发明名称
玻璃蚀刻介质和方法

摘要
一种玻璃蚀刻介质和对玻璃片表面进行蚀刻来改变表面裂纹特性而不使得片表面的光学质量发生劣化的方法，其中所述蚀刻介质是增稠的水性的、酸性含氟化合物糊料，其包含至少一种溶解的、水溶性的、高分子量的聚（环氧乙烷）聚合物增稠剂。
1. 一种玻璃蚀刻介质，其包含至少一种水溶性无机氟化物化合物，至少一种第二强酸，水，以及溶解的、水溶性的、高分子量的、聚（环氧乙烷）聚合物增稠剂。

2. 如权利要求1所述的介质，其特征在于，所述至少一种氟化物化合物包括HF，并且所述HF在介质中存在的浓度范围约为1-7M。

3. 如权利要求1所述的介质，其特征在于，所述至少一种第二强酸包括选自下组的酸：无机酸和强有机酸。

4. 如权利要求1所述的介质，其特征在于，所述至少一种第二强酸包括选自下组的无机酸：H₂SO₄、HNO₃、HCl以及H₃PO₄。

5. 如权利要求1所述的介质，其特征在于，所述第二强酸是H₂SO₄，并且其在介质中存在的浓度范围约为1-7M。

6. 如权利要求1所述的介质，其特征在于，水溶性聚合物增稠剂是分子量基本上至少为10⁸g/摩尔的非离子型、聚（环氧乙烷）聚合物。

7. 如权利要求1所述的介质，其特征在于，聚合物增稠剂的分子量约为2×10⁸-4×10⁹g/摩尔。

8. 如权利要求5所述的介质，所述介质对于分离和沉淀是稳定的，并且对于H₂SO₄浓度约为1-7M的水性H₂SO₄中的氧化分解是稳定的。

9. 如权利要求1所述的介质，所述介质的蚀刻速率基本等于不存在聚合物增稠剂的相等组成的第二介质的蚀刻速率。

10. 一种对玻璃片进行蚀刻的方法，所述方法包括如下步骤：使得玻璃片表面与酸性氟化物蚀刻介质接触，所述酸性氟化物蚀刻介质包含溶解的、水溶性的、高分子量的聚（环氧乙烷）聚合物增稠剂。

11. 如权利要求10所述的方法，其特征在于，与蚀刻介质接触的表面上所有面积接触基本一致的接触时间。

12. 如权利要求11所述的方法，其特征在于，选择的接触时间至少足以降低玻璃的冲破裂强度变化性，但小于导致强化的玻璃片的雾度水平超过20%的有效时间。

13. 如权利要求11所述的方法，其特征在于，为玻璃片提供表面掩模层，该表面掩模层有效地在蚀刻的玻璃片上产生防眩光表面，并且其中，选择的接触时间大于产生DOI超过80的防眩光表面的时间。

14. 如权利要求10所述的方法，其特征在于，接触步骤包括将蚀刻介质层沉积到表面上，同时抑制介质在表面上的横向流动。

15. 如权利要求14所述的方法，其特征在于，以预定的速率使得层从表面的第一边缘到第二边缘连续沉积，之后以预定的速率从第一边缘到第二边缘的连续去除。

16. 如权利要求14所述的方法，其特征在于，通过如下过程进行沉积步骤：拉条铺展、跌水涂覆、幕帘式涂覆以及狭缝涂覆。

17. 如权利要求14所述的方法，其特征在于，进行沉积步骤的同时，将玻璃片水平地放置在下方支撑上，所述下方支撑的周界小于玻璃片的周界。

18. 如权利要求10所述的方法，其特征在于，表面包括被掩模的区域，该被掩模的区域受到保护免于与介质接触。

19. 如权利要求10所述的方法，其特征在于，用于进行接触的步骤的介质基本不含溶
解的玻璃组分。

20. 如权利要求 10 所述的方法，其特征在于，高分子量聚（环氧乙烷）增稠剂的克分子量基本上至少为 10^5 g/摩尔。

21. 如权利要求 10 所述的方法，其特征在于，在介质中存在的增稠剂的浓度不超过约 5 重量%，并且介质在 101/s 的剪切速率下具有约 120–6200 厘泊的粘度。

