.
T
Sl

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification J :

GO6F 15/18 Al

(11) International Publication Number:

(43) International Publication Date:

WO 94/18631

18 August 1994 (18.08.94)

(21) International Application Number: PCT/US9%4/01037

(22) International Filing Date: 28 January 1994 (28.01.94)

(30) Priority Data:
08/011,355 29 January 1993 (29.01.93) Us
(71) Applicant: IMAGINE THOUGHT PROCESSING, INC.

[US/US]; P.O. Box 283, Richland, WA 99352-0283 (US).

(72) Inventor: NOYES, Dallas, B.; 502 Cottonwood Drive, Rich-
land, WA 99352 (US).

(74) Agents: Del.LUCA, Vincent, M. et al.; Rothwell, Figg, Emst &
Kurz, 555 13th Street, N.W., # 701 East, Washington, DC
20004 (US).

(81) Designated States: CA, JP, KR, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD FOR REPRESENTATION OF KNOWLEDGE IN A COMPUTER

(57) Abstract

A system for knowledge

ITA) MEANS FOR KMowwE0aL REPRESENTATION l b) mgans Fom PATTERN ﬁtcnoutr:ou:-l

The unique record reference

representation in a computer, ' ;::::::::.um ‘_:__IEI l

together with the ability to | {oarmease RecorETIans

recognize, store and use patterns @, L— 0 o d | — - — — — o= = — — —|

in the kiowledge mpsenion, | = | = [= = | [@ o s e ey

together with the ability for | | peaanzess | Rermescw ravran |

Natural Language Interaction | Txrpor oureur| ey | |

with the knowledge representation | 1 NATURAL LANCUAGE

system, together with means to | L e T THTERFACE

automatically transform information — erworw | L] - e e - — — - - — I T

in the knowledge representation | oFtRATIONS [t means For Auremarrcaiy oemrvene 1
into a multitude of documents or | | | save RELATIONSHEP | |Le—>] | :m.unm.zn :r- Do:ww:u: i: THE I
other human interpretable displays INnEATTACE nowLEPcE ReFmesenrario

in a plurality of different formats | | T o l — _ | l_{vrew L] svergm |
or views. User interaction with MANAGEMENT sranrup l
the knowledge representation | DescRzPITYVE ‘ I

through the view documents is | Darasase | SYSTE A |
achievable through a multitude Exzr }
JOf various possible formats. The | | ’
Knowledge Representation system | oo m | L R

defines a novel database engine AELATTONEHTP . [| L] |
constituting a method for modeling | EorTOoRS L e lvrew VIEW VIEw

knowledge as a network of concepts i *2 B B |
and a plurality of relationships L o - - = - — — - _
between the concepts comprising T1e) meams som vsen —j -~ B
the network. Each concept is Iaureecacy w:m% USER vsgr vegRr ,
represented as a record in the | e cwowceous FuTHArace ‘"‘;‘Z‘““ Farearace
database which is identified by a i B ‘
unique record reference mumber. @000 L _ . _ — e m m — o —m o — |

numbers are stored within the records comprising the database to record the plurality of relationships between concepts.

10

15

20

WO 94/18631

E PCT/US94/01037

METHOD FOR REPRESENTATION OF KNOWLEDGE IN A COMPUTER

MICROFICHE APPENDIX

A microfiche appendix of the code of a working
embodiment of the invention, consisting of 13
microfiche and 732 frames, is included as part of this
disclosure. It will be useful as a guide in
implementing the invention. '

BACKGROUND OF THE INVENTION

This invention relates to a system for knowledge
representation together with Natural Language
Interface, together with the ability to recognize,
store and use patterns in the knowledge representation,
together with computerized means for automatically
transforming information in the knowledge
representation into a multitude of documents or other
human interpretable displays in a plurality of
different formats or views, together with means for
user interaction with the knowledge representation
through the documents or displays.

The Knowledge Representation system defines a
novel database engine constituting a method for
modeling knowledge as a network of concepts and the
relationships of each concept to other concepts. Each
concept is represented as a record in the database
which is identified by a unique record reference
number. Relationships are represented by storing the
unique record reference numbers of relevant records

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

within the records comprising the knowledge
representation database.

The records are organized into strata or levels of
abstraction by means of storing relationships to other
records within a given stratum. These relationships
organize each level into hierarchies and a plurality of
other relational networks which represent generally
accepted ways of thinking about various fields of
knowledge.

The concepts in lower levels of abstraction are
related to those in higher levels by storing the unique -
record reference numbers of records of simple (more
abstract) concepts within the structure of records
representing more complex (more specific) concepts.
Thus, more complex concepts are defined by the records
whose reference numbers are stored within their record
structure.

This invention further relates to a novel system
for a Natural Language Interface (NLI) including a new
method of parsing and evaluating input expressions in
conjunction with the information in the Knowledge
Representation Database.

The system includes a method for dynamically
updating the Knowledge Representation database to
“learn" through interaction with system users. This is
accomplished by programmed means which automatically
recognize, store, and utilize patterns in the knowledge
representation database.

The system further includes a novel method for
automatically transforming knowledge embodied in the
Database into a plurality of human-perceivable
documents expressing the knowledge.

User interaction with the Knowledge Representation
through the Documents enables user interactions typical

10

15

20

25

WO 94/18631

PCT/US94/01037

of Graphical User Interfaces (GUI), Hypertext, Object
Linking Embedding (OLE), and context sensitive
operation in a single unified user interface.

The present invention can be evaluated by
referring to five major constituents which are
illustrated in Figure 1.

A) The data-base engine referred to herein as a
"knowledge representation" system is most closely
related to hierarchical and network databases. It
differs from previously disclosed databases in that
this invention employs a record system which embeds the
database record numbers of a plurality of other records
within a list stored in a particular record in a
network of interrelated records. Each record is
allowed to maintain an unbounded list of relationships
to other records within the Knowledge Representation
database.

System concepts are defined which allow the
creation of levels of abstraction within the knowledge
representation.

Fundamental relationships are the minimum set of
relationships which each record is required to have in
order to assure that the concept is related to the
other concepts of the knowledge representation
database. Each record is required to store the
reference number of at least one record in a higher
level of abstraction than that record, and every record
on each level of abstraction is required to store at
least one record reference number of another record on
the same level in a relationship which is characterized
by an attribute typical of the level.

The Knowledge Representation system further
requires a separate, non-permanent database in which to
assemble descriptions of particular records from the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

network of records in the primary Knowledge
Representation database.

The retrieval system of an individual record and
the records whose reference numbers are embedded in its
substructure inheritance and is without precedent
provides means for relationship.

B) The means for pattern recognition, storage and
utilization employed in the invention are unique and
provide novel means for machine "learning" by
recognizing patterns in the relationships comprising
the records, storing the patterns as relationships and
utilizing the patterns in creating additional concepts
and relationships in the Knowledge Representation
Database.

C) The Natural Language Interface (NLI) is a
novel system for enabling human interaction with the
Knowledge Representation Database by using human
language. The NLI system employs novel means for
parsing input expressions in that it employs a
sequential combination of a transitional network parser
(related to an Augmented Transition Network) and a
pattern matching parser (related to Parsing by
differences lists methods). Both parsers are further
unique in that they are based on the level of
abstraction and fundamental relationships of a concept
in the knowledge representation database instead of the
human language grammatical function of the concept.

D) The method for automatically deriving a
multitude of documents is based on abstracting standard
documents or displays of knowledge into Views, Classes,
and Types, wherein the Types define the vocabulary, the
Class defines the grammar, and the View defines the
connectivity and interaction, and is without precedent.

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

E) The user interface integrates the principal
characteristics of GUI, Hypertext, OLE, and context
sensitive programming in a singlé integrated user
environment. This integration is without precedent,
and is implemented in the invention by novel means
which are significant improvements over the means
currently known to the art for these technologies.

In this invention, the hypertext-like behavior is
a consequence of the relationships stored at each
record so that the view document has the feel of having
hypertext implemented on a massive scale; every icon is
a portal to all other view documents containing the
concept and is also a portal to all related concepts.
This contrasts with the Hypertext idiom which typically
employs user defined locational links between documents
which operate as an adjunct to static document
representation.

The Knowledge Representation system further
utilizes external relationships which enable the
linking of every record in the database to a file or
program external to the Knowledge Representation
Database.

NOTES ON IMPLEMENTATION

A suitable computer platform and programming
environment for the implementation of the invention
must be selected by the system developer. The
programming environment' should easily accommodate the
kinds of structures that are required for the knowledge
representation.

The Knowledge Representation Database can be
implemented on a wide variety of computer systems and
hardware. Generally the Knowledge Representation
Database will be stored on nonvolatile memory media
such as a hard disk, tape, optical disk, etc.

10

15

20

25

30

WO 94/18631

. | PCT/US94/01037

The minimum requirements of a programming
environment with database capabilities suitable for
implementation of the knowledge representation are
summarized in Figure 2. The database capabilities can
either be native to the programming environment or
developed by the system developer. Unique reference
numbers (2a) must be available in the system for each
record. A reference number is any unique tag or label
(of any data type) for the record. The reference
numbers must be permanently associated with the records
(2b). The database must be able to store reference
numbers in the database records and associated
index(es) (2c). The reference number is typically a
standard data type in the development environment.

The reference numbers must be uniquely and
permanently associated with each record because the
reference numbers are used to cross reference the
records by recording reference numbers within the
records themselves. The system must store these
reference numbers in the database records, as the
references to other records contained in a record
define the relationship of record to the network of
records in the knowledge representation database. The
environment should include a database indexing scheme
or enable the designer to be able to implement an index
to the records in the database (2d). The provision for
indexing the records in the database enables rapid
identification and retrieval of desired records. The
indexing scheme should accommodate indexing key word(s)
associated with a record and also indexing selected
reference numbers indicating relationships to other
records.

Various standard schemes for indexing (B-Trees,
hashing, etc.) are currently available. An appropriate

10

15

20

25

30

WO 94/18631

PCT/US94/01037

scheme will be apparent to the developer once the
principles of the invention are understood. Therefore
no specific disclosure of an indexing scheme or details
of implementation of the indexing scheme are provided
in this disclosure. The embodiment in the appendix
used a B-tree indexing scheme.

The environment should not restrict the record
data type which may be declared for the database since
the record data types of the invention include complex
data types as disclosed subsequently (2e). The
relationships maintained by a record are represented in
substructures of complex data types accommodating a
wide variety of standard data types. The environment
should not restrict the record length (2f). Variable
length records are desirable to enable the dynamic
addition of relationships to the records. Each record
may maintain an unbounded number of relationships: the
number and type of relationships differ with each
record.

