swelling); 3 = moderate edema (up to 1 mm swelling); 4 = severe edema (more than 1 mm swelling).

The site of application may be evaluated for skin irritation at any time during the subject methods. In some instances, the skin is evaluated for irritation while maintaining the
transdermal delivery device in contact with the subject by observing or palpating the skin at regular intervals, e.g., every 0.25 hours, every 0.5 hours, every 1 hour, every 2 hours, every 4 hours, every 12 hours, every 24 hours, including every 72 hours, or some other interval. For instance, the site of application may be evaluated for skin irritation while maintaining the transdermal delivery device in contact with the subject, such as 15 minutes after applying the transdermal delivery device to the subject, 30 minutes after applying the transdermal delivery device, 1 hour after applying the transdermal delivery device, 2 hours after applying the transdermal delivery device, 4 hours after applying the transdermal delivery device, 8 hours after applying the transdermal delivery device, 12 hours after applying the transdermal delivery device, 24 hours after applying the transdermal delivery device, 48 hours after applying the transdermal delivery device, 72 hours after applying the transdermal delivery device, 76 hours after applying the transdermal delivery device, 80 hours after applying the transdermal delivery device, 84 hours after applying the transdermal delivery device, 96 hours after applying the transdermal delivery device, 120 hours after applying the transdermal delivery device, including 168 hours after applying the transdermal delivery device.

In other embodiments, the site of transdermal application is evaluated for skin irritation after the transdermal delivery device has been removed from contact with the subject. For example, the site of application may be evaluated for skin irritation 30 minutes after removing the transdermal delivery device, such as 1 hour after removing the transdermal delivery device, such as 2 hours after removing the transdermal delivery device, such as 4 hours after removing the transdermal delivery device, such as 8 hours after removing the transdermal delivery device, such as 12 hours after removing the transdermal delivery device, such as 24 hours after removing the transdermal delivery device, such as 48 hours after removing the transdermal delivery device, including 72 hours after removing the transdermal delivery device.

In some embodiments, the site of transdermal application is evaluated for skin irritation before the transdermal delivery device is applied to a subject, such as to record the skin color and texture before commencing a dosage interval. For example, the site of application may be evaluated for skin irritation 5 minutes before applying the transdermal delivery device, such as 10 minutes, such as 30 minutes, such as 60 minutes, such as 120 minutes, such as 240 minutes and including 480 minutes before applying the transdermal delivery device. Where methods include multiple dosage intervals applied sequentially, the site of application may be evaluated for skin irritation after each transdermal delivery device is removed and before the subsequent transdermal delivery device is applied. For example, when a first transdermal delivery device is removed, the site of application may be evaluated for skin irritation 2 hours, 24 hours and 48 hours after removal and before application of a
second transdermal delivery device. A subsequent transdermal delivery device may be applied to the previous site of application immediately after evaluating the skin for irritation or may be applied after a predetermined time after evaluating the skin for irritation, such as 4 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 120 hours, 144 hours or 168 hours after evaluating the skin for irritation.

The site of application may be evaluated for skin irritation one or more times before, during or after a dosage interval, such as 2 or more times, such as 3 or more times, including 5 or more times before, during or after a dosage interval. An upper limit for the number of times the site of application may be evaluated for skin irritation before, during or after a dosage interval is, in some instances, 10 times or fewer, such as 7 times or fewer, such as 5 times or fewer, such as 3 times or fewer and including 2 times or fewer. In certain embodiments, the number of times the site of application may be evaluated for skin irritation before, during or after a dosage interval ranges such as from 2 times to 10 times, such as from 3 times to 9 times, such as from 4 times to 8 times and including from 5 times to 7 times. In certain embodiments, skin irritation may be monitored throughout the entire time the transdermal delivery device is maintained in contact with the subject, such by video monitoring.

KITS

Kits for use in practicing certain methods described herein are also provided. In certain embodiments, the kits include one or more transdermal delivery devices containing a dexmedetomidine composition having an amount of dexmedetomidine and pressure sensitive adhesive as described above. In certain embodiments, the kits include an adhesive overlay as described above. In a given kit that includes two or more of the subject transdermal delivery devices, the compositions may be individually packaged or present within a common container.

In certain embodiments, the kits will further include instructions for practicing the subject methods or means for obtaining the same (e.g., a website URL directing the user to a webpage which provides the instructions), where these instructions may be printed on a substrate, where substrate may be one or more of: a package insert, the packaging, reagent containers and the like. In the subject kits, the one or more components are present in the same or different containers, as may be convenient or desirable.

The following examples are offered by way of illustration and not by way of limitation. Specifically, the following examples are of specific embodiments for carrying out the present invention. The examples are for illustrative purposes only, and are not intended to limit the
EXPERIMENTAL

Materials and Methods

Preparation of Example Dexmedetomidine Transdermal Formulations

Formulations were prepared by mixing dexmedetomidine and a pressure sensitive adhesive in organic solvents (e.g., 30-60 wt% solid content in ethyl acetate, isopropyl alcohol, hexane, or heptane), followed by mixing. Once a homogeneous mixture was formed, the solution was cast on a release liner (siliconized polyester or fluoropolymer coated polyester sheets of 2-3 mils) and dried at 60° - 80°C for 10-90 minutes. The single layer adhesive films were then laminated to a PET backing, cut to the desired size, and pouches. In some instances, crosslinked polyvinylpyrrolidone (PVP-CLM), polyvinylpyrrolidone K90 (PVP K90), levulinic acid (LA), oleic acid (OA), lauryl lactate (LL), and propylene glycolmonolaurate (PGML) was added to the adhesive composition.

Transdermal Flux Tests

Human cadaver skin was used and epidermal layers (stratum corneum and viable epidermis) were separated from the full-thickness skin as skin membrane. Samples were die-cut with an arch punch to a final diameter of about 2.0 cm². The release liner was removed and the system was placed on top of the epidermis/stratum corneum with the dexmedetomidine adhesive layer facing the outer surface of the stratum corneum. Gentle pressure was applied to effect good contact between the adhesive layer and stratum corneum. The donor and receptor sides of the Franz cell were clamped together and the receptor solution containing a phosphate buffer at pH 6.5 and 0.01% gentamicin was added to the Franz cell. The cells were kept at 32°C -35°C for the duration of the experiment. Samples of the receptor solution were taken at regular intervals and the active agent concentration was measured by HPLC. The removed receptor solution was replaced with fresh solution to maintain sink conditions. The flux was calculated from the slope of cumulative amount of the drug permeated into the receiver compartment versus time plot.

