wo 20137148223 A1 | I 00N OO O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/148223 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

3 October 2013 (03.10.2013) WIPOIPCT
International Patent Classification:
GO6F 21/53 (2013.01)
International Application Number:
PCT/US2013/031115

International Filing Date:
14 March 2013 (14.03.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/617,474 29 March 2012 (29.03.2012) US
13/713,536 13 December 2012 (13.12.2012) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

Inventors: Y ARCAS, Blaise, Aguera; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). FITOUSSI, Hen; c/o

(8D

Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
SCHLESINGER, Benny; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). YARIV, Eran; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, WA 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

[Continued on next page]

(54) Title: PERSISTENT AND RESILIENT WORKER PROCESSES

200 W

102 (WEB BROWSER)
112
——=
—= APPLICATION
(WEB APPLICATION)
O:

108

COMPUTING ENVIRONMENT
(OPERATING SYSTEM)

110

VIRTUAL ENVIRONMENT

202

WORKER PROCESS HOST

14
WORKER PROCESS [#—

120 —
DEVICE EVENT
NOTIFICATION
18 — T
DEVICE
EVENT MONITORING

116
DEVICE EVENT

(57) Abstract: In the field of computing, many scenarios involve the execution
of an application within a virtual environment (e.g., web applications executing
within a web browser). In order to perform background processing, such applic-
ations may invoke worker processes within the virtual environment; however,
this configuration couples the life cycle of worker processes to the life cycle of
the application and/or virtual environment. Presented herein are techniques for
executing worker processes outside of the virtual environment and independ -
ently of the life cycle of the application, such that background computation may
persist atter the application and/or virtual environment are terminated and even
atter a computing environment restart, and for notifying the application upon the
worker process achieving an execution event (e.g., detecting device events even
while the application is not executing). Such techniques may heighten the resili-
ency and persistence of worker processes and expand the capabilities of applica-
| tions executing within virtual environments.

WO 2013/148223 A1 |IIWAT 00N VAT 0 000K O

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:
kind of regional protection available): ARIPO (BW, GH, __ . , .
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Zsp ;Ote‘,’f;p(%‘l’:;s I%Zjemem to apply for and be granted
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, ’
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — as to the applicant’s entitlement to claim the priority of
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, the earlier application (Rule 4.17(iii))
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ’
GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

WO 2013/148223 PCT/US2013/031115

PERSISTENT AND RESILIENT WORKER PROCESSES
BACKGROUND
[0001] Within the field of computing, many scenarios involve an execution of
applications within virtual environments of a device, such as web applications
executing within a web browser; code that is developed for a computational
environment other than that provided by the device (e.g., Java code designed for
a Java virtual machine); and untrusted code executing within an isolated virtual
machine. The execution of the application within the virtual machine, rather than
as a native process of the device, may facilitate the compatibility and security of
the application during execution.
[0002] Such applications often involve background processing, such as long-
running, computationally intensive processes. For example, an application may
seek to monitor hardware components of the device for a particular type of event,
such as an incoming call on a mobile phone. However, if such processing is
performed by the application, other responsibilities of the application may be
undesirably delayed; e.g., computationally intensive processing may preempt the
handling of graphical user interface (GUIl) messages, and may cause the
application to present reduced interactivity or performance. In order to achieve
such background processing while reducing interruption of other processing
responsibilities of the application, the application may invoke one or more worker
processes within the virtual environment. For example, the “web workers” model
provided in recent versions of the Hypertext Markup Language (HTML) enables
applications to request the web browser to initiate separate worker processes
within the web browser, thus achieving background processing on behalf of the
application in a secured and performant manner.
SUMMARY
[0003] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key factors or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.
[0004] While the instantiation of worker processes on behalf of applications
executing within a virtual environment presents some advantages, models that

also execute those worker processes within the virtual environment may present

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

significant disadvantages. As a first example, the “web workers” model typically
couples the life cycle of the web worker to the life cycle of the web application; i.e.,
when the web application is suspended or terminated (such as by closing the
page hosting the web application), the web worker is also terminated. The worker
processes may also be terminated upon termination of the virtual environment
hosting the worker process (e.qg., closing the web browser), and/or upon restarting
the computing environment of the device (e.g., suspending or rebooting the
operating system of the device). In some scenarios, associating the life cycle of
the worker process with the life cycle of the application and/or virtual environment
may be desirable. However, in other scenarios, it may be desirable to enable the
worker process to persist after such events, and/or to persist through device
events such as a reboot of the operating system.

[0005] Presented herein are techniques for extending the resiliency of worker
processes executing on behalf of an application within a virtual environment, such
as a web browser or virtual machine. In accordance with such techniques, rather
than executing the worker process within the virtual environment, the device may
execute the worker process outside of the virtual environment. When the
application and/or virtual environment is terminated, the device may refrain from
terminating the worker process, thus separating the life cycle of the worker
process from the life cycle of the application. Optionally, the worker process may
also be configured to persist through potentially interrupting events arising outside
of the virtual environment, such as a fault in the process hosting the worker
process or an operating system reboot. When the worker process achieves an
execution event (e.g., completing a complex computational process or detecting a
particular type of device event), the application executing within the virtual
environment may be notified (optionally re-initiating the application if it is not
currently executing) in order to fulfill the handling of the execution event achieved
by the worker process. By decoupling the execution of worker processes from the
execution of the application within the virtual environment, the techniques
presented herein may expand the resiliency and capabilities of background
processing achievable by applications within the virtual environment.

[0006] To the accomplishment of the foregoing and related ends, the following
description and annexed drawings set forth certain illustrative aspects and

implementations. These are indicative of but a few of the various ways in which

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

one or more aspects may be employed. Other aspects, advantages, and novel
features of the disclosure will become apparent from the following detailed
description when considered in conjunction with the annexed drawings.

DESCRIPTION OF THE DRAWINGS
[0007] Fig. 1 is an illustration of an exemplary scenario featuring an execution
of a worker process on behalf of a web application within a web browser.
[0008] Fig. 2 is an illustration of an exemplary scenario featuring an execution
of a worker process on behalf of an application in accordance with the techniques
presented herein.
[0009] Fig. 3 is an illustration of an exemplary method of configuring a device
to fulfilling requests of client applications related to local events in accordance with
the techniques presented herein.
[0010] Fig. 4 is a component block diagram illustrating an exemplary system
for fulfilling requests of client applications related to local events in accordance
with the techniques presented herein.
[0011] Fig. 5 is an illustration of an exemplary computer-readable medium
comprising processor-executable instructions configured to embody one or more
of the provisions set forth herein.
[0012] Fig. 6 is an illustration of an exemplary scenario featuring a worker
process of an application executing on a device within device mesh, wherein the
worker process may attempt to communicate with a server of the application,
another server, and a remote process of another device in the device mesh, in
accordance with the techniques presented herein.
[0013] Fig. 7 is an illustration of an exemplary scenario demonstrating an
execution of a persistent worker process on behalf of an application executing
within a virtual environment in accordance with the techniques presented herein.
[0014] Fig. 8 illustrates an exemplary computing environment wherein one or
more of the provisions set forth herein may be implemented.

