The disclosure relates to compositions and methods for rAAV-mediated delivery of a transgene to a subject. In some embodiments, the rAAV transduces the prostate tissue of a subject. In some embodiments, the methods are useful for treatment of prostate disease (e.g., prostatitis, BPH, prostate cancer).

Published:
- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))
PROSTATE-TARGETING ADENO-ASSOCIATED VIRUS SEROTYPE VECTORS

RELATED APPLICATIONS

This Application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application Serial No. 62/245,027, filed October 22, 2015, and U.S. Provisional Application Serial No. 62/322,285, filed April 14, 2016, the entire contents of each of which are incorporated by reference herein.

BACKGROUND

The prostate is an exocrine gland that is crucial to constituting the male reproductive system, and the functions of prostate are similar in the majority of mammals despite anatomical differences. Three types of prostate diseases are the major threats for the health of prostate, i.e., prostatitis, benign prostate hyperplasia (BPH) and prostate cancer. Together, these prostate diseases are severely compromising the life quality and life span of males, especially for the aged male population. For example, BPH is one of the top ten most costly diseases among male populations over 50-year old in the USA, and prostate cancer is the second most diagnosed malignancy and the sixth leading cause for mortality of all cancers in males worldwide.

To date, many efforts have been made to prevent or to treat prostate diseases, including surgery, medication, and radiotherapy. Nevertheless, highly effective clinical interventions for a variety of prostate diseases are still lacking. For example, although the early stage of prostate cancer can be prevented with hormonal therapy, most hormone-dependent prostate cancers will eventually develop into castration-resistant prostate cancer (CRPC). So far, no effective treatment exists for CRPC. As the genetic basis of prostate diseases was gradually unraveled during the past decades, gene therapy was explored as a therapeutic strategy for prostate diseases, and researchers have demonstrated the feasibility of several gene therapy approaches to treating BPH and prostate cancer in mice using various types of viral gene delivery vectors. However, many viral vectors, such as adenovirus, lentivirus and retrovirus, can cause insertional genotoxicity and/or immunotoxicity, which greatly limits their clinical use.
SUMMARY

Adeno-associated virus (AAV) is a single-stranded DNA virus, and recombinant AAV (rAAV) vectors possess many advantages in gene therapy applications, including low immunogenicity and genotoxicity, broad tissue tropism and high transduction efficiency in vivo, and long-term transgene expression. Aspects of the invention are related to the discovery that rAAV vectors comprising capsid proteins having a certain serotype, including, but not limited to, AAV5, AAV6.2, AAV7, AAV8, AAV9, AAVrh.lO, mediate delivery of transgenes to prostate tissue more efficiently than other vectors (e.g., rAAV vectors comprising other capsid protein serotypes).

Accordingly in some aspects, the disclosure provides a method for delivering a transgene to prostate tissue, the method comprising: administering to prostate tissue of a subject an effective amount of rAAV, wherein the rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.lO, and (ii) a nucleic acid comprising a promoter operably linked to a transgene.

In some aspects, the disclosure provides a method for treating a prostate disease, the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount of rAAV, wherein the rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.lO, and (ii) a nucleic acid comprising a promoter operably linked to a transgene.

In some embodiments, the capsid protein comprises an amino acid sequence that is at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% identical to any one of SEQ ID NO: 1-7. In some embodiments, the capsid protein comprises an amino acid sequence as set forth in SEQ ID NO: 3 or 4. In some embodiments, the capsid protein is AAV6.2 capsid protein (SEQ ID NO: 3) or AAV7 capsid protein (SEQ ID NO: 4).

In some embodiments, the transgene encodes a gene associated with a prostate disease. In some embodiments, the prostate disease is selected from prostatitis, prostate cancer and benign prostate hyperplasia (BPH). In some embodiments, the gene encodes a tumor suppressor molecule (e.g., a tumor suppressor protein or a miRNA that regulates tumor suppression). In some embodiments, the gene encodes BCL-2, PTEN, SLC39A1, BRCA1,
BRCA2, HPCl, RUNX2, CLCA2, YAP1, MASPIN, LL37, CDKNIB, AR, NKX3.1, CASP9, FKHR, GSK3, MDM2, ERK1/2, PSA, CCND1, ALDOA, ... The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.

In some aspects, the disclosure is based on the discovery that miR34a expression is downregulated in prostate cancer cells. In some embodiments, overexpression of miR34a in prostate cancer cells results in decreased cancer cell viability and migration. Accordingly, in some aspects, the disclosure provides a method for treating a prostate disease, the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount of a nucleic acid comprising a promoter operably linked to a transgene, wherein the transgene encodes miR34a. In some embodiments, the transgene comprises or consists of a nucleic acid having a sequence as set forth in SEQ ID NO: 15. In some embodiments, the nucleic acid comprises or consists of a nucleic acid having a sequence as set forth in SEQ ID NO: 16.

In some embodiments, the administration occurs by injection. In some embodiments, the injection is not intraperitoneal injection (i.p.). In some embodiments, the injection is intraprostate injection.

In some embodiments, the administration results in transduction of a prostate cell type selected from the group consisting of luminal prostate cells, basal prostate cells, and stromal prostate cells. In some embodiments, the administration results in transduction of at least two of the following prostate cell types: luminal prostate cells, basal prostate cells, and stromal prostate cells.

In some embodiments, the rAAV further comprises two AAV inverted terminal repeats (ITRs), wherein the ITRs flank the transgene. In some embodiments, the AAV ITRs are ITRs of one or more serotypes selected from: AAV2, AAV3, AAV4, AAV5, and AAV6.

In some embodiments, the subject is a mammal, optionally a human.

Each of the limitations of the disclosure can encompass various embodiments of the disclosure. It is, therefore, anticipated that each of the limitations of the disclosure involving any one element or combinations of elements can be included in each aspect of the disclosure. This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a graphical depiction of the anatomical structure of mouse prostate and intraprostate injection sites. 1x10^11 GC per injection site of rAAV vectors were delivered into four sites as indicated by the syringes, namely the two lobes of the anterior prostate (AP) and two sites in the dorsal lateral prostate (DLP). SV: seminal vesicle.

FIGs. 2A-2B show rAAV6.2, 7 and 9 efficiently transduced mouse AP following intraprostate injection. FIG. 2A shows representative fluorescence images of anterior prostate (AP) cryo-sections showing the merge of EGFP native fluorescence and nuclear staining by DAPI following injections of each of 12 rAAV serotypes or PBS. Squared regions indicate the locations of high magnification images shown in (FIG. 2B). Scale bars represent 100 microns. FIG. 2B shows high magnification images of AP cryo-sections following PBS injection or transduction with rAAV6.2 and 7. Scale bars represent 25 microns.

FIGs. 3A-3B show rAAV6.2, and 7 efficiently transduced mouse DLP following intraprostate injection. FIG. 3A shows representative fluorescence images of dorsal lateral prostate (DLP) cryo-sections showing the merge of EGFP native fluorescence and nuclear staining by DAPI following injections of each of 12 rAAV serotypes or PBS. Squared regions indicate the locations of high magnification images shown in (FIG. 3B). Scale bars represent 100 microns. FIG. 3B shows high magnification images of DLP cryo-sections following PBS injection or transduction with rAAV6.2 and 7. Scale bars represent 25 microns.

FIGs. 4A-4B show rAAV6.2 and rAAV7 efficiently transduced mouse prostate following intraprostate injection. FIG. 4A shows quantification of transduction efficiency in AP (gray bars) and DLP (black bars) following intraprostate injection with rAAV vectors of different serotypes expressing EGFP. EGFP fluorescence intensity of cryo-sections is presented in arbitrary units (a.u.). FIG. 4B shows biodistribution of rAAV genomes in AP (gray bars) and DLP (black bars) following intraprostate injection of rAAV6.2 and rAAV7. Data are presented as rAAV genome copies per diploid genome.

FIG. 5 shows intraprostate injection of rAAV vectors and transduction had no adverse effect on prostate histology. Representative H&E staining images of AP and DLP tissue sections collected from mice that were not treated (untreated), treated with PBS, or three rAAV serotype vectors including rAAV6.2, 7 and 9. Scale bars represent 100 microns.
FIGS. 6A-6B show rAAV6.2 and 7 could transduce the majority of major prostatic cell types following intraprostate injection. FIG. 6A shows representative images of immunofluorescence staining of prostate luminal cells (top panels), basal cells (middle panels) and stromal cells (bottom panels), marked by K8, K5 and a-actin staining, respectively. Nuclear staining by DAPI, native EGFP fluorescence images and merged images from the same sections are also shown. Arrows indicate representative co-localization of EGFP signal and cell type marker signal. FIG. 6B shows quantification of the percentage of EGFP-positive cells of each cell type.

FIGS. 7A-7B show data relating to miR34a expression in prostate cancer. FIG. 7A shows qPCR data indicating that miR34a is significantly downregulated in the prostate of TRAMP mice compared to wild type (WT) mice. FIG. 7B shows a luciferase assay demonstrating rAAV-miR34 (pAAVsc- CB PI-miR34a-Gluc) successfully downregulates reporter gene (LacZ/Fluc) expression in vitro.

FIGS. 8A-8E show miR34a overexpression inhibits prostate cancer cell cycle. FIG> 8A shows qPCR data demonstrating relative expression level of miR34a in control (mock) and miR34a-treated cells 48 hours post-transfection. FIG. 8B shows a schematic diagram of a prostate cancer cell cycle, highlighting the G1 (2N) and S (2N-4N) phases. FIG. 8C shows transfection with miR34a results in a significant increase in 2N cells compared to mock transfected cells. FIG. 8D shows transfection with miR34a results in a significant decrease in 2N-4N cells compared to mock transfected cells. FIG. 8E shows miR34a overexpression decreases target gene expression (CCND1, TOP2A, and CD44) in vitro.

FIGS. 9A-9D show miR34a overexpression reduces cell viability and inhibits migration of PC3 prostate cancer cells. FIG. 9A shows overexpression of miR34a results in a decrease in cell viability of miR34a treated PC3 cells compared to control (Mock) PC3 cells. FIG. 9B shows a significant decrease in OD450 of miR34a-treated PC3 cells compared to control (Mock) PC3 cells. FIG. 9C shows overexpression of miR34a results in reduced PC3 cell migration compared to untreated cells, as measured by a wound healing assay. FIG. 9D shows overexpression of miR34a results in a significant increase in wound width, indicating a reduction in cell migration, compared to control (Mock) cells.

FIGS. 10A-10B show miR34a increases the survival rate of TRAMP mice. FIG. 10A shows 2-month old TRAMP mice intraprostatically injected with rAAV7-miR34a (4x10^{11} GC/mouse) have a significantly lower body weight (e.g., less tumor growth) than PBS-treated
control mice. FIG. 10B shows 2-month old TRAMP mice intraprostatically injected with rAAV7-miR34a (4x10^11 GC/mouse) have a significantly improved survival rates (measured by percent survival) compared to PBS-treated control mice.

FIG. 11 shows miR34a overexpression ameliorates prostate cancer progression in vivo. 2-month old TRAMP mice were intraprostatically injected with rAAV7-miR34a (4x10^11 GC/mouse). miR34a-treated mice show a decrease in prostate tissue pathology in both the anterior prostate (AP) and the dorsal lateral prostate (DLP) compared to PBS-injected control mice. Treatment with miR34a also results in significantly lower neoplasia area compared to control mice.