Examples

Example 1

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in PIB/PB polymers

Pressure-sensitive adhesives used in this example are polyisobutylene/polybutene (PIB/PB) adhesives. The PIB/PB adhesives are mixtures of high molecular weight PIB (5%
Oppanol B100), low molecular weight PIB (25% Oppanol B12) and a polybutene tackifier, e.g., Indopol H1900 or Panalane H-300e (20%) in organic solvent, e.g., heptane (50%). The combination was mixed for about 3 days, until the mixture was homogeneous. Example dexmedetomidine transdermal composition formulations are shown in Tables 1 and 2.

An in-vitro skin flux study was performed as described above with transdermal delivery devices having different concentrations of dexmedetomidine as shown in Table 1. The average dexmedetomidine in-vitro skin flux with respect to time is illustrated in Figure 1. As depicted in Figure 1, dexmedetomidine in-vitro skin flux was high in the initial hours in the case of 1% formulation (Formulation 1) as compared to higher drug loading (Formulations 2 and 3). Formulations 2 and 3 were found to have needle-like crystals of dexmedetomidine, therefore flux profile is constant and did not change with drug loading. However, no crystals were observed in Formulation 1. Formulation 1 includes a saturated or supersaturated amount of dexmedetomidine.

Dexmedetomidine transdermal formulation was also made using PIB made from Indopol H1900 as shown in Table 2. The results of dexmedetomidine in-vitro permeation from 1% dexmedetomidine formulation made with 20%PVP-CLM in PIB/PB adhesive (Formulation 4) through skins that have different skin permeability are illustrated in Figure 2. Figure 2(A) shows the cumulative dexmedetomidine delivered amount with time. The in-vitro permeation of dexmedetomidine deviated depending on the permeability of the skin. The in-vitro dexmedetomidine delivered amount could vary from 4-35 ug/cm2 at 8 hr. and 15-67 ug/cm2 at 24 hr. Figure 2(B) shows the flux or derivative of cumulative drug delivered amount with respect to time. The delivery rate of dexmedetomidine from Formulation 2 reached the maximum at about 5-7 hr, then maintain constant for at least 24 hr. In case of high permeable skin (Skin#14), the flux might decreased due to depletion. Figure 2(C) shows the % drug remaining in patch with time. As depicted in Figure 2(C), the utilization of dexmedetomidine obtained from Formulation 4 was 20-70% after applying the patch for 24 hr.

Table 1

<table>
<thead>
<tr>
<th>Components</th>
<th>Formulation 1 (1%DMT/20% CLM/PIB)</th>
<th>Formulation 2 (3%DMT/20%CLM/PIB)</th>
<th>Formulation 3 (5%DMT/20%CLM/PIB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexmedetomidine</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>PIB/PB (Panalane H-300e)</td>
<td>79.00</td>
<td>77.00</td>
<td>75.00</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 4</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>1.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
</tr>
<tr>
<td>PIB/PB (Indopol H1900)</td>
<td>79.00</td>
</tr>
</tbody>
</table>

Example 2

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in non-functionalized acrylate polymers

Dexmedetomidine in-vitro flux was measured using non-functionalized acrylate adhesive. An example of a non-functionalized acrylate adhesive used experimentally includes non-functionalized acrylate polymer Duro-Tak 87-9301. An in-vitro skin flux study was performed as described above with transdermal delivery devices having different concentrations of dexmedetomidine in non-functional Duro-Tak 87-9301. Dexmedetomidine transdermal composition formulations are shown in Table 3. The average dexmedetomidine in-vitro flux with respect to time is illustrated in Figure 3. As depicted in Figure 3, higher dexmedetomidine loading gave increased in-vitro skin flux.

Table 3

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 5 (1%DMT/DT93 01)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 87-9301</td>
<td>99.00</td>
</tr>
<tr>
<td>Formulation 6 (2%DMT/DT93 01)</td>
<td></td>
</tr>
<tr>
<td>Formulation 7 (3%DMT/DT9301)</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>98.00</td>
<td>97.00</td>
</tr>
</tbody>
</table>

Example 3

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in hydroxyl (-OH) functionalized acrylate polymers

Dexmedetomidine in-vitro flux was measured using hydroxyl (-OH) functionalized acrylate adhesives. Examples of a hydroxyl functionalized acrylate adhesive used experimentally include hydroxyl functionalized acrylate polymers, e.g., Duro-Tak 87-4287, Duro-Tak 387/87-2510, Duro-Tak 387/87-2287 and Duro-Tak 387/87-2516. An in-vitro skin flux study was performed as described above with transdermal delivery devices having different concentrations of dexmedetomidine with different hydroxyl functionalized acrylate adhesives.
Tables 4 and 5 show the dexmedetomidine transdermal composition formulations with different concentrations of dexmedetomidine in Duro-Tak 87-4287 (acylate-vinyl lactate polymer) or Duro-Tak 387/87-2510 (acrylate polymer). The mean dexmedetomidine in-vitro fluxes are illustrated in Figures 4 and 5. As depicted in Figures 4 and 5, dexmedetomidine in-vitro flux increased with the dexmedetomidine loading in the formulation.