DETAILED DESCRIPTION

[0015] The claimed subject matter is now described with reference to the
drawings, wherein like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the

claimed subject matter. It may be evident, however, that the claimed subject

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

matter may be practiced without these specific details. In other instances,
structures and devices are shown in block diagram form in order to facilitate
describing the claimed subject matter.

[0016] A. Introduction

[0017] Within the field of computing, many scenarios involve the execution of
applications on a device within a virtual environment, rather than within the native
computing environment of the device. As a first example, a web browser may
provide a standardized platform for executing device-independent code, such as
JavaScript and Hypertext Markup Language (HTML) content. As a second
example, a Java virtual machine (JVM) may provide a bridge between a
generalized computing device and the native capabilities of the device on behalf
of a Java application (e.qg., translating generalized memory allocation requests to
the memory model of the device). As a third example, code designed for the
native environment of a first device may be executed on a second, completely
device through an emulator that provides a simulation of the first device within the
second device. As a fourth example, untrusted code may be executed within a
“sandbox” or an artificial machine, such that malicious operations may be isolated
to the artificial machine, and the effects of the untrusted code on the artificial
device may be evaluated by the device without risk of damage to the device.
[0018] These and other scenarios present the execution of an application
within a virtual environment. In many such scenarios, the application may involve
some foreground responsibilities to be handled in a performant manner; e.g.,
applications presenting a graphical user interface (GUI) may be designed to fulfill
interactions with visual controls with a high degree of responsiveness, as even
small delays are noticeable to the user. Such applications may also involve
extensive background processing that may be performed in a more relaxed
manner, such as long-running computations, maintenance tasks to be performed
during idle moments, and monitoring events of the device.

[0019] In order to balance the handling of both foreground processing and
background processing, virtual environments and applications may provide
techniques such as preemptive multitasking, wherein the application may
designate priorities for respective tasks. However, such techniques may not be
completely adequate for scheduling the variety of processing tasks involved in an

application. As a first such example, it may not be possible or efficient to preempt

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

some types of background processing (e.g., background processing involving an
exclusive locking of a resource) in order to handle foreground processing. As a
second such example, if background processing that involves the monitoring of
device events, the interruption of such background processing may result in a
failure to detect such device events.

[0020] In view of these difficulties, some virtual environments permit
applications to initiate a separate worker process within the virtual environment.
By separating the worker process from the execution thread of the application, the
virtual environment may utilize the concurrent processing capabilities of the
computing environment (e.g., a more sophisticated preemptive scheduler provided
by the operating system) and/or the computational hardware of the device (e.g.,
concurrent execution of the worker process and application thread on different
processors in a multiprocessor device, or on different cores of a multicore
processor). Moreover, the execution of the worker process within the same virtual
environment as the application may provide advantages in security (e.g., applying
the same security policy to the worker process as to the application) and/or
efficiency (e.g., enabling a tight coupling of the application and the worker process
as peers within the virtual environment).

[0021] Fig. 1 presents an illustration of an exemplary scenario 100 featuring a
device 104 of a user 106 presenting a computing environment 108 (e.g., an
operating system) comprising a virtual environment 110 (e.g., a web browser).
The device 104 may communicate with one or more servers 102 (e.g., a
webserver) and may retrieve one or more applications 112 to be executed on
behalf of the user 106 (e.g., web applications embedded in web pages requested
by the user 106). The device 104 may therefore initiate execution of the
application 112 within the virtual environment 110. Moreover, the virtual
environment 110 may be configured to enable the application 112 to request the
execution of a worker process 114, such as a background maintenance task that
is to be performed on behalf of the application 112 but without interrupting the
execution of foreground processing by the application 112. The virtual
environment 110 may therefore initiate execution of the worker process 114 within
the virtual environment 110 alongside the application 112. For example, the
worker process 114 may request to be notified of various device events 116, such

as incoming calls or messages received through a mobile communication device

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

such as a phone. The device 104 may apply some device event monitoring 118
within the computing environment 108, and upon detecting a device event 116,
may deliver a device event notification 120 to the worker process 114 within the
virtual environment 110. In this manner, the device 104 may enable the
application 112 to invoke worker processes 114 within the virtual environment 110
to achieve various types of background processing without interrupting the
foreground processing of the application 112. It may be appreciated that the
model illustrated in the exemplary scenario 100 of Fig. 1 accurately describes the
“‘web workers” model presented in recent versions of the Hypertext Markup
Language (HTML), wherein JavaScript scripts may invoke background processing
in a “web worker” process that is executed within the web browser alongside the
script.

[0022] While the architecture presented in the exemplary scenario 100 of Fig. 1
may present some advantages, it may be appreciated that some disadvantages
may also arise therein. In particular, the execution of the worker process 114
within the virtual environment 110 alongside the application 112 may be
disadvantageous in certain respects. For example, in some scenarios, it may be
desirable to couple the life cycle of the worker process 114 with the application
112, such that suspension or termination of the application 112 also results in
suspension or termination of the worker process 114. However, in other
scenarios, it may be desirable to decouple the application 112 and the worker
process 114. For example, the worker process 114 may comprise a long-running
process that the user 106 may wish to complete, but the user 106 may not wish to
retain the application 112 within the virtual environment 110 (e.g., the user 106
may intentionally or inadvertently navigate away from a web page hosting a web
application, thus causing the termination of web workers associated with the web
application). As another example, the user 106 may wish the worker process 114
to persist indefinitely, such as a handler for particular types of device events 116
arising on the device 104 (e.g., a notification process to notify the user 106 upon
receipt of a text message or incoming phone call). Moreover, in some scenarios,
it may be desirable to enable the worker process 114 not only to persist after
suspension or termination of the application 112, but also after suspension or
termination of the virtual environment 110 (e.qg., after the user 106 entirely

terminates a web browser), and/or after interruption of the computing environment

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

108 (e.g., after rebooting or otherwise restarting the device 104). However,
models that strictly involve the coupling of the life cycle of the worker process 114
with the life cycle of the application 112 may be incapable of providing such
persistent and resilient worker processes 114.

[0023] B. Presented Techniques

[0024] Presented herein are techniques for improving the persistence and/or
resilience of worker processes 114 executed on behalf of applications 112
executing within a virtual environment. In accordance with these techniques (and
in contrast with other techniques such as those illustrated in the exemplary
scenario 100 of Fig. 1), rather than executing the worker process 114 within the
virtual environment 110, the device 104 may execute the worker process 114 on
behalf of the application 112 but outside of the virtual environment 110.
Moreover, when the device terminates the application 112 (e.g., temporarily or
indefinitely suspending the application 112, or upon completing or aborting the
execution of the application 112), the device 104 may refrain from terminating one
or more worker processes 114 associated with the application 112. In this
manner, the device 104 may enable the execution of persistent worker processes
114 that continue serving the computational processing of the application 112
even while the application 112 is not currently executing.