22. 如权利要求 10 所述的方法，其特征在于，所述增稠剂对于酸浓度约为 1–7M 的水性 H_2SO_4 中的氧化分解是具有抗性的。
玻璃蚀刻介质和方法

[0001] 相关申请的交叉参考
[0003] 背景
[0004] 领域
[0005] 本发明是玻璃制造领域，并且在原理上涉及对用于电子信息显示器的玻璃片进行精整的材料和方法。

技术背景
[0006] 目前，对于用于电视机、电脑显示屏、手机、笔记本电脑和平板电脑、媒体播放器以及其他电子装置的高级信息显示器的、展现出改进的性能的玻璃片存在非常高的需求。此类装置的制造商和用户所需的玻璃性质是轻量化、对于冲击和挠性应力的高抗破坏性、对于划痕和其他磨损的良好的抗表面破坏性以及优异的光学质量。所需的光学性质包括不含光散射表面或者内部裂纹，并且在许多情况下，可以降低眩光和其他改善显示的图像的光学质量的表面精整。
[0007] 对于轻量化的需求指的是可使用微小厚度的玻璃片，例如玻璃厚度小于2mm，更通常地厚度小于1mm或者甚至0.5mm。在这些厚度范围内使得玻璃片符合高的物理耐用性要求需要使用一些形式的玻璃强化。因此，通常采用玻璃片的回火来建立表面压缩层，该表面压缩层增加了玻璃片对于应力破裂的抗性，目前优选的回火方法涉及化学回火，包括所谓的离子交换强化。
[0008] 虽然离子交换强化能够在合适组成的薄片玻璃片中建立非常高的表面应力水平，从而建立非常高的挠性强度，但是随着玻璃片的厚度持续降低，进一步改善玻璃片对于冲击和磨损破坏的抗性变是必须的。在强化的玻璃薄片中的冲击破裂变化性的统计研究已经确定，表面质量变化，更具体的，由于制造过程中玻璃片的处理所导致的可变的表面裂纹，起了作用。
[0009] 最近发现的对于冲击强度变化性的问题的解决方案是使用轻表面蚀刻处理来缓和表面裂纹行为。蚀刻也可用于为玻璃片的表面赋予防眩光特性和/或在玻璃片表面上留下标识或者其他记号。但是，必须小心地控制此类蚀刻处理，从而避免不希望的表面破坏或者表面光学性质的劣化。
[0010] 发现的可用于改善显示器玻璃片的性质的蚀刻介质是水性氟化物溶液，其任选地包含额外的无机酸。通常通过浸入或喷涂将它们施加到片表面。但是，与使用这些介质和方法相关的数个问题仍然有待解决。
[0011] 一个问题涉及这些蚀刻介质的酸组分的挥发性（例如HF和HCl挥发性），这些组分的挥发使得介质酸浓度随时间下降。此外，当蚀刻介质用于浸入时，液中溶解的玻璃组分和沉淀物的浓度的上升以及活性氟化物衰蚀剂随时间的消耗，使其难以在合理的液使用期内维持蚀刻效率。
说明书

[0012] 目前可用的蚀刻介质的流动性和方法也对确保在大片表面积上得到均匀蚀刻造成障碍。常规酸混合物的低粘度会导致不均匀的流动图案，这会限制不均匀的表面去除和视觉上不均匀的表面光学性质。在涉及使用图案化掩模来实现受控的差异蚀刻速率的防眩光表面精整的情况下，不受控的介质流动会扰动弱粘附的掩模材料和 / 或产生不均匀的防眩光性质，包括视觉上的流动不均、点和暗点、局部过度的雾度或闪耀（通过对焦率功率标准偏差，或者 PPD 测得）和 / 或高于所需的 DOI （图像清晰度）值。这些缺陷影响经蚀刻的防眩光表面精密对于增强像素化信息显示器的图像质量的适用性。缓慢的片浸入和取回速率可使得掩模破坏最小化并改善蚀刻图案，但是导致片前缘和尾缘之间较大的蚀刻时间差异，再次影响片表面宽度上的光学均匀性。