Table 4

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 8</td>
</tr>
<tr>
<td></td>
<td>(1%DMT/DT4287)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>99.00</td>
</tr>
<tr>
<td>Duro-Tak 87-4287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formulation 9</td>
</tr>
<tr>
<td></td>
<td>(2%DMT/DT4287)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>2.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>98.00</td>
</tr>
<tr>
<td>Duro-Tak 87-4287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formulation 10</td>
</tr>
<tr>
<td></td>
<td>(3%DMT/DT4287)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>97.00</td>
</tr>
<tr>
<td>Duro-Tak 87-4287</td>
<td></td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 11</td>
</tr>
<tr>
<td></td>
<td>(1%DMT/DT2510)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>99.00</td>
</tr>
<tr>
<td>Duro-Tak 387/87-2510</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formulation 12</td>
</tr>
<tr>
<td></td>
<td>(2%DMT/DT2510)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>2.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>98.00</td>
</tr>
<tr>
<td>Duro-Tak 387/87-2510</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formulation 13</td>
</tr>
<tr>
<td></td>
<td>(3%DMT/DT2510)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>97.00</td>
</tr>
<tr>
<td>Duro-Tak 387/87-2510</td>
<td></td>
</tr>
</tbody>
</table>

Tables 6 show the dexmedetomidine transdermal composition formulations containing 1% dexmedetomidine in another hydroxyl functionalized acrylate polymers containing vinyl acetate, e.g., Duro-Tak 87-2287 (no crosslinker added polymer) and Duro-Tak 87-2516 (crosslinker added polymer). The mean dexmedetomidine in-vitro fluxes are illustrated in Figure 6. As depicted in Figure 6, in-vitro flux obtained from Duro-Tak 387/87-2287 was slightly higher than that from Duro-Tak 387/87-2516, possibly resulting from the higher adhesion properties of Duro-Tak 387/87-2287 compared with Duro-Tak 387/87-2516.

Table 6

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 14</td>
</tr>
<tr>
<td></td>
<td>(1%DMT/DT2287)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>99.00</td>
</tr>
<tr>
<td>Duro-Tak 387/87-2287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formulation 15</td>
</tr>
<tr>
<td></td>
<td>(1%DMT/DT2516)</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive</td>
<td>0.00</td>
</tr>
<tr>
<td>Duro-Tak 387/87-2516</td>
<td></td>
</tr>
</tbody>
</table>

Example 4

In-vitro flux obtained from 1% dexmedetomidine transdermal composition formulations in non-functionalized or hydroxyl (-OH) functionalized acrylate polymers.
Another set of examples of dexmedetomidine transdermal formulations are transdermal compositions which include 1% w/w dexmedetomidine with non-functionalized acrylate polymer (Duro-Tak 87-9301, Formulation 5), hydroxyl functionalized acrylate polymer (Duro-Tak 387/87-2510, Formulation 11) and hydroxyl functionalized acrylate polymer containing vinyl acetate (Duro-Tak 87-4287, Formulation 8). In-vitro flux experiments were performed for 3 days and 1 day and the results are shown in Figure 7A and 7B, respectively. As depicted in both Figure 7A and 7B, dexmedetomidine in-vitro flux was less in non-functional adhesives as compared to hydroxyl functionalized adhesives with the same drug loading.

Example 5
In-vitro flux obtained from dexmedetomidine transdermal composition formulations in acid (-COOH) functionalized or acid/hydroxyl (-COOH/OH) functionalized acrylate polymers

Dexmedetomidine in-vitro flux was measured using acid (-COOH) functionalized or acid/hydroxyl (-COOH/OH) functionalized acrylate adhesives. Examples of acid (-COOH) functionalized acrylate adhesive used in this study is Duro-Tak 387/87-2353 (no crosslinker added acrylate polymer). The acid/hydroxyl (-COOH/OH) functionalized acrylate adhesive used in this study is Duro-Tak 87-2979 (crosslinker added acrylate-vinyl acetate polymer).

Tables 7 and 8 show the dexmedetomidine transdermal composition formulations with different acid (-COOH) functionalized or acid/hydroxyl (-COOH/OH) functionalized acrylate polymers. The concentration of dexmedetomidine in the formulations was selected based on the solubility of dexmedetomidine in each adhesive. The solubility of dexmedetomidine in Duro-Tak 387/87-2353 was found to be about 10-15%, whereas that in Duro-Tak 87-2979 was found to be less than 2%. The solubility of drug in acid functionalized acrylate adhesives was greater than that in non-functionalized or hydroxyl functionalized acrylate adhesives.

In-vitro skin flux study was performed as described above. The mean dexmedetomidine in-vitro fluxes are illustrated in Figures 8 and 9.

Table 7

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 16 (14%DMT/DT2353)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>14.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/ 87-2353</td>
<td>86.00</td>
</tr>
</tbody>
</table>
Table 8

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 17 (1.5% DMT/DT2979)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 87-2979</td>
<td>99.00</td>
</tr>
</tbody>
</table>

Example 6

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in PIB/PB polymers containing PVP-CLM and Duro-Tak 387/87-2353

Another example of dexmedetomidine transdermal composition formulation is shown in Table 9. In order to increase the solubility of drug in PIB/PB (e.g., Indopol H-1900) adhesive, PVP-CLM and acid (-COOH) functionalized acrylate polymer (Duro-Tak 387/87-2353) were used. Formulations 18 to 21 were prepared with different loadings of Duro-Tak 387/87-2353.

As depicted in Figure 10, Formulations containing acid (-COOH) functionalized acrylate polymer (Duro-Tak 387/87-2353), Formulations 19, 20 and 21, appear to have lower initial flux compared with Formulations without Duro-Tak 2353 (Formulation 18). The in-vitro flux of dexmedetomidine did not change with 3% and 6% of acid functionalized adhesive, however, at 9% acid functionalized adhesive, a slight decrease in the in-vitro flux is observed.

Table 9

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 18 (3% DMT/20% CLM/PIB)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2353</td>
<td>-</td>
</tr>
<tr>
<td>PIB/PI (Indopol H-1900)</td>
<td>q.s. to 100</td>
</tr>
<tr>
<td>Formulation 19 (3% DMT/3% DT2353/18.8% CLM/PIB)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>18.8</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2353</td>
<td>3.00</td>
</tr>
<tr>
<td>PIB/PI (Indopol H-1900)</td>
<td>q.s. to 100</td>
</tr>
<tr>
<td>Formulation 20 (3% DMT/6% DT2353/18.2% CLM/PIB)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>18.7</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2353</td>
<td>6.00</td>
</tr>
<tr>
<td>PIB/PI (Indopol H-1900)</td>
<td>q.s. to 100</td>
</tr>
<tr>
<td>Formulation 21 (3% DMT/9% DT2353/17.6% CLM/PIB)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>18.6</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2353</td>
<td>9.00</td>
</tr>
<tr>
<td>PIB/PI (Indopol H-1900)</td>
<td>q.s. to 100</td>
</tr>
</tbody>
</table>

Example 7

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in PIB/PB polymers containing PVP-CLM and levulinic acid
Another example of dexmedetomidine transdermal composition formulation is shown in Table 10. In order to increase the solubility of drug in PIB/PB (e.g., Indopol H-1900) adhesive in presence of 20% PVP-CLM, various concentrations of an acid were used to test increased dexmedetomidine solubility. Formulations 22 to 25 were prepared with different loadings of levulinic acid.

