WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(11) International Publication Number:
1 April 1999 (01.04.99)

International Bureau

Al

WO 99/15962

(51) International Patent Classification 6.

GOG6F 9/46, 12/08

(43) International Publication Date:

PCT/US98/16800

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(21) International Application Number:

(22) International Filing Date:

12 August 1998 (12.08.98)

us

Published
With international search report.

(30) Priority Data:

08/936,596 24 September 1997 (24.09.97)

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: ENGSTROM, G., Eric; 12415 Holmes Pt. Drive

N.E., Kirkland, WA 98034 (US). EISLER, Craig, G.; 535
208th Avenue N.E., Redmond, WA 98053 (US).

(74) Agent: MEYER, Joel, R.; Klarquist, Sparkman, Campbell,
Leigh & Whinston, LLP, One World Trade Center, Suite
1600, 121 S.W. Salmon Street, Portland, OR 97204 (US).

(87) Abstract

An application programming interface (API) enables applica-
tion programs in a multitasking operating environment to classify
portions of their code and data in a group that the operating system
loads into physical memory all at one time. Designed for operating
systems that implement virtual memory, this API enables mem-
ory—intensive application programs to avoid performance degrada-
tion due to swapping of units of memory back and forth between
the hard drive and the physical memory. Instead of incurring the
latency of a page fault whenever the application attempts to access
code or data in the group that is not located in physical memory,
the API makes sure that all of the code or data in a group is loaded
into physical memory at one time. This increases the latency of

subsequent memory accesses to code or data in the group.

(54) Title: APPLICATION PROGRAMMING INTERFACE ENABLING APPLICATION PROGRAMS TO GROUP CODE AND DATA
TO CONTROL ALLOCATION OF PHYSICAL MEMORY IN A VIRTUAL MEMORY SYSTEM

the initial load operation, but reduces performances degradation for

wOLAPPJ)

AP| IMPLEMENTATION

MEMORY
MONITOR 185

164
LA | o180
VIRTUAL
MEMORY SPACE L
OF .
APP. 1 " /| SECTION 3{SIZE}
-2/ /[SECTION a{SIZE}

172 — \\\\
V]
’ Iy L 2
/ It
/ /] |LINKEDLIST
! |OF PAGES

’ !
7t
K 192

174~ \\\ ;
/|

oy

]

PHYSICAL
MEMORY
MANAGER

194,

180 —_

176 — \ \ i
!

1

1]

!

'

]

N

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
CuU
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
1T
Jp
KE
KG
KpP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
YAY

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

-1-

APPLICATION PROGRAMMING INTERFACE ENABLING APPLICATION PROGRAMS
TO GROUP CODE AND DATA TO CONTROL ALLOCATION OF PHYSICAL MEMORY
IN A VIRTUAL MEMORY SYSTEM

FIELD OF THE INVENTION
The invention relates to management of virtual memory in a computer, and more
specifically relates to a method for controlling allocation of physical memory in a computer that uses

virtual memory to enable concurrently executing programs to share physical memory.

BACKGROUND OF THE INVENTION

The term “virtual memory” refers to a method for allowing several concurrently running
application programs to share the physical memory of a computer. The physical memory refers to
the main memory of a computer used to execute computer programs and is typically implemented
with Random Access Memory (RAM). Multitasking operating systems typically use virtual memory
to expand the memory available to each of the application programs executing in the computer.
Virtual memory has the effect of making memory appear much larger to applications. To create this
effect, a virtual memory manager (VMM) allocates memory from a virtual memory space that is
much larger than the size of physical memory. The VMM uses secondary storage space in the
computer such as a hard disk to extend the effective size of physical memory. The VMM only loads
code and data from secondary storage to physical memory when an application actually needs it, e.g.,
to process a read or write request.

When a program makes a read or write request to virtual memory, the virtual memory
manager determines whether the code or data requested is either located in physical memory or in
secondary storage. If it is in physical memory, the virtual memory manager maps the virtual address
into a physical address where it is located in physical memory. On the other hand, if the code or data
is not in physical memory, the virtual memory manager fetches it from the secondary storage device
and places it in physical memory. Thus, the virtual memory manager makes the-physical memory
appear larger to the application by swapping program code and data in and out of physical memory
as needed to satisfy memory requests.

To illustrate the concept of virtual memory, consider an example of an operating system
executing on a personal computer with 4 megabytes of physical memory and a hard drive with
additional free memory space. The operating system itself might occupy up to a megabyte of the
physical memory. If the user wishes to launch a game program occupying 2 Megabytes from the
hard drive, then the total memory occupied in physical memory is about 3 Megabytes. Now assume
that the game program attempts to load additional code or data files exceeding 1 Megabyte. Under
these circumstances there is insufficient physical memory to hold the code and data for the currently

executing programs in the computer.

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

2-

The VMM solves this problem by swapping code and data needed to run the executing
programs back and forth between physical memory and the hard drive. For example, if the
instructions of a particular piece of code are to be executed, the piece of code must be loaded into
physical memory of the computer. Other pieces of code can stay on disk until they are needed.
Whenever a piece of code or data is not held in physical memory, the operating system marks its
absence by setting (or clearing) a flag associated with that code or data. Then, if an access to that
code or data is attempted, the processor will generate a not present interrupt that notifies the
operating system of the problem. The operating system then arranges to load the missing code or
data into an available area of physical memory and restarts the program that caused the interrupt.

The swapping of code and data to and from the hard drive and the interrupts are transparent to the
application programs executing in the computer in the sense that the application programs do not
process the interrupt nor manage swapping of data back and forth. Rather, the application program
only deals with a virtual address space of virtual memory, and the operating system maps requests for
virtual memory to physical memory and swaps data back and forth between physical memory and the
hard drive.

In a typical virtual memory system, some operating system components are guaranteed
access to a portion of physical memory and several other software components contend for the
remainder of physical memory. Operating system components that always occupy physical memory
include memory resident components of the operating system kernel and a disk cache. The
remainder of the physical memory is shared among other software such as dynamically loaded
operating system éomponents (DLLSs), application program code and data, and dynamically allocated
regions of memory such as Direct Memory Access (DMA) buffers and cache regions for the
operating system’s file system.