The lack of restriction on the record data typing
and record length will provide the widest possible
latitude to the system designer in selecting and |
implementing data types appropriate to the knowledge
domain. If restrictions on data type and record length
do exist, it may be possible to implement
"work-orients". Such work around may include record
chaining and data type conversion algorithms. Such
algorithms, if required, will be known to a skilled
practitioner and are not discussed further herein. It
is best to avoid systems which will restrict the data
typing and record length of the records.

The structures of the records for the Knowledge
Representation Database are typically established as
data typing (domain) declarations in the programming

10

15

20

25

30

WO 94/18631

PCT/US94/01037

lanquage in which the structures are implemented.
Suitable mechanisms for declaring stvch structures are
provided by the various programming languages or tools
which are suitable for implementation of the invention.
Since such mechanisms are a property of the specific
system in which the invention is implemente&, they are
considered to be standard and are not discussed in
detail in this disclosure.

The invention can be implemented in a wide variety
of standard computer systems. The preferred embodiment
of the invention included in the appendix was on DOS®
PCs using the programming language PDC Prolog® with
Pharlap® Extenders. The preferred embodiment
illustrates the adaptability of this invention to
standard programming environments.

Prolog’ is a declarative language. Declarative
languages are distinct from procedural languages in
that Declarative languages are not easily represented
as procedural flow diagrams. In the following
discussions, flow diagrams are used to illustrate the
essential procedures and processes embodied in the
invention. However, these flow diagrams, while
illustrating the essential procedures, must be
understood as embodying a procedural equivalent of the
declarative code found in the Prolog program.

Therefore this disclosure will be more declarative than
procedural since a procedural disclosure is hopelessly
complex.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram of a system for

representing knowledge in a computer database according
to the present invention;

10

15

20

25

30

WO 94/18631

PCT/US94/01037

FIG. 2 is a chart of Minimum Requirements for a
Development Environment Suitable for Implementation of
the Knowledge Representation Database;

FIG. 3 is a Schematic Summary of the Means for
Knowledge Representation;

FIG. 4 is a Schematic Diagram of Knowledge
Representation Implemented in Multiple Files;

FIG. 5 is a diagram of References in Values of
Conjugate Relationships Must Correlate;

FIG. 6 is an illustration of the Organization of
Records in Knowledge Representation;

FIG. 7 is an illustration of Library Structure Used in
Knowledge Representation;

FIG. 8 is a chart of Summary of Strata Characteristics;
FIG. 9 is an illustration of System Concepts in the
Library Structure used in Knowledge Representation;
FIG. 10 is a chart of Summary of Typical Useful
Attribute Properties; '

FIG. 11 is a chart of Summary of Typical Useful
Attribute Classes;

FIG. 12 is a chart example of Domain Declaration for
Knowledge Representation Database;

FIG. 13 is a Flow Diagram of Programmed Means for
Recognition of System Concepts;

FIG. 14 is a Flow Diagram of Programmed Means for
Assuring that System Concepts are Inviolate;

FIG. 15 is a Flow Diagram of Programmed Means for
Assembling Ancestor Lists as an Example of Network
Traversal;

FIG. 16 is a Flow Diagram of Programmed Means for
Saving Information Stored in the Descriptive Database
by Storing it in the Knowledge Representation Database;
FIG. 17 is a chart Summary of the types of Relationship
Inheritance Based on the Descriptive Networks;

10

15

20

25

30

WO 94/18631

PCT/US94/01037

10

FIG. 18 is a logic diagram illustration of concepts in
the descriptive network of an attribute record;

FIG. 19 is a logic diagram illustration of concepts in
the descriptive network of a component record;

FIG. 20 is a logic diagram illustration of concepts in
the descriptive network of a project record:;

FIG. 21 is a Flow Diagram of Programmed Means for
Implementing Relationship Inheritance;

FIG. 22 is a Flow Diagram of Programmed Means for
Implementing Characterization Inheritance;

FIG. 23 is a chart of Domain Declaration for
Descriptive Database;

FIG. 24 is a Flow Diagram of Programmed Means for
Adding a Node to the Knowledge Representation Database;
FIG. 25 is a Flow Diagram of Programmed Means for
Adding a Relationship to the Relationship List of a
Record;

FIG. 26 is a Flow Diagram of Programmed Means for
Instituting the Value of an Internal Relationship;
FIG. 27 is a Flow Diagram of Programmed Means for
Instituting the Value of an External Relationship;
FIG. 28 is a Tree Diagram of the Taxonomy of Rules
System Concepts; '

FIG. 29 is a chart Summary and Description of Specific
Rules Implemented as System Concepts in the Preferred
Embodiment;

FIG. 30 is a chart Summary and Description of Specific
Rule Properties Implemented as System Concepts in the
Preferred Embodiment;

FIG. 31 is a Flow Diagram of Programmed Means for
Pattern Recognition and Storage in the Knowledge
Representation;

FIG. 32 is not used:;

FIG. 33 is not used;

10

15

20

25

30

WO 94/18631

" PCT/US94/01037

11

FIG. 34 is a Flow Diagram of Programmed Means for
Natural Language Processing;

FIG. 35 is a Flow Diagram of Programmed Means for
Augmented Transition Network Parse;

FIG. 36 is a Database Declaration for NLI Functional
Identification Used in Augmented Transition Network
Parse;

FIG. 37 is a chart Summary of Suggestions for System
Concepts and Associated User Concepts to add to the
Knowledge Representation Database for NLI;

FIG. 38 is a Flow Diagram of Programmed Means for Parse

by Differences;
FIG. 39 is a chart showing Examples of Views, Classes,
and Types Comprising a Plurality of Views of the
Knowledge Representation;

FIG. 40 is a Flow Diagram of Programmed Means for View

Management;

FIG. 41 is a chart Domain Declaration for Tracking
Active;

FIG. 42 is a Flow Diagram of Programmed Means for
Deriving a Plurality of Documents of the Knowledge
Representation;

FIG. 43 is a chart Summary of Correlation Between View
Derivation Step and Level of View Document Abstraction;

FIG. 44 is a Flow Diagram of Programmed Means For
Deriving A Plurality of Views of the Knowledge
Represéntation;

FIG. 45 is a Flow Diagram of Programmed Means For
Deriving a Plurality of Schematic Classes of the
Knowledge Representation;

FIG. 46 is a Flow Diagram of Programmed Means For
Deriving a Plurality of Types of Schematic Cluster
Diagrams of the knowledge Representation;

10

15

20

25

30

WO 94/18631

PCT/US94/01037

12

FIG. 47 is a Flow Diagram of Programmed Means For
Reading Descriptive Sets;

FIG. 48 is a chart showing Examples of Defining and
Auxiliary Relationships for Various Types of Documents;
FIG. 49 is a Flow Diagram of Programmed Means For
Reading Defining Relationships;

FIG. 50 is a Flow Diagram of Programmed Means For
Reading Auxiliary Relationships;

FIG. 51 is a Flow Diagram of Programmed Means For
Assigning Icons to a Descriptive Set;

FIG. 52 is a Flow Diagram of Programmed Means For User
Interaction with the Knowledge Representation Through
the View Documents;

FIG. 53 is a chart Summary of Icon Symbology;

FIG. 54 is a chart Summary of Symbol Interpretation;
FIG. 55 is a Standard Decision tree for Event
Processing;

FIG. 56 is a Recommended Decision Tree for Icon Symbol
Interpretation;

FIG. 57 is a Flow diagram of Programmed Means for

_Updating Active Based on User Event Location;

FIG. 58 is a Flow Diagram of Programmed Means For
Highlighting Entities;

FIG. 59 is a Flow Diagram of Programmed Means For
Interpreting Icon as System Concept Associated with
Icon Entities;

FIG. 60 is a Flow Diagram of Programmed Means For
Interpreting Icon as Abstraction Associated with Icon
Entities;

FIG. 61 is a Flow Diagram of Programmed Means For
Interpreting Icon as Entity Editing Procedure;

FIG. 62 is a Flow Diagram of Programmed Means For
Interpreting Icon as Procedure for Transferring View
Derivation .to Active;

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

13

FIG. 63 is a Flow Diagram of Programmed Means For
Changing View of Active;

FIG. 64 is a Flow Diagram of Programmed Means For
Interpreting Icon as Procedure for Identifying Library
System Concept of Active;

FIG. 65 is a Flow Diagram of Programmed Means For
Interpreting Icon as Abstraction Associated with
Active;

FIG. 66 is a Flow Diagram of Programmed Means For
Interpreting Icon as Procedure for Concept and
Relationship Editing;

FIG. 67 is a Flow Diagram of Programmed Means For
Interpreting Icon as External Procedure;

FIG. 68 is a Flow Diagram of Programmed Means For
Interpreting Icon as Ancestry Context;

FIG. 69 is a Flow Diagram of Programmed Means For
Interpreting Icon as Descendants Context;

FIG. 70 is a Flow Diagram of Programmed Means For
Interpreting Icon as Type Context;

FIG. 71 is a Flow Diagram of Programmed Means For
Identifying Attribute Class Concepts for Active
Attribute User Concept; and

FIG. 72 is a Flow Diagram of Programmed Means For
Interpreting Icon as User Connection Context.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 1 is a schematic diagram which highlights
the primary constituents of the invention. A detailed
discussion of each of the constituents is provided in
subsequent sections following this introductory
overview.

The Knowledge Representation Database (la) is a
new type of database system which represents knowledge
as a network of a plurality of cross-referenced records

10

15

20

25

30

WO 94/18631

PCT/US94/01037

14

comprising a computer database. The representation of
knowledge is based on the insight that knowledge is a
network of concepts and relationships between concepts
(i.e. the meaning of a concept is defined by its
relationship to other concepts). Concepts are embodied
as individual database records. Relationships between
concepts are embodied as substructures within the
records which store database reference numbers of other
records. "Knowledge" is thus embodied in the resulting
network of records and cross references between
records.

An effect of this system for Knowledge
Representation is the creation of a massively cross-
referenced database wherein the cross-referencing is
the essence of the database instead of an adjunct or
supplement thereto. All of the cross referencing is
transparent to the user. An advantage of this system
is thus -that it achieves the implementation of
"knowledge" representation in a computer instead of
just data storage, and thus may be contemplated as a
"thought" processing system as opposed to a
conventional "data" processing system.

' The pattern recognition, storage, and use module
(1b) enables the representation of abstractions of the
patterns of relationships in the knowledge
representation. These abstractions of the patterns of
relationships are stored as relationships within the
Knowledge Representation. When these stored patterns
are used in conjunction with means for editing the
network of the knowledge representation, the result is
intelligent behavior reminiscent of some types of
expert systems. The results are, however, achieved by
means novel to this invention.