[0013] 在过去，通过使用添加剂来使得介质增强和部分固定不动解决了不希望的蚀刻介质流动的问题。但是，目前已知的包含增强剂的配方引入新的问题，使得它们不适合光学显示器玻璃的强化和 / 或重修表面（re-surfacing）。常规增稠方法的一个问题是确保 pH 水平足够酸性，以在足够短的时间内实现所需的强化和其他表面强化作用，以防止对片表面造成光学破坏（例如，视觉上的雾化或粉碎）。使用高浓度的增稠剂会稀释介质的作用并需要不可接受的长时间蚀刻。另一方面，过度增稠的介质使得难以确保均匀分布以及进而难以确保玻璃表面均匀的蚀刻。

[0014] 另一个问题涉及常规增稠剂（例如，黄原胶、糖类、纤维素衍生物等）在高度酸性介质中的不稳定性。具体来说，此类增稠剂被 pH 控制介质组分（例如硫酸）氧化，会导致介质脱色和 / 或增稠剂效果的损失。

[0015] 概述

[0016] 根据本发明，提供了包含增稠剂的蚀刻制剂，该蚀刻制剂与现有高度酸性的氟化物材料相容并且在低浓度下有效，以显著地增加这些材料的粘度。还提供了以如下方式向玻璃表面均匀施涂此类制剂的方法，该方式产生了不含视觉上的表面缺陷并具有均匀光学性质的蚀刻的玻璃片。

[0017] 因此，在第一个方面，本发明的实施方式包括玻璃蚀刻介质，其包含：至少一种溶性无机氟化物化合物，至少一种第二强酸，溶解的，水溶性的，高分子量的，聚合物增稠剂，以及水。在具体实施方式中，溶解的，水溶性的，高分子量增稠剂是这样一种增稠剂，其在 H2SO4 浓度约为 1-7M 的水性 H2SO4 中是耐氧化降解的。在其他实施方式中，选择的介质对于铝硅酸盐玻璃的蚀刻速率基本等于不存在聚合物增稠剂的相等组成的第二介质的蚀刻速率。

[0018] 具体包括在本发明范围内的是其中至少一种氟化物化合物包括 HF 的介质。在具体情况下，介质中存在的 HF 的浓度约为 1-7M。在这些和其他实施方式中，介质中所含的至少一种第二强酸包括无机酸和有机酸。

[0019] 在第二个方面，本发明的实施方式包括对玻璃片进行蚀刻的方法，所述方法包括如下步骤，使得玻璃片表面与酸性氟化物蚀刻介质接触，所述酸性氟化物蚀刻介质包含溶解的，水溶性的，高分子量的聚合物（环氧乙烷）聚合物增稠剂。出于将此类方法用于生产电子显示器玻璃片的目的，待与蚀刻介质接触的片表面上所有面积接触基本一致的选择的接触时间。选择的接触时间，虽然至少足以降低玻璃的冲击破裂强度变化性，但是会小于导致强化的玻璃片的雾度水平超过约 20％的时间。此外，在与蚀刻介质接触的片首先提供
有表面掩模层用于在片上产生防眩光表面的实施方式中，选择的接触时间会大于产生 DOI 超过约 80 的防眩光表面的时间，或者大于产生 PPD 水平超过约 8% 的时间。

[0020] 在其他具体实施方式中，用于进行接触步骤的蚀刻介质基本不含溶解的玻璃组分，从而确保了在片表面的整个宽度上的均匀和可预测的蚀刻效果。在所有此类情况下，所揭示的方法可用于未掩模的玻璃片表面或者掩模的片表面，即即包括被掩模的区域以免于与蚀刻介质接触。