FIGs. 12A-12C show miRNA and target expression in mouse prostate 3 weeks post-intraprostatic injection (4x10^11 GC/mouse). FIG. 12A shows relative expression of miR34a is significantly increased in miR34a-treated mouse prostate compared to PBS-injected control mice. FIG. 12B shows reporter gene (Glue) expression persists up to 52 weeks post-intraprostatic injection of rAAV-miR34a-Gluc. FIG. 12C shows mice treated with miR34a show significant decreases in ALDOA and Sox4 expression compared to PBS-injected control mice 3 weeks post-injection.

FIG. 13 shows Western blots demonstrating that miR34a overexpression downregulates Aldoa, Ccndl, and Sox4 expression in mouse prostate compared to control mouse prostate.

DETAILED DESCRIPTION

The disclosure relates in some aspects to compositions and methods for tissue-specific delivery of a transgene by a recombinant adeno-associated virus (rAAV). The invention relates, in part, to the discovery that rAAV vectors comprising a capsid protein(s) having a certain serotype (e.g., AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.10) mediate delivery of transgenes to prostate tissue more efficiently than rAAV vectors comprising other capsid protein serotypes.

Methods and Compositions for AAV-mediated Delivery of a Transgene to Prostate Tissue

Methods for delivering a transgene to prostate tissue in a subject are provided herein. The methods typically involve administering to a subject an effective amount of a rAAV comprising a nucleic acid for expressing a transgene in the subject. An "effective amount" of a rAAV is an amount sufficient to infect a sufficient number of cells of a target tissue in a
subject. In some embodiments, a target tissue is prostate tissue. An effective amount of a rAAV may be an amount sufficient to have a therapeutic benefit in a subject, e.g., to extend the lifespan of a subject, to improve in the subject one or more symptoms of disease, e.g., a symptom of prostate disease (e.g., prostatitis, BPH, prostate cancer, etc.). In some cases, an effective amount of a rAAV may be an amount sufficient to produce a stable somatic transgenic animal model. The effective amount will depend on a variety of factors such as, for example, the species, age, weight, health of the subject, and the prostate tissue to be targeted, and may thus vary among subject and tissue.

An effective amount may also depend on the rAAV used. The invention is based, in part on the recognition that rAAV comprising capsid proteins having a particular serotype (e.g., AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh10) mediate more efficient transduction of prostate tissue that rAAV comprising capsid proteins having a different serotype. Thus in some embodiments, the rAAV comprises a capsid protein of an AAV serotype selected from the group consisting of: AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh10 (SEQ ID NO: 1 to 6). In some embodiments, the rAAV comprises a capsid protein of AAV6.2 serotype (SEQ ID NO: 3) or AAV7 serotype (SEQ ID NO: 4). In some embodiments, the capsid protein comprises an amino acid sequence that is at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% identical to any one of SEQ ID NO: 1-7. In some embodiments, the capsid protein is AAV6.2 capsid protein (SEQ ID NO: 3) or AAV7 capsid protein (SEQ ID NO: 4).

In certain embodiments, the effective amount of rAAV is 10^{10}, 10^{11}, 10^{12}, 10^{13}, or 10^{14} genome copies per kg. In certain embodiments, the effective amount of rAAV is 10^{10}, 10^{11}, 10^{12}, 10^{13}, 10^{14}, or 10^{15} genome copies per subject.

An effective amount may also depend on the mode of administration. For example, targeting a prostate tissue by intravenous administration or intraperitoneal injection may require different (e.g., higher) doses, in some cases, than targeting prostate tissue by intraprostate injection. The invention is based, in part, on the recognition that intraperitoneal injection (i.p.) of rAAV does not mediate efficient transduction of prostate cells. Thus, in some embodiments, the injection is not intraperitoneal injection (i.p.). In some embodiments, the injection is intraprostate injection. Intraprostate injection can be transperineal, transrectal, or transurethral, as described, for example, in Saemi et al., Indian J Urol. Jul-Sep; 24(3): 329-335; 2008. In some cases, multiple doses of a rAAV are administered.
Generally, the anatomy of the prostate can be classified in two ways: lobes and zones. For example, in humans the prostate gland has four distinct glandular regions under the zone classification: the peripheral zone (PZ), central zone (CZ), transition zone (TZ), and stroma. Under the lobe classification, the human prostate comprises four lobes: anterior lobe, posterior lobe, lateral lobe, and median lobe. In other species different terminology may be used to refer to different prostate structures, for example, in mouse prostate sites are referred to using anatomical positions, e.g., an anterior prostate, a dorsal lateral prostate, etc. See, for example, Selth, et al. International Journal of Cancer. 131(3):652-661, 2012, and Wang, et al. Cancer Cell. 4(3):209-221, 2003. No matter the classification system, prostate tissue comprises at least three cell types: luminal prostate cells, basal prostate cells, and stromal prostate cells. In some embodiments, administration of an rAAV as described herein results in transduction of a prostate cell type selected from the group consisting of luminal prostate cells, basal prostate cells, and stromal prostate cells. In some embodiments, the administration results in transduction of at least two of the following prostate cell types: luminal prostate cells, basal prostate cells, and stromal prostate cells.

Prostate tissue can be healthy prostate tissue (e.g., prostate tissue not having a disease, or at risk of developing a prostate disease) or diseased prostate tissue (e.g., prostate tissue having prostatitis, BPH, or prostate cancer). As used herein, "at risk of developing a prostate disease" refers to a subject having an increased probability of developing a prostate disease than the general population due to the presence of a risk factor. Examples categories of risk factors for developing prostate disease include, but are not limited to: exposure to carcinogens (e.g., Agent Orange), kallikrein levels (e.g., PSA levels) age, race, family history (e.g., positive family history of prostate cancer), vasectomy, and dietary fat intake, for example as described in Pienta et al. Ann Intern Med. 118(10):793-803, 1993 and Carter et al. JAMA. 267(16):2215-2220, 1992.

Without wishing to be bound by any particular theory, efficient transduction of luminal, basal, and/or stromal prostate cells by rAAV described herein may be useful for the treatment of a subject having a prostate disease. Accordingly, methods and compositions for treating prostate disease are also provided herein. In some aspects, the disclosure provides a method for treating a prostate disease, the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount of rAAV, wherein the rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of
AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.10, and (ii) a nucleic acid comprising a promoter operably linked to a transgene.

As used herein, a "prostate disease" is a disease or condition of the prostate. Non-limiting examples of prostate diseases include, but are not limited to, prostatitis (e.g., acute prostatitis, chronic prostatitis), benign prostate hyperplasia (BPH), prostate cancer (e.g., acinar adenocarcinoma, ductal adenocarcinoma, transitional cell (urothelial cancer), squamous cell prostate cancer, carcinoid tumor of the prostate, small cell prostate cancer, prostate sarcoma (leiomyosarcoma), etc.).

Without wishing to be bound by any particular theory, rAAV-based delivery of a transgene encoding a gene associated with a prostate disease is useful for treatment of subjects having prostate disease. As used herein, "gene associated with a prostate disease" refers to any gene, wherein expression of that gene that provides a therapeutic benefit in a subject, e.g., to improve in the subject one or more symptoms of disease, e.g., a symptom of prostate disease (e.g., prostatitis, BPH, prostate cancer, etc.). A gene associated with prostate disease can be a protein, polypeptide, antibody or fragment thereof (e.g., ScFv), toxin, or interfering RNA. Examples of genes associated with prostate disease include, but are not limited to Bcl-2, protein kinase C, clusterin, miR34a, miR375, NNX3.1, PTEN, Maspin, CLCA2, and PMSA. Other examples of genes associated with prostate disease are known in the art and are described, for example, in Cooper et al., Nat Clin Pract Urol. Dec;4(12):677-87; 2007. In some embodiments, a gene associated with prostate disease is a microRNA, for example miR34a. In some embodiments, miR34a comprises a nucleic acid sequence as set forth in SEQ ID NO: 15.

Recombinant Adeno-associated Viruses (rAAVs)

In some aspects, the disclosure provides isolated AAVs. As used herein with respect to AAVs, the term "isolated" refers to an AAV that has been artificially produced or obtained. Isolated AAVs may be produced using recombinant methods. Such AAVs are referred to herein as "recombinant AAVs". Recombinant AAVs (rAAVs) preferably have tissue-specific targeting capabilities, such that a nuclease and/or transgene of the rAAV will be delivered specifically to one or more predetermined tissue(s). The AAV capsid is an important element in determining these tissue-specific targeting capabilities. Thus, an rAAV having a capsid appropriate for the tissue being targeted can be selected.
In some aspects, the disclosure provides an rAAV having a capsid appropriate for targeting prostate tissue. In some embodiments, the capsid has a serotype selected from the group consisting of AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.IO. In some embodiments, the capsid has an AAV6.2 serotype (e.g., SEQ ID NO: 3) or an AAV7 serotype (e.g., SEQ ID NO: 4). The skilled artisan also recognizes that rAAV described herein may comprise variants of AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.IO serotype capsid proteins. In some embodiments, the capsid protein comprises an amino acid sequence that is at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% identical to any one of SEQ ID NO: 1-7.

Methods for obtaining recombinant AAVs having a desired capsid protein are well known in the art. (See, for example, US 2003/0138772), the contents of which are incorporated herein by reference in their entirety). Typically the methods involve culturing a host cell which contains a nucleic acid sequence encoding an AAV capsid protein; a functional rep gene; a recombinant AAV vector composed of, AAV inverted terminal repeats (ITRs) and a transgene; and sufficient helper functions to permit packaging of the recombinant AAV vector into the AAV capsid proteins. In some embodiments, capsid proteins are structural proteins encoded by the cap gene of an AAV. AAVs comprise three capsid proteins, virion proteins 1 to 3 (named VP1, VP2 and VP3), all of which are transcribed from a single cap gene via alternative splicing. In some embodiments, the molecular weights of VP1, VP2 and VP3 are respectively about 87 kDa, about 72 kDa and about 62 kDa. In some embodiments, upon translation, capsid proteins form a spherical 60-mer protein shell around the viral genome. In some embodiments, the functions of the capsid proteins are to protect the viral genome, deliver the genome and interact with the host. In some aspects, capsid proteins deliver the viral genome to a host in a tissue specific manner.

The components to be cultured in the host cell to package a rAAV vector in an AAV capsid may be provided to the host cell in trans. Alternatively, any one or more of the required components (e.g., recombinant AAV vector, rep sequences, cap sequences, and/or helper functions) may be provided by a stable host cell which has been engineered to contain one or more of the required components using methods known to those of skill in the art.

Most suitably, such a stable host cell will contain the required component(s) under the control of an inducible promoter. However, the required component(s) may be under the control of a constitutive promoter. Examples of suitable inducible and constitutive promoters are
provided herein, in the discussion of regulatory elements suitable for use with the transgene. In still another alternative, a selected stable host cell may contain selected component(s) under the control of a constitutive promoter and other selected component(s) under the control of one or more inducible promoters. For example, a stable host cell may be generated which is derived from 293 cells (which contain EI helper functions under the control of a constitutive promoter), but which contain the rep and/or cap proteins under the control of inducible promoters. Still other stable host cells may be generated by one of skill in the art.