[0025] Fig. 2 presents an illustration of an exemplary scenario 200 featuring an
exemplary application of the techniques presented herein. In this exemplary
scenario 200, the device 104 again comprises a computing environment 108
including a virtual environment 110 wherein an application 112 received from a
server 102 may be executed (e.g., a web application received from a webserver
and executing within a web browser). The application 112 may request some
background processing, and the virtual environment 110 may comply by initiating
a worker process 114 on behalf of the application 112. However, in accordance
with the techniques presented herein, the worker process 114 may be executed
outside of the virtual environment 110 by a worker process host 202, which may
manage the life cycle and resource requests of the worker process 114
independently of the management of the life cycle and resource requests of the
application 112 by the virtual environment 110. In particular, upon detecting
termination of the application 112, the device worker process host 202 may refrain

from terminating the worker process 114; i.e., the life cycle of the worker process

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

114 may be separated from and managed independently of the life cycle of the
application 112. The worker process host 202 may also enable the worker
process 114 to notify the application 112 upon the worker process 114 achieving
an execution event. For example, the background processing implemented by the
worker process 114 may involve detecting a client device event 116, such as an
incoming call from a mobile phone. The device may utilize some device event
monitoring 118 to detect the device event 116 on behalf of the worker process
114, and may deliver a device event notification 120 to the worker process 114
upon detecting such a device event 116. Notably, this detection and delivery may
be successfully completed while the worker process 114 is operating even if the
application 112 is not currently executing (and, optionally, even if the virtual
environment 110 is not executing on the device 104). Moreover, the worker
process host 202 may facilitate the worker process 114 to notify the application
112 of the device event 116 (e.g., if the application 112 and/or virtual environment
110 are not currently executing, the device 104 may reinitiate the application 112
and/or virtual environment 110, or may simply enqueue the device event
notification 120 until such processes are later reinitiated by the user 106). In this
manner, the device 104 achieves the persistent execution of the worker process
114 independently of the execution of the application 112. These and other
advantages may be achievable through the architecture illustrated in the
exemplary scenario 200 of Fig. 2 and techniques presented herein.

[0026] C. Exemplary Embodiments

[0027] Fig. 3 presents a first exemplary embodiment of the techniques
presented herein, illustrated as an exemplary method 300 of performing
processing on behalf of applications 112 executing within a virtual environment
110 of a device 104. The exemplary method 300 may be implemented, e.g., as a
set of instructions stored in a memory component of the device, such as a
memory circuit, a platter of a hard disk drive, a solid-state storage device, or a
magnetic or optical disc, and organized such that, when executed on a processor
of the device, cause the device to operate according to the techniques presented
herein. The exemplary method 300 begins at 302 and involves executing 304 the
instructions on a processor of the device. Specifically, these instructions may be
configured to, upon receiving a request from an application 112 to execute a

worker process 114 involving an execution event, initiate 306 execution of the

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

worker process 114 outside of the virtual environment 110. The instructions are
also configured to, upon detecting termination of the application 112, refrain 308
from terminating the worker process 114. The instructions are also configured to,
upon the worker process 114 achieving the execution event, notify 310 the
application 112 of the execution event of the worker process 114. Having
completed the processing on behalf of the application 112, the exemplary method
300 presents the execution of the worker process 114 on behalf of the application
112 in accordance with the techniques presented herein, and so ends at 312.
[0028] Fig. 4 presents a second exemplary embodiment of the techniques
presented herein, illustrated as an exemplary scenario 400 featuring an exemplary
system 408 configured to perform processing on behalf of applications executing
within a virtual environment 110 of a device 104. The exemplary system 408 may
be implemented, e.g., as instructions stored in a memory component of the device
402 and configured to, when executed on a processor 404 of the device 402,
cause the device 402 to operate according to the techniques presented herein.
The exemplary system 408 comprises a virtual environment 110 within which at
least one application 112 is executing on the device 104. The exemplary system
408 also comprises a worker host component 410 executing on the device 104
outside of the virtual environment 110, and configured to, upon receiving a
request from an application 112 to execute a worker process 114 involving an
execution event 406, initiate execution of the worker process 114 outside of the
virtual environment 110. The worker host component 410 is further configured to,
upon detecting termination of the application 112, refrain from terminating the
worker process 114; and upon the worker process 114 achieving the execution
event 406, notify the application 112 of the execution event 406 of the worker
process 114. In this manner, the exemplary system 408 achieves the execution of
the worker process 114 on behalf of the application 112 executing within the
virtual environment 110 of the device 402 in accordance with the techniques
presented herein.

[0029] Still another embodiment involves a computer-readable medium
comprising processor-executable instructions configured to apply the techniques
presented herein. Such computer-readable media may include, e.g., computer-
readable storage media involving a tangible device, such as a memory

semiconductor (e.g., a semiconductor utilizing static random access memory

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

(SRAM), dynamic random access memory (DRAM), and/or synchronous dynamic
random access memory (SDRAM) technologies), a platter of a hard disk drive, a
flash memory device, or a magnetic or optical disc (such as a CD-R, DVD-R, or
floppy disc), encoding a set of computer-readable instructions that, when
executed by a processor of a device, cause the device to implement the
techniques presented herein. Such computer-readable media may also include
(as a class of technologies that are distinct from computer-readable storage
media) various types of communications media, such as a signal that may be
propagated through various physical phenomena (e.g., an electromagnetic signal,
a sound wave signal, or an optical signal) and in various wired scenarios (e.g., via
an Ethernet or fiber optic cable) and/or wireless scenarios (e.g., a wireless local
area network (WLAN) such as WiFi, a personal area network (PAN) such as
Bluetooth, or a cellular or radio network), and which encodes a set of computer-
readable instructions that, when executed by a processor of a device, cause the
device to implement the techniques presented herein.

[0030] An exemplary computer-readable medium that may be devised in these
ways is illustrated in Fig. 5, wherein the implementation 500 comprises a
computer-readable medium 502 (e.g., a CD-R, DVD-R, or a platter of a hard disk
drive), on which is encoded computer-readable data 504. This computer-readable
data 504 in turn comprises a set of computer instructions 506 configured to
operate according to the principles set forth herein. In one such embodiment, the
processor-executable instructions 506 may be configured to perform a method
508 of fulfilling requests of client applications 108 related to local events 105, such
as the exemplary method 300 of Fig. 3. In another such embodiment, the
processor-executable instructions 506 may be configured to implement a system
for fulfilling requests of client applications 108 related to local events 206, such as
the exemplary system 408 of Fig. 4. Some embodiments of this computer-
readable medium may comprise a computer-readable storage medium (e.g., a
hard disk drive, an optical disc, or a flash memory device) that is configured to
store processor-executable instructions configured in this manner. Many such
computer-readable media may be devised by those of ordinary skill in the art that
are configured to operate in accordance with the techniques presented herein.
[0031] D. Variations

10

WO 2013/148223 PCT/US2013/031115

[0032] The techniques discussed herein may be devised with variations in
many aspects, and some variations may present additional advantages and/or
reduce disadvantages with respect to other variations of these and other
techniques. Moreover, some variations may be implemented in combination, and
some combinations may feature additional advantages and/or reduced
disadvantages through synergistic cooperation. The variations may be
incorporated in various embodiments (e.g., the exemplary method 300 of Fig. 3
and the exemplary system 408 of Fig. 4) to confer individual and/or synergistic
advantages upon such embodiments.

[0033] D1. Scenarios

[0034] A first aspect that may vary among embodiments of these techniques
relates to the scenarios wherein such techniques may be utilized.