[0021] 附图简要说明

[0022] 下面结合附图进一步详细描述根据本发明提供的玻璃蚀刻方法和材料的示意性实施方式，其中；

[0023] 图 1 示意性显示了在显示器玻璃片上常规蚀刻的防眩光表面层中的通常缺陷类型；

[0024] 图 2 显示对于根据本文提供的 3 种蚀刻介质制备，粘度与剪切速率的关系图；

[0025] 图 3 显示在合适支撑上放置的用于蚀刻的显示器玻璃片；

[0026] 图 4 示意性显示蚀刻介质对玻璃片进行涂覆的拉条法；

[0027] 图 5 示意性显示蚀刻介质对玻璃片进行涂覆的涂覆方法；以及

[0028] 图 6 示意性显示蚀刻介质对玻璃片进行涂覆的幕帘式涂覆法。

[0029] 发明详述

[0030] 虽然本发明的蚀刻介质和方法可广泛地用于宽泛变化的组成和构造的玻璃制品的强化和 / 或表面精整，但是它们对于用于高级显示器设备的（厚度 < 2mm） 钢硅酸盐玻璃片的处理特别合适。此类显示器通常包括碱性玻璃硅酸盐玻璃薄片，所述碱性玻璃硅酸盐玻璃片通过适当的离子交换和蚀刻表面重修，能够提供对于弯曲和冲击破裂的极高的抗性，以及对于来自重复划痕和磨损的视觉破坏的优异的抗性。因此，如此许多描述和示例性例子直接可适用于此类片材的处理，但是本发明的蚀刻介质和方法的用途不限于此。

[0031] 此类介质和方法的重要用途的例子包括用于对玻璃片进行蚀刻，来经由表面蚀刻处理提供防眩光表面。在先前生产此类表面的方法中，为玻璃片提供由例如聚合物或者颗粒材料构成的多孔掩模层，其防止或延缓了被掩模区域中的蚀刻同时允许在紧密相邻的未掩模的区域中的蚀刻。结果是玻璃片具有结构化表面，其抑制了眩光，从而增强了被所述片保护的像素化显示设备所产生的图像。公开的美国专利申请 US2011/0267697 和 US2011/0267698 揭示了提供了结合了此类防眩光表面的玻璃片的方法和材料，其通过引用纳入本文用于进一步描述此类方法和材料。

[0032] 适合用于本发明的蚀刻溶液的例子是包含一种或多种水溶性无机氟化物化合物的水性溶液，所述一种或多种水溶性无机氟化物化合物用于溶解硅酸盐玻璃。此类化合物可选自例如下组：HF, 氟化钠, 氟化钾, 氟化铵, 二氟化钠, 二氟化钾, 二氟化铵, 及其组合。

[0033] 必须从玻璃片去除以实现用于信息显示器目的所需的强化水平的表面玻璃材料的量必须至少足以改变片表面上存在的裂纹的裂纹扩展特性。同时，与选择的蚀刻溶液的接触时间必须受到限制，从而避免对片的光学性质造成破坏，例如通过在片表面中产生过度的雾度。因此，选择的蚀刻介质必须具有如下组成，该组成可以展现出高的表面去除速率而不发浑 (clouding) 或者任意方式使得片的光传播或反射特性发生退化。
为了实现加工显示器玻璃片所需的玻璃溶解有效性水平，根据本发明提供的蚀刻介
质会包含一种第二强酸或者第三强酸的组合，例如无机酸或者强的有机酸。它们可以增
加溶液的酸性。在示性式实施方式中，第二强酸包括选自下组的至少一种无机酸：H\textsubscript{2}SO\textsubscript{4}、
HNO\textsubscript{3}、HCl 和 H\textsubscript{3}PO\textsubscript{4}。

根据本发明提供的一种特别有效的用于蚀刻介质的组合物是这样一种介质，其中
氟化物化合物是 HF，第二强酸是 H\textsubscript{2}SO\textsubscript{4}。该介质中 HF 的浓度优选约为 1-7M，H\textsubscript{2}SO\textsubscript{4} 的浓度也
优选约为 1-7M。

落在上述 HF 和第二酸浓度范围内的常规蚀刻介质可在小于 10 分钟，更通常地小
于 5 分钟，以及在一些情况下小于 1 分钟的时间间隔内实现从铝硅酸盐显示器玻璃片去除
玻璃的强化水平。但是，此类介质的粘度通常是低的。典型的水性 6M HF-7M H\textsubscript{2}SO\textsubscript{4}蚀刻
溶液在 20℃的粘度约为 12cps（厘泊）。HF，H\textsubscript{2}SO\textsubscript{4} 和 H\textsubscript{2}O 的粘度分别为 0.8cps、23cps 以及
1cps。此类粘度允许介质在蚀刻的玻璃片的表面上容易地迁移，从而由于不均匀的酸
浓度或者蚀刻时间在蚀刻的片中导致各种光学缺陷。附图的图 1 显示在用此类介质处理后
观察到的缺陷的类型。它们包括蚀刻的表面中的残渣玻璃表面区域（A）以及透明点（B），
这些类型的缺陷最通常是由介质表面流动导致表面材料从玻璃表面的不均匀分离所导致
的。流动点缺陷（C）可能是由于蚀刻剂表面流动甚至是不存在表面拖拽所导致的。

