
(19) United States 
USOORE45222E 

(12) Reissued Patent (10) Patent Number: US RE45.222 E 
Kim et al. (45) Date of Reissued Patent: Oct. 28, 2014 

(54) METHOD OF WRITING OF WRITING TO A (52) U.S. Cl. 
USPC ........... 711/103; 711/118; 711/133; 711/159; FLASH MEMORY INCLUDING DATA 

BLOCKS AND LOG BLOCKS, USINGA 
LOGICAL ADDRESS HAVING ABLOCK 
ADDRESSPORTION AND PAGE 

IDENTIFYING PORTION, A BLOCK 
ADDRESS TABLE AND A PAGE TABLE 

(75) Inventors: Bum-soo Kim, Seongnam-si (KR); 
Gui-young Lee, Yongin-si (KR); 
Jong-Min Kim, Yongin-si (KR); 
Ji-hyun In, Seongnam-si (KR); Je-sung 
Kim, Newton, MA (US); Sam-hyuk 
Noh, Seoul (KR); Sang-yul Min, Seoul 
(KR); Dong-hee Lee, Seoul (KR): 
Jae-yong Jeong, Hwaseong-si (KR); 
Yoo-kun Cho, Seoul (KR); Jong-moo 
Choi, Yongin-si (KR) 

(73) Assignee: Samsung Electronics Co., Ltd., 
Yeongtong-gu, Suwon-si, Gyeonggi-do 
(KR) 

(21) Appl. No.: 13/134,225 
(22) Filed: Jun. 2, 2011 

Related U.S. Patent Documents 

Reissue of: 
(64) Patent No.: 

Issued: 
Appl. No.: 
Filed: 

U.S. Applications: 
(62) Division of application No. 1 1/848,005, filed on Aug. 

30, 2007, now Pat. No. Re. 44,042, which is an appli 
cation for the reissue of Pat. No. 6,938,116. 

6,938,116 
Aug. 30, 2005 
10/029,966 
Dec. 31, 2001 

(30) Foreign Application Priority Data 

Jun. 4, 2001 (KR) ................................. 2001-31124 

(51) Int. Cl. 
G06F 12/00 (2006.01) 

log-bik phy-blk page 0 

log-bik 
N-T 
N LGBLOCK 

711/161711/170 
(58) Field of Classification Search 

CPC .................... G06F 12/0246; G06F 2212/7203; 
G06F 2212/7211; G06F 12/02; G06F 

2212/7201: G06F 2212/7202 
USPC .................. 711/170, 159, 103, 118, 133, 161 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

5,226,133 A * 7/1993 Taylor et al. .................. 711/2O7 
5,388,083. A 2f1995 ASSar et al. 

(Continued) 

FOREIGN PATENT DOCUMENTS 

JP 05-241741 A 9, 1993 
JP 05-28.2889. A 10, 1993 

(Continued) 
OTHER PUBLICATIONS 

Jim Handy, The Cache Memory Book, Academic Press, 1993, pp. 
1-107 and 240-269. 

Primary Examiner — Hong Kim 
(74) Attorney, Agent, or Firm — Muir Patent Consulting, 
PLLC 

(57) ABSTRACT 
A flash memory management method is provided. According 
to the method, when a request to write the predetermined data 
to a page to which data has been written is made, the prede 
termined data is written to a log block corresponding to a data 
block containing the page. When a request to write the pre 
determined data to the page again is received, the predeter 
mined data is written to an empty free page in the log block. 
Even if the same page is requested to be continuously written 
to, the management method allows this to be processed in one 
log block, thereby improving the effectiveness in the use of 
flash memory resources. 

20 Claims, 12 Drawing Sheets 

FLASH MEMORY 

DAA BLOCK 

    

  



US RE45.222 E 
Page 2 

(56) References Cited 6,327,639 B1* 12/2001 ASnaashari ................... T11 103 
6,418,506 B1 7/2002 Pashley et al. 

U.S. PATENT DOCUMENTS 6,564,286 B2 5/2003 DaCosta 
6,587,915 B1 7, 2003 Kim 

5,404,485 A 4, 1995 Ban 6,704,835 B1 3/2004 Garner 
5,479,638 A 12/1995 Assar et al. 6,760,805 B2 7/2004 Lasser 
5,485,595 A 1/1996 ASSar et al. 6,836,816 B2 12/2004 Kendall 
5,528,764 A 6, 1996 Heil 2001/0040827 A1 11/2001 Dosaka et al. 
5,530,828 A 6, 1996 Kaki et al. 2002/0002652 A1 1/2002 Takahashi ..................... T11 103 
5,696,929 A 12/1997 Hasbun et al. 2002.0002654 A1 1/2002 Tomohiro 
5,717,886 A 2/1998 Miyauchi 2002fO144059 A1 10, 2002 Kendall 
5,745,418 A * 4/1998 Ma et al. ... 365,185.33 2002fO166022 A1 11, 2002 Suzuki 
5,778,427 A * 7/1998 Hagersten et al. ............ T11 128 2005/0144358 A1 6/2005 Conley et al. 
5,802.554 A 9, 1998 Caceres et al. 
5,845,313 A 12/1998 Estakhri et al. FOREIGN PATENT DOCUMENTS 
5,860,083. A 1/1999 Sukegawa 
5,933,368 A 8, 1999 Ma et al. JP O7-154870 A 6, 1995 
5.937,425 A 8, 1999 Ban JP 09-0972O5 A 4f1997 
5,956,473 A 9, 1999 Ma et al. JP 10-040 175 A 2, 1998 
5,999.446 A 12/1999 Harariet al. JP 2001-521220 A 11, 2001 
6,000,006 A 12/1999 Bruce et al. WO WO99.21093 A1 4f1999 
6,263.398 B1* 7/2001 Taylor et al. ...................... T11/3 
6,298.428 B1 * 10/2001 Munroe et al. ................ T11 202 
6,327,638 B1 12/2001 Kirby * cited by examiner 

  



U.S. Patent Oct. 28, 2014 Sheet 1 of 12 US RE45.222 E 

FLASH 
MEMORY 

PROCESSOR 

  

  



U.S. Patent Oct. 28, 2014 Sheet 2 of 12 US RE45.222 E 

FIG 3 

LOGICAL ADDRESS 

DATA BLOCK 
as vulgary's sw was an anytaeae 

rrd PPP 09S 8 No P C A a D Ptobo 

so so se e s e is a see a pola a a no 

  



U.S. Patent Oct. 28, 2014 Sheet 3 of 12 

FIG. 4 

FLASH MEMORY 

MAP 

LOG BLOCKS 

DATA BLOCKS 

FREE BLOCKS 

US RE45.222 E 

  



U.S. Patent Oct. 28, 2014 Sheet 4 of 12 

FIG 5 

FLASH MEMORY 

CHECK POINT 

LOG BLOCKS 

DATA BLOCKS 

FREE BLOCKS 

US RE45.222 E 

  