[0035] As a first variation of this first aspect, the techniques presented herein
may be utilized with many types of devices 402, such as servers, server farms,
workstations, laptops, tablets, mobile phones, game consoles, and network
appliances. Such devices 402 may also provide a variety of computing
components, such as wired or wireless communications devices; human input
devices, such as keyboards, mice, touchpads, touch-sensitive displays,
microphones, and gesture-based input components; automated input devices,
such as still or motion cameras, global positioning service (GPS) devices, and
other sensors; output devices such as displays and speakers; and communication
devices, such as wired and/or wireless network components.

[0036] As a second variation of this first aspect, the techniques presented
herein may be utilized with various types of servers 102, such as webservers, file
servers, application servers, media servers, peer-to-peer sharing coordination
servers, database servers, email servers, physical metric monitoring servers, and
supervisory control and data acquisition (SCADA) automation servers.

[0037] As a third variation of this first aspect, the techniques presented herein
may be utilized to service applications 112 executing in many types of virtual
environments 110, such as a web browsers, a simulated and/or emulated virtual
machine, a middleware platforms, and/or an isolation construct.

[0038] As a fourth variation of this first aspect, the techniques presented herein

may be utilized to service many types of applications 112, such as web

11

WO 2013/148223 PCT/US2013/031115

applications written in various interpreted and/or compiled languages, file-sharing
applications, media rendering applications, and data-driven client applications.
[0039] As a fifth variation of this first aspect, the techniques presented herein
may involve executing many types of worker processes 114 within many types of
worker process hosts 202. For example, the worker process 114 may comprise a
JavaScript script executed according to the HTML 5 “web workers” model, but
executed in a separate shell outside of the web browser hosting the application
112. Alternatively, the worker process 114 may comprise a partially or wholly
compiled and natively executing application executing in a managed context
(wherein the managing runtime comprises the worker process host 202) within the
device 104. As another alternative, the worker process host 202 may comprise a
local webserver configured to perform persistent background processing on behalf
of applications 112 executing within a web browser on the same device.
Moreover, the worker process 114 may comprise a JavaScript script utilizing the
Node.js server-side JavaScript environment.

[0040] As a sixth variation of this first aspect, the worker process 114 may
perform many types of background processing on behalf of the application 112,
including long-running computational processes (and wherein the execution event
comprises a completion of the computational process); a scheduling or timer
process (and wherein the execution event comprises a timeout or elapsing of the
timer); persistently available functionality, such as a daemon process (and
wherein the execution event comprises an invocation of the functionality by
another process executing on the device 104); and/or monitoring of various types
of device events 116 (and wherein the execution event comprises a detected
instance of the device event 116, such as a detection of user input from the user
106 of the device 104, or a hardware or software event arising within the
computing environment 108, such as the receipt of an incoming call or message
of a mobile phone device). The worker process 114 may apply many types of
processing to such device events 116, such as reporting the device event 116 to
the application 112, logging the occurrence of the device event 116, or applying
additional logic during the handling of the device event 116. These and other
scenarios may be compatible with and may advantageously utilize the techniques
presented herein.

[0041] D2. Worker Process Hosting

12

WO 2013/148223 PCT/US2013/031115

[0042] A second aspect that may vary among embodiments of the techniques
presented herein involves the manner of hosting the execution of the worker
process 114 outside of the virtual environment 110. That is, while the worker
process 114 is received from the application 112 and executed outside of the
virtual environment 110, it may be disadvantageous and/or difficult to allow the
worker process 114 to execute outside of the virtual environment 110 without
some type of process host, as this may result in the execution of arbitrary and
untrusted code as a native process within the computing environment 108 of the
device 104. Accordingly, although separated from the virtual environment 110,
the execution of the worker process 114 may be attended by a worker host
component 410 providing various types of hosting services to the worker process
114.

[0043] As a first variation of this second aspect, a worker host component 410
may apply many forms of hosting to the worker process 114. As a first example,
the worker host component 410 may also provide a virtual environment 110 for
the worker process 114, so long as the virtual environment 110 provided for the
worker process 114 is separate from the virtual environment 110 provided for the
application 112. Indeed, the virtual environment 110 provided for the worker
process 114 may be quite similar to the virtual environment 110 provided for the
application 112 (e.g., both processes may execute within the context of a web
browser), and the separation of the virtual environments 110 enables the
persistence of the worker process 114 independent of the life cycle of the
application 112 as provided herein. Additionally, similarities between a first virtual
environment 110 provided for the application 112 and a second (separate) virtual
environment 110 provided for the worker process 114 may enable some
conveniences and efficiencies; e.g., the same security policy applied to the
application 112 may be applied to the worker process 114. For example, web
applications executing within a web browser are often restricted according to a
cross-domain security policy, e.g., enabling the web application only to
communicate over the internet with the domain from which the web application
was received. The worker host component 410 may restrict the execution of
worker processes 114 according to the same cross-domain security policy applied
to the web applications executing within the web browser and associated with the

worker processes 114, e.g., restricting the worker processes 114 from

13

WO 2013/148223 PCT/US2013/031115

communicating with any domains, servers, or devices outside of the domain that
provided the application 112 to the device 104.

[0044] Alternatively, the worker host component 410 may present a different
execution model to the worker process 114 with different details. Such
differences may be selected and/or designed in view of the different contexts of
the application 112 (e.g., an execution environment suitable for ad hoc front-end
code presenting a user interface) and the worker process 114 (e.g., an execution
environment suitable for computationally complex, long-running processing
without a user interface). As a first such example, because worker processes 114
may utilize more computationally complex processes than the application 112, the
worker host component 410 may partially and/or wholly compile the worker
process 114 before or during execution, thus providing more performant execution
through the use of code optimization techniques, while the application 112 may be
executed as an interpretable script. As a second such example, the worker host
component 410 may schedule the execution of worker processes 114 within the
computing environment 108 differently than the scheduling of the application 112
within the virtual environment 110. For example, the worker process 114 may be
scheduled as a long-running process particularly suitable for long stretches of
comparatively uninterrupted processing during idle periods of the device 104,
while the application 112 may be scheduled as a set of highly responsive but
short-lived invocations of code, such as responses to user interface events. As a
third such example, the worker process 114 may be provided a different set of
application programming interfaces (APIs) than the application 112, e.g., lower-
level hardware and network communication modules for the worker process 114
and user-interface-type modules for the application 112. As a fourth such
example, the worker host component 410 may present a different security model
than the virtual environment 110 of the application 112 (e.g., in view of the
expanded capabilities of the worker process 114 executing outside of the virtual
environment 110, the security processes the worker host component 410 may
apply more rigorous code evaluation before and/or during execution to detect and
block malicious operations). Conversely, in other respects, the security model of
the worker process 114 may be more relaxed than for applications 112 executing
within the virtual environment 110; e.g., because communication between the

worker process 114 and other devices may be more closely scrutinized with an

14

WO 2013/148223 PCT/US2013/031115

acceptable increase in communication latency, the worker process 114 may not
be restricted according to the cross-domain security policy applied to the
application 112. For example, where the device 104 is accessible to a remote
process executing on a second device, the worker host component 410 may,
upon receiving a request to connect the remote process executing on the second
device with the worker process, connect the remote process with the worker
process 114. The expansion of functionality may reflect a higher level of trust in
the worker process 114 than the application 112, and may be contingent upon
user consent; e.g., the worker host component 410 may present to the user 106
an offer to initiate execution of the worker process 114 outside of the virtual
environment 110, and may initiate such execution only upon receiving an
acceptance of the offer from the user 106. The user 106 may also be permitted to
examine the worker processes 114 persisting after the termination of associated
applications 112, and to alter the execution thereof (e.g., fulfilling requests by the
user 106 to suspend and/or terminate the worker processes 114).