The operating system components that always occupy physical memory have a “lock” on a
portion of the physical memory. A “lock” is an attribute of a memory management system that
commits or reserves a portion of physical memory to a piece of code or data. In many operating
systems, it is typical for a lock to be on a portion of physical memory if that memory contains a piece
of code that must be able to run at interrupt time or a piece of data that needs to be accessible at
interrupt time or that needs to be accessed asynchronously by hardware devices in the computer.

Initially, the operating system allocates virtual memory to the application programs.
However, the operating system will not actually allocate physical memory to an application program
until that program attempts to access memory. As code executing in the system attempts to access
memory allocated to it, the operating system will allocate physical memory until it is filled, and then
start to swap portions of physical memory to the hard drive to accommodate memory accesses.

The virtual memory system typically uses a portion of the hard drive, called a swap file, to
swap code and data to and from physical memory. The operating system loads program code such as

the executable code of an application program (e.g., a .exe file) directly from the hard drive. As an

WO 99/15962 PCT/US98/16800

15

20

25

30

35

application requests access to program data, the operating system allocates physical memory, and
subsequently, swaps this program data to and from physical memory once physical memory is filled
up.

At run time, an application can either implicitly or explicitly request additional memory. An
implicit request occurs when an application asks the operating system for a resource such as a new
window, and the operating system allocates memory as a side effect to responding to the request for
the resource. An explicit request occurs when the application directly invokes a function to
specifically ask the operating system to allocate extra memory to it. In both cases, the operating
system claims memory for resource allocation from virtual address space.

One form of virtual memory in common use today is referred to as paged virtual memory.
In a paged virtual memory scheme, the operating system carries out all memory allocation, de-
allocation, and swapping operations in units of memory called pages. In a microprocessor
compatible with the 386 architecture from Intel Corporation, for example, a memory page is 4K and
each memory segment is made up of one or more 4K pages. The Windows ® 95 operating system is
one example of an operating system that implements a paged virtual memory system.

Terms commonly used to describe a paged virtual memory scheme include paging, page
file, and page fault. The term “paging” refers to the process of swapping code or data between
physical memory and secondary storage. The term “page file” refers to the swap file maintained in a
secondary storage device to hold pages of code and data swapped to and from the physical memory.
Finally, the term “page fault” refers to an interrupt generated by a microprocessor indicating that the
memory request cannot be satisfied from physical memory because the page containing the requested
code or data is not located in physical memory.

The implementation details of any virtual memory system vary depending on the design and
memory addressing scheme of the processor. One of the most wide spread processor architectures in
the personal computer industry is the 386 architecture from Intel Corp. The basic memory
management features of this architecture are used in 486, Pentium, Pentium 11, and Pentium Pro
microprocessors form Intel Corp. The 386 architecture supports three operating modes: real mode, v
protected mode, and virtual mode. Real mode refers to a mode used to maintain compatibility with
the 8086 line of processors. This mode has a segmented memory architecture that employs four
segment registers to address up to 1 Megabyte of memory. Each segment register points to a first
byte of a memory segment. The address register stores on offset address to a byte within a memory
segment. The processor combines the contents of a segment register with an address register to form
a complete address.

In protected mode, the processor uses the contents of the segment register to access an 8
byte area of memory called a descriptor. The segment register contains an index into a table of
descriptors. The processor uses the information in the descriptor to form a base address. It then

combines an offset address from the application program to the base address to compute a physical

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

-4-

memory address. In this mode, the operating system can use any suitable area of physical memory as
a segment. The segments of an application need not be contiguous and can have different sizes.

Virtual mode is similar to protected mode in that it uses the same notion of segments, except
that a single segment can be 4 Gigabytes instead of only one Megabyte, and it enables the operating
system to implement a virtual memory scheme. Like protected mode, a processor in virtual mode
uses the contents of a segment register as an index into a descriptor table. The descriptor table
specifies the base address of a memory segment. The operating system sets up the base register to
point to the first byte of a program’s cade or data segment. The processor combines a 32 bit offset
address to the base address to compute a final 32 bit address.

When virtual memory is enabled in the 386 architecture, the processor alters the
interpretation of this final 32 bit address to map it into a 32 bit physical address. During

initialization, the operating system switches the processor into protected mode and then enables

" paging. The 32 bit address computed by combining the base address with the offset from the

program is an address in virtual memory space.

With paging enabled, the processor maps this address in virtual memory space to an address
in physical memory space. Figure 1 is a diagram illustrating how the processor interprets the 32-bit
address from an application. The top 10 bits (31 .. 22) (see 20 in Fig. 1) are an index into a page
table directory (22 in Fig. 1). Part of each 32-bit quantity in a page table directory points to a page
table (24 in Fig. 1). The next 10 bits of the original address (20 .. 12) (see 26 in Fig. 1) are an index
into the particular page table. Part of each page table entry (28) points to a page of physical memory.
The remaining 12 bits of the virtual address (11 .. 0) (30 in Fig. 1) form an offset within this page of
memory.

The operating system stores the address of the page table directory for the current program
in a special processor register called CR3 (32). Each time the operating system switches tasks, it can
reload CR3 so that it points to the page directory for the new program. The process of mapping a
virtual address into a physical address is performed within the processor. Memory caching
techniques ensure that frequently used page table entries are available with no additional memory
references.

To fully support the virtual memory scheme, page table entries contain more than just a
pointer to a page table or physical address. Figure 2 shows the contents of a single 32-bit word in
both the page table directory and page table entry structures (see items 40 and 42 in Fig.2). The
page table directory and each page table consume one 4K memory page (1024 entries in each). This
allows the entire 4 GB of a program's address space to be properly addressed. The flag bits in the
page table directory allow the system to store the page tables themselves on disk in the paging file.
Thus, for large programs (for example, a 1-GB program, which will need 256 page table pages), the

system will swap page tables as well as program code and data pages in and out of physical memory.

WO 99/15962 PCT/US98/16800

15

20

25

30

35

To fully support the virtual memory operations and the 386 memory protection system, the
page directory and page table entries include a number of flag bits. The processor itself modifies
some of these flags directly. The operating system manages others. As shown in Fig. 2, these flags
include the following bits: D, A, U/S, R/W, and P.

Whenever a program modifies the contents of a memory page, the processor sets the
corresponding page table dirty bit (the D bit in Fig. 2). This tells the operating system that if it wants
to remove the page from memory to free up space, then it must first write the page out to disk to
preserve the modifications.