  

  

  



U.S. Patent Oct. 28, 2014 Sheet 5 of 12 US RE45.222 E 

FIG 6 

LOG POINTER TABLE 

FLASH MEMORY 

LOGICAL 
ADDRESS 

FIG 7 
PAGE 

- BLOCK ADDRESSING -- ADDRESSING 

  

  



U.S. Patent Oct. 28, 2014 Sheet 6 of 12 US RE45.222 E 

FIG. 8 

log-blk phy-blk 
page #1 
page #2 

age # 

EAN's 

FLASH MEMORY 

is i ' 
. . . . . " ' 

log-blk phy blksqge #0 

page #2 
DATA BLOCK 

  

    

  

  

  

  

  

  

  

  

    

  



U.S. Patent Oct. 28, 2014 Sheet 7 of 12 US RE45.222 E 

FIG. 9 

FLASH MEMORY 

LOG POINTER TABLE ENTRY 

log-bk | phy-blk |page R if N 
Nr. 
N 

DATA BL 

  

  

  

  

    

      

  

  

  

  



U.S. Patent Oct. 28, 2014 Sheet 8 of 12 US RE45.222 E 

FIG. 1 O 

DATABLOCK FREE BLOCK LOG BLOCK 

FREE S INSAD FREENNA NVALID 
VALID 

FREE WALD 

FIG 11 

DAA BLOCK LOG BLOCK 
NVALID 

  

  

  

    

    

  

  

  

  

  

  



U.S. Patent Oct. 28, 2014 Sheet 9 of 12 US RE45.222 E 

FIG. 12 

2 
22 
2 

2 

WRITE 

2 
BLOCK 

: is: 

E. 

2 SIMPLE MERGE 
SWITCH MERGE 

SWITCH MERGE COPY MERGE 
COPY MERGE 

FREE PAGE 
Eilip VALID PAGE 
W. NVALID PAGE 

  

  

    

  

  

  

  

    

    

      

  

  

  



U.S. Patent Oct. 28, 2014 Sheet 10 of 12 US RE45.222 E 

FIG 13 

SEARCH LOG POINTER TABLE 1301 
WITH LOGICAL ADDRESS 

13O2 

S ENTRY FOUND? 

YES 

SEARCH FOR ENTRY 

S REQUESTED 
PAGE FOUNDP 

READ PAGE 
N LOG BLOCK 

13O6 

READ PAGE 
N DATA BLOCK 

    

  

    

  

  

  



U.S. Patent Oct. 28, 2014 Sheet 11 of 12 US RE45.222 E 

FIG. 14 

WRITE 

SEARCH LOGPOINTERTABLE 
WITH LOGICAL ADDRESS 

1402 
IS 

ENTRY FOUND? 

1403 YES 

1401 

IS PAGE 1408 
AT SAME POSITION 

USABLE NEWLOG BLOCK YES 
BE ALLOCATED2 

CAN 
FREE PAGE BE 

ALLOCATED IN LOG NO WRITE TO 

CSSRRENG BLOCK? ALLOCATE LOGBLOCK 
BLOCK AFTER BLOCK MERGE 

WRITE TO 
ALLOCATED PAGE WRITE TO PAGE 

AT SAME POSITION 

1410 

UPDATE LOG 
POINTERTABLE 

  

  

  

  

  

  

  

  

  

  

  

  



U.S. Patent Oct. 28, 2014 Sheet 12 of 12 US RE45.222 E 

SIMPLE 
MERGE LOCATED AT SAME 

POSITIONS 

WRITE RECOVERY 
NFORMATION 

ARE ALL 
PAGES IN LOG BLOCK 

ALLOCATE FREE BLOCKS VALID? 1511 
TO COPY WALID PAGES - - - - - - - - - - - --- 

OF LOG BLOCK WRITERECOVERY 
1508 INFORMATION 

- - - - - - - - - - - - - - - 

SWITCH MERGE 1512 
COPY REMAINING go 

UNCOPIED PAGES FROM - - - - - - - - - - - - - - READ VALID PAGES OF - 

DATA BLOCK WRITERECOVERY DATA BLOCK AND COPY 
NFORMATION THEM TO LOG BLOCK 

- 1509 - - - - - - - - - - - - - - 

UPDATE ADDRESS CONVERSION 
INFORMATON SO THAT FREE UPDATE ADDRESS CONVERSION 
BLOCK IS NEW DATA BLOCK INFORMATON SO THAT LOG 1504 

BLOCK IS NEW DATA BLOCK 
1510 

ERASE LOG BLOCK AND 
DATA BLOCK AND UPDATE ERASE LOG BLOCK TO 1505 

FREE BLOCK LIST UPDATE FREE BLOCK LIST 

  

  

  

  

  

  



US RE45,222 E 
1. 

METHOD OF WRITING OF WRITING TO A 
FLASH MEMORY INCLUDING DATA 
BLOCKS AND LOG BLOCKS, USINGA 
LOGICAL ADDRESS HAVING ABLOCK 

ADDRESSPORTION AND PAGE 
IDENTIFYING PORTION, A BLOCK 
ADDRESS TABLE AND A PAGE TABLE 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue. 

This application is a divisional reissue application of U.S. 
Pat. No. 6,938, 116, issued on Aug. 30, 2005, and filed on Dec. 
31, 2001 as U.S. patent application Ser: No. 10/029,966. 
Notice. More than One reissue application has been filed for 
the reissue of U.S. Pat. No. 6,938, 116. The reissue applica 
tions are application Ser: No. 1 1/848,005, filed on Aug. 30, 
2007 (issued as U.S. Pat. No. Re 44,052 on Mar. 5, 2013), 
application Ser: No. 13/134,225 filed Jun. 2, 2011 (the present 
divisional reissue application of which the Ser: No. 1 1/848, 
005 application is the parent), and application Ser: No. 
13/151,735 filed Jun. 2, 2011 (a divisional reissue application 
filed concurrently herewith and also of which the Ser: No. 
1 1/848,005 application is the parent). 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to a flash memory, and more 

particularly, to a flash memory management method for use in 
a flash memory-based system. The present application is 
based on Korean Patent Application No. 2001-31124 filed 
Jun. 4, 2001. 

2. Description of the Related Art 
Flash memories are a special type of a nonvolatile memory 

capable of electrically erasing and programming data. Flash 
memory based storage devices have low power consumption 
and Small size compared to magnetic disc memory based 
devices. Thus, since flash memories can be substituted for 
magnetic disk memories, much research and development is 
actively in progress. Flash memories are expected to receive 
considerable attention as storage devices for mobile comput 
ing devices Such as digital cameras, mobile phones, or per 
Sonal digital assistants (PDAs). 