In some embodiments, the instant disclosure relates to a host cell containing a nucleic acid that comprises a coding sequence encoding a gene associated with a prostate disease. In some embodiments, the instant disclosure relates to a composition comprising the host cell described above. In some embodiments, the composition comprising the host cell above further comprises a cryopreservative.

The recombinant AAV vector, rep sequences, cap sequences, and helper functions required for producing the rAAV of the disclosure may be delivered to the packaging host cell using any appropriate genetic element (vector). The selected genetic element may be delivered by any suitable method, including those described herein. The methods used to construct any embodiment of this disclosure are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. Similarly, methods of generating rAAV virions are well known and the selection of a suitable method is not a limitation on the present disclosure. See, e.g., K. Fisher et al, J. Virol., 70:520-532 (1993) and U.S. Pat. No. 5,478,745.

In some embodiments, recombinant AAVs may be produced using the triple transfection method (described in detail in U.S. Pat. No. 6,001,650). Typically, the recombinant AAVs are produced by transfecting a host cell with a recombinant AAV vector (comprising a transgene) to be packaged into AAV particles, an AAV helper function vector, and an accessory function vector. An AAV helper function vector encodes the "AAV helper function" sequences (i.e., rep and cap), which function in trans for productive AAV replication and encapsidation. Preferably, the AAV helper function vector supports efficient AAV vector production without generating any detectable wild-type AAV virions (i.e., AAV virions containing functional rep and cap genes). Non-limiting examples of vectors suitable for use with the present disclosure include pHLP19, described in U.S. Pat. No. 6,001,650 and
pRep6cap6 vector, described in U.S. Pat. No. 6,156,303, the entirety of both incorporated by reference herein. The accessory function vector encodes nucleotide sequences for non-AAV derived viral and/or cellular functions upon which AAV is dependent for replication (i.e., "accessory functions"). The accessory functions include those functions required for AAV replication, including, without limitation, those moieties involved in activation of AAV gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of cap expression products, and AAV capsid assembly. Viral-based accessory functions can be derived from any of the known helper viruses such as adenovirus, herpesvirus (other than herpes simplex virus type-1), and vaccinia virus.

In some aspects, the disclosure provides transfected host cells. The term "transfection" is used to refer to the uptake of foreign DNA by a cell, and a cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology, 52:456, Sambrook et al. (1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al. (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous nucleic acids, such as a nucleotide integration vector and other nucleic acid molecules, into suitable host cells.

A "host cell" refers to any cell that harbors, or is capable of harboring, a substance of interest. Often a host cell is a mammalian cell. A host cell may be used as a recipient of an AAV helper construct, an AAV minigene plasmid, an accessory function vector, or other transfer DNA associated with the production of recombinant AAVs. The term includes the progeny of the original cell which has been transfected. Thus, a "host cell" as used herein may refer to a cell which has been transfected with an exogenous DNA sequence. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation.

As used herein, the term "cell line" refers to a population of cells capable of continuous or prolonged growth and division in vitro. Often, cell lines are clonal populations derived from a single progenitor cell. It is further known in the art that spontaneous or induced changes can occur in karyotype during storage or transfer of such clonal populations.
Therefore, cells derived from the cell line referred to may not be precisely identical to the ancestral cells or cultures, and the cell line referred to includes such variants.

As used herein, the terms "recombinant cell" refers to a cell into which an exogenous DNA segment, such as DNA segment that leads to the transcription of a biologically-active polypeptide or production of a biologically active nucleic acid such as an RNA, has been introduced.

As used herein, the term "vector" includes any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, artificial chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors. In some embodiments, useful vectors are contemplated to be those vectors in which the nucleic acid segment to be transcribed is positioned under the transcriptional control of a promoter. A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. The phrases "operatively positioned," "under control" or "under transcriptional control" means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene. The term "expression vector or construct" means any type of genetic construct containing a nucleic acid in which part or all of the nucleic acid encoding sequence is capable of being transcribed. In some embodiments, expression includes transcription of the nucleic acid, for example, to generate a biologically-active polypeptide product or functional RNA (e.g., guide RNA) from a transcribed gene.

The foregoing methods for packaging recombinant vectors in desired AAV capsids to produce the rAAVs of the disclosure are not meant to be limiting and other suitable methods will be apparent to the skilled artisan.

Isolated Nucleic Acids

A "nucleic acid" sequence refers to a DNA or RNA sequence. In some embodiments, proteins and nucleic acids of the disclosure are isolated. As used herein, the term "isolated" means artificially produced. As used herein with respect to nucleic acids, the term "isolated" means: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid is one which is
readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art. As used herein with respect to proteins or peptides, the term "isolated" refers to a protein or peptide that has been isolated from its natural environment or artificially produced (e.g., by chemical synthesis, by recombinant DNA technology, etc.).

The skilled artisan will also realize that conservative amino acid substitutions may be made to provide functionally equivalent variants, or homologs of the capsid proteins. In some aspects the disclosure embraces sequence alterations that result in conservative amino acid substitutions. As used herein, a conservative amino acid substitution refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references that compile such methods, e.g., Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or Current Protocols in Molecular Biology, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made among amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D. Therefore, one can make conservative amino acid substitutions to the amino acid sequence of the proteins and polypeptides disclosed herein.

Recombinant AAV Vectors (rAAV Vectors)

"Recombinant AAV (rAAV) vectors" of the disclosure are typically composed of, at a minimum, a transgene and its regulatory sequences, and 5' and 3' AAV inverted terminal repeats (ITRs). It is this recombinant AAV vector which is packaged into a capsid protein and delivered to a selected target cell. In some embodiments, the transgene is a nucleic acid
sequence, heterologous to the vector sequences, which encodes a polypeptide, protein, functional RNA molecule (e.g., gRNA) or other gene product, of interest. The nucleic acid coding sequence is operatively linked to regulatory components in a manner which permits transgene transcription, translation, and/or expression in a cell of a target tissue.

In some embodiments, the instant disclosure relates to a recombinant AAV (rAAV) vector comprising a nucleic acid sequence including a promoter operably linked to a transgene, wherein the transgene is a gene associated with a prostate disease. In some embodiments, a rAAV vector further comprises nucleic acid sequences encoding one or more AAV inverted terminal repeat sequences (ITRs), for example AAV2 ITRs. In some embodiments, a rAAV vector further comprises nucleic acid sequences encoding one or more AAV ITRs selected from the group consisting of AAV3, AAV4, AAV5, and AAV6.

The AAV sequences of the vector typically comprise the cis-acting 5' and 3' inverted terminal repeat sequences (See, e.g., B. J. Carter, in "Handbook of Parvoviruses", ed., P. Tijsser, CRC Press, pp. 155 168 (1990)). The ITR sequences are about 145 bp in length. Preferably, substantially the entire sequences encoding the ITRs are used in the molecule, although some degree of minor modification of these sequences is permissible. The ability to modify these ITR sequences is within the skill of the art. (See, e.g., texts such as Sambrook et al, "Molecular Cloning. A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory, New York (1989); and K. Fisher et al., J Virol., 70:520 532 (1996)). An example of such a molecule employed in the present disclosure is a "cis-acting" plasmid containing the transgene, in which the selected transgene sequence and associated regulatory elements are flanked by the 5' and 3' AAV ITR sequences. The AAV ITR sequences may be obtained from any known AAV, including presently identified mammalian AAV types (e.g., AAV2, AAV3, AAV4, AAV5, or AAV6 ITR sequences).

In addition to the major elements identified above for the recombinant AAV vector, the vector also includes control elements necessary which are operably linked to the transgene in a manner which permits its transcription, translation and/or expression in a cell transfected with the plasmid vector or infected with the virus produced by the disclosure. As used herein, "operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.
Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.

As used herein, a nucleic acid sequence (e.g., coding sequence) and regulatory sequences are said to be "operably" linked when they are covalently linked in such a way as to place the expression or transcription of the nucleic acid sequence under the influence or control of the regulatory sequences. If it is desired that the nucleic acid sequences be translated into a functional protein, two DNA sequences are said to be operably linked if induction of a promoter in the 5' regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably linked to a nucleic acid sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide. Similarly two or more coding regions are operably linked when they are linked in such a way that their transcription from a common promoter results in the expression of two or more proteins having been translated in frame. In some embodiments, operably linked coding sequences yield a fusion protein. In some embodiments, operably linked coding sequences yield a functional RNA (e.g., gRNA).

For nucleic acids encoding proteins, a polyadenylation sequence generally is inserted following the transgene sequences and before the 3' AAV ITR sequence. A rAAV construct useful in the present disclosure may also contain an intron, desirably located between the promoter/enhancer sequence and the transgene. One possible intron sequence is derived from SV-40, and is referred to as the SV-40 T intron sequence. Another vector element that may be used is an internal ribosome entry site (IRES). An IRES sequence is used to produce more than one polypeptide from a single gene transcript. An IRES sequence would be used to produce a protein that contain more than one polypeptide chains. Selection of these and/or
other vector elements may be performed, as appropriate, and many such sequences are available [see, e.g., Sambrook et al, and references cited therein at, for example, pages 3.18 3.26 and 16.17 16.27 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989]. In some embodiments, a Foot and Mouth Disease Virus 2A sequence is included in polyprotein; this is a small peptide (approximately 18 amino acids in length) that has been shown to mediate the cleavage of polyproteins (Ryan, M D et al., EMBO, 1994; 4: 928-933; Mattion, N M et al., J Virology, November 1996; p. 8124-8127; Furler, S et al., Gene Therapy, 2001; 8: 864-873; and Halpin, C et al., The Plant Journal, 1999; 4: 453-459). The cleavage activity of the 2A sequence has previously been demonstrated in artificial systems including plasmids and gene therapy vectors (AAV and retroviruses) (Ryan, M D et al., EMBO, 1994; 4: 928-933; Mattion, N M et al., J Virology, November 1996; p. 8124-8127; Furler, S et al., Gene Therapy, 2001; 8: 864-873; and Halpin, C et al., The Plant Journal, 1999; 4: 453-459; de Felipe, P et al., Gene Therapy, 1999; 6: 198-208; de Felipe, P et al., Human Gene Therapy, 2000; 11: 1921-1931.; and Klump, H et al., Gene Therapy, 2001; 8: 811-817).

The precise nature of the regulatory sequences needed for gene expression in host cells may vary between species, tissues or cell types, but shall in general include, as necessary, 5' non-transcribed and 5' non-translated sequences involved with the initiation of transcription and translation respectively, such as a TATA box, capping sequence, CAAT sequence, enhancer elements, and the like. Especially, such 5' non-transcribed regulatory sequences will include a promoter region that includes a promoter sequence for transcriptional control of the operably joined gene. Regulatory sequences may also include enhancer sequences or upstream activator sequences as desired. The vectors of the disclosure may optionally include 5' leader or signal sequences. The choice and design of an appropriate vector is within the ability and discretion of one of ordinary skill in the art.

Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Cell, 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EFla promoter [Invitrogen]. In some embodiments, a promoter is an enhanced chicken β-actin promoter.
Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems have been described and can be readily selected by one of skill in the art. Examples of inducible promoters regulated by exogenously supplied promoters include the zinc-inducible sheep metallothioneine (MT) promoter, the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter, the T7 polymerase promoter system (WO 98/10088); the ecdysone insect promoter (No et al, Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)), the tetracycline-repressible system (Gossen et al, Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)), the tetracycline-inducible system (Gossen et al, Science, 268:1766-1769 (1995), see also Harvey et al, Curr. Opin. Chem. Biol., 2:512-518 (1998)), the RU486-inducible system (Wang et al, Nat. Biotech., 15:239-243 (1997) and Wang et al, Gene Ther., 4:432-441 (1997)) and the rapamycin-inducible system (Magari et al, J. Clin. Invest., 100:2865-2872 (1997)). Still other types of inducible promoters which may be useful in this context are those which are regulated by a specific physiological state, e.g., temperature, acute phase, a particular differentiation state of the cell, or in replicating cells only.

In another embodiment, the native promoter for the transgene will be used. The native promoter may be preferred when it is desired that expression of the transgene should mimic the native expression. The native promoter may be used when expression of the transgene must be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.

In some embodiments, the regulatory sequences impart tissue-specific gene expression capabilities. In some cases, the tissue-specific regulatory sequences bind tissue-specific transcription factors that induce transcription in a tissue specific manner. Such tissue-specific regulatory sequences (e.g., promoters, enhancers, etc.) are well known in the art. Exemplary tissue-specific regulatory sequences include, but are not limited to the following tissue specific promoters: a liver-specific thyroxin binding globulin (TBG) promoter, an insulin promoter, a glucagon promoter, a somatostatin promoter, a pancreatic

In some embodiments, one or more bindings sites for one or more of miRNAs are incorporated in a transgene of a rAAV vector, to inhibit the expression of the transgene in one or more tissues of an subject harboring the transgene. The skilled artisan will appreciate that binding sites may be selected to control the expression of a transgene in a tissue specific manner. For example, binding sites for the liver-specific miR-122 may be incorporated into a transgene to inhibit expression of that transgene in the liver. The target sites in the mRNA may be in the 5' UTR, the 3' UTR or in the coding region. Typically, the target site is in the 3' UTR of the mRNA. Furthermore, the transgene may be designed such that multiple miRNAs regulate the mRNA by recognizing the same or multiple sites. The presence of multiple miRNA binding sites may result in the cooperative action of multiple RISCs and provide highly efficient inhibition of expression. The target site sequence may comprise a total of 5-100, 10-60, or more nucleotides. The target site sequence may comprise at least 5 nucleotides of the sequence of a target gene binding site.

miRNAs
In some aspects, the disclosure relates to delivery of a transgene encoding microRNA 34a (miR34a) to a cell. miRNAs are natively expressed, typically as final 19-25 non-translated RNA products. miRNAs exhibit their activity through sequence-specific interactions with the 3’ untranslated regions (UTR) of target mRNAs. These endogenously expressed miRNAs form hairpin precursors which are subsequently processed into a miRNA duplex, and further into a "mature" single stranded miRNA molecule. This mature miRNA guides a multiprotein complex, miRISC, which identifies target site, e.g., in the 3’ UTR regions, of target mRNAs based upon their complementarity to the mature miRNA.

Without wishing to be bound by any particular theory, miR34a is known to function as a regulator of tumor suppression in cells. Accordingly, in some embodiments, delivery of a transgene encoding miR34a to a cell is useful for treatment of certain diseases characterized by reduction of miR34a expression or activity (e.g., certain cancers). Examples of cancers characterized by a reduction of miR34a expression or activity include but are not limited to prostate cancer, pancreatic cancer, breast cancer, colorectal cancer, cervical cancer, certain brain cancers (e.g., glioblastoma, medulloblastoma, etc.). In some embodiments, miR34a regulates cancer stem cells, such as prostate cancer stem cells, lung cancer stem cells, etc., for example as described in Misso et al. (2014) Mol. Ther. Nucleic Acids 3, e194; doi:10.1038/mtna.2014.47.

Thus, in some embodiments, the disclosure provides a method for treating cancer, the method comprising delivering a transgene encoding miR34a to a subject having a cancer characterized by a reduction in mir34a expression or activity.

In some aspects, the disclosure relates to the discovery that overexpression of certain miRNAs (e.g., miR34a) reduces prostate cancer cell viability and cell migration. Accordingly, in some aspects, the disclosure provides methods and compositions for treating prostate cancer by overexpressing miRNAs (e.g., miR34a) in a subject in need thereof. miRNAs and other small interfering nucleic acids regulate gene expression via target RNA transcript cleavage/degradation or translational repression of the target messenger RNA (mRNA).

In some embodiments, a miR34a miRNA described by the disclosure comprises or consists of a nucleic acid sequence as set forth in SEQ ID NO: 15. Variants of SEQ ID NO: 15 are also contemplated by the disclosure. For example, in some embodiments, a miR34a
sequence is at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 15.

It should be appreciated that, in some embodiments, a miR34a miRNA is an inhibitory nucleic acid (e.g., miRNA, pri-miRNA, amiRNA, dsRNA, shRNA, siRNA, etc.) that is complementary with and specifically binds to a target site sequence (e.g., a miR34a binding site) of a gene (e.g., CCND1, TOP2A, CD44, etc.) and inhibits expression of the target sequence (e.g., inhibits transcription, translation, or production a protein encoded by the target sequence). In some embodiments, a target sequence comprises at least 5 contiguous nucleotides that are complementary with a sequence as set forth in SEQ ID NO:

Recombinant AAV Administration Methods

The rAAVs may be delivered to a subject in compositions according to any appropriate methods known in the art. The rAAV, preferably suspended in a physiologically compatible carrier (i.e., in a composition), may be administered to a subject, i.e. host animal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse, cow, goat, pig, guinea pig, hamster, chicken, turkey, or a non-human primate (e.g., Macaque). In some embodiments, a host animal does not include a human.

Delivery of the rAAVs to a mammalian subject may be by, for example, intraprostatic injection. In some embodiments, the intraprostatic injection is transperineal, transrectal, or transurethral injection. In some embodiments, the injection is not intraperitoneal injection (i.p.).

The compositions of the disclosure may comprise an rAAV alone, or in combination with one or more other viruses (e.g., a second rAAV encoding having one or more different transgenes). In some embodiments, a composition comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different rAAVs each having one or more different transgenes.

In some embodiments, a composition further comprises a pharmaceutically acceptable carrier. Suitable carriers may be readily selected by one of skill in the art in view of the indication for which the rAAV is directed. For example, one suitable carrier includes saline, which may be formulated with a variety of buffering solutions (e.g., phosphate buffered saline). Other exemplary carriers include sterile saline, lactose, sucrose, calcium phosphate,
gelatin, dextran, agar, pectin, peanut oil, sesame oil, and water. The selection of the carrier is not a limitation of the present disclosure.

Optionally, the compositions of the disclosure may contain, in addition to the rAAV and carrier(s), other pharmaceutical ingredients, such as preservatives, or chemical stabilizers. Suitable exemplary preservatives include chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, and parachlorophenol. Suitable chemical stabilizers include gelatin and albumin.

The rAAVs are administered in sufficient amounts to transfect the cells of a desired tissue (e.g., prostate tissue) and to provide sufficient levels of gene transfer and expression without undue adverse effects. Examples of pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the selected organ (e.g., intraprostate delivery to the prostate), oral, inhalation (including intranasal and intratracheal delivery), intraocular, intravenous, intramuscular, subcutaneous, intradermal, intratumoral, and other parental routes of administration. Routes of administration may be combined, if desired.

The dose of rAAV virions required to achieve a particular "therapeutic effect," e.g., the units of dose in genome copies/per kilogram of body weight (GC/kg), will vary based on several factors including, but not limited to: the route of rAAV virion administration, the level of gene or RNA expression required to achieve a therapeutic effect, the specific disease or disorder being treated, and the stability of the gene or RNA product. One of skill in the art can readily determine a rAAV virion dose range to treat a patient having a particular disease or disorder based on the aforementioned factors, as well as other factors.

An effective amount of an rAAV is an amount sufficient to target infect an animal, target a desired tissue. In some embodiments, an effective amount of an rAAV is an amount sufficient to produce a stable somatic transgenic animal model. The effective amount will depend primarily on factors such as the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among animal and tissue. For example, an effective amount of the rAAV is generally in the range of from about 1 ml to about 100 ml of solution containing from about 10^9 to 10^{16} genome copies. In some cases, a dosage between about 10^{11} to 10^{13} rAAV genome copies is appropriate. In certain embodiments, 10^{11} or 10^{12} rAAV genome copies is effective to target prostate tissue. In some cases, stable transgenic animals are produced by multiple doses of an rAAV.
In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar day (e.g., a 24-hour period). In some embodiments, a dose of rAAV is administered to a subject no more than once per 2, 3, 4, 5, 6, or 7 calendar days. In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar week (e.g., 7 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than bi-weekly (e.g., once in a two calendar week period). In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar month (e.g., once in 30 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than once per six calendar months. In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar year (e.g., 365 days or 366 days in a leap year).

In some embodiments, rAAV compositions are formulated to reduce aggregation of AAV particles in the composition, particularly where high rAAV concentrations are present (e.g., 10^{13} GC/ml or more). Appropriate methods for reducing aggregation of may be used, including, for example, addition of surfactants, pH adjustment, salt concentration adjustment, etc. (See, e.g., Wright FR, et al., Molecular Therapy (2005) 12, 171-178, the contents of which are incorporated herein by reference.)

Formulation of pharmaceutically-acceptable excipients and carrier solutions is well-known to those of skill in the art, as is the development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens. Typically, these formulations may contain at least about 0.1% of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1 or 2% and about 70% or 80% or more of the weight or volume of the total formulation. Naturally, the amount of active compound in each therapeutically-useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.

In some embodiments, rAAVs in suitably formulated pharmaceutical compositions disclosed herein are delivered directly to target tissue, e.g., direct to prostate tissue.
However, in certain circumstances it may be desirable to separately or in addition deliver the rAAV-based therapeutic constructs via another route, e.g., subcutaneously, intraopancreatically, intranasally, parenterally, intravenously, intramuscularly, intrathecally, or orally, intraperitoneally, or by inhalation. In some embodiments, the administration modalities as described in U.S. Pat. Nos. 5,543,158; 5,641,515 and 5,399,363 (each specifically incorporated herein by reference in its entirety) may be used to deliver rAAVs. In some embodiments, a preferred mode of administration is by intraprostate injection.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. In many cases the form is sterile and fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

For administration of an injectable aqueous solution, for example, the solution may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a suitable sterile aqueous medium may be employed. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical
Sterile injectable solutions are prepared by incorporating the active rAAV in the required amount in the appropriate solvent with various of the other ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

The rAAV compositions disclosed herein may also be formulated in a neutral or salt form. Pharmaceutically-acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug-release capsules, and the like.

As used herein, "carrier" includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a host.

Delivery vehicles such as liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, may be used for the introduction of the compositions of
the present disclosure into suitable host cells. In particular, the rAAV vector delivered tranegenes may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.

Such formulations may be preferred for the introduction of pharmaceutically acceptable formulations of the nucleic acids or the rAAV constructs disclosed herein. The formation and use of liposomes is generally known to those of skill in the art. Recently, liposomes were developed with improved serum stability and circulation half-times (U.S. Pat. No. 5,741,516). Further, various methods of liposome and liposome like preparations as potential drug carriers have been described (U.S. Pat. Nos. 5,567,434; 5,552,157; 5,565,213; 5,738,868 and 5,795,587).