Any reference - read, write, or execute - to a page causes the processor to set the accessed
bit (the A bit in Fig. 2) in the corresponding page table entry. The virtual memory manager can use
this flag to determine how often a page has been accessed. One way to tell how frequently a page
has been accessed is to set and check this bit periodically to determine whether the page has been
accessed. The access bit of a page that is used infrequently will not change if the hardware has not
set the access bit. Removing that page from memory is probably a better choice than removing a
page that was definitely in use during the same time period. The Windows®95 operating system
uses an algorithm known as least recently used (LRU) to determine which page to remove from
memory. The more recently used a page, the less likely it is to be re-allocated.

The present bit (the P bit) is set to 1 only when the page table or memory page addressed by
the table entry is actually present in memory. If a program tries to reference a page or page table that
is not present, the processor generates a not-present interrupt and the operating system must arrange
to load the page into memory and restart the program that needed the page.

The user/supervisor bit (the U/S bit) is part of the 386's overall protection system. If the
U/S bit is set to 0, the memory page is a supervisor page - that is, it is part of the memory of the
operating system itself and no user-level program can access the page. Any attempted access causes
an interrupt that the operating system must deal with.

The read/write bit (the R/W bit) determines whether a program that is granted access to the
corresponding memory page can modify the contents of the page. A value of 1 allows page content
modification. A value of 0 prevents any program from modifying the data in the page. Normally,
pages containing program code are set up as read-only pages.

The memory addressing scheme described above enables the operating system to implement
a virtual memory system. One limitation of modern operating systems is that they fail to allow
applications the flexibility to control how physical memory is allocated when virtual memory is
enabled. Typically, the application programs only have access to a virtual memory space, and have
little or no control over how physical memory is allocated. This may simplify application
development, but it can also degrade performance of an application. For example, it is typical for
multimedia applications to use a great deal of memory while they are active. When an application

becomes inactive, the virtual memory system tends to swap portions of the application’s code and

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

data to the hard drive. Smooth continuous motion of objects on the display and the responsiveness of
the user interface are degraded when the virtual memory system performs swapping operations to
satisfy memory requests. This is due to the design of the virtual memory system that causes small
portions of the application’s code and data to be swapped in from the hard drive as the application
attempts to access memory.

As noted above, some operating systems, such as the Windows ® 95 Operating System
from Microsoft Corp., implement virtual memory using é LRU algorithm to control swapping of
pages to and from physical memory. As a general rule, this virtual memory system gives the pages
of the operating system’s dynamically loaded components and all of the pages of the application
programs equal priority. Thus, if a game application becomes inactive temporarily, the operating
system is likely to swap its pages out of physical memory. When the application becomes active
again, the motion of objects on the display and responsiveness of the game to user input stutters as
the operating system gradually swaps pages back into physical memory.

One way to address this problem is to lock the physical memory allocated to the application
so that no other code has access to that portion of physical memory. For example, in the Windows ®
Operating system, an application can request a page lock for a piece of physical memory. The page
lock causes the operating system to commit a portion of physical memory and remove it from the
pool of physical memory available to other executing code. This is not an acceptable sotution
because it can lead to extremely poor system performance where concurrently executing applications
need access to physical memory but are unable to get it due to the application’s lock on physical

memory.

SUMMARY OF THE INVENTION

The invention is an application programming interface (API) that enables applications to
classify code and data in a group that is to be loaded into physical memory together whenever an
application attempts to access any part of the code or data in the group. This API enables
applications to improve performance in virtual memory systems because it prevents page faults from
being spread out over time as an application makes read/write requests to code and data. The
application specifies code and data that is part of a group. When the virtual memory system in the
operating system signals a Not Present interrupt due to the application’s attempt to access code or
data in the group that is not present in physical memory, the API implementation causes all of the
code and data in the group to be loaded into physical memory together (e.g., in a single series of
memory loading operations before the application resumes execution). Thus, the latency of loading
code or data from secondary storage is compressed into one period of time, and from then on, all of
the code and date in the group is in physical memory.

Additional features and_ advantages of the invention will become more apparent from the

following detailed description and accompanying drawings.

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram illustrating a virtual memory addressing scheme in the 386 processor
architecture. _

Fig. 2 is a diagram illustrating entries in the page table directory and page table shown in
Fig. 1.

Fig. 3 is a diagram illustrating a computer system that serves as an operating environment
for an implementation of the invention.

Fig. 4 is a diagram illustrating an implementation of an Application Programming Interface
for grouping code and data together for virtual memory management.

Fig. 5 is a diagram illustrating an example of the virtual memory space of an application to

show how the virtual memory management system groups the application’s code and data together.

DETAILED DESCRIPTION

The invention is directed toward a virtual memory management system and method that
enables application programs to control the allocation of physical memory in a virtual memory
system. In one embodiment, the invention is incorporated in an application programming interface
(API) entitled “DirectMemory” for the Windows ® 95 Operating System, marketed by Microsoft
Corporation of Redmond, Washington. Briefly described, the API provides a series of functions or
API calls that allow applications to control how the operating system manages access to physical
memory.

Figure 3 and the following discussion are intended to provide a brief, general description of
a suitable computing environment in which the invention may be implemented. While the invention
will be described in the general context of computer-executable instructions of a computer program
that runs on a personal computer, those skilled in the art will recognize that the invention also may be
implemented in combination with other program modules. Generally, program modules include
routines, programs, components, data structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the invention
may be practiced with other computer system configurations, including hand-held devices,
multiprocessor sysfems, microprocessor-based or programmable consumer electronics,
minicomputers, mainframe computers, and the like. The invention may also be practiced in
distributed computing environments where tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment, program
modules may be located in both local and remote memory storage devices.