In magnetic disc drives, new data can be written over 
previous old data. However, in flash memories, a block needs 
to be erased before it is rewritten with new data; that is, 
memory cells are returned to an original state in which data 
can be written. This operation is called "erase'. An erase 
operation typically requires much more time than a write 
operation. Furthermore, since the erase operation is per 
formed in blocks whose size is much larger than what the 
write operation requires, even a portion requested not to be 
written to may be erased. In this case, the unnecessarily 
erased portion needs to be reclaimed through a write opera 
tion. In the worst scenario, a request to write (overwrite) data 
requires one erase operation and write operations to recover 
the portion erased by the erase operation. Due to inconsis 
tency between units on which erase and write commands are 
executed, write performance is significantly lower than read 
performance. Furthermore, the write performance of a flash 
memory is lower than that of a magnetic disc based storage 
device that inevitably involves a delay due to mechanical 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
operation. Thus, improving write performance is essential in 
designing a flash memory based device. 

U.S. Pat. No. 5,388,083 proposes a content addressable 
memory (CAM) system for converting a logical address 
requested by a user to a physical address in a flash memory 
while avoiding an erase cycle by writing altered data into an 
empty block in order to prevent a delay due to erase-before 
write. However, implementation of the CAM system requires 
additional costly circuits. U.S. Pat. No. 5,485,595 proposes 
an approach which involves writing a logical address into an 
extra region of each page and sequentially comparing each of 
the logical addresses while avoiding an erase cycle by writing 
altered data into an empty space upon a write request. How 
ever, if a unit of read operation is large like in a NAND-type 
flash memory, the address conversion mechanism requires a 
large amount of time in reading address conversion informa 
tion scattered around the flash memory, thereby degrading 
system performance. 

U.S. Pat. No. 5,845,313 proposes a flash memory storage 
architecture in which a linear address conversion table for 
performing a direct address conversion is constructed in a 
special RAM by Scanning a logical address stored in a flash 
memory during a system reset. However, a RAM of a large 
storage capacity is required to store the address conversion 
table. For example, to store an address conversion table of a 
flash memory based storage device having a storage capacity 
of 32 MB and a page size of 512 bytes, 128 KB of RAM is 
required assuming that 2 bytes are provided for each of 
65,536 pages. The storage capacity is too large for a small 
scale system having few resources such as mobile equipment. 

U.S. Pat. No. 5,404,485 proposes an approach for allocat 
ing a new block (replacement block) for write operation and 
writing data to the allocated block. However, since a new 
block continues to be allocated for write operation, a plurality 
of different versions of blocks to which the same page is 
written exist. That is, at least one replacement block needs to 
be provided for every block, thereby significantly reducing 
the capacity of a flash memory. A page to be written to a new 
block must be written at the same position as the position at 
which the page was written to the previous block. When the 
page is frequently updated but the remaining pages are rarely 
updated, only the content of the specific page is changed 
while the remaining pages contain a plurality of the same 
replacement blocks, thereby wasting a lot of storage space in 
a flash memory. Thus, this approach is not suitable for Small 
scale systems such as mobile equipment. 

SUMMARY OF THE INVENTION 

To solve the above problems, it is an object of the present 
invention to provide a flash memory based system and man 
agement method therefor capable of improving the perfor 
mance of a flash memory. 

It is another object of the present invention to provide a 
flash memory based system and management method there 
for, which allow for consistent data recovery in an emergency 
Such as power cut-off. 

It is still another object of the present invention to provide 
a flash memory based system and management method there 
for, which prevent degradation of system performance in an 
environment where data updates to a specific page are fre 
quently made such as a DOS file system based on a file 
allocation table (FAT). 

Accordingly, to achieve the above objects, the present 
invention provides a method for writing predetermined data 
to a flash memory. The method includes the steps of: (a) 
receiving a request to write the predetermined data to a page 



US RE45,222 E 
3 

to which data has been written; (b) writing the predetermined 
data to a log block corresponding to a data block containing 
the page; (c) receiving a request to write the predetermined 
data to the page again; and (d) writing the predetermined data 
to an empty free page in the log block. 

Preferably, step (b) may include the step (b11) of writing 
the predetermined data to an empty free page or the steps of 
(b21) allocating the log block; and (b22) writing the prede 
termined data to an empty page at the same position as the 
requested page in the data block. 

In another embodiment, a method for writing predeter 
mined data to a flash memory includes the steps of: (a) receiv 
ing a request to write the predetermined data to a page; (b) 
allocating a log block 1-1 corresponding to a first data block 
containing the page; (c) Writing the predetermined data to an 
empty page in the log block 1-1; (d) receiving a request to 
write the predetermined data to the page again; and (e) Writing 
the predetermined data to an empty free page in the log block 
1-1. 

Preferably, step (b) comprises the steps of: (b1) performing 
a block merge to create a third data block based on a second 
data block and a second log block corresponding to the sec 
ond data block; and (b2) allocating a free block obtained by 
performing an erase operation on the second data block as the 
log block 1-1. 

Preferably, step (b1) is performed when a free block to be 
allocated as the log block 1-1 does not exist or when all pages 
of the existing log block corresponding to the first data block 
have been used. 
More preferably, step (b1) may include the step of (b11) 

performing a switch merge to change the second log block to 
the third data block when pages of the second log block are 
arranged in the same order that pages of the second data block 
are arranged, and the pages of the second log block corre 
spond one-to-one to the pages of the second data block. Step 
(b1) may include the step of (b.12) performing a copy merge 
to copy corresponding pages of the second data block to free 
pages in the second log block and create the third data block 
when the pages in the second log block are requested to be 
written only once. Step (b1) may include the step of (13) 
performing a simple merge to copy the latest pages in the 
second log block to free pages of a free block to which data 
has not been written and copy a corresponding page of the 
second data block to the remaining free pages thereof, thereby 
creating the third data block. 
Most preferably, step (e) includes the steps of: (e1) allo 

cating a new log block 1-2 if a free page does not exist in the 
log block 1-1; and (e2) writing the predetermined data to a 
free page in the log block 1-2. Step (el) may include the steps 
of (e11) performing a Switch merge to change the log block 
to a second data block when pages of the log block 1-1 are 
arranged in the order in which pages of the first data block are 
arranged and the pages of the log block 1-1 correspond one 
to-one to the pages of the first data block, and (e12) allocating 
a free block obtained by performing an erase operation on the 
first data block as the log block 1-2. Step (e1) may include the 
steps of (e21) performing a copy merge to copy correspond 
ing pages in the first data block to a free page in the log block 
1-1 when pages in the log block 1-1 are requested to be 
written only once; and (e22) allocating a free block obtained 
by performing an erase operation on the first data block as the 
log block 1-2. Step (e1) may include the steps of: (e31) 
performing a simple merge to copy the latest pages in the log 
block 1-1 to free pages of a free block and copy a correspond 
ing page of the first data block to the remaining free pages 
thereof, thereby creating a second data block; and (e32) allo 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
cating a free block obtained by performing an erase operation 
on the first data block or the log block 1-1 as the log block 1-2. 