Table 10

<table>
<thead>
<tr>
<th>Components</th>
<th>Formulation 2 (3%DMT/0.6%LA/20%CLM/PIB)</th>
<th>Formulation 3 (3%DMT/0.9%LA/20%CLM/PIB)</th>
<th>Formulation 4 (3%DMT/1.7%LA/20%CLM/PIB)</th>
<th>Formulation 5 (3%DMT/6.9%LA/20%CLM/PIB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Levulinic Acid</td>
<td>0.60</td>
<td>0.90</td>
<td>1.75</td>
<td>6.90</td>
</tr>
<tr>
<td>PIB/PB (Indopol H-1900)</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
</tr>
</tbody>
</table>

As depicted in Figure 10, in-vitro flux of dexmedetomidine was reduced dramatically where the formulation included 6.9% of levulinic acid. However, at a concentration of 1.75% levulinic acid, in-vitro flux was comparable to lower concentrations of levulinic acid (i.e., 0.6% and 0.9%). The initial flux obtained from formulations containing levulinic acid (Formulations 22, 23, 24 and 25) was lower than that from formulation without levulinic acid (Formulation 18). However, after 24 hr, the flux obtained from the formulations containing levulinic acid (Formulations 22, 23, 24 and 25) appear to be higher than that from formulation without levulinic acid (Formulation 17). Dexmedetomidine crystals were observed at levulinic acid concentrations of 1.75% and lower.

Example 8

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in PIB/PB polymers containing PVP-CLM and lauryl lactate or propylene glycolmonolaurate

Another example of dexmedetomidine transdermal composition formulations are shown in Tables 11 and 12. Dexmedetomidine has solubility of 5 to 10% in lauryl lactate and propylene glycolmonolaurate. Each of lauryl lactate and propylene glycolmonolaurate increase solubility of dexmedetomidine in the PIB/PB adhesive in the subject formulations. In-vitro flux profiles of Formulations 26 to 28 are shown in Figure 12. In-vitro flux profiles of Formulations 29 to 31 are shown in Figure 13. Formulations 26 to 31 were found to have needle-like crystals of dexmedetomidine.
Table 11

<table>
<thead>
<tr>
<th>Components</th>
<th>Formulation 26</th>
<th>Formulation 27</th>
<th>Formulation 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Lauryl lactate</td>
<td>3.0</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td>PIB/PB (Indopol H-1900)</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
</tr>
</tbody>
</table>

Table 12

<table>
<thead>
<tr>
<th>Components</th>
<th>Formulation 29</th>
<th>Formulation 30</th>
<th>Formulation 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Propylene glycolmonolaurate</td>
<td>4.0</td>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>PIB/PB (Indopol H-1900)</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
<td>q.s. to 100</td>
</tr>
</tbody>
</table>

Example 9

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in Duro-Tak 387/87-2287 polymers containing levulinic acid, PVP K90 or Duro-Tak 387/87-2353

Another set of examples of dexmedetomidine transdermal formulation include transdermal compositions having 1% w/w dexmedetomidine with a solubilizer to improve physical stability of the composition. In these formulations, levulinic acid, PVP K90 and Duro-Tak 87-2353 were employed. The formulation compositions are shown in Tables 13, 14 and 15. In-vitro flux profiles for transdermal compositions having 1% dexmedetomidine with 0.3% and 0.6% levulinic acid are shown in Figure 14(A). In-vitro flux profiles for transdermal compositions having 1% dexmedetomidine with 5% and 10% PVP K90 are shown in Figure 14(B). In-vitro flux profiles for transdermal compositions having 1% dexmedetomidine with 2% or 3% Duro-Tak 387/87-2353 are shown in Figure 14(C). From the in-vitro flux profiles, levulinic acid enhanced the permeation after application for 15 hr., PVP K90 delayed transdermal flux of dexmedetomidine whereas Duro-Tak 2353 slightly reduced transdermal flux.
Table 3

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 32</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Levulinic acid</td>
<td>0.30</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2287</td>
<td>98.70</td>
</tr>
</tbody>
</table>

Table 14

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 34</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>PVP K90</td>
<td>5.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2287</td>
<td>94.00</td>
</tr>
</tbody>
</table>

Table 15

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 36</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>1.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2353</td>
<td>2.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2287</td>
<td>97.00</td>
</tr>
</tbody>
</table>

Example 10

In-vitro flux obtained from dexmedetomidine transdermal composition formulations in Duro-Tak 87-9301 polymers containing lauryl lactate, oleic acid or Duro-Tak 387/87-2353

Another set of examples of dexmedetomidine transdermal formulation include transdermal compositions having 3% w/w dexmedetomidine and non-functionalized acrylate polymer Duro-Tak 87-9301 in combination with 3.3% levulinic acid, 5% Oleic acid or 15% Duro-Tak 387/87-2353. The formulation compositions are shown in Table 16. In-vitro flux profiles for these formulations (Formulations 38, 39 and 40), compared with 3% dexmedetomidine in non-functionalized acrylate polymer Duro-Tak 87-9301 without additive (Formulation 7) are illustrated in Figure 15. Compositions having just 3% dexmedetomidine...
and non-functionalized acrylate polymer Duro-Tak 87-9301 were supersaturated. Levulinic acid and oleic acid were used as a solubilizer and permeation enhancer and increased flux at the beginning of in-vitro flux, but declined with time. Like with the 1% dexmedetomidine compositions, Duro-Tak 87-2353 reduced flux.