根据本发明提供的介质中，通过少量添加一种或多种溶解的、水溶性的、高分子量
的聚（环氧乙烷）聚合物增稠剂来纠正该缺陷。此类增稠剂独特地符合了基本改善常规
HF 显示器玻璃蚀刻介质的蚀刻性能所必需的标准。首先，它们在小浓度时有效地显著增加
了此类介质的粘度，从而无需增加酸浓度来维持此类介质的蚀刻效率。因此，在特定实施方
式中，不超过约 5 重量％、或者甚至不超过约 2 重量％的增稠剂浓度就足以将介质粘度增
加到下文规定的水平。

其次，上文所揭示的增稠剂对于高浓度性 HF 蚀刻介质中的抗沉淀、分离和反应性
分解是稳定的。本文中的“稳定”指的在起始制备后至少 24 小时时间段内，介质不会表
现出裸眼可见的任意上述劣化效应。具体来说，增稠剂不会被强氧化的第二酸（例如 H\textsubscript{2}SO\textsubscript{4}）消
解。高水平的增稠剂稳定性对于随时间维持增稠有效性和选择的酸水平，以及避免可能会
干扰介质透明度的介质脱色是重要的。常规增稠剂（例如黄原胶）在存在 H\textsubscript{2}SO\textsubscript{4} 的情况下
发生分解，导致溶液脱色，酸性损失以及降低增厚效果。此类胶还产生存在在第二酸（例
如，HCl）的情况下发生分离的溶液。

根据本发明可确保的介质粘度水平会稍微地取决于所选择的包含在选定的介质
中的具体水溶性聚合物增稠剂。但是，选择的增稠剂是分子量基本至少为 106g/摩尔的非
离子型、聚（环氧乙烷）聚合物的实施方式中，可以容易地在上文所述的窄浓度范围内提
供有用的增稠水平。在具体实施方式中，采用分子量约为 2x106-4x106g/摩尔的非离子型、
聚（环氧乙烷）聚合物。

适合包含在本文所揭示的介质中的聚（环氧乙烷）聚合物的示例性例子包括购
自美国密歇根州米德兰市的陶氏化学公司（The Dow Chemical Company, Midland, MI, U.
S.A）的选择的水溶性 Polyox™树脂。此类树脂的具体例子包括 Polyox™-301 树脂和
Polyox™-N60K 树脂，这些聚合物的分子量分别为约 4x106g/摩尔和 2x106g/摩尔。由于所
述聚合物的高分子量，向水性介质中加入小于或等于约 2 重量％的这些聚合物可以获得溶
液粘度的显著增加。

[0041] 附图的图 2 显示水中三种不同树脂浓度范围（0.4-1.5 重量％）的 Polyox™-301树脂的溶液的粘度数据。溶液粘度单位为厘泊 (cps)，溶液剪切速率为 0-800 秒。这些数据显示在高至 800 秒的剪切速率下，甚至是在此类增稠剂非常适度的浓度下，可以将溶液粘度维持在约 6000cps 的粘度范围内。在没有剪切的情况下，1% 的聚合物溶液提供 3750cps 的溶液粘度，比没有任意增稠剂的 6M HF 和 7M H₂SO₄溶液高约 309 倍。

[0042] 这些数据也显示出所揭示的增稠剂的另一个优势，仅仅通过增稠剂浓度的小的调节，可以容易地在宽范围内调节溶液粘度。因此，可以通过简单地将溶液树脂浓度从 1 重量％增加到 1.5 重量％，实现粘度从 3750cps 增加到 22500cps。