Preferably, step (e2) may include the step of (e21) writing 
the predetermined data to a free page at the same position as 
the requested page in the data block. 
The present invention also provides a method for reading 

predetermined data from a flash memory. The method 
includes the steps of: (a) searching a log pointer table for an 
entry in which a blockaddress portion of a logical address of 
a requested page is recorded; (b) checking whether the logical 
address of the requested page exists in the found entry; and (c) 
referring to a physical address of a corresponding log block 
recorded in the found entry and a position at which the logical 
address of the requested page is written to the found entry and 
accessing a corresponding page of the log block. Preferably, 
in step (c), the corresponding page in the log block is accessed 
at the same position as the position to which the logical 
address of the requested page is written to the found entry. 
The present invention also provides a method for managing 

a flash memory including a data block and a log block for 
writing data for updating the data block. The method includes 
the steps of (a) when pages of a first data block are arranged 
in the same order in which pages of a first log block corre 
sponding to the first data block are arranged and all the pages 
of the first data block map one-to-one with the pages of the 
first log block, changing the first log block to a second data 
block; and (b) updating address conversion information. 

In another embodiment, a method for managing a flash 
memory including a data block and a log block for writing 
data for updating the data blocks includes the steps of: (a) 
when pages in a first log block are requested to be written only 
once, copying a corresponding page of a first data block to a 
free page of the first log block in order to create a second data 
block; and (b) updating address conversion information. 

In another embodiment, a method for managing a flash 
memory including a data block and a log block for writing 
data for updating the data block includes the steps of: (a) 
copying the latest pages in a first log block to a free block to 
which data has not been written and copying a corresponding 
page of a first data block corresponding to the first log block 
to a remaining free page to create a second data block; and (b) 
updating address conversion information. 

Preferably, prior to step (a), the flash memory management 
method further includes the step of (a()) writing recovery 
information for recovering data in the event of a system 
failure during the step (a) or (b). 

Preferably, the flash memory management method further 
includes the step of (c) recovering data referring to the recov 
ery information in the eventofa system failure during the step 
(a) or (b). 
The recovery information includes a list of free blocks, a 

list of log blocks, and a log pointer table which is the data 
structure for managing the log blocks. The log pointer table 
contains log pointertable entries corresponding one-to-one to 
the log blocks, each entry mapping a physical address of a log 
block to a logical address of a corresponding data block and 
storing logical addresses of requested pages of a data block in 
the order in which pages of a corresponding log block are 
physically arranged. 

In another embodiment, a method for managing a flash 
memory including a data block and a log block for writing 
data for updating the data blocks includes the steps of: (a) 
allocating a predetermined region to a flash memory and 
writing lists of data blocks and log blocks and a data structure 
for managing the log blocks to the predetermined region as 
recovery information; (b) checking states currently being 
written to the flash memory based on the recovery informa 



US RE45,222 E 
5 

tion in the event of a system failure to determine whether an 
error occurs; and (c) if the error occurs, recovering databased 
on the recovery information. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The above objects and advantages of the present invention 
will become more apparent by describing in detail preferred 
embodiments thereof with reference to the attached drawings 
in which: 

FIG. 1 is a block diagram of a flash memory based system 
according to a preferred embodiment of the present invention; 

FIG. 2 is a reference diagram for explaining blocks for 
storing ordinary data provided in the flash memory of FIG. 1 
according to the present invention; 

FIG.3 is reference diagram for explaining a read operation 
for a log block and a data block; 

FIG. 4 is a reference diagram for explaining sections into 
which the flash memory of FIG. 1 is divided according to an 
embodiment of the present invention; 

FIG. 5 is a reference diagram for explaining sections into 
which the flash memory of FIG. 1 is divided according to 
another embodiment of the present invention; 

FIG. 6 is a reference diagram for explaining a log pointer 
table; 

FIG.7 shows the structure of an entry of a log pointer table: 
FIG. 8 shows the relationship between a log pointer table 

and a flash memory; 
FIG. 9 is a reference diagram for explaining an erasable 

block; 
FIG. 10 is a conceptual diagram of a simple merge; 
FIG. 11 is a conceptual diagram of a copy merge: 
FIG. 12 shows changes in blocks when a block merge 

according to the present invention is performed; 
FIG. 13 is a flowchart of a read operation according to the 

present invention; 
FIG. 14 is a flowchart of a write operation according to the 

present invention; and 
FIG. 15 is a flowchart of a block merge operation. 

DETAILED DESCRIPTION OF THE INVENTION 

Referring to FIG. 1, a flash memory based system includes 
a flash memory 1, a read-only memory (ROM) 2, a random 
access memory (RAM)3, and a processor 4. In combination 
with program codes typically recorded in the ROM 2, the 
processor 4 issues a series of read or write commands to read 
data from and write data to the flash memory 1 or the RAM3. 
Write and read operations are performed on the flash memory 
1 in accordance with a flash memory management method 
according to the present invention. The ROM2 and the RAM 
3 store application program codes executed by the processor 
4 or related data structures. 

Referring to FIG. 2, the flash memory 1 includes a plurality 
of data blocks and log blocks corresponding to at least some 
of the plurality of data blocks. A data block is a block for 
storing any ordinary data, and a log block is a block provided 
for recording modified data if a predetermined part of a data 
block is to be modified. Thus, a plurality of log blocks corre 
sponding to the plurality of data blocks contain modified 
pages of the corresponding data blocks. Pages stored in the 
log blocks have priority over the counterparts stored in the 
corresponding data blocks to be referred to. In this specifica 
tion, the pages having first priority are called “valid pages'. 
and pages ignored by the valid pages even as physically valid 
data is recorded in the ignored pages are called “invalid 
pages in a logical sense. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
Referring to FIG. 3., upon a request of a user to read a 

predetermined page at a predetermined logical address, the 
processor 4 refers to a log pointer table recorded in the RAM 
3 to check whether a log block corresponding to the prede 
termined page exists. If a corresponding log block exists, a 
check is made as to whether the requested page is validly 
stored in the log block. If the requested page is validly stored 
in the log block, the page stored in the log block is read. If not, 
a corresponding page stored in the data block corresponding 
to the log block is read. The log pointertable will be described 
below. 

FIG. 4 is a reference diagram showing regions into which 
the flash memory 1 is divided according to an embodiment of 
the present invention. Referring to FIG.4, the flash memory 1 
is divided into a map region, a log block region, a data block 
region, and a free block region. The map region stores address 
conversion information, the log block region is provided for 
log blocks, the data block region is provided for data blocks to 
store ordinary data, and the free block region is provided for 
allocating log blocks or data blocks. Here, the flash memory 
1 is logically divided to form the four regions. Thus, physi 
cally, the four regions, in particular, the data block region, the 
log block region, and the free block region could discontinu 
ously exist in the flash memory 1 in several scattered regions. 