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 38 (3%DMT/3.3%LA/DT9301)</td>
<td>3.00</td>
</tr>
<tr>
<td>Formulation 39 (3%DMT/5%OA/DT9301)</td>
<td>3.00</td>
</tr>
<tr>
<td>Formulation 40 (3%DMT/15%DT2353/DT9301)</td>
<td>3.00</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td></td>
</tr>
<tr>
<td>Levulinic acid</td>
<td>3.30</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>0.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 387/87-2353</td>
<td>0.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 87-9301</td>
<td>93.70</td>
</tr>
</tbody>
</table>

Example 11

In-vitro permeation of dexmedetomidine obtained from 1%, 2%, 3% and 4% dexmedetomidine in the mixture of adhesives (15% Duro-Tak 2353 in Duro-Tak 2287)

Dexmedetomidine transdermal composition formulations containing the mixture of hydroxyl functionalized acrylate polymer (e.g., Duro-Tak 87-2287) and acid functionalized acrylate polymer (e.g., Duro-Tak 87-2353) are summarized in Table 17. Formulations 41 to 44 were prepared with different loadings of dexmedetomidine.

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation 41 (1%DMT/15%DT2353/DT2287)</td>
<td>1.00</td>
</tr>
<tr>
<td>Formulation 42 (2%DMT/15%DT2353/DT2287)</td>
<td>2.00</td>
</tr>
<tr>
<td>Formulation 43(3%DMT/15%DT2353/DT2287)</td>
<td>3.00</td>
</tr>
<tr>
<td>Formulation 44 (4%DMT/15%DT2353/DT2287)</td>
<td>4.00</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td></td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 2353</td>
<td>15.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 2287</td>
<td>84.00</td>
</tr>
</tbody>
</table>

As depicted in Figure 16, in-vitro flux of dexmedetomidine increased with increasing percent of dexmedetomidine loading.
Example 12
In-vitro permeation of dexmedetomidine obtained from dexmedetomidine formulations containing oleic acid

Another example of dexmedetomidine transdermal composition formulations is summarized in Table 18. In order to increase the solubility of dexmedetomidine in the hydroxyl functionalized acrylate polymer (e.g., Duro-Tak 87-2287), oleic acid was used. Formulations 45 to 47 were prepared with different loadings of oleic acid and dexmedetomidine.

Table 18

<table>
<thead>
<tr>
<th>Components</th>
<th>%w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 45 (3%DMT/5%OA/DT2 287)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>5.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 2287</td>
<td>92.00</td>
</tr>
</tbody>
</table>

As depicted in Figure 17, dexmedetomidine in formulations containing oleic acid has a higher flux than a dexmedetomidine composition (e.g., Formulation 43) which does not contain oleic acid. Oleic acid enhanced the permeation of dexmedetomidine through the skin. An increase of oleic acid from 5% to 7% (e.g. Formulation 46) did not show an enhancement effect as compared to the formulation containing 5% oleic acid (e.g. Formulation 45). This may be the result of the contribution of oleic acid in increasing the solubility of dexmedetomidine in the composition. A comparison of Formulation 45 and Formulation 47 shows that the in-vitro flux increases with increasing percent drug loading.

Example 13
In-vitro permeation of dexmedetomidine obtained from dexmedetomidine formulations containing levulinic acid

Dexmedetomidine transdermal formulations were also prepared with levulinic acid. The composition is shown in Table 19.

Table 19

<table>
<thead>
<tr>
<th>Components</th>
<th>%w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation 48 (3%DMT/4%LA/DT2287)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Dexmedetomidine base</td>
<td>3.00</td>
</tr>
<tr>
<td>Levulinic acid</td>
<td>4.00</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 2287</td>
<td>93.00</td>
</tr>
</tbody>
</table>
As shown in Figure 18, in-vitro flux of dexmedetomidine in formulations containing levulinic acid (Formulations 48 and 49) increased with percent dexmedetomidine loading. The enhancement effect of levulinic acid on permeation of dexmedetomidine through the skin was higher than oleic acid.

The results of percent in-vitro penetration of dexmedetomidine in formulations 43, 45 and 48 relative to the amount of dexmedetomidine in the patch are summarized in Table 20. Formulations 45 and 48, which contain levulinic acid and oleic acid, demonstrate a substantial enhancement in permeation of dexmedetomidine under in-vitro condition.

<table>
<thead>
<tr>
<th>Table 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation No.</td>
</tr>
<tr>
<td>Formulation 43</td>
</tr>
<tr>
<td>Formulation 45</td>
</tr>
<tr>
<td>Formulation 48</td>
</tr>
</tbody>
</table>

The solubility of dexmedetomidine in hydroxyl functionalized acrylate polymer was less than 1%. In order to increase the dexmedetomidine, an acid functionalized acrylate polymer (e.g., Duro-Tak2353), oleic acid and levulinic acid were used. The solubility of dexmedetomidine in Duro-Tak2353, oleic acid and levulinic acid was about 10-15%, 40% and 60% respectively. The amount of acid added in the formulation was adjusted according to the solubility of each component in the formulation.

After preparation, the crystal presence was examined using microscope. Results obtained from this microscope examination indicated that all formulations (Formulations 41 to 48) did not contain crystals.

Example 14

In-vitro flux obtained from different backings

Pressure-sensitive adhesives used in this example are polyisobutylene/polybutene (PIB/PB) adhesives. The PIB/PB adhesives are mixtures of high molecular weight PIB (5% Oppanol B100), low molecular weight PIB (25% Oppanol B12) and a polybutene tackifier, e.g., Indopol H1900 or Panalane H-300e (20%), in an organic solvent, e.g., heptane (50%). The combination was mixed for about 3 days, until the mixture was homogeneous. Example dexmedetomidine transdermal composition formulations are shown in Table 21. Same formulation was coated on release liner but laminated with three different backing materials:
backing 1 has a MVTR value (g/m^2/24hr) around 10, backing 2 has a MVTR value around 50 (g/m^2/24hr), and backing 3 has MVTR value around 150 (g/m^2/24hr).

The average dexmedetomidine in-vitro skin flux with respect to time is illustrated in Figure 19. As depicted in Figure 19, dexmedetomidine in-vitro skin flux was similar for backing 1 and 2. But it is significantly lower with backing 3.