10

15

20

25

30

WO 94/18631

v PCT/US94/01037

15

If, for example, in the creation of a chemical
processing plant five different kinds of instruments
have been used in subassemblies of a tank, upon
creation of another tank, the system Qill suggest the
five instruments as likely subassemblies to the system
user. Because this is a "learn by use" system instead
of an a priori declaration-of-rules type system, the
system "gets smarter" the more it is used.

The Knowledge Representation system enables the
implementation of a Natural Language Interface (lc)
with the Knowledge Representation Database. The
Natural Language Interface enables human language
interaction with the Knowledge Representation. This is
accomplished by recognizing possible patterns (or
schemas) of relationship between the concepts in the
database. Human language queries or statements are
then evaluated by matching patterns in the expression
to the patterns of relationship in the knowledge
representation database by means of serial parsing a
primary characteristic of which is the use of the
location of a recognized expression in the Knowledge
Representation Database instead of the grammatical
function.

This means, for example, that a system user can
ask for ’all devices connected to FCV100 and not in
cabinet M4F’' directly, without resorting to any special
commands for structured guery languages.

A major consequence of the Knowledge
Representation system of this invention is enabling the
Knowledge Representation to be "viewed" or perceived
through a multitude of documents, through the (1d)
means for automatically deriving a plurality of
documents of the Knowledge Representation. The
Knowledge Representation is not oriented to

10

15

20

25

30

WO 94/18631

PCT/US94/01037

16

representation of data in any one particular document
or view format: rather, it is enabling of all possible
documents. Given the view, the computer can
automatically derive any specific document embodying
portions of the information in the Knowledge
Representation Database.

Both traditional and non-traditional documents
which illustrate or describe portions of the concepts
and relationships in the knowledge representation can
be implemented in the system. Examples of traditional
documents include schematic diagrams, dimensioned
drawings, standard database forms, text based
documents, spreadsheet and financial summaries, etc.

For example, a valve may appear in as many as
sixteen different documents in the documentation for a
process plant, represented by four of five different
icons.

The knowledge representation supporting the needed
relationships can be accessed by the program defining
the view to create the appropriate descriptive database
of concepts pertaining to the document. The program
defining the view will then select the appropriate
icons and morphology sequentially and can develop all
sixteen documents with the valve appearing in its
different icon forms and in the different document
formats.

Each view is comprised of a plurality of classes.
Each class is comprised of a plurality of document
types. All specific documents are instances of a view,
class, and type. Views, classes and types are
implemented as programmed means.

Views embody procedures for defining relationship
icons and coordination with the means for user
interaction.

.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

17

Classes embody the definition format and icon
placement (i.e. grammar).

Types embody procedures for identifying the
concepts relevant to the document by means of reading
concepts in networks of defining and auxiliary
relationships and embody procedures for icon assignment
(i.e. vocabulary).

The view documents are comprised of icons
representing the concepts and relationships pertinent
to the document. These icons are created by the view
program. The icon definitions contain the reference
numbers of the concepts or relationships in the
knowledge representation which the icon represents.
Each icon is thus associated with a plurality of
distinct items in the Knowledge and Descriptive
(discussed below) databases, each of which is
potentially symbolized by the icon.

The (le) means for user interface with the
Knowledge Representation through the documents enables
a plurality of behaviors for each icon based on
interpretation implied by the context. A document is
comprised of icons representing a small subset of the
concepts and relationships present in the Knowledge
Representation Database. An icon can be interpreted as
representing the plurality of implied relationships in
the network. Utilizing these implied meanings allows
the invention to develop extraordinarily context
sensitive interaction with the Knowledge
Representation. This is achieved by means of decision
trees of system responses designed for each view where
the substance of the decision tree is the evaluation of
the interpretation implied by the context of the
interaction. This evaluation of context is without

10

15

20

25

30

WO 94/18631

PCT/US94/01037

18

precedent in the art and enables the novel features of
the means for user interaction of the invention.

The user interface modules integrate the principle
characteristics of GUI, Hypertext, OLE, and context
sensitive programming in a single integrated user
environment. The icons may behave like Graphical User
Interface (GUI) icons in that they can trigger the
procedures appropriate to the manipulation of the icon.
The icons may also behave like Hypertext links in that
they are linked to procedures that can automatically
derive all view documents of the concept and all
concepts and relationships associated with the concept.
The icons may also behave like Object Linking Embedding
(OLE) systems in that the icon can be the launch point
for an external program or file represented by the
concept of the icon.

(la) MEANS FOR KNOWLEDGE REPRESENTATION

Figure 3 provides a schematic summary of the means
for knowledge representation which is an expansion and
annotation of the Figure 1 (la) Means for Knowledge
Representation. Knowledge representation embodies
knowledge as information stored in a plurality of
records in a computer database. Each record is
comprised of substructures (herein called
relationships) which contain reference numbers to other
records. Relationships are comprised of two
constituents: a characterization of the relationship;
and a value for the relationship. These relationships
define the network of knowledge among the plurality of
records.

On a micro level, the network is comprised by the
records and relationships comprising the network. On
the macro level, the essence of the invention is the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

19

totality of the network comprised of the plurality of
records and relationships. The Knowledge
Representation Database stores information in a
plurality of records in a computer, and represents
relationships between the records by storing record
reference numbers within the records.

Record Operations (3b) are programmed basic
operations for editing and interacting with the records
comprising the Knowledge Representation Database. Both
Input operations (3c) which store information in the
records, and Output operations (3d) which retrieve
stored information from the records are provided.

Network Operations (3e) are programmed basic

operations for interacting with the network of concepts
and relationships in the Knowledge Representation
Database. The Network Operations transfer information
between the Knowledge Representation Database and the
Descriptive Database (3h). The Network Operations thus
interpret and translate the structure of both
databases. The "Save" operation (3f) saves information
from the (3h) Descriptive Database in the Knowledge
Representation Database, using the Input Record
operation (3c). The Save operations are useful in
situations where modification to the Knowledge
Representation Database is to be buffered by allowing
user modification first to the Descriptive Database.
If the Descriptive Database (3h) is used to buffer the
changes, then the Save operations are used to transfer
the modified data from the Descriptive Database to the
Knowledge Representation Database upon user invocation
of the save operation.

The "Read" operation (3g) reads information from
the Knowledge Representation Database by using the unit
operations of the Output Record operation (3d). The

10

15

20

25

30

WO 94/18631

PCT/US94/01037

20

Read operation is able to retrieve all information in
the Knowledge Representation Database network through
rules of Relationship inheritance (further discussed
below) by which records are retrieved according to
reference numbers found within other records. The Read
operation further provides the means for limiting the
network traversal and deriving descriptions for
"Active" concepts (further discussed below) in the
Knowledge Representation Database, and for storing the
descriptions in the Descriptive Database. The Read
operations are described in further detail
subsequently. The Read operations assemble a specific
Descriptive Database from the general concepts and
attributes in the Knowledge Representation Database.

The Descriptive Database (3h) is a database which
stores the information relevant to the description of a
specific concept or concepts distinct from the general
concepts of the Knowledge Representation Database,
while maintaining identification of the corresponding
reference numbers in the Knowledge Representation
Database of all components and relationships
constituting the specific concept description.

The data structures of the Descriptive Database
associate various record reference numbers of the
relevant records in the Knowledge Representation
Database with the information contained in the records
to provide a plurality of associations for the
information in a specific environment or perspective.
The Descriptive Database is a "working" non-permanent
database. The transfer of information to the
Descriptive Database from the Knowledge Representation
Database is made to consolidate the relationships in
the concept records of the Knowledge Representation
Database which are expressed as references to other

10

15

20

25

30

WO 94/18631

PCT/US94/01037

21

concepts into descriptions of the concepts themselves.
The description of the concepts facilitate the human-
perceivable views, and consequently user interaction
with the Knowledge Representation Database.

The Descriptive Database is called "descriptive"
because it is an assembly of a set of relatibnships
which describe a particular concept in the Knowledge
Representation Database; and it serves as an
intermediary between the Knowledge Representation
Database and the (1d) Document module and (le) View
User Interface (Fig. 1) where the "views" provide the
human understandable depictions of the knowledge in the
Knowledge Representation Database in the form of
documents such as tree diagrams, schematic diagrams,
and text forms.

The Concept and Relationship Editor (3i) performs
operations relevant to editing the concepts and
relationships comprising the records of the Knowledge
Representation Database. The Concept Editor may add
concepts to the Knowledge Representation Database,
including establishing fundamental relationships
required to assure that all added concepts are linked
to appropriate system concepts. The Relationship
Editor performs operations relevant to editing
relationships in the Knowledge Representation Database.
The Relationship Editor is used to edit both the
fundamental relationships and the relationship list of
each concept record, including editing both the
characterization of the relationships and the Values of
the relationships.

(3a) KNOWLEDGE REPRESENTATION DATABASE

The Knowledge Representation Database will
generally be implemented in a plurality of database
files as illustrated in Figure 10. The Knowledge

10

15

20

25

30

WO 94/18631

PCT/US94/01037

22

Representation Database will always consist of at least
oine Environment Database (4a) and associated index(es)
containing both the Attribute Property, Attribute and
Component libraries common to all Projects. This
database is referred to as the Environment Database, in
that it provides the environment for the creation of
specific projects. The Environment Database may be
comprised of a plurality of databases with associated
index(es). In such case, the plurality of databases
will be comprised of databases containing the same
information as identified above, wherein the
information is divided and arranged within the
plurality of files.

The Knowledge Representation Database will
generally consist of a plurality of Project libraries
(4b). The projects are typically implemented as
separate databases with associated index(es). These
databases are referred to as "Project Databases", in
that each project database contains the project library
for a project. If the system is being implemented for
a knowledge domain characterized by single project
maintenance, then combining the Environment and Project
libraries in a single database file may be preferable.

Most real world knowledge domain applications have
an environment comprised of a set of Attributes and
Components which are used to construct a variety of
specific Projects. An organization working in such a
knowledge domain will create Projects which are
networks of specific instances of the components. The
Projects embody the specific knowledge required to
achieve an objective of the organization.

"For the purposes of the following disclosure, and
the preferred embodiment, a multi-project scheme as
illustrated in Figure 4 will be presented, wherein each

10

15

20

25

30

WO 94/18631

PCT/US94/01037

23

project is contained in a separate file with all
projects referencing a common Environment Database.
The single database case is a simplification and easy
adaptation of the multi-project scheme and therefor
will not be discussed or presented further. Each

record in the knowledge representation database

corresponds to a concept. Concepts are named points in
the network of relationships comprising the Knowledge
Representation. The Values of the relationships are
comprised of a plurality of domains which accommodate
various data types which may be stored. Each of these
domains potentially require distinct modes of editing
and initiating values of that domain.