Liposomes have been used successfully with a number of cell types that are normally resistant to transfection by other procedures. In addition, liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, drugs, radiotherapeutic agents, viruses, transcription factors and allosteric effectors into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed.

Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 nm to 4 µm. Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 ÅNG., containing an aqueous solution in the core.

Alternatively, nanocapsule formulations of the rAAV may be used. Nanocapsules can generally entrap substances in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 µm) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use.

Kits and Related Compositions

The agents described herein may, in some embodiments, be assembled into pharmaceutical or diagnostic or research kits to facilitate their use in therapeutic, diagnostic or research applications. A kit may include one or more containers housing the components
of the disclosure and instructions for use. Specifically, such kits may include one or more agents described herein, along with instructions describing the intended application and the proper use of these agents. In certain embodiments agents in a kit may be in a pharmaceutical formulation and dosage suitable for a particular application and for a method of administration of the agents. Kits for research purposes may contain the components in appropriate concentrations or quantities for running various experiments.

In some embodiments, the instant disclosure relates to a kit for producing a rAAV, the kit comprising a container housing an isolated nucleic acid encoding an AAV capsid protein selected from any one of SEQ ID NO: 1-7. In some embodiments, the kit further comprises instructions for producing the rAAV. In some embodiments, the kit further comprises at least one container housing a recombinant AAV vector, wherein the recombinant AAV vector comprises a transgene (e.g., a gene associated with prostate disease).

In some embodiments, the instant disclosure relates to a kit comprising a container housing a recombinant AAV having an isolated AAV capsid protein having an amino acid sequence as set forth in SEQ ID NO: 3 or SEQ ID NO: 4.

The kit may be designed to facilitate use of the methods described herein by researchers and can take many forms. Each of the compositions of the kit, where applicable, may be provided in liquid form (e.g., in solution), or in solid form, (e.g., a dry powder). In certain cases, some of the compositions may be constitutable or otherwise processable (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or a cell culture medium), which may or may not be provided with the kit. As used herein, "instructions" can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which instructions can also reflects approval by the agency of manufacture, use or sale for animal administration.

The kit may contain any one or more of the components described herein in one or more containers. As an example, in one embodiment, the kit may include instructions for
mixing one or more components of the kit and/or isolating and mixing a sample and applying to a subject. The kit may include a container housing agents described herein. The agents may be in the form of a liquid, gel or solid (powder). The agents may be prepared steriley, packaged in syringe and shipped refrigerated. Alternatively it may be housed in a vial or other container for storage. A second container may have other agents prepared steriley. Alternatively the kit may include the active agents premixed and shipped in a syringe, vial, tube, or other container. The kit may have one or more or all of the components required to administer the agents to an animal, such as a syringe, topical application devices, or iv needle tubing and bag, particularly in the case of the kits for producing specific somatic animal models.

The kit may have a variety of forms, such as a blister pouch, a shrink wrapped pouch, a vacuum sealable pouch, a sealable thermoformed tray, or a similar pouch or tray form, with the accessories loosely packed within the pouch, one or more tubes, containers, a box or a bag. The kit may be sterilized after the accessories are added, thereby allowing the individual accessories in the container to be otherwise unwrapped. The kits can be sterilized using any appropriate sterilization techniques, such as radiation sterilization, heat sterilization, or other sterilization methods known in the art. The kit may also include other components, depending on the specific application, for example, containers, cell media, salts, buffers, reagents, syringes, needles, a fabric, such as gauze, for applying or removing a disinfecting agent, disposable gloves, a support for the agents prior to administration etc.

The instructions included within the kit may involve methods for detecting a latent AAV in a cell. In addition, kits of the disclosure may include, instructions, a negative and/or positive control, containers, diluents and buffers for the sample, sample preparation tubes and a printed or electronic table of reference AAV sequence for sequence comparisons.

Sequences

> AAV5 capsid protein amino acid sequence (SEQ ID NO: 1)
MSFVDHPDPWDLLEVGEGLREIFLGEAGPPKPKPNQQHDAQQRLVLPNGYNLYLPGNG
GLDRGEPVNRADEVEHDISYNEQLEDYNPLKYNHADAEPQEKLADDTSFGGN
LGKAVFQAKKRLVEPFGLVEEGAKTAPTGKRIDDHFPRKRRKARTEEDSKPTSSDAE
AGPSGSQLQIPAPQAPASSGLADTMSAGGGPLGDNNQGADGVGNAAGDWDHCSTSW
MGDRVTXTRXTRXVLPYSNHQYREIKGSVDGSNAYGFGYSTPWGYDFNRFHS
HWSPRDWQLINNYWGRPRSLRKIFNIQVKEVTVQDSTITIANNLSTTVQVFDDD
>AAV6 capsid protein amino acid sequence (SEQ ID NO: 2)
MAADGYLPDWE LDNLSGEIREWDLKPGAPKPKANQKQKDQDRGLVLPGYKYLGFPNGLDKGPNAADAAALEHDKAYQQLKAGDNPYLRHYNHADEFQRFLQEDTSFGGNLGRAVFQAKKRLEPFGLVEEGAKTAPGKRPEVSQPEQSDSSGIGKTAGQQP
>AAV6.2 capsid protein amino acid sequence (SEQ ID NO: 3)
MAADGYLPDWE LDNLSGEIREWDLKPGAPKPKANQKQKDQDRGLVLPGYKYLGFPNGLDKGPNAADAAALEHDKAYQQLKAGDNPYLRHYNHADEFQRFLQEDTSFGGNLGRAVFQAKKRLEPFGLVEEGAKTAPGKRPEVSQPEQSDSSGIGKTAGQQP
>AAV7 capsid protein amino acid sequence (SEQ ID NO: 4)
MAADGYLPDWE LDNLSGEIREWDLKPGAPKPKANQKQKDQDRGLVLPGYKYLGFPNGLDKGPNAADAAALEHDKAYQQLKAGDNPYLRHYNHADEFQRFLQEDTSFGGNLGRAVFQAKKRLEPFGLVEEGAKTAPGKRPEVSQPEQSDSSGIGKTAGQQP
FYCLE YFPS QMLRTGNNFEFS YSFD VPFHS SY AHS QSLDRLMNPLIDQYLYYLARTQ SNPPGTTAGNRELQFYQQGPPSTMAEQAQKNWLPGPCFRQQRVSKTLQDNNSNFAWT GATKYHLNGRNSLVPVGMVAMATHKDDDRFPPSSGVLIFGKTGTANKTTLENVLMT NEEERPTNPVATEEYGVSSNLQAAANTAATQVQVNNQGALPGMVWQNRDVLQGP IWAKIHPHTDGHNHFSPSLMGFFGLKHPPPQILKNTVPVAPNPEVFTPAKFASTITQYSTG QVSVEIEWELQKENS KRWNPEIQY TS FNEKQTGVDF AVDSQGVYSEPRP I GTRYLT RNL

> AA8V capsid protein amino acid sequence (SEQ ID NO: 5)

MAADGYLPDWLEDNSEGIREWWALKPGAPPKPNQNQKQDDDGRGLVLPGYKYLGSFPNGLDKGEPVNAADAAALAEHDKAYDQQLQAGDNPYLYNHADAEFQERLQEDTSFGGNLGRAVFQAKKRLEPLGLVEEAGATPKKRPVEQSPRSDSTIGIKGKQQPARKKFNQGTQGDSVDPQPLGEPPAAPGVPGMTPMAAGGMAPADNNAGADVGSSGNWHDCTSWDLGDRITSTRTLWNPYNYLHLYQISNGTSGATNNTDFYGYSTPWYGDFNRFHCFSPRDRWQLRNINNWFGRPKRLSFKLFINIQVEKTQNEGKT IANNLSTTIQVFTDDYQLPYLGSAAHGGCQCLPPPPADVFMIQPYGTYLTLNNSQAIVGRSSFYCLEYFPSQMLRTGNNFQFTYTFEDVPFFHSYAHQSGLDRLMNPLIDQYLLYLSR TQYMTQGTANTITLGFQGQGTPMANAQKNWLPGCPRQVRQVSTTTQGNNNSFAWTAGTKYHLNGRNSLANPGIAMATHKDEERFFPSNGILIGKQNAARDNADYSVDM LTSEEI KTTNPVATEEYGVADNLQQQNTAPQIGTVSNGQALPGMVWQRNDVLYQGPIWAKIHPHTDGHNHFPSLMMGGFLKHPPPQILKNTVPVAPDPTTFNQSKLSN FITQYS TGQVSVEIEWELQKENS KRWNPEIQYTS NYKTSVDFAVNTEGVYSEPRP I GTRYLT RNL

> AA9V capsid protein amino acid sequence (SEQ ID NO: 6)

MAADGYLPDWLEDNSEGIREWWALKPGAPPKPNQNQKQDDDGRGLVLPGYKYLGSFPNGLDKGEPVNAADAAALAEHDKAYDQQLQAGDNPYLYNHADAEFQERLQEDTSFGGNLGRAVFQAKKRLEPLGLVEEAGATPKKRPVEQSPRSDSTIGIKGKQQPARKKFNQGTQGDSVDPQPLGEPPAAPGVPGMTPMAAGGMAPADNNAGADVGSSGNWHDCTSWDLGDRITSTRTLWNPYNYLHLYQISNGTSGATNNTDFYGYSTPWYGDFNRFHCFSPRDRWQLRNINNWFGRPKRLSFKLFINIQVEKTQNEGKT IANNLSTTIQVFTDDYQLPYLGSAAHGGCQCLPPPPADVFMIQPYGTYLTLNNSQAIVGRSSFYCLEYFPSQMLRTGNNFQFTYTFEDVPFFHSYAHQSGLDRLMNPLIDQYLLYLSR TQYMTQGTANTITLGFQGQGTPMANAQKNWLPGCPRQVRQVSTTTQGNNNSFAWTAGTKYHLNGRNSLANPGIAMATHKDEERFFPSNGILIGKQNAARDNADYSVDM LTSEEI KTTNPVATEEYGVADNLQQQNTAPQIGTVSNGQALPGMVWQRNDVLYQGPIWAKIHPHTDGHNHFPSLMMGGFLKHPPPQILKNTVPVAPDPTTFNQSKLSN FITQYS TGQVSVEIEWELQKENS KRWNPEIQYTS NYKTSVDFAVNTEGVYSEPRP I GTRYLT RNL

> AA9rh.1O capsid protein amino acid sequence (SEQ ID NO: 7)

SSWALNGRSLMNPGPAMASHKEGDERFFPLSGLIFGKGQTGRDNVADKVMITNEEIEKTNPVATESYQVATNHQSAQAQAFQQTGWQVQNQGILPGMVWQDRDVLYQGP IWAKIHPHTDGHNHFPSLMMGGFLKHPPPQILKNTVPVADPTAFNKDLKSNFITSQYSTGQVSVEIEWELQKENS KRWNPEIQYTS NYKTSVDFAVNTEGVYSEPRP I GTRYLT RNL
GSSSGNWHDSTWGLDVRVTTTSRTWALPTYNHLYKQISNGTSSGSTNDNTYFGY
STPWYGFDFNFCHHFSPRWDQLTNINNWGFPRKPLNFKNFLNPQIVKVEVTQNEGTK
ANLNTSIIQVTDFSEYLPYVLGSAHQGCLPPPADVFIMPIQYGYTLNINSGQAVGR
SSFYCLEYFSPQLRMTNHFSEYQFEDVPFHSSYAHQSLDRLMNPLIQLYLYLSRTQTSG
GTATQQLFLFSAQPNMSQAQKNWLPGCPYRQVRQVSTTSQNNSFAWTGATK
YHNLNGRSLSVNPGVAMATHKDDEERFFPSGVLMFGKQAGKDNVDYSV
MLTSEEIKTTNPNVATEQYGVADNLQQQNAIPIVGAVSNQGALPMGVMVQRDV
LQGPIWAKIPHTDNGHSFLPSQAPQIRPQTLQSYSTQGVSESJEWELKENSKRW
NEPQYTSNNYKSTNNDFAVNTDGYSERPRPIGT
RYLTRNL