Table 21

<table>
<thead>
<tr>
<th>Components</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexmedetomidine</td>
<td>1.00</td>
</tr>
<tr>
<td>PVP-CLM</td>
<td>20.00</td>
</tr>
<tr>
<td>PIB/PB (Indopol H1900)</td>
<td>79.00</td>
</tr>
</tbody>
</table>

Example 15

In-vitro flux obtained from formulations with lauryl lactate as enhancer

Another set of examples of dexmedetomidine transdermal formulation include transdermal compositions having 2-4% w/w dexmedetomidine with an enhancer to improve skin permeability. In these formulations, lauryl lactate (LL) and Duro-Tak 87-2287 were employed. The formulation compositions are shown in Table 22. In-vitro flux profiles for transdermal compositions. Figures 20 and 21 show the flux on two different skin samples. From the in-vitro flux profiles, LL shows its skin permeability enhancement effect. The flux is also proportional to API loading.

Table 22

<table>
<thead>
<tr>
<th>Components</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexmedetomidine base</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lauryl lactate</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pressure Sensitive Adhesive Duro-Tak 87-9301</td>
<td>98</td>
<td>93</td>
<td>92</td>
</tr>
</tbody>
</table>

The flux profile of all formulations (Formulations 41 to 48) showed a clear increasing trend in flux with time during the first 24 hours (Figures 16 to 18). This is followed by a gradual decrease in flux with time. As such, the increase in flux during the first 24 hours may, in certain instances, be useful for achieving a rapid higher initial therapeutic concentration in the body. Where there is a decrease in flux with time, the decrease in flux could be due to the crystallization of the drug in the adhesive induced by the absorbed water in the patch.

Notwithstanding the appended clauses, the disclosure set forth herein is also defined by the following clauses:
1. A method of treating attention deficit hyperactivity disorder (ADHD), anxiety or insomnia in a subject, the method comprising:
 applying to a skin surface of a subject diagnosed as having ADHD, anxiety or insomnia a transdermal delivery device comprising:
 a dexmedetomidine composition, wherein the dexmedetomidine composition comprises:
 dexmedetomidine; and
 a pressure sensitive adhesive; and
 a backing layer;
 in a manner sufficient to deliver dexmedetomidine to the subject to treat ADHD in the subject.
2. The method according to clause 1, wherein the subject is diagnosed as having ADHD.
3. The method according to clause 1, wherein the subject is diagnosed as having anxiety.
4. The method according to clause 1, wherein the subject is diagnosed as having insomnia.
5. The method according to clause 1, wherein the method comprises maintaining the transdermal delivery device in contact with the subject for a duration from 4 hours to 24 hours.
6. The method according to clause 1, wherein the method comprises maintaining the transdermal delivery device in contact with the subject for a duration from 8 hours to 14 hours.
7. The method according to clause 1, wherein the method comprises maintaining the transdermal delivery device in contact with the subject for a duration from 12 hours to 16 hours.
8. The method according to clause 1, wherein the subject is a child under the age of 8.
9. The method according to clause 1, wherein the subject is a child under the age of 5.
10. The method according to clause 1, wherein the transdermal delivery device is configured to reach a peak rate of dexmedetomidine delivery at about 30 minutes after applying the transdermal delivery device to the subject.
11. The method according to clause 1, wherein the transdermal delivery device is configured to reach a peak rate of dexmedetomidine delivery at about 3 hours after applying the transdermal delivery device to the subject.
12. The method according to clause 1, wherein the transdermal delivery device is configured to deliver dexmedetomidine to the subject at a rate ranging from 20µg/12 hours to 100µg/12 hours.
13. The method according to clause 1, wherein the transdermal delivery device is configured to deliver dexmedetomidine to the subject in a manner sufficient to maintain a mean plasma concentration of dexmedetomidine in the subject of from about 0.01 ng/mL to about 0.4 ng/mL.

14. The method according to clause 13, wherein the transdermal delivery device is configured to deliver dexmedetomidine to the subject in a manner sufficient to achieve a peak plasma concentration of dexmedetomidine in the subject at about 1 hour after applying the transdermal delivery device to the subject.

15. The method according to clause 13, wherein the transdermal delivery device is configured to deliver dexmedetomidine to the subject in a manner sufficient to achieve a peak plasma concentration of dexmedetomidine in the subject at about 2 hours after applying the transdermal delivery device to the subject.

16. The method according to clause 13, wherein the transdermal delivery device is configured to deliver dexmedetomidine to the subject in a manner sufficient to achieve a peak plasma concentration of dexmedetomidine in the subject at about 3 hours after applying the transdermal delivery device to the subject.

17. The method according to clause 1, wherein the pressure sensitive adhesive comprises a vinyl polymer.

18. The method according to clause 1, wherein the vinyl polymer is selected from the group consisting of polyethylene, polypropylene, polyisobutylene, polybutene, polystyrene, polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, organosilicones and combinations thereof.

19. The method according to clause 18, wherein the pressure sensitive adhesive comprises polyisobutylene or polybutene or a combination thereof.

20. The method according to clause 19, wherein the pressure sensitive adhesive comprises saturated polybutene.

21. The method according to clause 19, wherein the pressure sensitive adhesive comprises unsaturated polybutene.

22. The method according to clause 1, wherein the pressure sensitive adhesive comprises an acrylic polymer, acrylate copolymer, acrylate-vinyl acetate copolymer or polyacrylonitrile or combinations thereof.

23. The method according to clause 1, wherein the pressure sensitive adhesive comprises a non-functionalized polymer.

24. The method according to clause 23, wherein the pressure sensitive adhesive comprises a non-functionalized acrylate polymer.

25. The method according to clause 1, wherein the pressure sensitive adhesive comprises a carboxylic acid or hydroxyl functionalized polymer or a combination thereof.
26. The method according to clause 25, wherein the pressure sensitive adhesive comprises a carboxylic acid functionalized polymer.

27. The method according to clause 26, wherein the pressure sensitive adhesive comprises a carboxylic acid functionalized acrylate polymer.

28. The method according to clause 25, wherein the pressure sensitive adhesive comprises a hydroxyl functionalized polymer.

29. The method according to clause 28, wherein the pressure sensitive adhesive comprises a hydroxyl functionalized acrylate polymer.

30. The method according to clause 1, wherein the pressure sensitive adhesive comprises a mixture of a hydroxyl functionalized polymer and a carboxylic acid functionalized polymer.

31. The method according to clause 30, wherein the pressure sensitive adhesive comprises a mixture of a hydroxyl functionalized acrylate polymer and a carboxylic acid functionalized acrylate polymer.