[0043] 通过测试增稠的介质在延长的储存时间段内的酸性水平证实了上文所揭示的增稠剂的长期稳定性。下表 1 记录了通过在 12 天储存时间段的增稠的溶液中进行的摩尔酸浓度测试所确定的总酸度值。评价的介质是 5M HF 和 6M H₂SO₄酸浓度的水性酸酯糊，其包含 1.6 重量％的溶解的 Polyox™-N60K 聚（环氧乙烷）树脂增稠剂。通过滴定确定酸浓度水平。在该测试时间段持续时间内，没有记录到糊料酸性的明显变化。

[0044] 表 1：增稠的糊料糊中的酸水平稳定性

<table>
<thead>
<tr>
<th>糊料年龄（天）</th>
<th>1</th>
<th>3</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>总酸度（M）</td>
<td>17.39</td>
<td>17.45</td>
<td>17.32</td>
</tr>
</tbody>
</table>

[0045] 可以仅仅对常规方法进行这类变化来制备本发明范围内的玻璃酸蚀介质。在示例性过程中，首先制备具有目标 HF 和第二酸浓度的水性酸溶液，然后在溶液中分散选择的聚合物增稠剂（例如 Polyox™-301 树脂，作为干粉末可得）。粉末的添加量基于目标粘度，然后对分散了树脂的溶液进行高至约 12 小时的机械搅拌，直至树脂完全溶解并产生均匀的溶液。如果粉末是逐渐搅拌加入到溶液中和 / 或在搅拌过程中对溶液进行加热（例如加热到 60°C），则可以采用减少的组合时间。

[0046] 氟化物蚀刻溶液增稠到如附图的图 2 所示的程度的正常预期是粘度增加会降低质量扩散率从而降低溶液的蚀刻效率。令人惊讶的是，本发明所揭示的溶液没有展现出该行为。下表 2 显示相同酸浓度的典型酸溶液和增稠溶液（即糊料）之间的玻璃蚀刻速率的数据对比。蚀刻介质都是 5M HF 和 6M H₂SO₄酸浓度制备的水性 HF/H₂SO₄糊，糊料介质额外地包含 1 重量％的 Polyox™-301 树脂。

[0047] 表 2 的数据由蚀刻深度（微米）构成，所述蚀刻深度是由如下方式确定的：测试从包含掩模和未掩模表面区域的部分蚀刻的铝硅酸盐玻璃试样去除的表面玻璃的厚度。在与蚀刻介质接触 30 秒之后测量试样厚度变化。通过将第一组试样直接浸入低粘度酸溶液中，使得试样与溶液接触。第二试样组浸入增稠的酸蚀刻糊，而第三试样用蚀刻糊料拉条涂层至约 0.7mm 的深度。在 30 秒的蚀刻时间段结束时，所有的试样用去离子水清洗。如表 2 数据所示，似乎将聚合物增稠剂添加到低粘度酸溶液中，或者由于该添加导致蚀刻介质粘度的大幅增加，没有导致蚀刻效率的下降。

[0048] 表 2：糊料和液体蚀刻介质中的玻璃蚀刻深度

[0049] 表 2：糊料和液体蚀刻介质中的玻璃蚀刻深度

[0050]
虽然浸入是使得显示器玻璃片与蚀刻介质（例如本文所述的蚀刻介质）接触的合适方法，但是替代方法（包括向此类片的一个或两个表面施涂增稠的蚀刻剂的层）可提供明显的好处。此类方法的优选实施方式的具体例子是如下这些：其中，使得玻璃与蚀刻介质接触的步骤包括将一层介质层沉积到玻璃表面上，同时抑制介质在表面上的横向流动。当在全部或部分的待蚀刻的片上存在掩模材料层时，抑制此类流动是特别重要的，因为蚀刻介质的横向流动使得此类掩模材料完全或部分分离。

如果在进行介质层的沉积步骤的同时将玻璃片水平地放置在下方支撑上，则极大地有助于横向介质流动的抑制。在实践这些方法时，还优选下方支撑的周界小于玻璃片的周界，例如，通过放置支撑使得至少在玻璃片的前缘和尾缘是凹进去的。这些措施降低了蚀刻介质会危及蚀刻面层层均匀性的方式从玻璃转移到支撑的风险。附图的图3示意性显示了将玻璃片10放置在比片小的外周尺寸（周界）的支撑12上的合适的布置。