Figure 3 illustrates an example of a computer system that serves as an operating
environment for the invention. The computer system includes a personal computer 120, including a

processing unit 121, a system memory 122, and a system bus 123 that interconnects various system

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

components including the system memory to the processing unit 121. The system bus may comprise
any of several types of bus structures including a memory bus or memory controller, a peripheral
bus, and a local bus using a bus architecture such as PCI, VESA, Microchannel, ISA and EISA, to
name a few. The system memory includes read onty memory (ROM) 124 and random access
memory (RAM) 125. A basic input/output system 126 (BIOS), containing the basic routines that
help to transfer information between elements within the personal computer 120, such as during start-
up, is stored in ROM 124. The personal computer 120 further includes a hard disk drive 127, a
magnetic disk drive 128, e.g., to read from or write to a removable disk 129, and an optical disk drive
130, e.g., for reading a CD-ROM disk 131 or to read from or write to other optical media. The hard
disk drive 127, magnetic disk drive 128, and optical disk drive 130 are connected to the system bus
123 by a hard disk drive interface 132, a magnetic disk drive interface 133, and an optical drive
interface 134, respectively. The drives and their associated computer-readable media provide
nonvolatile storage of data, data structures, computer-executable instructions (program code such as
dynamic link libraries, and executable files), etc. for the personal computer 120. Although the
description of computer-readable media above refers to a hard disk, a removable magnetic disk and a
CD, it can also include other types of media that are readable by a computer, such as magnetic
cassettes, flash memory cards, digital video disks, Bernoulli cartridges, and the like.

A number of program modules may be stored in the drives and RAM 125, including an
operating system 135, one or more application programs 136, other program modules 137, and
program data 138. A user may enter commands and information into the personal computer 120
through a keyboard 140 and pointing device, such as a mouse 142. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the processing unit 121 through a serial port interface 146 that is
coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game
port or a universal serial bus (USB). A monitor 147 or other type of display device is also connected
to the system bus 123 via an interface, such as a video adapter 148. In addition to the monitor,
personal computers typically include other peripheral output devices (not shown), such as speakers
and printers.

The personal computer 120 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 149. The remote computer
149 may be a server, a router, a peer device or other common network node, and typically includes
many or all of the elements described relative to the personal computer 120, although only a memory
storage device 150 has been illustrated in Figure 3. The logical connections depicted in Figure 3
include a local area network (LAN) 151 and a wide area network (WAN) 152. Such networking

environments are commonplace in offices, enterprise-wide computer networks, intranets and the

Internet.

WO 99/15962 PCT/US98/16800

10

20

25

30

35

9.

When used in a LAN networking environment, the personal computer 120 is connected to
the local network 151 through a network interface or adapter 153. When used in a WAN networking
environment, the personal computer 120 typically includes 2a modem 54 or other means for
establishing communications over the wide area network 152, such as the Internet. The modem 154,
which may be internal or external, is connected to the system bus 123 via the serial port interface
146. In a networked environment, program modules depicted relative to the personal computer 120,
or portions thereof, may be stored in the remote memory storage device. It will be appreciated that
the network connections shown are exemplary and other means of establishing a communications
link between the computers may be used. v

One embodiment of the invention is an API that enables application programs executing in a
multitasking operating system to control how a virtual memory system allocates physical memory.
More specifically, the API includes functions that enable applications fo group their code and data
together so that the code and data in the group is loaded into physical memory together. To
implement this feature, a virtual memory manager keeps track of code and data in a group.
Whenever an application tries to access an instruction or data structure in the group, the virtual
memory system will load the entire group of code and data into physical memory.

Applications designate specific pieces of code and data to be classified in a group by
invoking an API function call and specifying the address and size of the code or data to be added to
the group. For code, the application can specify the name of the function or functions of the
application, which implicitly provides the address of the executable code. For data, the application
can specify a pointer to a data structure as well as the size of the structure.

In the current implementation of the API, the API includes four function calls pertaining to
grouping code and data: 1) CreateGroup; 2) AddMemoryToGroup; 3) DestroyGroup; and 4)
DeleteMemoryFromGroup. Applications invoke the CreateGroup function to create a data structure
that will keep track of the code or data in a group. Applications can then invoke the
AddMemoryToGroup function to add code and data to a specified group. When an application
invokes the AddMemoryToGroup function, it identifies code to be added to a group by providing the
name of the function and its size, and it identifies data structures by providing a pointer to a data
structure and the size of the structure. To delete a portion of virtual memory from a group, an
application invokes the DeleteMemoryFromGroup function and specifies the code or data to be
deleted. When adding or deleting virtual memory from a group, an application can specify the
portions to be added or deleted by specifying a block or set of blocks of virtual memory. A block
can be defined by a starting address of a portion of virtual memory and its size. The DestroyGroup
function is used to destroy a previously created group.

The current implementation of the APIs for grouping code and data operates in conjunction

with the virtual memory management system in the Windows ® 95 Operating system. In particular,

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

-10-

it uses the services of the physical memory manager in the operating system to allocate physical
memory and load code and data into physical memory.

Fig. 4 is a diagram illustrating an implementation of the API for grouping code and data and
its relationship to the physical memory manager. The applications (app. 1-3) (161-163) represent
concurrently executing applications in a computer, sharing physical memory of the computer. These
applications can control the allocation of physical memory by invoking functions of the API
implementation 164. A specific example and accompanying description of the API implementation
are provided below.

The API implementation 164 includes a memory monitor 165 that monitors for Not Present
interrupts. When it detects a Not Present interrupt, the memory monitor 165 determines whether the
interrupt has occurred for a memory location of code or data in a group specified by the application.
If so, it invokes the physical memory manager 166 and instructs it to load the code and data in the
group into physical memory (the RAM in the computer). Using a definition of the memory in the

group provided by the memory monitor 165, the physical memory manager 166 loads the code or

. data in the group that is not already present in physical memory.

Fig. 4 shows an example of the virtual memory space 170 of an application (app. 1) to
illustrate the API operates. The virtual memory space 170 is a linear address space of virtual
memory allocated to the application 160. Marked sections 172, 174, 176, and 178 are sections of the
application’s virtual memory space that are associated with code or data that the application has
added to a group of memory.

To create a group, the application invokes a function in the API implementation 165 (called
CreateGroup) to create a data structure for maintaining a list of the pieces of code and data in the
group. The application can specify sections of code or data to be placed in the group as it is being
created. The application specifies the code and data to be placed in the group by providing the
address and size of the sections.of virtual memory used to store the code and data. In this
implementation, for example, the application provides an array of pointers to blocks of memory to be
placed in the group and an array of parameters that provide the sizes of the blocks.

In response to the request to create the group, the API implementation creates a data
structure 190 listing all of the sections of memory. In the example in Fig. 4, the data structure
includes a list of four blocks of memory. The address for eéch block points to a location in virtual
memory where the block resides (in this case, the marked sections 172, 174, 176 and 178). The data
structure 190 also keeps track of the size of each block of virtual memory in the group.