32. The method according to clause 1, wherein the pressure sensitive adhesive is substantially the same as or is selected from the group consisting of Duro-Tak® 87-9301, Duro-Tak® 87-2353, Duro-Tak® 87-2510, Duro-Tak® 87-2516 and Duro-Tak® 87-4287. Duro-Tak® 87-2052, Duro-Tak® 87-2194, Duro-Tak® 87-2677, Duro-Tak® 87-201A, Duro-Tak® 87-2979, and Duro-Tak® 87-2074 and combinations thereof.

33. The method according to clause 1, wherein the pressure sensitive adhesive comprises crosslinked polyvinylpyrrolidone or crosslinked polyacrylic acid or a combination thereof.

34. The method according to clause 1, wherein the dexmedetomidine composition consists of dexmedetomidine and the pressure sensitive adhesive.

35. The method according to clause 1, wherein the transdermal delivery device comprises a single layer matrix comprising the dexmedetomidine composition.

36. The method according to clause 1, wherein the transdermal delivery device is configured to deliver 30% or more of the dexmedetomidine in the dexmedetomidine composition.

37. The method according to clause 1, wherein the amount of dexmedetomidine in the composition is 3% w/w or less.

38. A transdermal delivery device for treating a subject for ADHD, anxiety or insomnia, the transdermal delivery device comprising:

 a dexmedetomidine composition, the dexmedetomidine composition comprising:
 dexmedetomidine; and
 a pressure sensitive adhesive; and
a backing layer.

39. The transdermal delivery device according to clause 38, wherein the dexmedetomidine composition is formulated to deliver dexmedetomidine to a subject for a duration from 4 hours to 24 hours.

40. The transdermal delivery device according to clause 38, wherein the dexmedetomidine composition is formulated to deliver dexmedetomidine to a subject for a duration from 8 hours to 14 hours.

41. The transdermal delivery device according to clause 38, wherein the dexmedetomidine composition is formulated to deliver dexmedetomidine to a subject for a duration from 12 hours to 16 hours.

42. The transdermal delivery device according to clause 38, wherein the amount of dexmedetomidine in the composition is 20% w/w or less.

43. The transdermal delivery device according to clause 38, wherein the amount of dexmedetomidine in the composition is 10% w/w or less.

44. The transdermal delivery device according to clause 38, wherein the dexmedetomidine composition comprises a saturated amount of dexmedetomidine.

45. The transdermal delivery device according to clause 38, wherein the dexmedetomidine composition comprises a supersaturated amount of dexmedetomidine.

46. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver dexmedetomidine to a subject at a rate ranging from 20µg/12 hours to 100µg/12 hours.

47. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver dexmedetomidine in a manner sufficient to maintain a mean plasma concentration of dexmedetomidine in a subject of from about 0.01 ng/mL to about 0.4 ng/mL.

48. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver dexmedetomidine to a subject in a manner sufficient to maintain an assignment of a Ramsay score of from 2 to 5 in the subject.

49. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver dexmedetomidine to a subject in a manner sufficient to maintain an assignment of a Ramsay score of 3 or greater.

50. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver dexmedetomidine to a subject in a manner sufficient to maintain an assignment of a Ramsay score of 4 or greater.

51. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver 30% or more of the dexmedetomidine to the subject over an extended period of time.
52. The transdermal delivery device according to clause 38, wherein the transdermal delivery device is configured to deliver 90% or more of the dexmedetomidine to the subject over an extended period of time.

53. The transdermal delivery device according to clause 38, wherein the pressure sensitive adhesive comprises a vinyl polymer.

54. The transdermal delivery device according to clause 53, wherein the vinyl polymer is selected from the group consisting of polyethylene, polypropylene, polyisobutylene, polybutene, polystyrene, polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, and organosilicones and combinations thereof.

55. The transdermal delivery device according to clause 54, wherein the pressure sensitive adhesive comprises polyisobutylene or polybutene and combinations thereof.

56. The transdermal delivery device according to clause 55, wherein the pressure sensitive adhesive comprises saturated polybutene.

57. The transdermal delivery device according to clause 55, wherein the pressure sensitive adhesive comprises unsaturated polybutene.

58. The transdermal delivery device according to clause 38, wherein the pressure sensitive adhesive comprises an acrylic polymer, acrylate copolymer, acrylate-vinyl acetate copolymer or polyacrylonitrile and combinations thereof.

59. The transdermal delivery device according to clause 58, wherein the pressure sensitive adhesive comprises a non-functionalized polymer.

60. The transdermal delivery device according to clause 59, wherein the pressure sensitive adhesive comprises a non-functionalized acrylate polymer.

61. The transdermal delivery device according to clause 58, wherein the pressure sensitive adhesive comprises a carboxylic acid or hydroxyl functionalized polymer and combinations thereof.

62. The transdermal delivery device according to clause 61, wherein the pressure sensitive adhesive comprises a carboxylic acid functionalized polymer.

63. The transdermal delivery device according to clause 62, wherein the pressure sensitive adhesive comprises a carboxylic acid functionalized acrylate polymer.

64. The transdermal delivery device according to clause 61, wherein the pressure sensitive adhesive comprises a hydroxyl functionalized polymer.

65. The transdermal delivery device according to clause 64, wherein the pressure sensitive adhesive comprises a hydroxyl functionalized acrylate polymer.