> AAV5 capsid protein nucleic acid sequence (SEQ ID NO: 8)
ATGTCTTTTGTGTGATCCCTCCAGATTGGTTGGAGAAGTTGGTGAAGGTCTTCC
GCGATGTCTTTTTGGGCAGTTCGAGCGCGAGAGGCTGCTCGGAAGAGGACTCCAAGCTCTT
CACCCTGCTACAGCGCGAGAGGCTGCTCGGAAGAGGACTCCAAGCTCTT
CACCCTGCTACAGCGCGAGAGGCTGCTCGGAAGAGGACTCCAAGCTCTT
CACCCTGCTACAGCGCGAGAGGCTGCTCGGAAGAGGACTCCAAGCTCTT

> AAV6 capsid nucleic acid sequence (SEQ ID NO: 9)

ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCA
TTCGCGAGTGGTGGGACTTGAAACCTGGAGCCCCGAAACCCAAAGCCAACCCAGC
AAAAGCAGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGAC
CCTTCAACGGGACTCGAACAAGGGGAGCCCCGTCAACGGCAGGATCGACGCAGCC
TCGAGCACGACAAGGCCTAAGCAGACGACTCACAAGCGCTGAATTTTGTCAGACTGAGT
CAGTCCCCGACCCACAACTCTCTCGAGAACCTCCAGCAACCCCGGCTGCTGGG
ACCTACTCAATGGTGCGGCAACCCAGACCTATCGGAACCCGATACCTTACCCGACCCCT
CCGGGGAATACAGAACCACCAGACCTATCGGAACCCGATACCTTACCCGACCCCT
TT
CAGTATTCCACAGGACAAGTGAGCGTGGAGATTGAATGGGAGCTGCAGAAAGAA
AACAGCAAACGCTGGAATCCCGAAGTGCAGTATACATCTAACTATGCAAAATCT
GCCAACGTTGATTTCCAAGGAGCCACAAATGGACATTTATATCAGGCTCGCCCA
TTGGCACCAGTACCTACCGCTGCCCTCGT

>AAV6.2 capsid protein nucleic acid sequence (SEQ ID NO: 10)
ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCA
TTCGCGAGTGGTGGGACTTGAAACCTGGAGCCCCGAAACCCAAAGCCAACCAGC
AAAAGCAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGAC
CCTTCAACGGACTCGACAAGGGGAGCAGCGGCGGATGCAGCGGCCC
TCGAGCACGACAAGGCCTAGCACAGCAGCTCAAAGCGGGTGACAATCCGTACC
TGCGGTATAAACCACCCCAGCGGTGTTTACAGGAGCTGCTGACAGAAAGATACGT
CTTTTGGGGCAACCTCGGAGACGTCTTCCAGGCAAGAAGAGGTTTCTCG
AACCTCTTGTCTCGTGTGAAAGTATGCTAGCTCTTTTCTGCAGAAATGGCAAGACAGC
GCCACCAGGCGTGTAATGCTCTCCAGGAATTTGCAAGTCAGTACCATGGTCTGC
GCCAACGTTGATTTCACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCCA
TTGGCACCCGTTACCTACCCGCTGCCCTCGT

5
10
15
20
25
30
35
40
45
>AAV7 capsid protein nucleic acid sequence (SEQ ID NO: 11)
ATGGCTGCCGATGGTTATCTTCCAGAGATTGGCTCGAGGACAACCTCTCTGAGGGCA
TTCCGAGATGGTGGAACCTTGACACGCAGCAGGCGACGGCAAGAA
AAAGCAAGCAGCGCCGCGCCGCTCGAGGGTCTGGTGCTTCCTGGCTACAAGTACCTGAC
CTTCAACCGGACTCGACAAAGGAGGAGCCCGTCAACCGCCGCGACGGAGGGCCC
TCGAGCACGACAAAGGCTTACGACCGAGCTGCAAGAAGTTCTGGAATACCTGCTACC
TTCAGTATAAACCACCGCGACGCGATTTTACAGGAGCTCTGCAAGAAGATACGT
CATTGTCGAGCAAACGTGCACTTCCAGGCAAGAAGCGGTTCTCG
>AAV8 capsid protein nucleic acid sequence (SEQ ID NO: 12)
ATGGCTGCCGATGGTTATCTTCCAGAGATTGGCTCGAGGACAACCTCTCTGAGGGCA
TTCCGAGATGGTGGAACCTTGACACGCAGCAGGCGACGGCAAGAA
AAAGCAAGCAGCGCCGCGCCGCTCGAGGGTCTGGTGCTTCCTGGCTACAAGTACCTGAC
CTTCAACCGGACTCGACAAAGGAGGAGCCCGTCAACCGCCGCGACGGAGGGCCC
TCGAGCACGACAAAGGCTTACGACCGAGCTGCAAGAAGTTCTGGAATACCTGCTACC
TTCAGTATAAACCACCGCGACGCGATTTTACAGGAGCTCTGCAAGAAGATACGT
CATTGTCGAGCAAACGTGCACTTCCAGGCAAGAAGCGGTTCTCG
TCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACC
TGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGT
CTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA
ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC
TGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGT
TCGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACC
TCAAGTACAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGT
CTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA
ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC
TGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGT

>AAV9 capsid protein nucleic acid sequence (SEQ ID NO: 13)
ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTAGTGAAGGAA
TTCGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAAGGCAAATCAAC
AACATCAAGACAACGCGGCGACTAGATGTACAGTCTGGCAAGATGGCAAGCTGA
TCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACC
TGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGT
CTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA
ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC
TGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGT

TCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACC
TGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGT
CTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA
ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC
TGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGT

TCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACC
TGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGT
CTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA
ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC
TGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGT

TCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACC
TGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGT
CTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA
ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC
TGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGT
>AAVrh.10 capsid protein nucleic acid sequence (SEQ ID NO: 14)

TCGAGGACAACCTCGGAGTGGAACTTTTGGGCAGACTGGCGACTCAGAGTCAGTGCCCGACCCTCAACCAATCGGAGAACCCCCCGCAGGCCCCTCTGGTCTGGGATCTGGTACAATGGCTGCAGGCGGTGGCGCTCCAATGGCAGACAATAACGAAGGCGCCGACGGAGTGGGTAGTTCCTCAGGA
AATTGGCATTGCGATTCCACATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTCCCCACCTACAACCAACCACCTCTACAAGCAAATCTCCAACGG

GCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCGACACAGAGTCA
GTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGGAT
CTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGGTG
CCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGG
GGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAA
TCACCTCTACAAAGCAAAATCTCCAACAGACACATCTGGAGGATCTTCAAATGACAAC
GCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACT
GCCACTTCTACACCAGCTGACTGGCAGCGACTCATCAACAACAACTGGGGATTCCG
GCCTAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAGGTTACGGAC
AACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCACGGTCCAGGTCTTC
ACGGACTCAGACTATCAGCTCCCCGTCAGCTGGTGTCGCTGGCTACAGGCGGTGCC
TCCCCGGGCTCCTACAGCCGACTCCACTACAGCAGCGCGAACACGAGTGCGTGC
TGGGAGGAAATTTGGCATTGCGATTCCCAATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTCCCCACCTACAACCAACCACCTCTACAAGCAAATCTCCAACGG

GCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCGACACAGAGTCA
GTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGGAT
CTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGGTG
CCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGG
GGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTCCCCACCTACAACAA
TCACCTCTACAAAGCAAAATCTCCAACAGACACATCTGGAGGATCTTCAAATGACAAC
GCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACT
GCCACTTCTACACCAGCTGACTGGCAGCGACTCATCAACAACAACTGGGGATTCCG
GCCTAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAGGTTACGGAC
AACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCACGGTCCAGGTCTTC
ACGGACTCAGACTATCAGCTCCCCGTCAGCTGGTGTCGCTGGCTACAGGCGGTGCC
TCCCCGGGCTCCTACAGCCGACTCCACTACAGCAGCGCGAACACGAGTGCGTGC
TGGGAGGAAATTTGGCATTGCGATTCCCAATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTCCCCACCTACAACCAACCACCTCTACAAGCAAATCTCCAACGG
GACTTCGGGAGGAAGCACCAACGACAACACCTACTTCGGCTACAGCACCCCTG
GGGGTATTTTGACTTTAACAGATTCCACTGCCACTTCTCACCACGTGACTGGCAG
CGACTCATCACAACAACGAGGAGTCCGGCCCAAGAGACTCTACAACCTCAAGCT
TCAACATCCAGCTCAAGGGCAGTCCAGCAATAGAAGACGACACAGATCCGGCA
ATAAACCCTACGGAGCAGATTCTAGGTTTTTACGGAGCTGGAATACCAGTCCCG
CTGTTCTCCTCTACTGCTGAGTACTTTCCTCTCCTAAATGCTGAGAACGGGCAAC
AACTTTTACGTGTTACAGTATTAGGAGCTGCTGCTGCTGCTGCTGCTGCTGCTG
TAAATCCCCGGTGCTGGTCAAAAGCAAAAGGGAGGAGAAGCAAGGATTTTTTTC
CTGGCAGGCAGCTTTAATGTGTTGGGAAACAGGGAGCTGGAAGAGAGAGTAGG
CTATAGCAAGGTATGACTCAACGAGGAAAGATAAACACACACACACACACACAC
GGCCAGAACATGGTGCTGGTCAACCTGGAACAGGAGCTTACCTCAACTCTGA
AACCCGGAGCTGAGCGGCGTCTCCACGAGCCTGACTGCTACGGGAGTTCTGGT
AGTACATCTACTCGAGGCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCC
CACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGCG

>miR34a nucleic acid sequence (SEQ ID NO 15)
AGGAAATTCTGTCGAGGAGGTGTCATACCTCGGAGGGTCCACTACACATCTTT
CTCCCGCCAGCTTCCATCTTCTCTGTAATCAGTGGGACGCTGGCGCCCTACCC
AGCTGTAAGATTTCTTCCGAGTCTGTACGTTGTGTGGTATTAGCTAA
GGAAGCAAATACGCAATCTACTACAAATCTAAAGTTGGAATCTCTGGTACTGA
AGATTTGCTATTTTTATAACCGGTTGAGTTCTGTTTCGTTGAACCTTATGGC
AAGGGAAAGGCTCAAGGTCAGCAACAGCCCAACACACCTGAGGCGCTTGGT
CGGAGCTGCTGACCTACTGTGGTGATGGTACGCGCCGCGGCTCC