The relationship value editor is typically
comprised of a plurality of editors, each of which is
designed to facilitate the editing of a particular
value domain. ‘

Each of the constituent components mentioned above
will now be discussed in detail.

Each record in the knowledge representation
database corresponds to a concept. Concepts are named
points in the network of relationships comprising the
Knowledge Representation. Each record stores a
plurality of relationships. Concepts can be visualized
as points or nodes in a network. A large number of
relationships radiate from each concept to other
concepts within the knowledge representation.

Each record has a unique record reference number.
This reference number is permanently assigned to the
record. The reference number is used by the computer
system to refer to the concept instead of the name of
the concept because the reference number is unique
whereas the name is often not unique. The reference
numbers are always used in defining relationships.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

24

In the simplest conceptualization, a record
representing a concept in a computerized system is
comprised of a list of data structures for storing
relationships: the record is comprised of a list of
relationships to other concepts. 1In its simplest form,
knowledge is represented by a plurality of records,
each of which stores a plurality of relationships to
the other records.

Relationships provide the means for storing the
cross references in the plurality of records comprising
the network. A plurality of relationships are stored
within each record in the Knowledge Representation.
Relationships store the operating system reference
numbers defining the connections between concepts in
knowledge representation. Relationships are comprised
of: 1) a Characterization or Attribute that is a
reference number of a concept record that identifies
the properties of the relationship; and 2) a value (or
values) that is the object of the relationship.

The Characterization is the identification of the
nature of the relationship between two concepts. For
example, assume ‘Lynn’ is a concept and ’‘Wendy’ is a
concept. If it is true that ‘Lynn’ and ’'Wendy’ love
each other, then a Characterization of a relationship
between ’'Lynn’ and ‘Wendy’ is ’‘love’. The Attribute or
Characterization of their relationship is thus ’love’.

Values store the object of the relationship. The
Values may be either internal or external. For
example, if ’'Lynn’ has the Attribute of "love’ and
'Lynn’ loves 'Wendy’, then ’'Wendy’ is the Value of the
relationship characterized by the Attribute of ’'love’.

This relationship is formed in a record where the
concept is ’'Lynn’; where the Characterization portion
of the relationship contains the reference number of

10

15

20

25

30

WO 94/18631

PCT/US94/01037

25

the record storing ‘love’ and the Value portion of the
relation either contains ‘Wendy’ or a reference to the
record storing ‘Wendy’ as a concept.

Internal Values will typically be comprised of:
1) a reference number of the concept that is the object
of the relationship; and 2) a reciprocal
Characterization that is the reference number of the
concept that characterizes the relationship from the
point of view of the object concept.

External Values will typically be comprised of
data types other than reference numbers. In some
applications, a mixture of internal and external Values
may be desired. These mixed values also may be
accommodated under the provisions this invention.

In all real embodiments, some concepts will be
external to the knowledge representation. Such
concepts will be known by name only. The name of the
external concept will be meaningful to a human user,
but the relationships maintained by name concept will
be unknown to the knowledge representation. External
values will be stored as some standard data type. For
example if ‘color’ is the Characterization and the
Value is of external concept ‘blue’ then the ASCII
characters ’'blue’ would be stored as the valve.

Internai relationships are, in general,
reciprocal, meaning that if A is related to B then B is
also related to A. It is typically useful to record
this reciprocal Characterization within the reciprocal
relationships because in many cases the
characterizations are different. The reciprocal
relationship is the characterization within the object
concept which is the characterization of the
relationship whose object is the source concept.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

26

For example, if ’'Lynn’ and ‘Wendy’ are both
internal concepts and, if ‘Lynn’s’ relationchip with
‘Wendy’ is characterized by ‘wife’ and ’'Wendy’s’
relationship with ‘Lynn’ is characterized by ’husband’,
then 'husband’ is the reciprocal characterization for
‘Lynn’s’ relationship with ‘Wendy’. Storing ’'husband’
as the reciprocal characterization within the
relationship characterized by ’'wife’ will provide
important information concerning the relationship
between ‘Lynn’ and ‘Wendy’. Similarly, ‘wife’ is a
reciprocal characterization for ’'Wendy’s’ relationship
with ‘Lynn’. Note that the record reference numbers of
‘wife’ and ’‘husband’ would be stored in the ’'Wendy’ and
‘Lynn’ records.

Figure 5 illustrates that references in values of
reciprocal relationships must correlate. (5a) and (5b)
represent Attribute concepts used in characterizing the
relationships between (5c) and (5d) which represent
related concepts. The dots illustrate the record.
Below each dot a name for the concept and the record
reference number (the reference numbers are always
preceded by ~ (tilde) in the illustrations) are shown.
Arrows between the dots illustrate the references
between the records. Items (5e) and (5f) illustrate
the relationships which would be stored in the records
representing (5c) and (5d) respectively. Item (5e) is
comprised of a (5g) characterization of the
relationship which stores the reference number of (5a),
and the internal (5h) value structure which is
comprised of the reference number of the attribute of
(5b) and the reference number of the concept (5d) which
it is connected to. Item (5f) has the reciprocal
structure with a val referencing (5a) and (5c¢).

10

15

20

25

30

WO 94/18631

PCT/US94/01037

27

Figure 3 illustrates the organization of the
Knowledge Representation Database. The system concepts
of (6a) Properties, (6b) Strata, and (6c) Attribute
Classes, fundamental relationships of Intrastratum,
(6g) Taxonomy, (6h) Composition and (6i) Interstrata,
and (6f) relationship characterizations provide the
essential large scale structures for the knowledge
representation. A result of the system concepts and
the fundamental relationships is that the knowledge
representation has a structure that may be visualized
as a tree structured hierarchy.

This is clear if the attribute characterizations
and the type relationships are suppressed and examples
of (6e) User Concepts are provided in Figure 7. Note
that the interstrata relationships in the tree
structured hierarchies of Figure 7 have specific
meanings: the organizing principle of the Attribute
and Component strata can be thought of as (7a) taxonomy
(i.e. Class and Subclass); while the organizing
principle of the Project stratum can be thought of as
(7b) composition (i.e. structure and substructure).

Figure 5 summarizes the occurrence of the
fundamental relationships in the records of each of the
four typical levels of abstraction. The level of
abstraction system concepts characterize which of the
relationships are present in the records of each
library. There are two types of cross references
between levels of abstraction: reciprocal
relationships between concepts of different levels of
abstraction (interstrata relationships); and the
relationship characterization reference numbers always
belong to a level of abstraction higher than the level
of the concept storing the relationship. This means
that the characterizations of Attribute relationships

10

15

20

25

30

WO 94/18631

PCT/US94/01037

28

reference only Attribute Properties, and the
characterization of relationships of components and
propagations reference Attributes.

The use of reciprocal relationships in the
fundamental relationships enables traversal through the
network in either direction. This enables queries
based on an objects Class or Subclass, Structure, or
Substructure, Type, or Instances. In some
implementations of the invention, the reciprocal
relationships will not be expressed (e.g. a concept may
have a class but it is not referred to as a subclass).
However, this will seriously reduce the effectiveness
of the Knowledge Representation Database and eliminate
some important properties of the Natural Language
Interface and the Plurality of views which may be
implemented for the Knowledge Representation.

The intrastratum and interstrata relationships are
called fundamental relationships herein. The
intrastratum relationship is required for all strata.
The interstrata relationship is required for all
propagations.

System concepts are those concepts which the
programmed (code) portion of the system recognizes and
requires in order to interpret the knowledge network.
System concepts represent code defined interpretation
in the knowledge network. All other concepts are user
concepts. References to system concepts in the network
are, in effect references to code interpretation. The
code embodying the meaning of system concepts is
distributed throughout the program portion of the
system since these concepts have system wide
implications.

Figure 9 is an adaptation of Figure 7 designed to
highlight the system concepts included in Figure 7.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

29

These are examples of system concept included in the
referred embodiment. Figure 9 also indicates the
intrastratum organization of these concepts as a tree
structured diagram and associates examples of typical
user concepts. There are three classes of system
concepts which are recommended for any embodiment of
the Knowledge Representation (see Fig. 3): Attribute
Properties, Strata of Abstraction, and Attribute
Classes. Each of these classes of system concepts are
comprised of a plurality of individual concepts which
are recognized by the programmed code in order to
interpret the meaning of the knowledge network. All
Attribute property concepts are system concepts in that
they comprise the highest level of abstraction and are
the basis for the definition of all lower strata. The
Attribute Properties must be implemented as system
concepts in any embodiment of the invention. The
levels of abstraction system concepts define which of
characteristic types of fundamental relationships apply
to the concepts.on each level of abstraction. System
concepts embody the notion of the inter and intra
strata relationships appropriate to each strata. There
are four strata which will always be present:

Attribute Properties, Attribute, Component, and Project
(or equivalent propagation of components.)

The Attribute Class system concepts define which
attribute properties will characterize the
relationships of the descendants thereof. The
descendants of the Attribute Classes are user defined
attributes which characterize user defined
relationships. Attribute classes could be defined by
means of a plurality of relationships characterized by
Attribute Properties. It is simpler and more convenient
to explicitly identify the Attribute class concept as

10

15

20

25

30

WO 94/18631

PCT/US94/01037

30

system concepts and embody system definition of the
class behavior.

There are four characteristic levels of
abstraction which are typical of knowledge and which
are included as examples in the preferred embodiment
and comprise the basis for the subsequent discussion.
The concept of the invention comprises extension to
additional strata and to pluralities of related strata
within each type. Subsequent discussion will focus on
the four examples in order to achieve an economy of
exposition. The four strata are summarized in Fig. 8
as being comprised of 1) properties; 2) attributes; 3)
components; and 4) propagations. Figure 8 summarizes
the strata characteristics. Column A identifies each
of the four strata. Column B provideg a brief
description of the strata in terms of the function of
concepts in each strata within the knowledge
representation. Column C identifies the intrastratum
connectivity in terms of the significance of
relationship used to connect all of concepts on a
particular stratum. Column D of Figure 8 shows the
stratum used in the characterization of relationship
for each of the stratum. And Column E shows the
interstrata relationships maintained at each stratum.

The Attribute Properties are the most abstract
level of knowledge represented in a knowledge
representation. Properties are the concepts
characterizing relationships required to define
attributes. They can be thought of as the attributes
of attributes in that they are the only class of
concepts used as characterizations within the
relationships of concepts comprising the attribute
strata.

10

15

20

25

30.