FIG.5 is reference diagram showing regions into which the 
flash memory 1 is divided according to another embodiment 
of the present invention. Referring to FIG. 5, the flash 
memory 1 is divided into a map region, a checkpoint region, 
a log block region, a data block region, and a free block 
region. In this embodiment, the check point region is addi 
tionally provided. Recovery information required for data 
recovery is recorded in the checkpoint region. Similar to the 
regions shown in FIG. 4, the map region stores address con 
version information, the log block region is provided for 
allocating log blocks, the data block region records ordinary 
data, and the free block region is provided for allocating log 
blocks or data blocks. The address conversion information 
and the recovery information stored in the map region and the 
check point region, respectively, will be described below in 
detail. 
The log pointertable refers to a data structure for managing 

log blocks. The log pointer table contains a logical address of 
a data block, a physical address of a corresponding log block, 
and offset values (a logical address of a requested page) of 
updated pages in the corresponding data blockarranged in the 
same order in which pages in the log block are physically 
arranged. According to the present invention, the processor 4 
scans a log block region to construct the log pointer table in 
the RAM3. Referring to FIG. 6, the log pointer table contains 
entries corresponding to each of the log blocks. Upon receiv 
ing a request to read data from or write data to a specific 
location in the flash memory 1 along with a logical address of 
a predetermined page, the processor 4 refers to the log pointer 
table to access a log block or a data block depending on the 
presence of a corresponding entry. 

FIG. 7 shows the structure of a log pointer table entry. 
Referring to FIG. 7, the log pointer table entry contains a 
logical address log blk of a data block and a physical address 
phy blk of a corresponding log block. Also, the log pointer 
table entry records logical addresses page #0, pagei1 , . . . . 
page iN of corresponding pages in the log block in an order 
in which pages in the data block are recorded. 

For example, assuming that a block contains sixteen pages 
and a logical address is 02FF (hexadecimal number), the first 
three digits “02F denote a blockaddress and the last digit"F 
denotes an offset value of a requested page in a log block. 
Thus, a check is made as to whether 02F exists among logical 



US RE45,222 E 
7 

addresses log blk stored in the logical pointer table to con 
firm the presence of a corresponding log block. If the corre 
sponding log block exists, it is checked whether the logical 
address 02FF of the requested page or the offset value F is 
recorded in the corresponding entry to locate an updated page 
in the log block. For example, if page #0 is F, the requested 
page is recorded in the first physical page in the log block. 

In this way, a portion of a requested logical address, that is, 
a blockaddress portion thereof, is used to check whetheralog 
block exists and access the block. This technique is called 
“block addressing”. Then, the entire logical address being 
requested or an offset value is used to access a page in the 
corresponding log block, which is called “page addressing. 
Thus, the present invention adopts both blockaddressing and 
page addressing to enable the same page updated many times 
to be recorded in one log block. 

FIG. 8 is a reference diagram showing the relationship 
between the log pointer table and the flash memory 1. As 
shown in FIG. 8, the logical address log blk of a data block is 
used to search for a log block corresponding to the data block, 
and then a physical address phy blk is used to find a location 
to which the corresponding log block is written. Furthermore, 
according to the present invention, logical addresses page #0, 
page #1,..., page #15 of pages in the corresponding log block 
are written to the log pointer table entry. In this embodiment, 
each block contains sixteen pages. 

Basically, updated pages are written to the log block at the 
same positions as those at which the corresponding pages are 
located in the data block. Actually, if an updated page is first 
written to the log block, the updated page may be written at 
the same position as the corresponding page of the data block. 
However, if the updated page is to be updated again, it is not 
always possible to be written at the same position as the 
corresponding page of the data block. That is, if the predeter 
mined page in the corresponding data block is updated once 
again before updating the remaining pages in the data block 
once, the predetermined page is written to an empty space of 
the log block. 

FIG. 9 is a reference diagram for explaining an erasable 
block. Ifall pages in a data block are updated only once, pages 
of a log block map one-to-one with those of the data block. In 
this case, since the log block contains all the content of the 
data block, data loss does not occur even if the data block is 
erased. The (entirely shadowed) data block where valid data 
does not exist any more is called an "erasable block”. The 
erased block is called a “free block'. The erasable block can 
be erased any time, and the free block can be allocated as a 
data block or a log block when necessary for the application. 

Meanwhile, the present invention involves performing a 
block merge. The block merge is performed when a write 
operation is repeated so that a page that can be written does 
not exist in the log block. In this case, the log block and the 
corresponding data block are merged to create a new data 
block while erasing the previous log block to be a free block. 
In particular, a block merge performed when all pages in a 
data block are updated only once to arrange the pages in the 
data block in the order in which pages are located in the log 
block is called a “switch merge”. 

In contrast, if the page arrangement in a log block is not the 
same as that in a corresponding data block, a simple merge is 
performed. Furthermore, the simple merge is performed 
when all pages of the log block are currently written or read so 
a new log block needs to be allocated for a newly requested 
write operation. In this case, the log block to be merged may 
have a free page. 

If all the pages in a log block are updated only once, empty 
pages are filled with corresponding pages of a data block to 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
change the log block to the data block. This is called a “copy 
merge'. That is to say, there are three types of block merges; 
a Switch merge, a simple merge, and a copy merge. 
As described above with reference to FIG. 9, the switch 

merge is performed by changing a log block in which all 
pages of a corresponding data block are updated only once to 
a data block. This change is made by updating address con 
version information without copying of data that have been 
written to the data block or the log block. That is, address 
conversion information recorded in a map region is updated 
so that the corresponding log block is mapped to a logical 
address requested by the user. The map region stores address 
conversion information for every block to enable block 
addressing. Here, an invalid page refers to a page ignored by 
valid pages, and in actual implementation, the invalid page 
may be physically valid. 
As shown in FIG.10, a simple merge is performed to create 

a new data block by writing valid pages of a data block and a 
corresponding log block at the same positions in a new free 
block as the positions at which the valid pages were written to 
the data block and the log block. Thus, the merged data block 
and the log block can be erasable blocks. 
As shown in FIG. 11, a copy merge is performed by copy 

ing valid pages written to the existing data block to free pages 
in a corresponding log block. The existing data block is 
changed to an erasable block. As described, invalid pages 
used in the block merge are to pages not firstly referred to, and 
inactual implementation, they may be physically valid pages. 