使用涂覆而不是浸入法也会是有益的，因为更容易地确保在大的玻璃片的整个尺寸上与蚀刻介质接触的均匀时间间隔。有许多涂覆系统可容易地实现以预定的速率将蚀刻层从玻璃片表面的第一边缘到第二边缘的连续沉积，之后以相同的预定的速率从第一边缘到第二边缘的连续去除。结果是片表面上的所有点保持与蚀刻剂相同时间段的接触。

可以采用许多不同工艺中的任意一种，根据所揭示的蚀刻方法，在玻璃基材表面上沉积酸性糊状蚀刻剂的均匀涂层。示例性工艺包括选自下组的那些：拉条铺展、跌水涂覆、幕帘式涂覆以及狭缝涂覆。

附图的图4示意性显示采用拉条涂覆设备20的涂覆工艺。在实施该工艺时，将一定量的蚀刻糊状22从储器（未示出）分散到玻璃片10的表面上，并通过下拉棒24在片10的表面上铺展。以铺展方向26来铺展糊状22导致在玻璃片10的表面上形成糊状涂层22a。玻璃，或者更优选条，可以在该过程中移动。避免在蚀刻时间段期间移动涂覆的玻璃可有利地降低沉积分离的风险，例如，之前已经施加了为玻璃片上提供防眩光表面精致的蚀刻掩模。

可以调节拉条24和玻璃表面之间的间隙，以控制施涂到玻璃表面上的糊状层22a的厚度。在这些和其他根据本发明的一些实施方式的用于施涂酸性糊状涂层的过程中，糊状层22a的厚度通常会大于0.1mm，在一些实施方式中，大于0.2mm，以确保在短的蚀刻时间间隔内去除足够的玻璃表面。不超过10分钟，或者在典型实施方式中小于1分钟或者甚至小于30秒的蚀刻时间间隔对于进行任意可行的涂覆过程都是合适的。在选择的蚀刻时间间隔结束时，可以通过刀片或者通过液流（例如去离子水）来去除蚀刻糊状。同样，通常优选糊状去除的方向和速度等于糊状施加的那样，从而使在玻璃片的前缘和尾缘之间没有蚀刻时间差。
用于向玻璃片的表面施涂酸腐蚀刻剂的一种替换工艺和设备如附图的图 5 示意图所示。根据该工艺，将包含酸腐蚀刻料储器 31 的“跨水”涂覆机 30 放置在玻璃片 10 的表面上方，储器 31 包括糊料排出狭缝和滑片 36，用于使得酸腐蚀料 22 排出并掉落到玻璃片 10 的表面上，以形成糊料层 22a。

为了防止糊料分布和避免滑片与玻璃片 10 的表面之间的接触，当以糊料沉积方向 32 移动储器和滑片 31、36 时，滑片的尾缘与玻璃片表面的角度不超过约 60°，并且与所述表面间隙约 0.5—10mm。约为 0.8—2.1mm 的排除狭缝宽度可确保糊料从储器的足够流动。可以通过经由糊料入口 34 向储器中泵送入额外的糊料来完成储器 31 中的糊料的储备。可以通过重力或者通过使用来自气体入口 35 的气体对储器 31 进行加压，来排出糊料。

根据图 5 的跨水涂覆的一个具体好处是当糊料与玻璃片 10 的表面接触时的低动量。沿着糊料沉积线的低冲击避免了当在玻璃片上存在防眩光蚀刻模时，模的扰动和可能的分离。

附图的图 6 显示用于向玻璃片的表面施涂酸蚀刻糊料层的另一工艺和设备的示意图。根据该工艺，使得包括酸蚀刻糊料储器 42 和底部糊料排出狭缝 44 的幕帘式或狭缝涂覆机 40 以涂覆方向 43 在待涂覆的玻璃片 10 上移动。酸蚀刻糊料的幕帘 22 从狭缝 44 排出，在 10 的表面上形成糊料涂层 22a。通过使用可调节的排出狭缝 44，将糊料储器 42 中的排出压力维持在约 0.5—4psi 的范围内，可以确保糊料涂层 22a 的合适的厚度。