WO 94/18631

PCT/US94/01037

31

Figure 10 summarizes some typical useful Attribute
Properties which are implemented in the embodiment of
the invention included in the Appendix. These are
provided as a suggestion to a system designer
implementing a derivative embodiment of the invention.
The Attribute Properties comprise an unbounded set,
which can be augmented as desired. Many useful
Attribute Properties can be defined to achieve specific
design objectives.

Attributes are the class of concepts most commonly
thought of as attributes of characterization of
relationships. For example, love, husband, wife,
height, date, time, would all be attribute concepts.
Attributes are the second highest level of abstraction
in that they are comprised of a multiplicity of
relationships the characterization of each of the
relationships is always an incomplete property.

Figure 9 illustrates an example set of Attribute
Class System concepts in the dashed box. The number of
Attribute Classes can be reduced or augmented within
the spirit of the invention. The Attribute Class
System Concepts are organized under the Attribute
Library System Concept. Useful embodiments of the
invention can be implemented using only one or two
classes.

Figure 11 summarizes typical Attribute Classes
which have been found useful and most of which are
included in the code set forth in the appendix. These
Attribute Classes are provided as a suggestion to a
system designer implementing the invention. The
Attribute Classes comprise an unbounded set which may
be augmented as desired. Many useful Attribute Classes
can be defined to achieve specific design objectives in
modeling knowledge domains.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

32

The Attribute Classes define which
characterizations of relationships apply to the user
concepts of the class and limit the values that said
relationships may assume. The Attribute Classes define
or constrain any behaviors, properties, or values which
apply to a class of user concepts. The Attribute
Classes may be seen as the enabling means for user
definition of concepts which can be used in the
characterization of relationships maintained by
Component and Project concepts.

1) Database Data Type Domains Declaration

Figure 12 illustrates an example of a data type
domain statement that enables the creation of a
plurality of records and relationships therebetween for
storage of the information comprising the network of
information in the Knowledge Representation Database.
The record structures and substructures are used by the
program to interpret the information stored in the
records and substructures. The domain statement is
generally common to all records comprising the
Knowledge Representation Database. However, derivative
embodiments may include different record structures,
depending on the library or class. The domain
statement of Figure 12 is based on PROLOG language
conventions, and can easily be adapted to the
programming environment of choice.

The data domain statement for the records is
preferred for storing information in the Knowledge
Representation Database. The specific characteristics
of the domain statements disclosed herein are unique to
the invention and constitute a significant contribution
to the state of the art. Figure 12 illustrates
optimizations for representing the fundamental
relationships and for representing attribute properties

10

15

20

25

30

WO 94/18631

PCT/US94/01037

33

in the database records. Both of these optimizations
will be discussed in following subsections.

The discussion of the optimizations provides a
convenient forum for discussing the principles of
cohcept representation which are employed in the
invention. 1In database domain declaration, the
constituents must be declared prior to declaring the
whole. 1In Figure 12, the whole is the concept
declaration (12r), which is the statement of the record
structure.

A "Concept" is represented as a complex record
structure comprised of a Name (l2a), Parents (120),
Children (l12a), Interstrata (12q), and a Relationship
List (12n). The Name is the name of the represented
concept. The fundamental relationships are embodied in
the list of parents, children, and interstrata. The
Relationship List stores the relationships maintained
by the record. The order of these constituents within
the record structure is arbitrary.

' The data type declaration (or equivalent
implementations) illustrated in the example of Figure
12 will assure functional implementation of the
invention. There are numerous acceptable variants for
the declarations which can be implemented to optimize
system performance (several of which are implemented in
the embodiment included in the appendii). However, the
key features of the domains declaration of Figure 12
will persist in derivative works.

The Name is the designator for the Concept, and is
usually a data string although other data types may be
included as appropriate. Note that the segregation of
the name is for convenience only. The name is also
stored as an external value in the relationship list

10

15

20

25

30

WO 94/18631

PCT/US94/01037

34

without appearing as a separate item in the declaration
of the Ccncept.

The Characterization (12b) is a reference number
of a related Concept represented in the Knowledge
Representation Database. The Characterization always
references either a Concept in the Attribute Library or
a Concept in the Properties of Attributes Library.
Properties of attributes characterize only the
relationships of Attribute concepts. Attribute
concepts characterize all other relationships.

The Value (12g) is a qualitative indicia related
to a relationship. Value is always either a reference
number to a concept or concepts in the Knowledge
Representation Database, to concepts external to the
knowledge representation, or to a combination of both
internal and external concepts. Internal Values (20c)
are a class of Values containing only reference numbers
of records in the Knowledge Representation Database.
The form of Internal Values illustrated is comprised of
two reference numbers. One of the reference numbers
identifies the Concept record related to, while the
second reference number identifies the characterization
of the reciprocal relationship. The statement of
Internal Values shown is the most common and
characteristic type of Internal Value used in the
Knowledge Representation Database, however, numerous
additional structures derivative of the principles
disclosed herein may be implemented at the system
designer’s discretion.

External Values (12d) are a class of values which
contain no reference numbers since they reference
external concepts not represented as records in the
Knowledge Representation Database. External values
typically consist of standard data types of

10

15

20

25

30

WO 94/18631

PCT/US94/01037

35

information. Since the domain declaration for values
is complex in this invention, the standard domains must
be embedded in a complex declaration which will provide
structural cues to the data type of the external
concept.

A Val (12e) is either an Internal or External Value.

It is an intermediate structure used to define Mixed
Values (12f). Mixed Values are a class of values
containing both reference numbers and standard data
types. The Mixed Values can most easily be represented
as a list of (12e) Vals. The notation "Val*" is a
PROLOG notation signifying a list of Vals. The "**"
indicates a list. This notation is similar to notation
in many other languages and is used subsequently
herein.

(12h) through (12k) are declarations of the
standard data type for the attribute properties of
Prompt, Data_type, Field_Length, and Location. This is
an optimization of the implementation of Attribute
Properties that will be subsequently discussed.
Properties (121) declares the properties structure to
consist of: (12h) Prompt, (12i) Data_type, (12j)
Field_length, and (12k) Location. The order of these
elements within the structure is arbitrary.
Relationship (12m) allows (121) Properties as an
acceptable relationship. (12m) Relationships are a
complex data type associating a (12b) characterization,
which is a reference number of an attribute or property
characterizing the relationship, with a (12g) Value.
The reason for this structure is that each relationship
has a characterization or attribute and a value or
qualitative measure of the relationship. The (12b)
characterization in the relationship is the source of

10

15

20

25

30

WO 94/18631

PCT/US94/01037

36

the relationship characterization (8) illustrated in
Figure 3.

All concepts may have an unlimited number of
relationships; therefore a (12n) Relationship List
provides a structure for enumérating the relationships
maintained by a record, as a list of relatibnships.
The (12n) Relationship List structure must allow for
the dynamic inclusion of relationships. This dynamic
inclusion is a property of the development system and
one of the reasons that the development environment
should not restrict the record length.

The (120) parents, (12p) children, and (12q)
interstrata, are lists of reference numbers used to
store the fundamental relationships of the Concept
record. The (120) Parents are used to store the
reference numbers indicating the hierarchical
progenitor within the abstraction stratum. The (12p)
children are used to store the reference numbers
indicating the hierarchical descendants within the
abstraction stratum. The (12q) Interstrata is used to
store either the Type classification or the Type
instances of a concept.

Figure 12 indicates only (120) Parents, (12p)
Children, and (12q) Interstrata, each of which is a
reference list, instead of six relationships of the
form of (12m). This variation is the optimization of
the Representation of Fundamental Relationships the
reasons for which are hereafter presented. The reason
that the declarations are implemented as a reference
list with no characterization is explained in detail in
the following discussion.

10

15

20

25

30

WO 94/18631

. PCT/US94/01037

37

Optimization of Means for Representing
Fundamental Relationships

There are two classes of fundamental relationships
which are used to assure network connectivity:
intrastratum (intralevel) and interstrata (interlevel),
as discussed previously. Each class of fundamental
relationships is comprised of reciprocal relationships,
so there should be four relationships of the type
represented in the form of (12m) relationships, which
should be part of the (12n) Relationships List.

The optimization included in Figure 12 enhances the
operating speed of the system by: 1) segregating the
fundamental relationships from the (12n) Relationship
List; 2) eliminating the direct characterization in the
fundamental relationships; and 3) explicitly allowing
for a list of record reference numbers by declaring the
domain as ref* (i.e. reference number list).

The segregation of these fundamental relationships
allows the programming functions requiring these
relationships to "grab" a relationship from a record
based on the structural cue of the segregation instead
of extracting the relationship from the (12n)
Relationship List. The reduction from four
relationships to three is accomplished by recognizing
that the interstrata relationship is not expressed as a
reciprocal in any single record because it is a
relationship between a project and component record
(i.e. the component has an instance relationship with
the project record and the project record has a
classification (or Type) relationship with the
component record) therefore a specific record never has
both Type and instance so only one structure for the
interstrata relationship need be present in any record.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

38

These segregated relationships could be represented
with the structure indicated for (12m) relationshipz in
Figure 12. However} this would provide redundant
information since both the characterization reference
to an Attribute Library system concept and the
structure imposed by the segregation would provide cues
for the meaning of the relationships. Such redundancy
takes more space in the database and requires more
record reading in that each (12b) characterization
would need to be read.

By relying only upon the structural cues provided
by the segregation we eliminate the characterization,
and the relationships can be simplified to a reference
list (ref*) as indicated in Figure 12 for (1l20)
Parents, (12p) Children, and (12q) interstrata. The
use of the reference list instead of just a reference
number enables the possibility of multiple relations of
the segregated types. A consequence of this
optimization is that the system concepts for the
characterization of fundamental relationships do not
need to be present in the Knowledge Representation
since the structure of the record now cues the
characterization of the relationship. The programmed
code will use the structure for the characterization
instead. 1In a particular embodiment the designer is
free to provide additional segregation to distinguish
particularly significant relationships; the presence or
absence of such segregation is merely an adaptation of
the invention. In a specific embodiment, the designer
is free to use structural cues to eliminate
representing some system concepts as records in the
(3a) Knowledge Representation Database.

Optimization of Means for Representing
Attribute Properties

10

15

20

25

30

WO 94/18631

PCT/US94/01037

39

The domains declaration illustrated Figure 12
includes an optimization that allows structural
representation of the basic attribute properties. The
optimization has been implemented whereby standard
Attribute Property system concepts are consolidated
into a unique structure thereby eliminating the need
for explicit representation of said Attribute
Properties as records in the Knowledge Representation
Database. This optimization is similar to that
illustrated previously wherein the need for explicit
representation of the characterization of the
fundamental relationships as attribute records in the
Knowledge Representation Database was eliminated by
segregating the relationships to uniquely defined
structures. This optimization is possible because so
few attribute properties are essential (in this
illustration only four) to successful systems. This
optimization is suitable for many implementations of
the system, in that useful knowledge representations
can be constructed with very few Attribute Properties
present as system concepts. Note that even if
additional Attribute Property system concepts are
added, this optimization would still be applicable and
would merely be supplemented by suitable modification
to the (121) properties declaration or representing the
additional attribute properties as system concepts for
use as (12b) characterizations in (12m) relationships.