From this data structure 190, the API implementation derives a list of the units of memory
corresponding the code or data in the group. A unit of memory in this context, refers to the unit of
memory that the physical memory manager uses to allocate physical memory and to implement a

virtual memory scheme. The API implementation is designed for a paged virtual memory system,

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

-11-

and as such, the units of memory are 4K pages. The physical memory manager 166 swaps units of
memory to and from the hard drive in 4k pages.

To add additional code or data to a gfoup that it has previously created, the application
specifies the address and size of sections of virtual memory of the code or data to be added to the
group. In response, the API implementation 164 updates the data structure 190 to include the new
blocks of memory. It also computes the new units (pages) of memory associated with the blocks and
adds them to the linked list of pages 192,

The linked list structure 192 keeps track of the pages used to store the code or data that the
application has specified in a group. When the application specifies the address and size of a piece of
code or data in the CreateGroup or AddMemoryToGroup functions, the API implementation
computes the pages that correspond to this code or data. It then connects these pages in a ring using
a linked list structure. Note that a linked list is one possible implementation and there are other
alternatives such as using a hash table or other list structure.

The physical memory manager 166 manages the loading of pages from secondary storage to
physical memory. It also handles the swapping of pages from physical memory to aliow applications
to share physical memory. In this implementation, the physical memory manager is part of the
Windows ® 95 operating system. It implements an LRU scheme for swapping pages between
physical memory and secondary storage and includes services for loading pages into physical
memory. Given éreference to a page or list of pages, the physical memory managef 166 can load the
specified page or pages into physical memory and mark them as present in physical memory.

The memory monitor 165 monitors for Not Present interrupts (namely, page faults). When
it detects a page fault, it checks the address of the page and determines whether the page is in the list
of pages of any group. The API implementation can maintain several separate groups. Therefore,
the memory monitor 165 checks the pages in each group to determine whether the page fault is
directed to any page in any group. When the interrupt does touch a page in one of the groups (such
as address 180 in Fig. 4), the memory monitor 165 passes a list (or lists) of pages in the group (or
groups) to the physical memory manager 166 and instructs it to load each of the pages in each group
that contains the page.

The physical memory manager 166 loads all of these pages all at one time before the
application resumes executing. Thus, from the perspective of the application, the pages are loaded
together. The physical memory manager traverses thé list (or lists) of pages in the group (or groups)
provided by the memory monitor and loads all of pages that are not already loaded in physical
memory. The physical memory manager determines whether a page is already present in physical
memory because a data structure that it maintains for each page is marked as being present in
physical memory.

The feature of grouping code and data for virtual memory management causes the

application to suffer the latency of loading all pages in the group at one time. However, the latency

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

-12-

is compressed into one series of load operations, and page faults will be less likely to be spread over
time. As well, the group reload is optimized to minimize the amount of disk seek time, which cannot
be done if the page are loaded at random.

The memory grouping APIs cause the code and data in the group to be treated the same for
virtual memory management purposes. In addition to being loaded together, the group is treated as a
single unit of memory for purposes of virtual memory management. Specifically, the use of all of the
pages in each group is tracked together for the purposes of determining when to swap pages back to
secondary storage to free up physical memory in response to a memory request for a page that is not
in physical memory.

In an implementation for the LRU swapping scheme, all of the pages in a group are treated
as accessed when any page in the group is accessed. A block of memory that only resides in one
group is marked as used once when any page in the group is accessed. A block that is shared by two
or more groups is marked as used for each group that it resides in whenever any page in the shared
block is accessed. However, a block that is shared by two or more groups is marked as used only
once whenever a page outside the shared block but within any group that includes the shared block is
accessed. A block, in this context, is a set of pages. When a block is marked, all of the pages in the
block are marked. Since the use of all of the pages in a group are forced to be similar, regardless of
actual use, the LRU scheme will swap pages in a group back to secondary storage at or about the
same time. '

The physical memory manager 166 tracks the use of pages by incrementing a reference
count for a page when the page is accessed. In this scheme, the reference count of a block gets
incremented by one if the block resides in a group and a page in the group is accessed. The reference
count of a shared block gets incremented by the number of groups that share the block if a page in
the shared block gets accessed. ‘

Fig. 5 illustrates an example of the virtual memory space 200 of an application to show how
the virtual memory managemeﬁt system groups the application’s code and data together. The
marked sections of virtual memory (202, 204, 206, 208, 210, 212, 214, 216) in this example are
grouped together in a linked list structure and represent a first group of code or data specified by an
application. The marked sections of virtual memory (220, 206, 222, 224, and 226) in this example
are grouped together in a second linked list structure and represent a second group of code or data
specified by an application. The solid arrows represent the link between sections of memory in the
first group, and the dashed arrows represent the link between sections of memory in the second
group.

If the application that has created these groups attempts to access a piece of code or a data
structure in the first group (for example in block 214), then the memory monitor will instruct the
physical memory manager to load blocks referred to by numbers 202, 204, 206, 208, 210, 212, 214,

and 216 into physical memory. Similarly, if the application attempts to access a piece of code or a

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

40

-13-

data structure in the second group, the memory monitor will instruct the physical memory manager to
load the blocks referred to by numbers 220, 206, 222, 224, and 226 into physical memory. If the
application attempts to access block 206, the memory monitor will instruct the physical memory
manager to load all of the blocks in both the first and second groups.

Once loaded in physical memory, the units of memory (i.e., pages) in a group are reference
counted together. For example, if the application accesses block 214, then the pages in blocks 214
and in all other blocks in the first group are reference counted. Similarly, if the application accesses
code in block 204, then the pages in blocks 204 and in all other blocks in the second group are
reference counted. If the application accesses code or data in block 206, a shared block of the first
and second groups, then the pages in each block of the first and second group are reference counted
once, except for the pages of block 206. The pages in block 206 are reference counted twice because
the block is shared by two groups.

A description of one possible implementation of the API called “DirectMemory” is provided
below. The functions relating to grouping code and data for virtual memory management include

CreateGroup, AddMemoryToGroup, DeleteMememoryFromGroup, and DestroyGroup.