> miR34a-GLuc expression construct nucleic acid sequence (SEQ ID NO: 16)
CTGCGCCGCTCGCTCGCTCAAGTCCGGAGGGTCCACTACACATCTTT
CTCCCGCCAGCTTCCATCTTCTCTGTAATCAGTGGGACGCTGGCGCCCTACCC
AGCTGTAAGATTTCTTCCGAGTCTGTACGTTGTGTGGTATTAGCTAA
GGAAGCAAATACGCAATCTACTACAAATCTAAAGTTGGAATCTCTGGTACTGA
AGATTTGCTATTTTTATAACCGGTTGAGTTCTGTTTCGTTGAACCTTATGGC
AAGGGAAAGGCTCAAGGTCAGCAACAGCCCAACACACCTGAGGCGCTTGGT
CGGAGCTGCTGACCTACTGTGGTGATGGTACGCGCCGCGGCTCC

40
EXAMPLES

Example 1. Adeno-associated virus serotype vectors efficiently transduce normal prostate tissue and prostate cancer cells

This example describes the unexpected result that certain serotypes of AAV vectors mediate highly efficient transduction in prostate tissue (e.g., mouse prostate tissue), which may be useful for performing mechanistic studies and gene therapy for prostate diseases, such as prostate cancer, in subjects such as dogs, monkeys, and humans (see, for example, Martijn C. Nawijn et al. European Urology Supplements, 7, 566-575, 2008 and Cory Abate-Shen, et al. Trends in Genetics. 18 (5):S1-S5, 2002).
It was previously shown that intraperitoneal (i.p.) injection of certain rAAV serotypes such as rAAV8 into WT mice could transduce tissues surrounding the peritoneal cavity such as the diaphragm, but prostate transduction has not been reported to the best of Applicants’ knowledge. To screen for rAAV serotypes that efficiently transduce mouse prostate in vivo, i.p. injection of 12 serotypes of enhanced green fluorescent protein (EGFP)-expressing rAAV vectors was performed in WT C57BL/6 male mice, including rAAV2, 3b, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39 and rh.43.

EGFP fluorescence signal was barely observed in the prostate tissue sections three weeks after vector injection, indicating inefficient transduction. Next, the same panel of rAAV vectors was injected directly into mouse prostate. The mouse prostate is divided into anterior prostate (AP) that contains two lobes and dorsal lateral prostate (DLP) (FIG. 1). rAAV vectors were thus injected into four sites per prostate, namely the two lobes of AP and two sites of DLP (FIG. 1).

Three weeks after injection, AP and DLP cryo-sections were subjected to fluorescence microscopy. It was found that rAAV6.2, rAAV7 and rAAV9 outperformed the other serotypes in transducing AP (FIGs. 2A-2B, FIG. 4A). Among these three serotypes, rAAV6.2 and rAAV7 also transduced DLP efficiently (FIGs. 3A-3B, FIG. 4A). In addition, rAAV5, rAAV8 and rAAVrh.10 transduced DLP (FIG. 3A, FIG. 4A). For the two leading serotypes that transduced both AP and DLP (rAAV6.2 and rAAV7), the vector genome biodistribution in the injected AP and DLP was determined to be approximately 10-20 rAAV genome copies per cell (FIG. 4B). Normal histology was observed by H&E staining in both AP and DLP, without indication of inflammation or other adverse effects following PBS or rAAV injection (FIG. 5). These results suggested that rAAV6.2 and rAAV7 are good candidates for efficient and safe delivery of genes of interest to mouse prostate in vivo.

To further characterize the prostatic cell types that were transduced with rAAV6.2 and rAAV7, immunofluorescence staining of mouse AP and DLP sections was performed with antibodies against cellular markers of major prostate cell types including luminal cells (K8), basal cells (K5) and stromal cells (α-actin for smooth muscle cells). It was found that both serotypes were able to transduce the majority of the three cell types in both AP and DLP. Representative fluorescence microscopic images are shown in FIG. 6A. Quantification of EGFP-positive cells of each cell type revealed that 65-80% of luminal cells, basal cells and stromal cells could be transduced (FIG. 6B).
Example 2. rAAV-based and intraprostatically delivered miR-34a therapeutics for efficient inhibition of prostate cancer progression

Prostate cancer (PCa) is the second most common diagnosed cancer and the fifth cause of cancer-related mortality for males worldwide. At present, there is no effective treatment for PCa. Towards further understanding molecular mechanism and developing therapeutics for PCa, the role of miR34a in PCa progression was investigated.

Expression of miR-34a is significantly downregulated in PCa cells. Here, downregulation of miR34a in prostate tumor from transgenic adenocarcinoma mouse prostate (TRAMP) model was examined. Relative expression of miR34a in prostate tissue of wild type and TRAMP mice was quantified by quantitative PCR (qPCR). Results demonstrate that expression of miR34a is significantly downregulated in the TRAMP mice (FIG. 7A). An rAAV-pri-miR34a construct was produced and tested using a luciferase assay. Results indicate that the rAAV-pir-miR34a construct efficiently downregulates expression of the reporter gene (e.g., luciferase) (FIG. 7B) in vitro. Analysis by qPCR demonstrates that miR34a overexpression inhibits growth of prostate cancer cells (FIG. 8A). In particular, it was found that overexpression of miR-34a significantly inhibits the cell cycle of PC3 cells (FIG. 8B) by prolonging G1 (FIG. 8C-8D) and shortening S phases through targeting cyclin D1 (CCND1), CD44, and DNA topoisomerase 2-alpha (TOP2A), as shown in FIG. 8E. It was also observed that miR34a overexpression reduces cell viability (FIGs. 9A-9B) and inhibits cell migration of PC3 cells as measured by a wound healing assay (FIG. 9C-9D).

To investigate if in vivo gene delivery of pri-miR34a to the prostates of TRAMP mice can inhibit PCa progression, 12 serotypes of rAAVs were screened for efficient prostate targeting in vivo and in PCa cells in vitro. Several candidate vectors (e.g., AAV6.2, AAV7 and AAV9) were identified. Intraprostatic injection of rAAV9-pri-miR34a (4x10^11 GCs/prostate) to 8-week old TRAMP mice for inhibition of PCa progression was investigated. Treatment with rAAV7-miR34a lowered body weights significantly (p < 0.05) as compared to the control group starting from 24 weeks after injection, likely a result of the higher tumor burden in the control group (FIG. 10A). rAAV7-miR34a treatment also significantly extended the lifespan of TRAMP mice (p < 0.05) (FIG. 10B). Moreover, proliferation and neoplasia in the rAAV7-mir34a treated prostates were significantly
diminished in both the anterior prostate (AP) and dorsal lateral prostate (DLP) when compared to those in the control group (FIG. 11).

Longevity of miR34a expression was also investigated. miRNA and reporter expression in mouse prostate were measured by qPCR and reporter (Glue) assay 3 weeks post intraprostatic injection. Results indicate that miR34 expression is highly upregulated in treated mice versus control mice (FIG. 12A) and that miR34 expression persists for up to 52 weeks after injection (FIG. 12B). It was also observed that expression of Aldolase A, Fructose-Bisphosphate (ALDOA) and Sex Determining Region Y)-Box 4 (Sox4) were significantly downregulated in miR34a-treated mouse prostate compared to untreated control mouse prostate (FIG. 12C). Relative protein expression results were confirmed by Western blot, which show miR34a overexpression downregulates ALDOA, Ccndl, and Sox4 expression in mouse prostate (FIG. 13).

In sum, these results demonstrate the potential of rAAV-mediated efficient modulation of miRNA expression in the prostate for inhibiting PCa progression.
What is claimed is:

1. A method for delivering a transgene to prostate tissue, the method comprising:
 administering to prostate tissue of a subject an effective amount of rAAV, wherein the
 rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of
 AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh10, and (ii) a nucleic acid comprising a
 promoter operably linked to a transgene.

2. The method of claim 1, wherein the capsid protein comprises an amino acid sequence
 that is at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% identical to any
 one of SEQ ID NO: 1-7.

3. The method of claim 1 or 2, wherein the capsid protein comprises an amino acid
 sequence as set forth in SEQ ID NO: 3 or SEQ ID NO: 4.

4. The method of any one of claims 1 to 3, wherein the capsid protein is AAV6.2 capsid
 protein (SEQ ID NO: 3) or AAV7 capsid protein (SEQ ID NO: 4).

5. The method of any one of claims 1 to 4, wherein the transgene encodes a gene
 associated with a prostate disease.

6. The method of claim 5, wherein the prostate disease is selected from prostatitis, prostate cancer and benign prostate hyperplasia (BPH).

7. The method of claim 5 or 6, wherein the gene encodes a gene selected from the group
 consisting of BCL-2, PTEN, SLC39A1, BRCA1, BRCA2, HPC1, RUNX2, CLCA2, YAP1,
 MASPIN, LL37, CDKN1B, AR, NKX3.1, CASP9, FKHR, GSK3, MDM2, ERK1/2, PSA, CCND1,
 ALDOA, Sox4, CD44, and miR34a.

8. The method of any one of claims 1 to 7, wherein the administration occurs by
 injection.
9. The method of claim 8, wherein the injection is not intraperitoneal injection (i.p.).

10. The method of claim 8 or 9, wherein the injection is intraprostate injection.

11. The method of any one of claims 1 to 10, wherein the administration results in transduction of a prostate cell type selected from the group consisting of luminal prostate cells, basal prostate cells, and stromal prostate cells.

12. The method of claim 11, wherein the administration results in transduction of at least two of the following prostate cell types: luminal prostate cells, basal prostate cells, and stromal prostate cells.

13. The method of any one of claims 1 to 12, wherein the rAAV further comprises two AAV inverted terminal repeats (ITRs), wherein the ITRs flank the transgene.

14. The method of claim 13, wherein the AAV ITRs are ITRs of one or more serotypes selected from: AAV2, AAV3, AAV4, AAV5, and AAV6.

15. The method of any one of claims 1 to 14, wherein the subject is a mammal, optionally a human.

16. A method for treating a prostate disease, the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount of rAAV, wherein the rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.10, and (ii) a nucleic acid comprising a promoter operably linked to a transgene.

17. The method of claim 16, wherein the capsid protein comprises an amino acid sequence that is at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% identical to any one of SEQ ID NO: 1-7.
18. The method of claim 16 or 17, wherein the capsid protein comprises an amino acid sequence as set forth in SEQ ID NO: 3 or SEQ ID NO: 4.

19. The method of any one of claims 16 to 18, wherein the capsid protein is AAV6.2 capsid protein (SEQ ID NO: 3) or AAV7 capsid protein (SEQ ID NO: 4).

20. The method of any one of claims 16 to 19, wherein the transgene encodes a gene associated with a prostate disease.

21. The method of claim 20, wherein the prostate disease is selected from prostatitis, prostate cancer and benign prostate hyperplasia (BPH).

22. The method of claim 20 or 21, wherein the gene encodes a gene selected from the group consisting of BCL-2, PTEN, SLC39A1, BRCA1, BRCA2, HPC1, RUNX2, CLCA2, YAPI, MASPIN, LL37, CDKNIB, AR, NKX3.1, CASP9, FKHR, GSK3, MDM2, ERK1/2, PSA, CCND1, ALDOA, CD44, Sox4, and miR34a.