Notes on Additional Optimizations for
Domains Declaration

Some of the additional optimizations include
implementing: security; history logging (date and time
stamping of last modification to record); explicit
library identification within the record instead of
implicitly through the network; and segregated

10

15

20

25

30

WO 94/18631

PCT/US94/01037

40

identification of the characterization of the name of
the record. @Most of these optimizations are included
in the preferred embodiment. They are not considered
essential to the invention and therefor no claims are
made with respect to these optimizations. They are
representative of optimizations and extensions that
will be present in any derivative embodiment of the
principles of the invention.

Programmed Code Recognition of System Concepts

The programmed code of the invention uses the
System Concepts and Fundamental Relationships in order
to interpret the significancebof the network. The
System Concepts and Fundamental Relationships provide
the cues for the interpretation of the network as a
whole. The programmed code recognition of System
Concepts is comprised of two procedures: steps for
designating system concepts; and steps for recognizing
a system concept. Both of these must be implemented by
the system designer. The essence of the code for
designating system concepts is to create a distinction
for system concepts (as opposed to external or
extrinsic concepts) whereby either the name or the
reference number of all system concepts can be readily
identified. Such code will readily be implementable by
a skilled practitioner.

The preferred embodiment uses three procedures for
designating system concepts. These three procedures
are redundant, and illustrate the range of possible
implementations. Any one of the procedures would be
sufficient. The three procedures are: 1) to designate
system concepts by means of a supplementary index of
reference numbers and names of system concepts; 2) to
use an internal database to designate system concepts
wherein the system concept reference numbers and names

10

15

20

25

30

WO 94/18631

PCT/US94/01037

41

are provided to the internal database at system
start-up; and 3) to include a supplementary structure
in the record statements whereby system concepts are
designated.

Figure 13 illustrates a Flow Diagram For
Recognition of System Concepts. Two procedures are
illustrated: 1) (13a) through (13d) illustrate steps
for recognizing a concept as a system concept; 2) (1l3e)
through (13h) illustrate steps for recognizing a
concept as a specific system concept. Each of these
procedures are used within the program to utilize
system concepts in interpreting the network. Steps
(13a) through (13d) illustrate programmed procedures
for recognizing a concept as a system concept. The
result of these steps will either be an outcome of
(13c) No or (13d) Yes. The essence of this procedure
is to test whether either the (13a) Name is
distinguished for a system concept or the (13b)
Reference Number is distinguished for a system concept.
The input to step (l3a) is either the name, the
reference number, or both the name and the reference
number of a concept record to be tested. Step (13a)
then compares the name with all names of predesignated
system concepts to determine if the name is that of a
system concept. The program determines that the
concept record is a system concept if either the name
or the reference number has been designated as ,
identifying a system concept. Note that the name of a
concept is often ambiguous in that it is possible for
several concepts to have the same name. The only
unambiguous test is based on the reference number of
the record, which is always unique. If the reference
number is furnished at step (13a) then the test at step
(13a) should fail (NO) so that the reference number can

10

15

20

25

30

WO 94/18631

PCT/US94/01037

42

be tested instead of the name in Step (13b). This will
eliminate the ambiguity inherent in testing only the
name. If the name is recognized as a system concept in
step (13a), then the (13d) outcome is "YES". 1If the
name is not recognized as a system concept in step
(13a) or a reference number was furnished to step
(13a), then the (25a) outcome is "NO".

Step (13b) compares the reference number with all
reference numbers of designated system concepts to
determine if the reference number is that of a system
concept. If the reference number is recognized as a
system concept in step (13b) then the (13d) outcome is
"YES". If the reference number is not recognized as a
system concept in step (13b) then the (13c) outcome is
"NO".

The second procedure shown in Figure 13 determines
whether a particular concept is a specific system
concept. This procedure comprises steps (1l3e) through
(13h). The input to step (13e) must be the reference
number of the current concept to be identified. Step
(13e) gets the reference number of the specific system
concept record to be identified. The specific system
concept to be identified must be programmed into the
section of code either as the name or the reference
number of a system concept. The reference number is
obtained from the procedure for designating system
concepts as explained above. Step (13f) then compares
the current concept reference number with the system
concept reference number. If the reference numbers are
the same then the (13h) outcome is "YES". If the
reference numbers are different then the (13g) outcome
is "NO".

Assuring that System Concepts are Inviolate

10

15

20

25

30

WO 94/18631

PCT/US94/01037

43

The system concepts must be protected from the
effects of inappropriate Record Operations. The Input
Operations protect the system concepts by prohibiting
any modification to the information in the structure of
records designated as representing system concepts.

System concepts can be designated as such through
many possible methods. The essential requirement is
only that system concepts be distinguished from user
concepts in a readily determinable fashion. Suitable
methods for distinguishiné system concepts from user
concepts include: prefacing the name with an extended
ASCII sequence; adding a designator within the record
structure; adding a designator within the index files;
and maintaining a separate file containing an index or
list of system concepts. In the preferred embodiment,
system concepts are designated within the record
structure.

Figure 14 illustrates program steps for assuring
that all system concepts are maintained as inviolate in
the system. The steps must be implemented as a preface
to each operation which potentially could improperly
modify a system concept.

Operations which modify a record that are
unacceptable for system concepts records are functions
which will either: delete the record; change the name
of the record; change the Parents reference; change the
Type; and change the Relationship List. Whenever a
call to these input operations is made (step l14a) the
steps of Figure 14 must be invoked. Each call to a
modifying operation must immediately test to see if the
target record of the input operation is a system
concept (step 14b). This can be accomplished by steps
(13a) through (13d) in Fig. 13. If the target record
is not a system concept, then the inputted modifying

10

15

20

25

30

WO 94/18631

PCT/US94/01037

44

operation proceeds (step 14d). If the target record is
a system concept a message is displayed to the user
explaining that the requested operation can not be
performed on a system concept (step l4c), followed by
an exit of the called operation (step l4e).

A variation of this procedure that may be useful
in some situations is to apply the test to a procedure
that assembles a list of input operations which are
applicable to a particular record so that the
unacceptable operations are never presented as options
to the user.

In the preferred embodiment both the steps
illustrated in Figure 14 and the above-described
variation are used to provide redundancy for protecting
the system concepts as inviolate.

(3b)Record Operations

The Record Operations (Fig. 3b) are basic operations
for interaction-with the records of the Knowledge
Representation Database. Record operations are
comprised of: Input operations (3c) whereby records or
record declarations within records are created or
replaced in the Knowledge Representation Database; and
Output operations (3d) whereby records or receord
declarations within records in the Knowledge
Representation Database are read out and reported to
the user.

The Record Operations are implemented to handle
the information contained within the structures of
individual records in the Knowledge Representation
Database. As such the significance of the structure of
the records (name, relationships, etc.) must be
programmed into the Record Operations.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

45

The significance of the network structure of the
Knowledge Representation Database is contained in the
higher level functions of the Network Operations (3e),
the Concept Editor and the Relationship Editor (31),
each of which uses the Record Operations as basic
functions for the implementation of network-related
functions. The attached microfiche appendix contains
specific implementations of appropriate Record
Operations.

(3e) Network Operations

The Network Operations (3e) comprise a plurality
of steps for interaction with the network structure of
the Knowledge Representation Database as embedded
within the individual records constituting the
Database. Network Operations are comprised of a
plurality of functions-which are programmed with an
understanding of the network, together with two major
classes of functions comprised of Save operations (3f)
whereby information stored in the Descriptive Database
is saved in the network of records of the Knowledge
Representation Database, and Read operations (3g)
whereby a portion of the network of the Knowledge
Representation Database is translated into the
Descriptive Database. The Netﬁork Operations do not
understand the record structure of the database in that
all interactions with the records of the Knowledge
Representation Database are conducted through the
Record Operations. The Network operation procedures
coordinate sequences of Record Operations, which
sequences comprise network operations. The network
resides in the relationships between a plurality of
related records in the Database as found from the
cross-reference record numbers embedded therein. The
programmed sequence of Record Operations which defines

10

15

20

25

30

WO 94/18631

PCT/US94/01037

46

Network Operations embodies the understanding of the
network structure.

Many of the programmed functions for
interpretation of the network have a characteristic of
traversing some class or classes of relationships
between concepts and assembling information ébout the
concepts in the traverse path.

Figure 15 illustrates a flow diagram of programmed
means for assembling an ancestors list of records
constituting progenitors of an individual record as an
example of network traversal. Step (15a) sets the next
reference number equal to the active reference number.
The "Active" is the current record reference number for
which the ancestor list is to be derived. Step (15b)
reads the Parent and Child record names from the active
record. The read operation of step (15b) is one of the
functions of the Record Operations. Step (15c) tests
to see whether the Parent list is nil. The only record
in the network for which the parent list is nil is the
root record. Thus, the presence of a nil Parent list
means that the ancestry of the individual record has
been traced clear to the root record. Step (15d) adds
the name read from the record to a name list. This
name list is an output of the ancestry of the
individual record. The resulting output of the
ancestry tracing process will be the name list and also
an ancestor list, wherein the ancestor list is
comprised of the list of reference numbers of the
records corresponding to the names in the name list.

Step (15e) adds the parent record reference number
to the ancestor list in the case where, in step (15c),
the Parent list is not nil. Step (15f) adds the name
of the record being read to the name list, followed by

10

15

20

25

30

WO 94/18631

PCT/US94/01037

47

Step (15g) which sets the next reference number equal
to the parent reference number from the parent list.

The process then cycles back to step (15b), with
the next reference number equal to the parent record
found in the previous record’s parent list. Note that
the name added to the list in steps (15d) and (15f) is
the name of the record being read, whereas the parent
added in step (15e) is the reference number of the
parent record of the record being read. Thus, although
the parent reference number is added in step (15e) and
the name is added in step (15f), the final parent for
the root name ultimately must be added in step (15d),
when there are no more parents. Specific network
operation code is included in the microfiche appendix.