DirectMemory::AddMemoryToGroup

HRESULT

DirectMemory::AddMemoryToGroup(dwGroupHandle,dwCount,IplpAddr, lpdeizé
)

Purpose

Adds the specified memory blocks to a previously created group.

Parameters
dwGroupHandle
This is the handle used to identify the previously created group.
dwCount
This indicates the number of blocks of memory in the list pointed at by IplpAddr.
IplpAddr
This is an array of pointers to the blocks of memory to be added to this group.
IpdwSize
This is an array of DWORDS which indicate the length of the blocks of memory
pointed to by IplpAddr.
Return Value
DM_OK Operation succeeded.
DMERR_BADGROUP This group was not created by CreateGroup.

DirectMemory::CreateGroup

HRESULT DirectMemory::CreateGroup(dwFlags, IpdwGroupHandle,dwCount,
IplpAddr, IpdwSize)

Purpose

WO 99/15962

10

15

20

PCT/US98/16800
-14-

Creates a group that contains sections of memory that should be treated as a single unit for
purpose of virtual memory management. A group will be paged in, paged out,

_SOFTLOCKed and reference counted as a single piece.

Parameters
dwFlags
DMGROUP_SOFTLOCK
DMGROUP_PRELOAD
IpdwGroupHandle
Points to a DWORD where the new group handle will be returned.
dwCount
This is the number of blocks of memory in the list pointed at by IplpAddr.
IplpAddr
This is an array of pointers to the blocks of memory to be added to this group as it is
being created.

IpdwSize
This is an array of DWORDS which indicate the length of the blocks of memory
pointed to by IplpAddr.
Return Value
DM_OK Operation was a success.
DMERR_BADDADDRESS Physical address failed.

DirectMemory::DeleteMemoryFromGroup

25

30

35

40

HRESULT DirectMemory::DeleteMemoryFromGroup(dwGroupHandle,dwCount,
IplpAddr)

Purpose

Deletes the specified memory blocks from a previously created group. This call will fail if
all of the blocks specified are not in the specified group.

Parameters
dwGroupHandle
This is the handle used to identify the previously created group.
dwCount
This is the number of blocks of memory in the list pointed at by IplpAddr.
IplpAddr .
This is an array of pointers to the blocks of memory to be added to this group.

Return Value

DM_OK Operation succeeded.

DMERR_BADGROUP This group was not created by CreateGroup.
DMERR_BADBLOCKS Some of the blocks specified are not part of this
group.

DirectMemory::DestroyGroup

45

HRESULT DirectMemory::DestroyGroup(dwGroupHandle)

Purpose

This function destroys a previously created group. All of the pages that are part of this

group are freed. It is not necessary to delete all of the pages from a group before destroying
it.

WO 99/15962 PCT/US98/16800
-15-

Parameters
dwGroupHandle
Handle of group that was previously created by CreateGroup.

Return Value

-5 DM_OK Operation was a success. ,
DMERR_BADGROUP This group handle was not created by
CreateGroup.

DirectMemory::GetMaxPhysicalMemory

10 HRESULT DirectMemory::GetMaxPhysicalMemory(dwFlags,]JpdwNumPages)

Purpose

Returns to the application the number of pages of physical memory available to an
application in the best case scenario.

Parameters
15 dwFlags
DMGMPM_EXCLUSIVEMODE The physical memory pages for the application
when it has focus.
DMGMPM_SHARED The physical memory pages for the application
when it does not have focus. :
20 IpdwNumPages
The number of 4K pages of physical memory.

Return Value
DM_OK Operation was successful.

25 DirectMemory::GetProcessWorkingSetSize

HRESULT DirectMemory::GetProcessWorkingSetSize(dwFlags,lpdwNumPages)

Purpose

This API returns what the operating system considers an application’s current working set
needs to be.

30 Parameters
dwFlags
DMSPWS_EXCLUSIVEMODE The working set of the application when it has
focus.
DMSPWS_SHARED The working set of the application when it does
35 not have focus.
IpdwNumPages

Points to a DWORD where the number of 4K pages of physical memory that this
application has reserved for it.

Return Value

40 DM_OK Operation was successful.
DMERR_OUTOFMEMORY Requested working set size is beyond the
physical memory limitations of this system. The working set for the application was not
changed.

45 DirectMemory::SetCooperativeLevel

HRESULT DirectMemory::SetCooperativeLevel(hWnd,dwFlags)

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

40

45

-16-

Purpose

To specify the way this application wishes to use DirectMemory and to provide the hWnd
that DirectMemory should use to track the application’s focus.

Parameters

hWnd
This is the hWnd that represents the applications focus.

dwFlags
DMSCL_PRESERVESTATE If this flag is set the memory state of the
application is preserved when the application loses focus and is restored when the
application regains focus before execution begins.
DMSCL_EXCLUSIVEMODE If this flag is set the LRU status of pages
owned by an application are marked as NOT USED when the application loses focus.
Any SOFTLOCKS are released. SOFTLOCKS will be restored when the application
regains focus.
DMSCL_SHARED If this flag is set the applications
SHAREDSOFTLOCKS are not released when it loses focus. There is less memory
available to an application through SOFTLOCKS when it does not have the focus.
See Lock for ways to specify SOFTLOCKS that survive focus loss.

Return Value

DM_OK Operation was a success.
DMERR_BADHWND The hwnd specified is invalid or of an incorrect
type.

DirectMemory::SetProcessWorkingSetSize

HRESULT DirectMemory::SetProcessWorkingSetSize(dwFlags,dwNumPages)

Purpose

This API allows an application to communicate its working set needs to the operating
system so that amount of physical memory can be kept free for it.

Parameters
dwFlags
DMSPWS_EXCLUSIVEMODE The working set of the application when it has
focus.
DMSPWS_SHARED The working set of the application when it does
not have the focus.
dwNumPages

The number of 4K pages of memory that this application needs to have to avoid.
thrashing in normal usage scenarios.

Return Value

DM_OK) Operation was successful.
DMERR_OUTOFMEMORY Requested working set size is beyond the
physical memory limitations of this system. The working set for the application was not
changed.