66. The transdermal delivery device according to clause 58, wherein the pressure sensitive adhesive comprises a mixture of a hydroxyl functionalized polymer and a carboxylic acid functionalized polymer.
67. The transdermal delivery device according to clause 58, wherein the pressure
sensitive adhesive comprises a mixture of a hydroxyl functionalized acrylate polymer and a
carboxylic acid functionalized acrylate polymer.
68. The transdermal delivery device according to clause 38, wherein the pressure
sensitive adhesive is substantially the same as or is selected from the group consisting of
Duro-Tak® 87-9301, Duro-Tak®87-2353, Duro-Tak®87-2510, Duro-Tak®87-2516, Duro-
Tak®87-4287, Duro-Tak®87-2287, Duro-Tak®87-2052, Duro-Tak®87-2194, Duro-Tak®87-
2677, Duro-Tak®87-201A, Duro-Tak®87-2979, and Duro-Tak®87-2074 and combinations
thereof.
69. The transdermal delivery device according to clause 38, wherein the pressure
sensitive adhesive comprises crosslinked polyvinylpyrrolidone or crosslinked polyacrylic acid
or a combination thereof.
70. The transdermal delivery device according to clause 38, wherein the
dexmedetomidine composition comprises polyvinylpyrrolidone, PVP K90, levulinic acid, oleic
acid, PGML, lauryl lactate or mixtures thereof.
71. The transdermal delivery device according to clause 38, wherein the
dexmedetomidine composition consists of dexmedetomidine and the pressure sensitive
adhesive.
72. The transdermal delivery device according to clause 38, wherein the transdermal
delivery device comprises a single layer matrix dexmedetomidine composition.
73. A kit comprising:
two or more transdermal delivery devices, wherein each transdermal delivery device
comprises: a dexmedetomidine composition, the dexmedetomidine composition comprising:
dexmedetomidine; and a pressure sensitive adhesive; and a backing layer.

Although the foregoing invention has been described in some detail by way of
illustration and example for purposes of clarity of understanding, it is readily apparent to
those of ordinary skill in the art in light of the teachings of this invention that certain changes
and modifications may be made thereto without departing from the spirit or scope of the
appended claims.

Accordingly, the preceding merely illustrates the principles of the invention. It will be
appreciated that those skilled in the art will be able to devise various arrangements which,
although not explicitly described or shown herein, embody the principles of the invention and
are included within its spirit and scope. Furthermore, all examples and conditional language
recited herein are principally intended to aid the reader in understanding the principles of the
invention and the concepts contributed by the inventors to furthering the art, and are to be
construed as being without limitation to such specifically recited examples and conditions.
Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
WHAT IS CLAIMED IS:

1. A method of treating attention deficit hyperactivity disorder (ADHD), anxiety or insomnia in a subject, the method comprising:
 applying to a skin surface of a subject diagnosed as having ADHD, anxiety or insomnia a transdermal delivery device comprising:
 a dexmedetomidine composition, wherein the dexmedetomidine composition comprises:
 dexmedetomidine; and
 a pressure sensitive adhesive; and
 a backing layer;
 in a manner sufficient to deliver dexmedetomidine to the subject to treat ADHD in the subject.

2. The method according to claim 1, wherein the subject is diagnosed as having ADHD.

3. The method according to claim 1, wherein the subject is diagnosed as having anxiety.

4. The method according to claim 1, wherein the subject is diagnosed as having insomnia.

5. The method according to any of the preceding claims, wherein the method comprises maintaining the transdermal delivery device in contact with the subject for a duration from 4 hours to 24 hours.

6. The method according to any of the preceding claims, wherein the subject is a child under the age of 8.

7. The method according to any of the preceding claims, wherein the pressure sensitive adhesive comprises a vinyl polymer.
8. The method according to claim 1, wherein the dexmedetomidine composition consists of dexmedetomidine and the pressure sensitive adhesive.

9. The method according to claim 1, wherein the transdermal delivery device comprises a single layer matrix comprising the dexmedetomidine composition.

10. The method according to claim 1, wherein the transdermal delivery device is configured to deliver 30% or more of the dexmedetomidine in the dexmedetomidine composition.

11. The method according to claim 1, wherein the amount of dexmedetomidine in the composition is 3% w/w or less.

12. A transdermal delivery device for treating a subject for ADHD, anxiety or insomnia, the transdermal delivery device being a device as described in any of Claims to 1 to 11.

13. A kit comprising:
 two or more transdermal delivery devices according to Claim 12.
Figure 14(B)
Figure 14(c)
DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a), Rules 13ter 1(c) and (d) and 39)

<table>
<thead>
<tr>
<th>Applicant's or agent's file reference</th>
<th>IMPORTANT DECLARATION</th>
<th>Date of mailing (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEIKOKU-065WOI</td>
<td></td>
<td>16 January 2015 (16.01.2015)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International application No.</th>
<th>INTERNATIONAL DECLARATION</th>
<th>International filing date (day/month/year)</th>
<th>(Earliest) Priority date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT/US2014/059053</td>
<td></td>
<td>03 October 2014 (03.10.2014)</td>
<td>07 October 2013 (07.10.2013)</td>
</tr>
</tbody>
</table>

International Patent Classification (IPC) or both national classification and IPC:

A61K 9/70(2006.01)i, A61K 31/415(2006.01)i, A61K 31/41 7(2006.01)i, A61P 25/00(2006.01)i

Applicant

TEIKOKU PHARMA USA, INC.

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below.

1. ☑ The subject matter of the international application relates to:
 a. ☑ scientific theories
 b. ☑ mathematical theories
 c. ☑ plant varieties
 d. ☑ animal varieties
 e. ☑ essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes
 f. ☑ schemes, rules or methods of doing business
 g. ☑ schemes, rules or methods of performing purely mental acts
 h. ☑ schemes, rules or methods of playing games
 i. ☑ methods for treatment of the human body by surgery or therapy
 j. ☑ methods for treatment of the animal body by surgery or therapy
 k. ☑ diagnostic methods practised on the human or animal body
 l. ☑ mere presentation of information
 m. ☑ computer programs for which this International Searching Authority is not equipped to search prior art

2. ☑ The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:
 - ☑ the description
 - ☑ the claims
 - Q the drawings

3. Q A meaningful search could not be carried out without the sequence listing; the applicant did not, within the prescribed time limit:
 - ☑ furnish a sequence listing on paper complying with the standard provided for in Annex C of the Administrative Instructions, and such listing was not available to the International Searching Authority in a form and manner acceptable to it.
 - ☑ furnish a sequence listing in electronic form complying with the standard provided for in Annex C of the Administrative Instructions, and such listing was not available to the International Searching Authority in a form and manner acceptable to it.
 - ☑ pay the required late furnishing fee for the furnishing of a sequence listing in response to an invitation under Rule 13ter 1(a) or (b).

4. Further comments:

Name and mailing address of ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82 42 472 3473

Authorized officer
CHOI, Sung Hee
Telephone No. +82-42-481-8740

Form PCT/ISA/203 (July 2009)