(3f) Save Functions

The Save functions (3f) consists of programmed
operation steps for assembling and structuring
information stored in the Descriptive Database and
storing the information in the appropriate records of
the Knowledge Representation Database. Save is only
required if the Descriptive Database is used to buffer
editing operations so that these operations do not
directly affect the Knowledge Representation Database,
but rather are modifications to the Descriptive
Database. 1If the Descriptive Database is used to
buffer the Knowledge Representation from the editing
operations, then save functions are required in order
to transfer the changes made to the Descriptive
Database into the Knowledge Representation Database.
The transfer between databases occurs upon a user event
requesting an update to the Knowledge Representation
Database.

The Save operations are implemented as programmed
code. Save translates the information in the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

48

Descriptive Database by applying a sequence of Record
Operations required to input that information into the
Knowledge Representation Database. The Save operation
uses the record reference numbers of the Knowledge
Representation Database which are associated with the
information in the Descriptive Database to identify the
record and record substructure where the updated
information should be inputted. |

The Descriptive Database contains information from
a plurality of records of the Knowledge Representation
Database, together with view document-specific icon and
locational data which is not part of the Knowledge
Representation Database. The Save operation saves only
the relevant information in the Descriptive Database at
the appropriate location in the Knowledge
Representation Database.

Figure 16 illustrates a Flow Diagram of programmed
means for Saving Information Stored in the Descriptive
Database by storing it in the Knowledge Representation
Database. The overall structure of the procedure
illustrated in Figure 16 is to process all active
concepts in the Descriptive Database by getting the
next active reference number in the database and
cycling through the procedure for each active concept
until all active concepts have been processed.

 The Descriptive Database may include a plurality
of Active concepts. The "Active" will be indicated in
one of the fields of each of the plurality of records
in the Descriptive Database comprising the description
of the Active concept.

Step (16a) identifies a reference number of an
active concept record in the Descriptive Database.

Step (16b) assembles all of the relationships
pertaining to the Active which are stored at the active

10

15

20

25

30

WO 94/18631

PCT/US94/01037

49

record into a Relationship_list (see Fig. 12n). The
relationships pertaining to the Active which are stored
at the Active record are identified by means of the
Source field (23b) in the records of the Descriptive
Database.

A consequence of the procedure for Relétionship
Inheritance is that the only Source for relationships
in the description of the Active concept (for which all
relationships in the relationships list are present as
corresponding records in the Descriptive Database) is
the record of the Active concept. This is the reason
that Save applies only to the Active record.

Step (16c) replaces the relationship list in the
Active record with the relationship list assembled in
Step (16b) from the Descriptive Database.

Step (16d) tests to see if any other Active
concepts are in the Descriptive Database which have not
yet been saved. If "YES" (1l6e) then cycle back to Step
(16a) to get the next active record reference number.
If "NO" (16f) then the save is done.

The microfiche appendix contains specific code
implementation of appropriate Save operations.

(3q) Read Functions

The Read functions (3g) reads information stored
in the Knowledge Representation Database, appropriately
formats the read information, and stores the formatted
information in the Descriptive Database. The
Descriptive Database is a working non-permanent
database. The transfer of information to the
Descriptive Database from the Knowledge Representation
Database is made to transform the relationships in the
concept records of the Knowledge Representation
Database from reference numbers into descriptions of
the concepts. The descriptions of the concepts

10

15

20

25

30

WO 94/18631

PCT/US94/01037

50

facilitate the human-perceivable views, and consequent
user interaction with the Knowledge Representation
Database through the views.

The Read operations apply a sequence of Record
Operations to output the information in a network of
records of the Knowledge Representation Database,
translate the information into the structures required
for storage in the Descriptive Database, and store the
information in the Descriptive Database. The Read
operations utilize the ancestor inheritance
characteristics of the network (embodied in the cross-
reference record reference numbers). The Descriptive
Database then stores information from a plurality of
network of records of the (3a) Knowledge Representation
Database. The Descriptive Database is discussed in
more detail below.

The microfiche appendix contains specific
implementation of appropriate Read operations.
Relationship inheritance is discussed subsequently as
part of the disclosure of the descriptive significance
of fundamental relationships. Characterization
inheritance is the process of assembling the
descriptive inheritance for each of the
characterizations in a set of ielationships.

Record Inheritance

The transformation of knowledge from the Knowledge
Representation Database of the present invention to
user interpretable format is based on two types of
"inheritance" of record concepts by individual records,
Relationship Inheritance and Characterization
Inheritance.

Relationship inheritance is the processes for
combining the relationship lists of the records in the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

51

descriptive network of a given concept. The resulting
relatiorship list provide a description of said record.

Characterization Inheritance is the process for
assembling the relationship inheritance for all
attribute concepts.

Both types of inheritance are implemented as
programmed code in the computer system comprised of a
plurality of interrelated modules and subroutines. 1In
general the code embodying Relationship Inheritance is
distinct from the code embodying the Characterization
inheritance.

In a specific real world embodiment of the system
there will typically be a plurality of functions
combining and coordinating the Relationship and
Characterization inheritance procedures. This is a
system design choice as specific implementations will
readily occur to the skilled system designer once the
principal methods of each type of inheritance are
understood as hereinafter set forth.

Relationship Inheritance

The Relationship'inheritance procedures code
combine the Relationship Lists of a plurality of
records to create a descriptive relationship list
pertinent to an active concept (record). The
relationship inheritance procedures embody rules for
determining which relationships in the plurality are
relevant and which values of the relationships have
precedence over other values.

Relationship inheritance assembles the user
relationships describing a specific concept from the
network of concepts in the Knowledge Representation
Database into the Descriptive Database. The user
relationships are stored in the Relationship List of
the records. The relationships are the vehicle for

10

15

20

25

30

WO 94/18631

PCT/US94/01037

52

storing information defining the concepts in the
Knowledge Representation Database. Relationship
inheritance can be thought of as rules for combining
the Relationship Lists in the records into a
descriptive network of a specific "Active" concept. As
such, the rules must define Attribute and Value
inheritance.

The relationships defining the Descriptive
networks for a Project concept are the fundamental
relationships of Taxonomy (Class), Type
(Classification), and Composition (Structure).
Relationship inheritance applies to the reference
numbers stored in the Parent (intrastratum and
interstrata) references only. The Children references
are irrelevant to inheritance. Useful inheritance may
also occur through any of the reference numbers in the
user defined internal relationships.

Taxonomy, Type and Composition are simply schemes
for tying each record to all other records in a useful
manner. The only essential requirement for the
invention is to tie the records to each other‘with at
least two, always-present, relationships: to a parent,
and to a type definition. The result of the preferred
embodiment described herein is that Taxonomy, Type and
Composition tie all records to the network with
relatively few relationship statements, all in a manner
easily interpreted by the program.

In some senses the meaning of a concept is
conveyed by the totality of the network in which it is
embedded. This totality can rapidly become
incomprehensibly complex, and thus the totality must be
represented by a comprehensible summary description. A
comprehensible description of a concept can be derived
from the network by limiting the fundamental

10

15

20

25

30

WO 94/18631

PCT/US94/01037

53

relationships which are traced out in deriving the
description. 1In limiting the fundamental
relationships, the connectedness of the network is
limited so that only a small subset of the concepts can
be reached from a given concept by following the paths
in the specific fundamental relationships.

The reason the descriptive network is a small
subset of the entire network is because the ‘train of
interstrata Parent(s) references must necessarily lead
to the root record. The interstrata parent(s) only
references a finite number of component records, each
of which must be a classification of the active record.

Figure 23 summarizes the types of inheritance
based on the descriptive networks. Each path in the
descriptive network is used to characterize a type of
inheritance. In subsequent discussion, relationship
inheritance based on Taxonomy (Class) will be referred
to as Taxonomy inheritance, and similarly inheritance
based on Type (Classification) will be referred to as
Type inheritance, Composition (Structure) will be
referred to as Composition inheritance, and User
(Relationship) inheritance will be referred to as User
inheritance.

User inheritance is based on user defined
relationships instead of the fundamental relationships.
User inheritance has been found particularly useful in
the description of Project concepts (and in fact, tends
to be limited thereto). User inheritance code is
included in the microfiche appendix.

All inheritance deals with the combination of the
relationships in the Relationship List of all the
records in the inheritance path defined by the cross-
reference record numbers. Each relationship is
comprised of a characterization and a value each of

10

15

20

25

30

WO 94/18631

PCT/US94/01037

54

which can be inherited. The Characterization
relaticnship and the Value relationship inherits
differently for each category of inheritance. The
columns of Fig. 17 summarize the inheritance of
Characterization and Value for each type of inheritance
on the corresponding row: "Yes" means it is inherited
and "No" means it is not inherited.

The summary of applicability of the types of
inheritance to the libraries indicated in columns (17d)
through (17f) is self-explanatory in that if the
relationship defining the inheritance path applies then
the inheritance applies.

The Type inheritance for a Project record (17f) is
the descriptive Relationship List of the referenced
record (i.e., one record only). This is distinct in

that all other categories of inheritance are for the
Relationship List of all the individual records in the
inheritance path.

Column (17g) identifies the inheritance path
length for each category of inheritance. Both the
Taxonomy and Composition paths extend to the root. The
Type inheritance is always only one step deep, because
of the nature of the Classification relationship. The
User Relationship path length must be specified by the
designer. 1In practice two steps is often a useful
length for user inheritance.

Taxonomy inheritance is based on the logical
premise that all of the relationships of a class apply
to a subclass. This is true in that Classes are
necessarily the genus of all of the species of
subclasses belonging thereto.

Type inheritance is based on the premise that all
Projects are comprised of specific occurrences of
certain components. The component is the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

55

classification of the specific elements comprising the
Project. The classification of an element is the
generic description of the common features of all
specific elements.

Composition inheritance is based on the principle
that many of the values of the relationships of
specific objects are properties related to the
structures of which the concept is part. For example,
all customers in a particular city have the same zip
code, area code, county, state, congressional
representative, senator, etc. because these are
properties of higher level structures. Such values can
be inherited by virtue of the compositional hierarchy
in the Project.This embodiment of the invention uses
only one fundamental relationship, the parent, in
concepts that are Attributes or Components. Two
fundamental relationships, parent and type, are used
only the Project concepts.

Fig. 18 illustrates the concept of a descriptive
network for an active Attribute record. Here, "SL"
(upper left hand side of Fig. 18) is the active concept
for explanation. Figure 19 illustrates the concept of
a descriptive network for an active Component record.
Here, "FCV" (upper right hand side of Fig. 19) is the
active concept. Figure 20 illustrates the concept of a
the descriptive network for an active Project record.
Here, "FCV105" (upper right hand side of Fig. 20) is
the active concept.