[0045] In these and other ways, the execution model provided for the worker
process 114 may significantly differ from the execution model provided for the
application 112. As a first such example, the worker host component 410 may
comprise a managing runtime that enables managed execution of the worker
process 114 (e.qg., facilitating memory allocation and component access requests
according to the architecture of the device 104). As a second such example, the
worker host component 410 may comprise a local webserver that is deployed on
the device 104 in the service of web applications also executing within a web
browser of the device, and configured to executed worker processes 114 as local
webserver processes. For example, the worker host components 410 may be
designed as JavaScript scripts targeting the Node.js server-side scripting module
of a local webserver. As a third such example, the worker hot component 410
may provide a virtual machine, such as a Java virtual machine, that executes
separately from the virtual environment 110 in order to separate the life cycle of
the worker process 114 from the life cycle of the application 112. Many choices in
the execution environment provided by the worker host component 410 to worker
processes 114 may be available and compatible with the techniques presented

herein.

15

WO 2013/148223 PCT/US2013/031115

[0046] Fig. 6 presents an illustration of an exemplary scenario 600 featuring
several of the variations in the hosting of the worker process 114 by the worker
host component 410 provided herein. In this exemplary scenario 600 and in
accordance with the techniques presented herein, a device 104 provides a virtual
environment 110 executing an application 112, as well as a worker host
component 410 executing a worker process 114 on behalf of the application 112
but outside of the virtual environment 110. As a first such example, in some
respects, the hosting of the worker process 114 may share similarities with the
hosting of the application 112 within the virtual environment 110, such as a similar
cross-domain restriction policy. For example, if the application 112 is first
received from a server 102 providing a first service (e.g., a web application
service) and the worker process 114 later initiates communication 610 with the
same server 102, the worker host component 410 may permit the communication
610 with the server 102 providing the first service. However, if the worker process
114 attempts to initiate communication 612 with services provided by other
servers 612 than the server 102 providing the first service, the worker host
component 410 may block 616 the communication 612. Alternatively or
additionally, the security policy applied to the worker process 114 may differ in the
same or other respects from that applied to the application 112. For example, in
this exemplary scenario 600, the device 104 operates as part of a device mesh
602 comprising a set of devices 104 operated by the same user 106 in an
interoperative manner, e.g., with extensive data sharing in order to provide a
consistent and seamless user experience to the user 106 across multiple devices
104. Accordingly, the worker process 114 may be permitted to communicate 608
with a remote process 606 executing on a second device 604 within the device
mesh 602, even if the application 112 is not permitted to communicate with
remote processes 606 outside of the server 102 providing the application 112.
[0047] D3. Worker Process Persistence and Resiliency

[0048] A third aspect that may vary among embodiments of these techniques
involves the persistence of the worker process 114. In addition to refraining from
terminating the execution of the worker process 114 upon detecting the
termination of the application 112, the techniques presented herein may utilize
additional techniques to facilitate the persistence and resiliency of the worker

process 114.

16

WO 2013/148223 PCT/US2013/031115

[0049] As a first variation of this third aspect, the worker host component 410
may also enable the worker process 114 to persist despite termination not just of
the application 112, but of the virtual environment 110 (e.g., not just persisting
after the user 106 closes the web page hosting the application 112, but persisting
after the web browser is entirely terminated and unloaded from memory). Thus,
the device 104 may refrain from terminating the worker process 114 even upon
terminating the virtual environment 110.

[0050] As a second variation of this third aspect, the worker host component
410 may enable the worker process 114 to persist despite faults in the worker
host component 410 (e.g., an exception, crash, or termination of the component
managing the worker process 114). For example, the worker host component 410
may periodically record the list of executing worker processes 114 and the
sources thereof. If a fault arises within the worker host component 410, the
device 104 may terminate the worker host component 410, reinitiate execution of
the worker host component within the computing environment of the device, and
reinitiate execution of the worker processes 114 that were executing within the
worker host component 410 at the time of the fault.

[0051] As a third variation of this third aspect, the worker host component 410
may even enable the worker process 114 to persist despite significant changes in
the computing environment 108 of the device 104. For example, the termination
of the application 112 and/or virtual environment 110 may arise during the process
of restarting the computing environment 108 of the device 104, such as a reboot.
Accordingly, after restarting the computing environment 108, the device may
reinitiate execution of the worker processes 114 outside of the virtual environment
110. As a first such example, the device 104 may store the worker process 114
and may periodically record its state, such that, after restarting the computing
environment 108, the device 104 may reinitate execution of the worker process
114 with a comparatively recent state. As a second such example, if the worker
process 114 is received from and/or remains in communication with a service, the
device 104 may, after restarting the computing environment 108, request a
second worker process 114 from the service (e.g., a worker process 114
configured to resume execution based on a recent observation or reporting of the
state of the first worker process 114), and may, upon receiving the second worker

process 114 from the service, execute the second worker process 114 outside of

17

WO 2013/148223 PCT/US2013/031115

the virtual environment 110 of the device 104. Such persistence may even enable
the worker process 114 to persist upon restarting or transitioning the computing
environment 108 on a different device 104, e.g., upon transitioning the worker
process 114 to a second device 104 within the device mesh 602 of the user 106.
[0052] As a fourth variation of this third aspect, the resilience of the worker
process 114 may be shared with the application 112. For example, in addition to
refraining from terminating the worker process 114 upon terminating the
application 112, the worker host component 410 may, upon detecting a
reinitiaition of the execution of the application 112 within the virtual environment
110, identify any currently executing worker processes 114 that were initiated by
the application 112 before termination, and may reconnect the application 112
with the identified worker processes 114. The worker processes 114 may, for
example, notify the application 112 of any relevant device events 116 arising on
the device 104 during the period of termination of the application 112. These and
other techniques for expanding the persistence and resiliency of the worker
processes 114 may be devised during and compatible with the implementation of
the techniques presented herein.

[0053] D4. Application Notification

[0054] A fourth aspect that may vary among embodiments of these techniques
involves the manner of notifying an application 112 upon an associated worker
process 114 achieving an execution event 406.

[0055] As a first variation of this fourth aspect, the notification of the application
112 may be achieved through many types of notification mechanisms. As a first
such example, the worker host component 410 may simply log the execution
event 406, and the application 112 may periodically examine the log of execution
events 406 achieved by the worker process 114. As a second such example, the
notification may be achieved through message-passing; e.g., the worker process
114 may generate an execution event notification 412 identifying and describing
the execution event 406, and the virtual environment 110 may present the
execution event notification 412 to the application 112. As a third such example,
the notification may be achieved through a callback mechanism, wherein the
application 112 indicates a memory location of code to be invoked upon the
worker process 114 achieving the execution event 406. This code may comprise,

e.g., a portion of the application 112 to be executed within the virtual environment

18

WO 2013/148223 PCT/US2013/031115

110; a portion of the worker process 114 to be executed by the worker host
component 410; a function of the computing environment 108, such as an AP
call; or a separate code portion, such as a mobile agent, an abstract syntax tree,
or a script.