FIG. 12 shows changes in blocks as a block merge accord 
ing to the present invention is performed. Referring to FIG. 
12, a free block is changed to a log block or a data block. A log 
block is changed to a data block through a switch merge or a 
copy merge or to an erasable block through a simple merge. A 
data block is changed to an erasable block through a Switch 
merge, a copy merge, or a simple merge. An erasable block is 
erased to be a free block again. 
To perform a block merge, lists for free blocks and erasable 

blocks residing in the flash memory 1 are required. The lists 
for free blocks and erasable blocks refer to a data structure 
recorded in the RAM3 along with a log pointertable. The lists 
may be recorded in the map region and the checkpoint region 
of the flash memory 1. 
A list of free blocks, a list of erasable blocks, and a log 

pointer table must be reconstructed in the RAM 3 during a 
system reset. The checkpoint region is allocated according to 
an embodiment of the present invention for recording recov 
ery information required for quick and thorough recovery of 
these data structures. If the checkpoint region is provided, the 
list of free blocks, the listoferasable blocks, and the list of log 
blocks described above are stored in the checkpoint region as 
recovery information. In particular, the check point region 
also stores a plan log that lists which type of block merge is to 
be performed and changes in blocks as a result of the block 
merge in order to prevent loss of information due to an over 
whelmed system, unexpected power outage and the like, 
which may occur during the block merge. More specifically, 
the plan log contains the type of block merge to be performed, 
and physical addresses of a block changed from a free block 
to a data block, of a block changed from a data block to a free 
block, and of a block changed from a log block to a free block. 

Furthermore, the check point region stores information 
necessary for construction of the address conversion infor 
mation Such as a location where address conversion informa 
tion is stored. The location of the checkpoint region itself is 
recorded in a predefined block in the flash memory 1. 

Based on the above configurations, a method for flash 
memory management according to a preferred embodiment 



US RE45,222 E 
9 

of the present invention will now be described. For ease of 
understanding, the flash memory management method is 
divided into a method of constructing and reconstructing a 
data structure upon a system startup, a method for reading 
data from the flash memory 1, and a method for writing data 
to the flash memory 1. 

First, a flash memory management method used during a 
system startup means a method for constructing or recon 
structing a data structure. That is, the method involves con 
structing address conversion information as well as data 
structures including a list of free blocks, a list of erasable 
blocks, a list of log blocks, and a log pointer table for write 
and read operations, and examining the integrity of the con 
structed information to reconstruct the data structures based 
on recovery information if reconstruction is needed. When 
the system of FIG. 1 is initialized, the processor 4 must 
construct the log pointer table and the lists of free blocks, 
erasable blocks and log blocks. To accomplish this, the pro 
cessor 4 reads recovery information from most recently writ 
ten pages stored in the checkpoint region of the flash memory 
1. This is because, if the recovery information is sequentially 
written, most recent recovery information is written to a page 
located immediately before a free page (empty page) firstly 
found in the checkpoint region. However, the order in which 
the recovery information is written may be changed when 
necessary for the application as long as it is possible to iden 
tify the most recently written page. 

The log pointer table is constructed by Scanning all pages 
of each log block designated in the recovery information to 
read a logical address stored in a logical blockaddress portion 
for each page. Since the map region also sequentially stores 
address conversion information, a lastly written page (the 
page immediately before a first free page) is considered to be 
changed most recently, and address conversion information 
can be constructed based on the lastly written page. The free 
block list and the erasable block list can also be readily 
reconstructed based on the recovery information. 

Next, the constructed information including the log pointer 
table and the lists of free blocks, erasable blocks and log 
blocks is verified by referring to a plan log. That is, it should 
be verified whether the constructed information is the same as 
real conditions when the operation of the system is stopped 
during a block merge. More specifically, if the system ceases 
to operate upon writing recovery information to the check 
point region, upon performing a block merge, upon updating 
address conversion information in the map region, and upon 
performing an erase operation, Verification is needed. For 
each case, it is checked whether the constructed information 
is consistent with real conditions, and if not, the constructed 
information is reconstructed as follows: 

1. When the system ceases to operate upon writing recov 
ery information to the check point region, a first free page 
from the recovery information written in the check point 
region is located to check whether the found page is actually 
an empty page by reading data stored therein. If the free page 
is not empty, it is determined that the system ceased to operate 
while writing recovery information to the checkpoint region. 
Since this occurs before actually writing data, it is not neces 
sary to perform a recovery procedure, and finally recorded 
recovery information is ignored. 

2. When the system ceases to operate during a block merge, 
it is checked whether data has been properly written to all 
pages of a block listed in the plan log as a block to be changed 
to a data block. If a page, if any, is not valid, it is determined 
that the system ceased to operate during a block merge. In this 
case, a block merge is performed again to recover data appro 
priately. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
3. When the system ceases to operate while updating 

address conversion information, a logical address is read from 
a block listed in the plan log as a block to be changed to a data 
block to check whether the logical address is consistent with 
the information stored in the map region. If not, it can be 
determined that the system ceased to operate while updating 
the address conversion information. In this case, data can be 
appropriately recovered by modifying the address conversion 
information based on the logical address read from the data 
block and a corresponding physical address. 

4. When the system ceases to operate during an erase 
operation, it is checked whether blocks listed in the plan log 
as a block to be changed to a free block are actually empty 
blocks. If a block is a not free block (if all pages in the block 
are not empty), an erase operation is performed on the written 
block again. 
When required data structures are constructed and then 

integrity verification is completed in the manner previously 
described through a flash memory management method used 
upon system startup, read and write operations can be per 
formed. 

FIG. 13, is a flowchart of a read operation according to the 
present invention. The processor 4 searches for a log block in 
which a page being requested exists, and reads the requested 
page from the found log block. More specifically, the proces 
Sor 4 sequentially searches a log pointer table for an entry 
corresponding to a logical address of a requested page (step 
1301). Since the logical address of the requested page con 
sists of a block addressing portion and a page addressing 
portion, an entry is searched for by referring to the block 
addressing portion. If a matched entry is found (step 1302), it 
is checked whether the requested page exists in the found 
entry (step 1303). If the requested page is found, the page is 
read (step 1305). In this case, if two or more identical pages 
are found, a lastly found page among those except for one 
existing at the position of the same offset value is determined 
to be the latest one, and that page is read. If a match is not 
found in the step 1302, or if the requested page does not exist 
in a log block (step 1304), a corresponding page of a data 
block is read based on the requested logical address (step 
1306). 

FIG. 14 is a flowchart of a write operation according to the 
present invention. The processor 4 firstly searches for a log 
block in which a page being requested exists. If the log block 
is found, it checks whether a page in the log block at the same 
position as the requested page is usable. If the corresponding 
page is usable, writing is performed on the page. If it is not 
usable, writing is performed on another page that is usable in 
the log block. If a usable page does not exist in the log block, 
a new log block is allocated to perform writing at the same 
position. 
More specifically, the processor 4 searches a log pointer 

table for an entry based on a logical address of a page being 
requested (step 1401). If the entry is found (step 1402), which 
means that a log block corresponding to the logical address 
exists, an entry is searched to check whethera page having the 
same offset value as the requested page is usable (step 1403). 
If the page is usable, a write operation is performed on the 
corresponding page (step 1404). Here, the usable page refers 
to an empty page (free page) that has not been written to. The 
presence of a free page can be determined by whether a page 
is valid (the page is firstly referred to or data is written to the 
page). Next, a physical address of the page on which the write 
operation has been performed corresponding to the logical 
address is written to the corresponding entry of the log pointer 
table. In this case, the write request by the user is completed 
by one write operation in the flash memory 1. 