23. The method of any one of claims 16 to 22, wherein the administration occurs by injection.

24. The method of claim 23, wherein the injection is not intraperitoneal injection (i.p.).

25. The method of claim 23 or 24, wherein the injection is intraprostate injection.

26. The method of any one of claims 16 to 25, wherein the administration results in transduction of a prostate cell type selected from the group consisting of luminal prostate cells, basal prostate cells, and stromal prostate cells.

27. The method of claim 26, wherein the administration results in transduction of at least two of the following prostate cell types: luminal prostate cells, basal prostate cells, and stromal prostate cells.
28. The method of any one of claims 16 to 27, wherein the rAAV further comprises two AAV inverted terminal repeats (ITRs), wherein the ITRs flank the transgene.

29. The method of claim 28, wherein the AAV ITRs are ITRs of one or more serotypes selected from: AAV2, AAV3, AAV4, AAV5, and AAV6.

30. The method of any one of claims 16 to 29, wherein the subject is a mammal, optionally a human.

31. A method for treating a prostate disease, the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount of a nucleic acid comprising a promoter operably linked to a transgene, wherein the transgene encodes miR34a.

32. The method of claim 31, wherein the transgene comprises the sequence set forth in SEQ ID NO: 15.

33. The method of claim 31 or 32, wherein the transgene is flanked by adeno-associated virus inverted terminal repeats (AAV ITRs).

34. The method of any one of claims 31 to 33, wherein the transgene further comprises a nucleic acid sequence encoding a reporter gene, optionally luciferase.

35. The method of any one of claims 31 to 34, wherein the transgene comprises the sequence set forth in SEQ ID NO: 16.

36. The method of any one of claims 31 to 35, wherein the nucleic acid is in a recombinant adeno-associated virus (rAAV).

37. The method of claim 36, wherein the rAAV comprises at least one capsid protein selected from the group consisting of AAV5, AAV6.2, AAV7, AAV8, AAV9, and AAVrh.10.
38. The method of claim 37, wherein the capsid protein comprises an amino acid sequence that is at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% identical to any one of SEQ ID NO: 1-7.

39. The method of claim 37 or 38, wherein the at least one capsid protein comprises an amino acid sequence as set forth in SEQ ID NO: 3 or SEQ ID NO: 4.

40. The method of any one of claims 37 to 39, wherein the capsid protein is AAV6.2 capsid protein (SEQ ID NO: 3) or AAV7 capsid protein (SEQ ID NO: 4).

41. The method of any one of claims 31 to 40, wherein the administration occurs by injection.

42. The method of claim 41, wherein the injection is not intraperitoneal injection (i.p.).

43. The method of claim 41 or 42, wherein the injection is intraprostate injection.

44. The method of any one of claims 31 to 43, wherein the subject is a human.
FIG. 7A

Graph showing relative miRNA expression for WT and TRAMP in AP and DLP tissues.

FIG. 7B

Bar chart showing LacZ/Fluc expression levels for pmiCHECK, pmiCHECK-3X34a BS, pAAVsc CB PI-miR34a-Gluc with PSL: irrelevant plasmids.

BS: Binding site
PSL: irrelevant plasmids
FIG. 8A

FIG. 8B
FIG. 8E
Cell viability Assay

Mock

miR34a

FIG. 9A

FIG. 9B
Wound Healing Assay

FIG. 9C

FIG. 9D
FIG. 10A

![Graph showing weight change over weeks post injection]

PBS (n=7)

miR34a (n=10)

FIG. 10B

![Graph showing percent survival over days]

PBS

miR34a
FIG. 12C

Aldoa

![Bar chart showing relative mRNA expression for Aldoa with PBS and miR34a conditions.](chart)

Sox4

![Bar chart showing relative mRNA expression for Sox4 with Control and miR34a conditions.](chart)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US16/58185

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61K 38/17, 48/00; A61P 35/00; C07K 14/005, 14/075, 14/47; C12N 15/63, 5/10, 15/861 (2017.1)

CPC - A61K 31/713, 38/17, 48/00; C07K 14/005, 14/075, 14/47; C12N 15/63, 5/10, 15/861

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: C12Q 1/68; G01 N 33/574; A61K 31/713, 38/17, 48/00; A61P 35/00; C07K 14/005, 14/075, 14/47; C12N 15/63, 5/10, 15/861 (2017.1); CPC: C12Q 1/68, 1/6866; A61K 31/713, 38/17, 48/00; C07K 14/005, 14/075, 14/47; C12N 15/63, 5/10, 15/861

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatSierr (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, INPADOC Data); Google; Google Scholar; EBSCO; Lens.org; NCBI

Terms: rAAV, AAV5, adeno-associated virus, prostate, cancer, miR34a, transgene, deliver

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>W O 2005/033231 A2 (THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA) 16 November 2001; page 1, lines 17-18; page 18, lines 23-24; page 24, lines 4-5; page 30, 5-6; page 40; lines 7, and 17; page 56, line 12</td>
<td>1-2, 16-17, 33/31</td>
</tr>
<tr>
<td>Y</td>
<td>EP 2 468 891 A2 (THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION) 03 January 2007; paragraphs [0012], [0024], and [0045]</td>
<td>1-2, 16-17, 31.33/31</td>
</tr>
<tr>
<td>Y</td>
<td>(CHIORINI, JA et al.) Cloning and Characterization of Adeno-Associated Virus Type 5. Journal of Virology, February 1999, Vol. 73, No. 2; pages 1309-1319; Genbank supplement, page 1</td>
<td>2, 17</td>
</tr>
<tr>
<td>A</td>
<td>W O 2008/154333 A2 (ASURAGEN, INC.) 18 December 2008; paragraph [0015]</td>
<td>32, 33/32</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C. [] See patent family annex.

Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"I" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search
6 March 2017 (06.03.2017)

Date of mailing of the international search report
27 MAR 2017

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-6300

Authorized officer
Shane Thomas
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

International application No. PCT/US 16/58185

Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 - because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: 4-15, 19-30, and 34-44
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule (5.4(a)).

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- "-Please see supplemental page." -

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-2, 16-17, 31-33; SEQ ID NO: 1 (capsid protein)

Remark on Protest

- □ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- □ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- □ No protest accompanied the payment of additional search fees.

Form PCT/ISA/2 10 (continuation of first sheet (2)) (January 2015)
This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I+, Claims 1-3, 16-18, 31-33 and SEQ ID NO: 1 are directed toward a method for delivering a transgene to prostate tissue, the method comprising: administering to prostate tissue of a subject an effective amount of rAAV; wherein the transgene encodes miR34a; and methods for treating a prostate disease.

The methods will be searched to the extent they include a capsid protein encompassing SEQ ID NO: 1 (first exemplary capsid protein). Applicant is invited to elect additional capsid protein(s), with specified SEQ ID NO: for each, to be searched. Additional capsid protein sequence(s) will be searched upon the payment of additional fees. It is believed that claims 1, 2, ap, 16, 17 (in-part) and 31-33 encompass this first named invention and thus these claims will be searched without fee to the extent that they encompass SEQ ID NO: 1 (capsid protein). Applicants must specify the claims that encompass any additionally elected capsid protein sequence(s). Applicants must further indicate, if applicable, the claims which encompass the first named invention, if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined. An exemplary election would be a capsid protein encompassing SEQ ID NO: 2 (first exemplary elected capsid protein).

No technical features are shared between the capsid protein sequences of Groups I+ and, accordingly, these groups lack unity a priori.

Groups I+ share the technical features including: a method for delivering a transgene to prostate tissue, and treating a prostate disease, comprising: administering to prostate tissue of a subject having or suspected of having a prostate disease an effective amount of rAAV, wherein the rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of AAV5, AAV6,2, AAV7, AAV8, AAV9, and AAVr6.10, and (ii) a nucleic acid comprising a promoter operably linked to a transgene; and a method for treating a prostate disease, the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount of a nucleic acid comprising a promoter operably linked to a transgene, wherein the transgene encodes miR34a.

However, these shared technical features are previously disclosed by US 2010/0227909 A1 to Cleary et al. (hereinafter 'Cleary') in view of EP 2468891 A2 to The Ohio State University Research Foundation (hereinafter 'Ohio').

Cleary discloses a method for delivering a transgene (a method of treating cancer in a subject comprising administering a nucleic acid encoding a microRNA (a method for delivering a transgene); paragraphs [0006], [0012], [0057]) to prostate tissue (to a tissue, including prostate (to prostate tissue); paragraph [0055]), and treating a prostate disease (treating cancer, including prostate cancer (treating a prostate disease); paragraphs [0012], [0055]), the method comprising: administering to prostate tissue of a subject having or suspected of having a prostate disease an effective amount (the method comprising: administering locally to a tissue comprising a tumor, including a prostate tumor (to prostate tissue) of a subject having or suspected of having a prostate disease an effective amount; paragraphs [0012], [0055], [0190]) of rAAV (of an adenoviral vector encoding the miRNA (of an rAAV); paragraphs [0006], [0120]), and (ii) a nucleic acid comprising a promoter operably linked to a transgene (and (ii) a nucleic acid comprising a promoter operably linked to a sequence encoding the miRNA (a transgene); paragraphs [0006], [0119]); and a method for treating cancer, including prostate cancer (a method for treating a prostate disease); paragraphs [0012], [0055]), the method comprising: administering to a subject having or suspected of having a prostate disease an effective amount (the method comprising: administering locally to a tissue comprising a tumor, including a prostate tumor (to prostate tissue) of a subject having or suspected of having a prostate disease an effective amount; paragraphs [0012], [0055], [0190]) of a nucleic acid (of a nucleic acid; paragraphs [0006], [0120]) comprising a promoter operably linked to a transgene (comprising a promoter operably linked to a sequence encoding the miRNA (a transgene); paragraphs [0006], [0119]), wherein the transgene encodes miR34a (wherein the transgene encodes miR34a; abstract, paragraph [0006]).

Cleary does not disclose delivering to prostate tissue; treating a prostate disease comprising administering to prostate tissue wherein the rAAV comprises (i) a capsid protein having a serotype selected from the group consisting of AAV5, AAV6,2, AAV7, AAV8, AAV9, and AAVr6.10.

Ohio discloses treatment of prostate cancer (treatment of prostate cancer; paragraph [0027]), including delivering an miR gene to the cancer cells (including delivering an miR gene to the cancer cells; paragraph [0080]), wherein the gene is present in an adenoviral vector (wherein the gene is present in an adenoviral vector; paragraphs [0085], [0086]), wherein the vector includes a capsid protein from a specific type of AAV, such as AAV2, or AAV5, in order to modify the tropism of the vector (wherein the vector includes a capsid protein from a specific type of AAV, such as AAV2, or AAV5, in order to modify the tropism of the vector; paragraphs [0086], [0087]).

It would have been obvious to a person of ordinary skill in the art at the time of the invention was made to have modified the disclosure of Cleary to have provided an adenoviral vector encoding the miR gene, as disclosed by Cleary, to the tumor cells in the prostate tissue of a subject, wherein the vector comprises an AAV5 capsid, as disclosed by Ohio, in order to better target and control the tropism of the vector and the miRNA produced thereby, in the target tumor tissue in order to provide effective treatment and minimize off-target effects of the production of the miRNA in non-target tissues in the subject.

Since none of the special technical features of the Groups I+ inventions is found in more than one of the inventions, and since all of the shared technical features are previously disclosed by a combination of the Cleary and Ohio references, unity of invention is lacking.