[0056] As a second variation of this fourth aspect, the resiliency of the worker
process 114 may extend to the application 112 during the notification. As a first
such example, if the worker process 114 achieved the execution event 406 after
the application 112 has been terminated, the device 104 may reinitiate the
application 112 in the virtual environment 110 as part of the notification process,
e.g., by reloading a web page of a web application that created the web worker.
As a second such example, the application 112 may be automatically presented to
the user 106 as part of the notification process. For example, upon achieving the
execution event 406, the device 104 may raise the virtual environment 110 and/or
the application 112 to a foreground presentation within the computing environment
108 (e.g., bringing the web browser to the foreground and switching to a tab
containing the application 112).

[0057] Fig. 7 presents an illustration of an exemplary scenario featuring a
persistent and resilient worker process executing within a computing environment
108 of a device 104. In this exemplary scenario, at a first time point 700, a web
browser 702 (comprising the virtual environment 110 within the computing
environment 108) may receive an application 112 from a server 102, and may
initiate execution of the application 112 within the web browser 702. This
execution may involve a worker process 114 to provide some background
processing, which the computing environment 108 may execute as a server
process of a local webserver 704. Additionally, the local webserver 704 may
record the worker process 114, the server 102 comprising the source of the
worker process 114 and application 112, and, periodically, the state of the worker
process 114.

[0058] At a second time point 706, a termination 708 of the web browser 702
may be initiated by the user 106 and/or the device 104, and such termination 708
may include terminating the application 112 executing within the web browser
702. However, in accordance with the techniques presented herein, the execution

of the worker process 114 outside of the web browser 702 enables the worker

19

WO 2013/148223 PCT/US2013/031115

process 114 to persist despite the termination 708 of the application 112 and the
virtual environment 110.

[0059] At a third time point 710, the computing environment 108 may also
experience a termination 712 (e.qg., during a reboot of the device 104). At a fourth
time point 714 following the termination 712, the computing environment 108 may
be restarted. The restart may involve an automatic reinitiation of the local
webserver 704, which may examine the recording of the worker processes 114
hosted by the local webserver 704 at the time of termination 712 of the computing
environment 108. The local webserver 704 may then contact the server 102, and
may receive 716 from the server 102 a second worker process 114 (e.g., an
identical instance to the worker process 114 initiated at the first time point 700, or
an altered worker process reflecting the state of the worker process 114 at the
time of termination 712). The computing environment 108 may thus automatically
reinitiate execution of the worker process 114 following a restart of the computing
environment 108.

[0060] At a fourth time point 718, a device event 116 may arise within the
computing environment 108 (e.g., an incoming call for the user 106). If the worker
process 114 is associated with the device event 116 (e.g., as an execution event
406 of the worker process 114), the local webserver 704 may notify the worker
process 114 of the device event 116. Additionally, the worker process 114 may
notify 720 the application 112 of the device event 116. Moreover, if the
application 112 and/or web browser 702 are not currently executing, the device
104 may reinitiate the web browser 702 and/or the application 112 (e.g., by
reloading the page within the web browser 702), and, additionally, may bring the
web browser 702 to a foreground presentation within the computing environment
108. In this manner, the device 104 may achieve resilient execution the worker
process 114 that persists despite the termination of the application 112, the
termination of the virtual environment 110, and even the restarting of the
computing environment 108, through the application of the techniques presented
herein.

[0061] E. Computing Environment

[0062] Fig. 8 and the following discussion provide a brief, general description
of a suitable computing environment to implement embodiments of one or more of

the provisions set forth herein. The operating environment of Fig. 8 is only one

20

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

example of a suitable operating environment and is not intended to suggest any
limitation as to the scope of use or functionality of the operating environment.
Example computing devices include, but are not limited to, personal computers,
server computers, hand-held or laptop devices, mobile devices (such as mobile
phones, Personal Digital Assistants (PDAs), media players, and the like),
multiprocessor systems, consumer electronics, mini computers, mainframe
computers, distributed computing environments that include any of the above
systems or devices, and the like.

[0063] Although not required, embodiments are described in the general
context of “computer readable instructions” being executed by one or more
computing devices. Computer readable instructions may be distributed via
computer readable media (discussed below). Computer readable instructions
may be implemented as program modules, such as functions, objects, Application
Programming Interfaces (APIs), data structures, and the like, that perform
particular tasks or implement particular abstract data types. Typically, the
functionality of the computer readable instructions may be combined or distributed
as desired in various environments.

[0064] Fig. 8 illustrates an example of a system 800 comprising a computing
device 802 configured to implement one or more embodiments provided herein.
In one configuration, computing device 802 includes at least one processing unit
806 and memory 808. Depending on the exact configuration and type of
computing device, memory 808 may be volatile (such as RAM, for example), non-
volatile (such as ROM, flash memory, etc., for example) or some combination of
the two. This configuration is illustrated in Fig. 8 by dashed line 804.

[0065] In other embodiments, device 802 may include additional features
and/or functionality. For example, device 802 may also include additional storage
(e.g., removable and/or non-removable) including, but not limited to, magnetic
storage, optical storage, and the like. Such additional storage is illustrated in Fig.
8 by storage 810. In one embodiment, computer readable instructions to
implement one or more embodiments provided herein may be in storage 810.
Storage 810 may also store other computer readable instructions to implement an
operating system, an application program, and the like. Computer readable
instructions may be loaded in memory 808 for execution by processing unit 806,

for example.

21

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

[0066] The term “computer readable media” as used herein includes computer
storage media. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology
for storage of information such as computer readable instructions or other data.
Memory 808 and storage 810 are examples of computer storage media.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, Digital Versatile Disks
(DVDs) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other medium which can be
used to store the desired information and which can be accessed by device 802.
Any such computer storage media may be part of device 802.

[0067] Device 802 may also include communication connection(s) 816 that
allows device 802 to communicate with other devices. Communication
connection(s) 816 may include, but is not limited to, a modem, a Network Interface
Card (NIC), an integrated network interface, a radio frequency
transmitter/receiver, an infrared port, a USB connection, or other interfaces for
connecting computing device 802 to other computing devices. Communication
connection(s) 816 may include a wired connection or a wireless connection.
Communication connection(s) 816 may transmit and/or receive communication
media.

[0068] The term “computer readable media” may include communication
media. Communication media typically embodies computer readable instructions
or other data in a “modulated data signal” such as a carrier wave or other
transport mechanism and includes any information delivery media. The term
“‘modulated data signal” may include a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the
signal.

[0069] Device 802 may include input device(s) 814 such as keyboard, mouse,
pen, voice input device, touch input device, infrared cameras, video input devices,
and/or any other input device. Output device(s) 812 such as one or more
displays, speakers, printers, and/or any other output device may also be included
in device 802. Input device(s) 814 and output device(s) 812 may be connected to
device 802 via a wired connection, wireless connection, or any combination

thereof. In one embodiment, an input device or an output device from another

22

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

computing device may be used as input device(s) 814 or output device(s) 812 for
computing device 802.