US RE45,222 E 
11 

If the corresponding log block is found, but the page having 
the same offset has been used (step 1403), it is checked 
whether another free page in the log block can be allocated 
(step 1406), and a write operation is performed on the allo 
cated free page (step 1407). If two or more free pages exist, 
the log block is sequentially searched from the start to allocate 
a page closest to the page corresponding to the requested page 
to which data have been already written. Then, a physical 
address of the allocated page corresponding to the logical 
address of the requested page is written to the corresponding 
entry of the log pointer table (step 1405). 

Ifan entry corresponding to the requested page is not found 
as a result of searching the log pointer table, it is checked 
whether a new log block can be allocated (step 1408). If free 
blocks to be allocated as the new log block exist, one of the 
free blocks is allocated as the new log block (step 1408). If a 
free block does not exist, the free block is created by perform 
ing a block merge and then allocated as the new log block 
(step 1409). A write operation is performed on a page in the 
allocated log block having the same offset value as the 
requested page (step 1410). Then, a corresponding entry is 
created in the log pointer table (step 1405). 

FIG. 15 is a flowchart of a block merge operation. Refer 
ring to FIG. 15, a block merge is performed in different ways 
depending on the arrangement of pages in a log block. More 
specifically, the processor 4 checks whether all pages of a log 
block are located at the same positions as those of a corre 
sponding data block (step 1501). If so, it is next checked 
whether all the pages of the log block are valid (step 1502). If 
all pages in the log block are arranged in the same order in 
which those of the data block are arranged and they are valid, 
a switch merge is performed. Before performing a switch 
merge, the processor 4 writes recovery information to the 
checkpoint region (step 1503). The step 1503 may be omitted 
according to the choice of a system designer. To perform a 
Switch merge, the processor 4 updates address conversion 
information stored in the map region so that the log block is a 
new data block (step 1504). That is, if the log block is changed 
to the new data block, since a physical address corresponding 
to the logical address is changed in view of the user, the 
address conversion information must be updated. Actually, 
the updated address conversion information can be written to 
a first free page in the map region. Similarly, the map region 
sequentially stores the address conversion information, and if 
a free page does not exist, a free block is allocated for the map 
region to write the information to the allocated free block. The 
allocation of a free block is made in the same manner as 
described with reference to FIG. 14. Then, the data block is 
changed to an erasable block, the data block is erased, and a 
free block list recorded in the check point region is updated 
(step 1505). 

If any pages in the log block are not arranged at the same 
position as a corresponding page of the data block, a simple 
merge is performed. Similarly, the processor 4 writes recov 
ery information to the checkpoint region before performing a 
simple merge (step 1506). The step 1506 may be omitted 
according to the choice of the system designer. Then, free 
blocks are allocated to copy valid pages of the log block to 
some of the free blocks (step 1507). Corresponding pages of 
the data block are copied to the remaining free blocks (step 
1508). Address conversion information in the map region is 
updated so that the free blocks are new data blocks (step 
1509). The allocation of free blocks is made in the manner 
described with reference to FIG. 14. The log block and the 
data block are changed to an erasable block, the log block and 
the data block are erased, and a free block list recorded in the 
checkpoint region is updated (step 1510). 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
If all pages of the log block are arranged in the same 

manner in which those of the data block are arranged but 
Some of the pages in the data block do not exist in the log 
block, a copy merge is performed. Similarly, the processor 4 
writes recovery information to the checkpoint region before 
performing a copy merge (step 1511). 
The step 1511 may be omitted according to the choice of 

the system designer. Then, valid pages of the data block are 
read to copy them to the log block (step 1512). Address 
conversion information stored in the map region is updated so 
that the log block is a new data block (step 1504), and then the 
data block is erased and a free block list stored in the check 
point region is updated (step 1505). 

In this way, if the log block for updating data is not found, 
a free block is allocated, the free block is changed to a log 
block, and writing to the log block is performed. If only one 
free block remains So it is not allocated as a log block, one of 
the existing log blocks is arbitrarily selected to perform a 
block merge, thereby creating a new free block. Then, the free 
block is allocated as a log block. In this invention, costs 
required for a block merge and usability of blocks should be 
appropriately considered. The usability of blocks may vary 
depending on the type of application program to be executed. 
Replacement algorithms may not be specified in this inven 
tion. Thus, the present invention may be implemented using 
common replacement algorithms such as least recently used 
(LRU). 
As described above, the present invention provides a 

method for flash memory management for improving the 
performance of a flash memory. Conventionally, in order to 
update a part of one data block, the remaining parts are also 
copied or a large amount of address conversion information is 
needed. However, the present invention allows the same page 
to be continuously updated within one log block, thereby 
improving the effectiveness of flash memory resources. Fur 
thermore, the present invention allows data to be recovered 
consistently in the event that a system malfunctions due to 
power outage during a block merge. 
What is claimed is: 
1. A method for writing predetermined data to a flash 

memory, the method comprising the steps of: 
(a) receiving a request to write the predetermined data to a 

page to which data has been written; 
(b) writing the predetermined data to a log block corre 

sponding to a data block containing the page; 
(c) receiving a request to write the predetermined data to 

the page again; and 
(d) writing the predetermined data to an empty free page in 

the log block. 
2. The method of claim 1, wherein the step (b) comprises 

the step (b11) of writing the predetermined data to an empty 
free page. 

3. The method of claim 1, wherein the step (b) comprises 
the steps of: 

(b21) allocating the log block; and 
(b22) writing the predetermined data to an empty page at 

the same position as the requested page in the data 
block. 

4. The method of claim 1, wherein the data block is con 
figured to store data and the log block is configured to store 
data which has been modified 

5. A method for writing predetermined data to a flash 
memory, the method comprising the steps of: 

(a) receiving a request to write the predetermined data to a 
page. 

(b) allocating a log block 1-1 corresponding to a first data 
block containing the page; 



US RE45,222 E 
13 

(c) Writing the predetermined data to an empty page in the 
log block 1-1; 

(d) receiving a request to write the predetermined data to 
the page again; and 

(e) Writing the predetermined data to an empty free page in 
the log block 1-1. 

6. The method of claim 5, wherein the step (b) comprises 
the steps of: 

(b1) performing a block merge to create a third data block 
based on a second data block and a second log block 
corresponding to the second data block; and 

(2) allocating a free block obtained by performing an erase 
operation on the second data block as the log block 1-1. 

7. The method of claim 6, wherein the step (b1) is per 
formed when a free block to be allocated as the log block 1-1 
does not exist. 

8. The method of claim 6, wherein the step (b1) is per 
formed when all pages of the existing log block correspond 
ing to the first data block have been used 

9. The method of claim 6, wherein the step (b1) comprises 
the step of (b11) performing a Switch merge to change the 
second log block to the third data block when pages of the 
second log block are arranged in the same order that pages of 
the second data block are arranged, and the pages of the 
second log block correspond one-to-one to the pages of the 
second data block. 