DirectMemory::Lock

HRESULT Lock(dwFlags, IpAddr, dwSize)

Purpose

WO 99/15962

10

15

20

25

30

PCT/US98/16800
-17-

This API specifies the segment of memory that is to be tracked by DirectMemory. The
segment will either be added to the SOFTLOCK pool or the MOSTRECENTLYUSED pool.
The SOFTLOCK pool is restored and page locked when the application regains focus. The
MOSTRECENTLYUSED pool is restored when the application gains focus. This call can
fail if the amount of physical memory requested exceeds the application physical memory
limitation specified by the end-user.

SOFTLOCK requests are higher priority than MOSTRECENTLYUSED requests.
SOFTLOCK’s can be overridden when the operating system requires memory.
SOFTLOCK memory should not be used for DMA or Interrupt Service Routines.

Parameters
dwFlags
DMLOCK_SOFTLOCK Page lock this memory when the
application has focus.
DMLOCK_SHAREDSOFTLOCK Page lock this memory even when the

application does not have the focus. All other rules for SOFTLOCK ’s apply, this
memory may still be reclaimed by the operating system. The amount of memory that
can be SOFTLOCKed by an application that does not have the focus is considerably
more constrained. The application that has focus has priority.
DMLOCK_MOSTRECENTLYUSED

IpAddr
Pointer to the start of the memory to be affected. This pointer is rounded down to the

nearest 4K page boundary on 386 Architecture systems. The dwSize parameter is
rounded up by the same amount.

dwSize
Length of the memory affected. The dwSize parameter is rounded up to the nearest
4K page.
Return Values
DM_OK Operation was a success.
DMERR_OUTOFMEMORY No physical memory left to satisfy this request.

DirectMemory::Unlock

35

40

HRESULT DirectMemory::Unlock(IpAddr)

Purpose

To release a SOFTLOCK or MOSTRECENTLYUSED designation on a section of memory
that was previously locked.

Parameters
IpAddr
Pointer that was previously passed to Lock.

Return Values

DM_OK Operation was a success.
DMERR_NOTLOCKED Physical address was never locked.

Though we have explained our invention with reference to a specific embodiment, it is

important to emphasize that our invention is not limited to this embodiment. The function calls can

45 be implemented in a variety of programming languages using different forms of data structures. For

example, the data structure for maintaining a group of memory does not have to be a linked list, but

rather, can be implemented using other conventional types of lists or tables such as a hash table. The

WO 99/15962 PCT/US98/16800

10

-18-

implementation is implemented for a paging virtual memory system that uses an LRU scheme to
swap pages to and from physical memory. However, the units of memory used to manage physical
memory can vary in size and can even by of arbitrary size. In addition, other conventional caching
algorithms can be used to determine which units of memory to return to secondary storage when
necessary to free up physical memory.

The process for tracking usage of memory blocks or the underlying pages can vary as well.
For example, rather than reference counting, a block of memory can be marked as used when
accessed and then cleared if not accessed within a predetermined period of time.

The API implementation can be implemented as a modification to the virtual memory
system in a multitasking operating system like the Windows ® 95 or Windows ® NT operating
systems. Alternatively, it can be implemented as a separate module that augments the functionality
of the operating system.

In view of the many possible embodiments to which the principles of our invention may be
applied, it should be recognized that the illustrated embodiment is only a preferred example of the
invention and should not be taken as a limitation on the scope of the invention. Rather, the scope of
the invention is defined by the following claims. We therefore claim as our invention all that comes

within the scope and spirit of these claims.

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

-19-

‘We claim:

1. In a multitasking operating system that uses virtual memory to share physical
memory among concurrently executing application programs, a method for controlling allocation of
physical memory comprising:

in response to a call from an application program to group specified code or data in a group,
creating a structure to group the code or data specified by the application;

monitoring for a not-present interrupt generated in response to request to access any part of
the code or data in the group;

when the not-present interrupt occurs for a unit of memory in the group, loading all of the
code or data in the group that is not already in physical memory into physical memory from
secondary storage at one time, including loading the unit of memory for which the not present
interrupt has occurred and all other units of memory used to store the code or data in the group.

2. The method of claim 1 wherein the structure includes a linked list structure that
links together code or data stored at non-contiguous portions of virtual memory.

3. The method of claim 2 wherein the structure links pages of memory associated

with the non-contiguous portions of code or data.

4. The method of claim 1 further including:

repeating the steps of claim 1 for additional groups of code or data specified by the
application.

5. The method of claim 4 further including:

repeating the steps of claim 1 for a group of code or data for another concurrently executing
application such that more than one concurrently executing application program has specified at least
one group of code or data to be treated as a single piece of memory for loading into physical memory
in response to a not-present interrupt.

6. The method of claim 1 further including:

when the not-present interrupt occurs, checking whether the interrupt has occurred for a-unit
of memory in the group by evaluating whether an address of the memory request for which the
interrupt occurred is within a series of non-contiguous memory addresses of the group.

7. The method of claim 1 further including:

tracking memory accesses to units of memory in the group together such that when a unit of
memory in the group is accessed, all of the units of memory in the group are marked as accessed; and

determining which portions of physical memory to swap from physical memory to
secondary storage by determining which units of code are marked as accessed, such that units are
selected to be swapped from physical memory to secondary storage based on frequency of use or
how recently the units of code have been accessed.

8. The method of claim 7 further including:

WO 99/15962 PCT/US98/16800

10

15

20

25

30

35

220-

in response to a call from an application program to group specified code or data in a second
group, creating a second structure to group the code or data specified by the application;

tracking memory accesses to units of memory in the first and second group such that when
a unit of memory in both the first and second group is accessed, all of the units of memory in the first

and second group are marked as accessed and the unit of memory in both the first and second group

is marked as being accessed twice.

9. The method of claim 8

when a block of code or data shared between two or more groups is accessed, marking the
block as being accessed n times where n is the number of groups that share the block.

10. A computer-readable medium storing instructions for performing the steps of claim

11. In a multitasking operating system that uses virtual memory to share physical
memory among concurrently executing application programs, a virtual memory management system
comprising: '

a physical memory manager for swapping code and data between secondary storage and
physical memory to enable applications to share physical memory and for loading units of memory
from secondary storage to physical memory;

an API module for grouping portions of code or data in a group in response to a function
call from an application program that designates portions of the code or data to be put in the group;
and

a memory monitor in communication with the physical memory manager and the API
module, the memory monitor operable to monitor a processor for a not-present interrupt, and
operable to invoke the physical memory manager to load in all portions of the group not already in
physical memory when the processor generates a not-present interrupt in response to a memory
request directed to any code or data in the group.