[0070] Components of computing device 802 may be connected by various
interconnects, such as a bus. Such interconnects may include a Peripheral
Component Interconnect (PCI), such as PCl Express, a Universal Serial Bus
(USB), Firewire (IEEE 1394), an optical bus structure, and the like. In another
embodiment, components of computing device 802 may be interconnected by a
network. For example, memory 808 may be comprised of multiple physical
memory units located in different physical locations interconnected by a network.
[0071] Those skilled in the art will realize that storage devices utilized to store
computer readable instructions may be distributed across a network. For
example, a computing device 820 accessible via network 818 may store computer
readable instructions to implement one or more embodiments provided herein.
Computing device 802 may access computing device 820 and download a part or
all of the computer readable instructions for execution. Alternatively, computing
device 802 may download pieces of the computer readable instructions, as
needed, or some instructions may be executed at computing device 802 and
some at computing device 820.

[0072] F. Usage of Terms

[0073] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the
subject matter defined in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific features and acts
described above are disclosed as example forms of implementing the claims.

[0074] As used in this application, the terms "component,” "module,” "system"”,
"interface”, and the like are generally intended to refer to a computer-related
entity, either hardware, a combination of hardware and software, software, or
software in execution. For example, a component may be, but is not limited to
being, a process running on a processor, a processor, an object, an executable, a
thread of execution, a program, and/or a computer. By way of illustration, both an
application running on a controller and the controller can be a component. One or
more components may reside within a process and/or thread of execution and a
component may be localized on one computer and/or distributed between two or

more computers.

23

10

15

20

25

30

WO 2013/148223 PCT/US2013/031115

[0075] Furthermore, the claimed subject matter may be implemented as a
method, apparatus, or article of manufacture using standard programming and/or
engineering techniques to produce software, firmware, hardware, or any
combination thereof to control a computer to implement the disclosed subject
matter. The term "article of manufacture" as used herein is intended to
encompass a computer program accessible from any computer-readable device,
carrier, or media. Of course, those skilled in the art will recognize many
modifications may be made to this configuration without departing from the scope
or spirit of the claimed subject matter.

[0076] Various operations of embodiments are provided herein. |In one
embodiment, one or more of the operations described may constitute computer
readable instructions stored on one or more computer readable media, which if
executed by a computing device, will cause the computing device to perform the
operations described. The order in which some or all of the operations are
described should not be construed as to imply that these operations are
necessarily order dependent. Alternative ordering will be appreciated by one
skilled in the art having the benefit of this description. Further, it will be
understood that not all operations are necessarily present in each embodiment
provided herein.

[0077] Moreover, the word "exemplary” is used herein to mean serving as an
example, instance, or illustration. Any aspect or design described herein as
"exemplary" is not necessarily to be construed as advantageous over other
aspects or designs. Rather, use of the word exemplary is intended to present
concepts in a concrete fashion. As used in this application, the term "or" is
intended to mean an inclusive "or" rather than an exclusive "or". That is, unless
specified otherwise, or clear from context, "X employs A or B" is intended to mean
any of the natural inclusive permutations. That is, if X employs A; X employs B; or
X employs both A and B, then "X employs A or B" is satisfied under any of the
foregoing instances. In addition, the articles "a" and "an" as used in this
application and the appended claims may generally be construed to mean "one or
more" unless specified otherwise or clear from context to be directed to a singular
form.

[0078] Also, although the disclosure has been shown and described with

respect to one or more implementations, equivalent alterations and modifications

24

10

15

WO 2013/148223 PCT/US2013/031115

will occur to others skilled in the art based upon a reading and understanding of
this specification and the annexed drawings. The disclosure includes all such
modifications and alterations and is limited only by the scope of the following
claims. In particular regard to the various functions performed by the above
described components (e.g., elements, resources, etc.), the terms used to
describe such components are intended to correspond, unless otherwise
indicated, to any component which performs the specified function of the
described component (e.g., that is functionally equivalent), even though not
structurally equivalent to the disclosed structure which performs the function in the
herein illustrated exemplary implementations of the disclosure. In addition, while
a particular feature of the disclosure may have been disclosed with respect to only
one of several implementations, such feature may be combined with one or more
other features of the other implementations as may be desired and advantageous
for any given or particular application. Furthermore, to the extent that the terms
"includes”, "having”, "has", "with", or variants thereof are used in either the
detailed description or the claims, such terms are intended to be inclusive in a

manner similar to the term "comprising.”

25

WO 2013/148223 PCT/US2013/031115

What is claimed is:
1. A system for performing processing on behalf of applications of a device,
the system comprising:
a virtual environment within which at least one application is executing on
the device; and
a worker host component executing on the device outside of the virtual
environment and configured to:
upon receiving a request from an application to execute a worker
process involving an execution event, initiate execution of the worker process
outside of the virtual environment;
upon detecting termination of the application, refrain from
terminating the worker process; and
upon the worker process achieving the execution event, notify the
application of the execution event of the worker process.
2. The system of claim 1:
the virtual environment comprising a web browser;
the application comprising a web application; and
the worker process comprising a web worker executing outside of the web
browser.
3. The system of claim 2, the worker host component configured to restrict the
execution of the worker process according to a cross-domain restriction policy of
the web browser.
4. The system of claim 2, the worker host component comprising a local
webserver configured to execute the worker process as a local webserver
process.
5. The system of claim 1:
the worker host component comprising a background service executing
within a computing environment of the device; and
the worker host component configured to restart automatically upon the
device restarting the computing environment.
6. The system of claim 1, further comprising: a worker host management
component configured to, upon detecting a worker host component fault of the
worker host component:

terminate the worker host component;

26

WO 2013/148223 PCT/US2013/031115

reinitiate execution of the worker host component within the computing
environment of the device; and

reinitiate worker processes executed by the worker host component during
the worker host component fault.
7. The system of claim 1:

the worker process received from a service; and

reinitiating execution of the worker process comprising:

after restarting the computing environment, requesting a second
worker process from the service; and
upon receiving the second worker process from the service, initiating

execution of the second worker process outside of the virtual environment.
8. The system of claim 1:

the worker process received from a first service; and

executing the worker process outside of the virtual environment comprising:
restricting communication between the worker process and services other than
the first service.
9. The system of claim 1, the worker host component further configured to,
upon terminating the virtual environment, refrain from terminating the worker
process.
10. The system of claim 1:

the device comprising a computing environment;

terminating the application comprising: terminating the application while
restarting the computing environment of the device; and

the worker host component further configured to, after restarting the
computing environment of the device, reinitiate execution of the worker process

outside of the virtual environment.