10. The method of claim 6, wherein the step (b1) com 
prises the step of (b.12) performing a copy merge to copy 
corresponding pages of the second data block to free pages in 
the second log block and create the third data block when the 
pages in the second log block are requested to be written only 
once. 

11. The method of claim 6, wherein the step (b1) com 
prises the step of (13) performing a simple merge to copy the 
latest pages in the second log block to free pages of a free 
block to which data has not been written and copy a corre 
sponding page of the second data block to the remaining free 
pages thereof, thereby creating the third data block. 

12. The method of claim 5, wherein the step (e) comprises 
the steps of: 

(e1) allocating a new log block 1-2 if a free page does not 
exist in the log block 1-1 and 

(e2) writing the predetermined data to a free page in the log 
block 1-2. 

13. The method of claim 12, wherein the step (e1) com 
prises the steps of 

(e11) performing a Switch merge to change the log block to 
a second data block when pages of the log block 1-1 are 
arranged in the order in which 5 pages of the first data 
block are arranged and the pages of the log block 1-1 
correspond one-to-one to the pages of the first data 
block, and 

(e12) allocating a free block obtained by performing an 
erase operation on the first data block as the log block 
1-2. 

14. The method of claim 12, wherein the step (e1) com 
prises the steps of: (e21) performing a copy merge to copy 
corresponding pages in the first data block to a free page in the 
log block 1-1 when pages in the log block 1-1 are requested to 
be written only once; and 

(e22) allocating a free block obtained by performing an 
erase operation on the first data block as the log block 
1-2. 

15. The method of claim 12, wherein the step (e1) com 
prises the steps of 

(e31) performing a simple merge to copy the latest pages in 
the log block 1-1 to free pages of a free block and copy 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
a corresponding page of the first data block to the 
remaining free pages thereof, thereby creating a second 
data block; and 

(e32) allocating a free block obtained by performing an 
erase operation on the first data block or the log block 
1-1 as the log block 1-2. 

16. The method of claim 12, wherein the step (e2) com 
prises the step of (e21) writing the predetermined data to a 
free page at the same position as the requested page in the data 
block. 

17. The method of claim 5, wherein the first data block is 
configured to store data and the log block 1-1 is configured to 
store data which has been modified 

18. A method of writing data to a flash memory, the flash 
memory Organized into a plurality of blocks, each block com 
prising a plurality of pages, the method comprising: 

in a state where data has been previously written to a page 
of a data block, receiving a logical address of the page of 
the data block, the logical address comprising a block 
address portion and a page identifying portion, 

determining a first physical block address of a first log 
block associated with the data block by referencing a 
block address table, the block address table associating 
block address portions of logical addresses of data 
blocks with respective physical block addresses of log 
blocks, 

writing data to a first page of the first log block associated 
with the data block, wherein the location of the first page 
within the first log block is selected, in response to the 
page identifying portion of the logical address, to cor 
respond to a location of the page of the data block, 

updating a page address record to associate the first page 
of the log block to at least the identifying portion of the 
logical address, and 

after the writing data to the first page of the log block, 
writing data to an empty free page of the first log block in 
response to receiving a write command associated with 
the page of the data block. 

19. The method of claim 18, 
wherein the page identifying portion of the logical address 

is an offset value, and 
wherein the location of the first page within the first log 

block is at a location within the first log block that is the 
same as the location indicated by the offset value. 

20. The method of claim 18, wherein the page address 
record is associated with the first physical block address in 
the block address table. 

21. The method of claim 20, wherein the page address 
record and block address table are stored in a random access 
memory. 

22. The method of claim 18, filrther comprising updating 
the page address record to associate the second page of the 
log block to at least the page identifiving portion of the logical 
address. 

23. The method of claim 22, wherein the location of the 
Second page is a page closest to the first page. 

24. The method of claim 18, filrther comprising, before 
writing data to the first page. 

receiving the logical address of the page of the data block, 
and 

reading data from a page of the data block associated with 
the logical address. 

25. The method of claim 18, filrther comprising: 
merging data of the data block and the first log block by 

writing data of some of the pages of the data block to 
pages of the first log block, pages of the first log block to 
which data is written having a same relative location 



US RE45,222 E 
15 

within the first log block as the relative location of a 
respective page within the data block from which corre 
sponding data was written. 

26. A flash memory controller comprising: 
a processor, and 
a memory storing program codes containing instructions 

that when executed cause the processor to implement the 
method of claim 18. 

27. A flash memory system, comprising: 
a flash memory, and 
the flash memory controller of claim 26. 
28. A method of writing data to a flash memory, the flash 

memory organized into a plurality of blocks, each block com 
prising a plurality of pages, the method comprising: 

in a state where data has been previously written to a page 
of a data block, receiving a logical address of the page of 15 
the data block, the logical address comprising a block 
address portion and a page identifying portion, 

determining whether a log block has been associated with 
the data block by referencing a block table associating 

10 

16 
30. The method of claim 28, wherein the block table and 

page address record are stored in RAM. 
31. The method of claim 28, wherein the page identifiving 

portion of the logical address is an offset value identifiving an 
5 address offset from the block address portion of the logical 

address. 
32. The method of claim 31, wherein the step of updating 

the page address record includes storing the offset value at a 
location in the page address record corresponding to the 
location of the first page within the log block. 

33. The method of claim 31, wherein the step of updating 
the page address record includes storing the entire logical 
address including the offset value at a location in the page 
address record corresponding to the location of the first page 
within the log block. 

34. The method of claim 28, filrther comprising updating 
the page address record to associate the second page of the 
log block to at least the page identifiving portion of the logical 

logical addresses of data blocks with respective ones of 20 address. 
physical addresses of log blocks, 

when no log block is found to be associated with the data 
block, allocating a free block as the log block associated 
to the data block, 

writing data to a first page of the log block associated with as 
the data block, wherein the location of the first page 
within the first log block is selected, in response to the 
page identifiving portion of the logical address, to cor 
respond to a location of the page of the data block, 

updating a page address record to associate the first page 
of the log block to at least the page identifying portion of 30 
the logical address, and 

after the writing data to the first page of the log block, 
writing data to an empty free page of the first log block in 
response to receiving a write command associated with 
the page of the data block. 

29. The method of claim 28, wherein the block table and 
page address record are part of a data structure, the page 
address record being associated with the log block within the 
data structure. 

35. The method of claim 28, filrther comprising, before 
writing data to the first page. 

receiving the logical address of the page of the data block, 
and 

reading data from a page of the data block associated with 
the logical address. 

36. The method of claim 28, filrther comprising: 
merging valid data of the data block and the first log block 

by writing valid data of some of the pages of the data 
block to empty pages of the first log block, pages of the 
first log block to which valid data is written having a 
same relative location within the first log block as the 
relative location of a respective page within the data 
block from which corresponding data was written. 

37. The method of claim 36, filrther comprising, after 
merging data of the data block and the first log block, erasing 
the data block. 