12. The virtual memory management system of claim 11 wherein the memory monitor
is operable to track memory accesses to units of memory in a group and is operable to mark all units
of memory as accessed when any one of the units of memory in a group is accessed.

13. The virtual memory management system of claim 11 wherein the memory monitor
is operable to track memory accesses to blocks of memory that are shared among more than one
group and is operable to mark all units of memory in a shared block n times when any one of the
units of memory in the shared block is accessed, where n is the number of groups thatAinclude the
shared block.

14. The virtual memory manager of claim 11 wherein the physical memory manager is
operable to monitor memory accesses to units of memory and is operable to swap units of memory
from physical memory to secondary storage when necessary to satisfy a request for a piece of code or

data that is not present in physical memory.

WO 99/15962 PCT/US98/16800

10

15

20

25

21-
15. The virtual memory manager of claim 14 wherein the units of memory are pages.
16. The virtual memory manager of claim 14 wherein the physical memory manager

marks a unit of memory as used in response to a memory request for the unit; wherein the physical
memory manager marks all units of memory in a group as used whenever a unit of memory in the
group is accessed, and wherein the physical memory manager selects which of the units to swap from
physical memory to secondary storage to satisfy a memory request for physical memory by
determining which unit or units are least recently used.

17. The virtual memory manager of claim 11 wherein the API module is responsive to
concurrently executing application programs and is operable to maintain data structures representing
groups of code or data for more than one application program to be loaded into physical memory
together in response to a not-present interrupt for a unit of memory that resides in one or more of the
groups.

18. The virtual memory manager of claim 11 wherein the API module is operable to
enable the application program to add or delete code or data from the group dynamically, at run time.

19. The virtual memory manager of claim 18 wherein the API module is operable to
create and dynamically update a data structure maintaining a list of memory blocks included in the
group based on requests by the application to create the group and change the code or data in the
group.

20. A computer-readable medium having stored thereon a data structure comprising:

a series of data fields representing blocks of code or data associated with an application to
be treated as a single unit for purposes of virtual memory management, the data fields including a list
of memory addresses of the blocks and sizes of each block in the list;

wherein the data structure is evaluated in a data processing operation to load each of the
blocks into physical memory whenever a not-present interrupt is generated for any memory address

referring to a location included in one of the blocks.

WO 99/15962 PCT/US98/16800

32 BIT LINEAR ADDRESS fze / 30
BITS 31...22 BITS 21...12 BITS 11..0
20 /‘32
CR3
A
/24

PAGE TABLE | —)
28 L—|
PAGE TABLE l |

| DIRECTORY |
24 . ||
| |
I
| |

I
| |
| | |
- |
' |

Fig. 1
(PRIOR ART) .
v v

32-BIT PHYSICAL
ADDRESS

1/5

WO 99/15962 PCT/US98/16800

PAGE TABLE INDEX ola l/J F; o
BITS 31..12 L
ulr
PAGE ADDRESS BITS
31..12 DIA IV 01P
: s|w
Fig. 2

(PRIOR ART)

2/5

3/5

WO 99/15962 PCT/US98/16800
Fig. 3
PERSONAL COMPUTER 120
PROCESSING | 121 |
UNIT | 1" oPERATING L ---135
| | system |
1 122 gy -
gy g
/ SYSTEM | | appLICATIONs +--"13¢
MEMORY) e J
123 ,__/125 ’/,w” /| [~ = e e e e 137
s RAM k-~ K L MODULES _,l’
A
/ ' r—m =
__.138
//
/
/
132~
» INTERFACE HARD | +—127
DRIVE
- FLoppy | {128
133 >— DRIVE
INTERFACE |- 12
DISK H~T
MONITOR 147
134 — CD-ROM :
> INTerrace b»| PRVE M~ 130 140
DISK_ Nt 45, KEYBOARD
148
| wvibEO
™ ADAPTER MOUSE
]
146 1/54 15\2 142 149
SERIAL [] I 2
» PORT
INTERFACE |l MODEM » WAN «—> REMOTE
COMPUTER
1563
NETWORK |~ R PR
" ApaPTER [* LAN >
(| | sTORAGE
160
151

WO 99/15962

PCT/US98/16800

)

(APP. 1) (APP. 2 l Q APP. 3
160 N Y
AP| IMPLEMENTATION
< MEMORY
MONITOR /3,
164 { /Y
170 | oo
v
VIRTUAL
MEMORY SPACE | SECTION 1{SIZE}
OF _+ 1 SECTION 2{SIZE}
APP. 1 .~ /| SECTION 3(sIzZE}
/
-~/ /[SECTION 4(SizE}
/ /1 T
172 — \\\\\ y Iy i
/
\ // / II *
/ /|l
/ /| |LINKED LIST
/|| |OF PAGES
I
o 192
174\\\ \\ / /
[
o
I
Iy Y
[PHYSICAL
I MEMORY
;] MANAGER
\/ / 194
176 i
w2 AN
/I
/
/
!
!
/
!
/
78— \\\\\\\ FIG. 4
4/5

SUBSTITUTE SHEET (RULE 26)

WO 99/15962

200

VIRTUAL
MEMORY SPACE
OF APPLICATION

202"

A\

204~

NN

220

DA

208\

A\

FIG. 5

PCT/US98/16800

222

N
/5
|/

214\

ANMITNS.

216~

DI

5/5

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT Int tional Application No
PCT/US 98/16800

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/46 GO6F12/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 5 125 086 A (PERAZZOLI JR FRANK L) 20
23 June 1992

see column 2, line 21 - line 25
see column 2, tine 47 - line 59
see column 4, tine 23 - line 41

XP000581702
see the whole document

IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 39, no. 3, 1 March 1996, page 301/302

A see column 6, line 15 - 1ine 29 1,10,11

A "PACKING VARIABLE-SIZED SEGMENTS IN THE 1,10,11,
SWAP FILE OF A PAGING-BASED VIRTUAL MEMORY 20
SYSTEM"

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

“"P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
meRts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

1 December 1998

Date of mailing of the internationai search report

09/12/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Michel, T

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

int .ional Application No
Information on patent family members
PCT/US 98/16800
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5125086 A 23-06-1992 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