27

WO 2013/148223

100\

102

PCT/US2013/031115

1/8

108 —

(
110 —~

COMPUTING ENVIRONMENT

OPERATING SYSTEM)

VIRTUAL ENVIRONMENT

(WEB BROWSER)

112

g

106

APPLICATION
(WEB APPLICATION)

114

~

WORKER PROCESS

A
120 —
DEVICE EVENT
NOTIFICATION
118 — T
DEVICE

EVENT MONITORING

116 —

i

DEVICE EVENT

O

T

OE®E
OEM®

FIG. 1

WO 2013/148223 PCT/US2013/031115

2/8

200 \
108 —

COMPUTING ENVIRONMENT

(OPERATING SYSTEM)

110 —~
VIRTUAL ENVIRONMENT
102 | (WEB BROWSER)

112 —

—= > APPLICATION
(WEB APPLICATION)

0

202 —

WORKER PROCESS HOST
114 —

WORKER PROCESS |«

A

120 —
DEVICE EVENT
NOTIFICATION

T

DEVICE
EVENT MONITORING

T

DEVICE EVENT

106 T
1)

D23
DE®
OE®

FIG. 2

118 —

116 —

WO 2013/148223 PCT/US2013/031115

3/8

300
N

302
START

r 304

EXECUTE ON PROCESSOR INSTRUCTIONS CONFIGURED TO:

306
UPON RECEIVING REQUEST FROM APPLICATION TO EXECUTE r
WORKER PROCESS INVOLVING EXECUTION EVENT,
INITIATE EXECUTION OF WORKER PROCESS
OUTSIDE OF VIRTUAL ENVIRONMENT

— 308

UPON DETECTING TERMINATION OF APPLICATION,
REFRAIN FROM TERMINATING WORKER PROCESS

r310

UPON WORKER PROCESS ACHIEVING EXECUTION EVENT,
NOTIFY APPLICATION OF EXECUTION EVENT OF WORKER
PROCESS

312
END

FIG. 3

WO 2013/148223 PCT/US2013/031115

4/8
400 W
402 —
DEVICE
112 — 412 —
EXECUTION EVENT
APPLICATION — X2 EONEVENT (e —
A A
404 408 —
%Hﬁ SYSTEM
110 — 410 —
CPU VIRTUAL | WORKER HOST
ENVIRONMENT COMPONENT
2 A
|
406 — 114 —
WORKER
EXECUTION EVENT [JWORIER

FIG. 4

WO 2013/148223 PCT/US2013/031115

5/8

EMBODIMENT

T

|
|
|
|
|
506 4

COMPUTER
INSTRUCTIONS

504 4

01011010001010
10101011010101
101101011100...

COMPUTER READABLE MEDIUM

FIG. 5

WO 2013/148223 PCT/US2013/031115

6/8
600 \
602 —
DEVICE MESH
102 — 614 —
610 612~
SERVER OTHER SERVER
110

VIRTUAL

616
ENVIRONMENT
112 —

—p APPLICATION 1«

410 —
WORKER HOST
COMPONENT
114 — 606 —
<
||| WORKER REMOTE
PROCESS [| 608 ~ »| PROCESS

1o4ﬁT 604-\T
]

DEE)

DE® o)
000000000000

@ ”II "||"||"||"||"||"| |I |I I I| I||:|
OO0 100000 5HA

]

FIG. 6

WO 2013/148223

718

PCT/US2013/031115

700 —~ 108 —
102 COMPUTING ENVIRONMENT
102 | 707 704 —
— WEB BROWSER LOCAL WEBSERVER
—= 112 —~ 114 —
o » APPLICATION » WORKER PROCESS
706 —~ 108 —~
COMPUTING ENVIRONMENT
704 —
LOCAL WEBSERVER
114~
» WORKER PROCESS
710 —~ 108 — 712
COMPUTINGGNVIRONMENT
704 —
LOCAL WEBSERVER
114
WORKER PROCESS
14—y 108 —~
COMPUTING ENVIRONMENT
— 102 704 —
— LOCAL WEBSERVER
—| o 114 —
7
= — » WORKER PROCESS
718
A 108
COMPUTING ENVIRONMENT
702 — 704 —
WEB BROWSER 722 ~ LOCAL WEBSERVER
112 120 114 ~ 116_\0
DEVICE
APPLICATION jef—— WORKER PROCESS EVENT

FIG. 7

WO 2013/148223

800
N

8/8

/—802

PCT/US2013/031115

DEVICE

| DEVICE CONFIGURATION ! 810
i 806 | STORAGE

|
' ! 812
l PROCESSING ! “—
: UNIT : OUTPUT DEVICE(S)
| I
: ! _—814
| |
: : INPUT DEVICE(S)
| MEMORY !
| ! _—816
|
| : COMMUNICATION
: 808 ! CONNECTION(S)
e !

818

FIG. 8

COMPUTING | ~—820
DEVICE

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/031115

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 21/53(2013.01)i

According to International Patent Classification (IPC) or to both national classitication and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 21/53; GO6F9/445; GO6F 15/16; GOGF 9/44; HO4W 4/12; GO6F 11/20; GO6F 15/17

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: virtual, environment, server, application, host, process, outside, external, independent, request, terminate,
notify, and

similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2011-0219385 A1 (NEIL A. JACOBSON et al.) 08 September 2011 1-10
See paragraphs 22, 32-47; and figures 2-4.

A US 2010-0325414 A1 (STEFFEN FRIES et al.) 23 December 2010 1-10
See paragraphs 26, 41, 54-56; figure 2; and claim 12.

A US 2011-0154441 A1 (BYEONG THAEK OH et al.) 23 June 2011 1-10
See paragraphs 50-64; and figure 3.

A US 2012-0042365 A1 (ASAF SHOVAL et al.) 16 February 2012 1-10
See paragraphs 17-23; and figures 1-3.

A US 2010-0115332 A1 (WEIMIN ZHENG et al.) 06 May 2010 1-10
See paragraphs 91-126; and figures 5A-5B.

A KR 10-2009-0092570 A (SAMSUNG ELECTRONICS CO., LTD.) 01 September 2009 1-10
See paragraphs 27-40; and figure 4.

|:| Further documents are listed in the continuation of Box C. }X‘ See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"I" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
19 June 2013 (19.06.2013) 20 June 2013 (20.06.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
% 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, BYUN, Sung Cheal
. ¢ 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/031115
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011-0219385 Al 08.09.2011 CN 102782648 A 14.11.2012
EP 2542966 A2 09.01.2013
WO 2011-109562 A2 09.09.2011
WO 2011-109562 A3 05.01.2012
US 2010-0325414 Al 23.12.2010 CN 101529434 A 09.09.2009
CN 101529434 B 06.04.2011
DE 102006049646 B33 19.06.2008
EP 2082350 A2 29.07.2009
JP 04838886 B2 14.12.2011
JP 2010-507156 A 04.03.2010
WO 2008-046764 A2 24.04.2008
WO 2008-046764 A3 12.06.2008
US 2011-0154441 Al 23.06.2011 KR 10-2011-0070762 A 24.06.2011
US 2012-0042365 Al 16.02.2012 US 8370899 B2 05.02.2013
WO 2012-021722 Al 16.02.2012
US 2010-0115332 Al 06.05.2010 CN 101414277 A 22.04.2009
CN 101414277 B 09.06.2010
US 8161321 B2 17.04.2012
KR 10-2009-0092570 A 01.09.2009 CN 101960442 A 26.01.2011
CN 101960442 B 02.01.2013
EP 2260399 Al 15.12.2010
EP 2260399 A4 29.06.2011
JP 2011-514992 A 12.05.2011
US 2009-0216916 Al 27.08.2009
WO 2009-107926 Al 03.09.2009

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