为了促进采用上述或类似工艺来施涂均匀涂层的显示器玻璃片的有效涂覆，对于在酸蚀刻介质中存在的聚（环氧乙烷）聚合物增溶剂的浓度不超过约 5 重量 % 的所揭示的方法的实施方式是有效的。使用该范围的浓度可以为蚀刻介质提供约 101/s 的剪切速率下 120—6200cps（厘泊）的粘度。小于约 120cps 的糊料粘度会使得糊料流过片表面，特别是靠近正在涂覆的片的边缘，导致片的光学缺陷和/或不均匀蚀刻的可能性的增加。另一方面，粘度大于约 6200cps 的糊料在获得均匀涂覆厚度方面存在明显困难，并且在对模模的玻璃片进行蚀刻过程中会引入表面浮油。

可以确保使用根据本发明的聚合物增溶剂的蚀刻介质所伴随得到的各种好处，而不是以任意方式危害目前用于高级显示器玻璃应用的短暂（brief）蚀刻处理的强度增强的好处。此外，仍然可以符合此类显示器玻璃的光学质量要求。

下表 3 显示涉及离子交换强化的铝硅酸盐显示器玻璃片样品的光学性质的代表性数据，所述玻璃片样品首先提供酸蚀刻模来实现产生防眩光表面然后通过表面酸蚀刻处理来强化玻璃并在其上建立防眩光表面层。在典型评价中，通过常规浸入低粘度酸蚀刻溶液中对一组样品进行表面酸蚀，而通过涂覆酸糊料酸蚀刻介质对另一组进行表面酸蚀。所述酸糊料酸蚀刻介质具有与所述低粘度溶液相同的酸含量。两种蚀刻介质都含有 5M 浓度的 HF 和 6M 浓度的 H2SO4。糊料介质额外地含有 2 重量% 的 Polyoxy——N60K 树脂增溶剂。

素化显示器图像的感官“闪光”的相对测量，其对应于从被样品覆盖的 LCD 显示器图像测得的显示像素的集合的平均亮度的标准偏差。

表 3: 蚀刻的玻璃表面的光学性质

<table>
<thead>
<tr>
<th>蚀刻方法</th>
<th>蚀刻时间 (s)</th>
<th>雾度(%)</th>
<th>DOI (%)</th>
<th>PPD0° (%)</th>
<th>PPD90° (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>浸入一低粘度溶</td>
<td>30</td>
<td>4.3</td>
<td>75.1</td>
<td>6.4</td>
<td>6.2</td>
</tr>
</tbody>
</table>

来自上述对比的数据表明糊料蚀刻提供的表面光学性质基本等于通过以常规低粘度蚀刻溶液的浸入蚀刻获得的那些。对于显示器“闪光” (PPD 值) 没有发现明显差异。表 3 中所记录的糊料蚀刻样品的略微较高的雾度水平仍然充分地处于可接受水平内，并且被明显更低的 DOI 水平进行额外地弥补，这些较低的水平对于良好的防眩光性能是特别重要的。较低的 DOI 至少部分归因于避免了在蚀刻处理过程中糊料介质在玻璃表面上的流动，导致明显降低了防眩光蚀刻掩模的扰动。

通过使用本文所揭示的蚀刻方法所确保的工艺优势是明显的。可以消除对于基本上表面积的大蚀刻浴来自容纳对大部分的玻璃片浸入蚀刻的需求，降低由于酸组分（例如 HF 和 HCl）的蒸发导致的酸损失。还可消除对于在浸入蚀刻过程中消耗的氯化物的持续补充，以及对于浴进行循环或替换来去除蚀刻副产品的污垢的积累。相反地，向待蚀刻的各个玻璃表面施涂新鲜的酸蚀刻浆料的涂层确保了恒定的蚀刻条件并且避免或减少了与蚀刻介质中污垢积累或者溶解的掩模材料相关的风险。此外，使得来自介质的酸挥发最小化，因为糊料介质没有与空气接触直至其被分配到玻璃表面，并且可以容易地控制蚀刻糊料层的施涂和去除，从而使得在所述表面的前缘和尾缘之间没有或者基本没有蚀刻差异。

虽然上文根据这些蚀刻介质和方法的具体实施方式描述了本发明的蚀刻介质和方法，但是显然的是，这些具体实施方式仅仅是示意性的目的，并且可以选择宽范围的各种和许多替代实施方式来符合新的或现有应用的要求，并落在所附的权利要求书的范围内。