There are two properties of the descriptive
networks illustrated in Figures 18 through 20 which are
universal properties of all descriptive networks
according to the present invention: First, the number
of concepts in the network is very small; second, the
paths associated with the descriptive networks lead "up

10

15

20

25

30

WO 94/18631

PCT/US94/01037

56

the tree" and terminate at the root record (here, the
root record is the record for the IMAGINE ™ processing
system of the present invention).

The types of inheritance must (summarized in
Figure 17) be applied in a specific order to assure
that the correct meaning of the record is inherited.
Figure 23 provides a flow diagram of the programmed
procedures for assuring that the inheritance is
correctly implemented in sequence. The sequence for
applying the inheritance is illustrated on the left
side of Figure 21. Each type of inheritance has a
common underlying procedure which is illustrated (21b).
An expansion of the procedure for inheritance is
illustrated on the right side of Figure 21 (21lc). Note
that the procedures are the same for each type of
inheritance: the ohly differences lie in the tests as
described below and the responses to the tests
summarized in Fig 17.

The sequence (2la) for applying the types of
inheritance is recommended; however, other sequences
could be implemented. Whether or not a particular
category of inheritance applies to a given record is a
function of the Library (i.e., attribute, component or
project) to which the record belongs, as summarized in
Figure 17 items (17d), (17e), and (17f).

Note that relationship inheritance does not apply
to attribute properties because they are all system
(i.e. internal) concepts with nil relationship lists.

The (21b) procedure for inheritance is to read a
record for which inheritance is to be assembled using
the Output Record Operations. The information from the
Output operation is temporarily stored in internal
memory. The information includes cues to the Library
to which the record pertains, to the parents, to the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

57

type, and to the relationship list of the record. Each
of these are used in subsequent tests and steps in the
Inheritance procedures which evaluate and apply the
Relationship and Value inheritance that may be
applicable to the items in the relationship list.

Inheritance is most easily implemented as a
recursive process, wherein the inheritance of a record
is obtained by retrieving the inheritance of its parent
record. The only condition is that the record for
which the inheritance is being assembled (called the
"Active" record) must be passed forward or otherwise
indicated in the system so that the active reference
number can be recorded, since the inherited information
is provided to the Descriptive Database. -

The Expansion of the Procedure for inheritance
provides details of the procedures for Relationship
inheritance and of the procedures for Value
inheritance.

At step (21d) the next record is read if the
relationship list of the current record is empty. 1If
the relationship list of the current record is not
empty, the first relationship is read from the list and
sent forward for relationship value inheritance.

At step (2le) it is determined whether characterization
relationship inheritance is applicable to the record.
The applicability of relationship inheritance is
determined by evaluating the type of inheritance being
evaluated as summarized in Fig. 17.

If (2le) was Yes, then check to see if a
characterization relationship with the same
characterization is already in the (3h) Descriptive
Database for the Active node (step 21f). 1If not, then
the relationship is added to the Descriptive Database

10

15

20

25

30

WO 94/18631

PCT/US94/01037

58

(step 21g). If (21f) was Yes, then bypass the
relationship inheritance.

With the relationship inheritance complete, check
to see if Value inheritance applies (step 21h). 1In
general Value inheritance does apply; however, a
specific attribute characterizing a user relationship
may have a property or rule attached to it which
prohibits inheritance.

If step (21h) does not apply the value inheritance
procedure is bypassed. If (21h) does apply then it is
determined if there is a relationship with a value
reference the same as the current value reference (step
21i). 1If (21i) is Yes, then determine if the
characterization attribute allows for multiple values
as one of the properties of the attribute or attribute
class (step 21k). If (21k) is yes then go to (21j) and
add the relationship to the Descriptive Database. 1If
(21k) is No, get the source record of the relationship
from the information in the Descriptive Database and
remove the relationship from the source record if
appropriate (step 211). Then remove the relationship
from the Descriptive Database (step 21m). Then add the
relationship to the Descriptive Database with the
current record as the source. (Note that the deletion
from and addition to the Descriptive Database is
equivalent to substituting the current record reference
for the existing source reference of the relationship
in the Descriptive Database).

If the inheritance is for a fundamental
relationship, check to see if done with read by
verifying that the current record is a system concept
and the remaining relationship list in temporary memory
is nil (21n). If the inheritance is for a user
concept, then check to see if the reading has

10

15

20

25

30

WO 94/18631

PCT/US94/01037

59

progressed a defined number of levels away from the
Active record. The number of levels for user
inheritance will tend to be a property of the Attribute
Classes, as in the preferred embodiment. Usually one
or two levels are adequate for user inheritance.

If (21n) is No, go to (21d) Read Next Record. 1If
(21n) is Yes proceed to next process.

Note that the described flow process was based on
resolving inheritance from the active record through
the path to the system concepts (or levels of
traversal) which terminate the path. This process can
be reversed so that the resolution is from the system
concept to the Active Record. If this is done step
(211) remove from Source Record should be changed to
Remove from Current Record, and (21lm) is not required.
The implementation of relationship inheritance is very
powerful and results in tremendous economies in data
entry: a relationship or value must only be entered so
that it is stored in a specific record (one time, one
place), and it will automatically appear in the
description of all concepts which include that record
in their descriptive networks.

Characterization inheritance

Characterization inheritance assembles the
descriptive inheritance list for the attributes
characterizing relationships in the Descriptive
Database. Examples of an implementation are included
in the microfiche appendix. Characterization
inheritance essentially assembles the descriptive
meaning of each of the attributes referenced in the
characterization of relationships in the Descriptive
Database. The process disclosed below sequentially
applies the procedure for relationship inheritance to

10

15

20

25

30

WO 94/18631

PCT/US94/01037

60

the characterization of each relationship in the
Descriptive Database.

The Characterization of each relationship is
stored in the structure of the relationship. The
procedures for Characterization inheritance are fairly
simple compared to those for Relationship inheritance.
This is largely due to the fact that the
Characterization inheritance calls on the Relationship
inheritance procedures and therefore does not need to
repeat the methods programmed in the Relationship
inheritance.

Figure 22 illustrates a Flow Diagram for
Implementing Characterization Inheritance.
Characterization Inheritance is a simple two step
process. First find a characterization in the
Descriptive Database for which the characterization
inheritance is not assembled in the database (step
22a). Then assemble the description for the
characterization by means of Relationship Inheritance
for said characterization (step 22b). This two step
process is applied until all characterizations are
described in the Descriptive Database, and then the
cycle terminates. Numerous variations of this basic
process for Characterization inheritance can be
implemented as part of a family of functions for
Characterization inheritance in any real world
application of the invention. Typical variations can
include: assembling the Characterization inheritance
for only a particular class of attributes; and
assembling the characterization inheritance for only
those attributes required for a particular view. Both

10

15

20

25

30

WO 94/18631

PCT/US94/01037

61

of these variations are included in the microfiche
appendix.
(3h) Descriptive Database

The Descriptive Database is a means for storing
information in a plurality of records in a computer
database. The descriptive database is a ’‘working’ non-
permanent database. The transfer of information to it
from the Knowledge Representation Database is made to
consolidate the relationships in the concept/records
from references to other concepts into descriptions of
the concepts. The description of the concepts
facilitate the views, and user interaction with the
knowledge representation database.

The information stored in the computer database is
structured by means of suitable database data type
declarations wherein the structure of each record in
the database includes substructures designed to store
individual relationships from the Knowledge
Representation Database together with structures
designed to store the reference number of the "Active"
record to which said individual relationship applies
and the source of said relationship in the Knowledge
Representation Database.

The Descriptive Database embodies a portion of the
network of the Knowledge Representation Database, by
means of suitable record structures in a computer
database. The records embody each of the relationships
in the relationships list of the records of the
Knowledge Representation Database. The Descriptive
Database embodies a description of the information
stored in a plurality of records comprising a portion
of the records in the network of the Knowledge
Representation Database by associating the record
reference numbers of the records (Active and Source)

10

15

20

25

30

WO 94/18631

PCT/US94/01037

62

with the information from the relationship lists of the
records. This is required if relationship inheritance
is implemented because otherwise there is no way to
assemble all of the relevant relationships for a record
and know the source of those relationships.

The structures of the records for the Descriptive
Database are established as database data-type
declarations in the programming language in which the
structures are implemented. Suitable provisions for
declaring such structures are provided by the various
programming languages and tools which are suitable for
implementation of the present invention.

The translation from the Knowledge Representation
Database and to the Descriptive Database is provided by
means of the Network Operations. Other functions in the
system such as the Concept Editor and the Relationship
Editor use the Descriptive Database by means of native
calls to the database. Native calls are not discussed
further herein because they are well known standard
techniques and are set forth in the microfiche
appendix.

Figure 23 illustrates a suitable Domain
Declaration for the Descriptive Database. The Source
of each relationship is recorded together with the
Active for which it was assembled.

The Database (23a) identifies the database of the
Source as either a project database (prj) or an
environment database (env). If additional databases
are used, they can be added to the list. In Knowledge
Representation Databases which include the environment
and projects in a single file the Database (23c) is not
required to define the Source.

The Active (23b) identifies the reference number
of the record and the database in which the record

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

63

occurs for which the description is assembled in the
Descriptive Database; the order is arbitrary.

The Source (23c) identifies the reference number
of the record and the database in which the record
occurs; the order is arbitrary.

The structure (23d) of the Descriptive Database
record includes a Relationship together with items
(23a) through (23c). The order of the items in the
structure is arbitrary.

The illustration of Fig. 23 identifies the
essential elements comprising the records of the
Descriptive Database. The structure of the Descriptive
Database record can easily be supplemented with
additional structures to store additional information
which facilitate the views. Several such supplements
are included in the implementation of the preferred
embodiment as set forth in the microfiche Appendix.

The. Descriptive Database can be augmented to also
associate document defined icons and icon locations
appropriate to the record and relationships, by
declaring a plurality of supplemental records suitable
to the storage of the document related information.
The icons and the icon locations associated with the
information and the record reference numbers in the
Descriptive Database are derived and placed in the
Descriptive Database by means of one of the plurality
of views. The views may add supplementary data
structures to the Descriptive Database as required to
support the view.

A plurality of data structures are used in the
Descriptive Database to facilitate storing the icons
and icon locations required to support the documents in
the plurality of views implemented for the system.
There is considerable latitude available to the system

10

15

20

25

30

WO 94/18631

R . PCT/US94/01037

64

designer in declaring suitable data structures; however
all declarations will have common characteristics which
are set forth in the subsequent discussion.

(3i) Concept and Relationship Editor

The Concept and Relationship Editor is a code
module for editing the concepts (records) and
relationships (cross-references within records)
comprising the Knowledge Representation database. This
module is comprised of a plurality of programmed
operations which make use of the Record Operations, the
Network Operations, and the Descriptive Database. The
following subsections will highlight specific aspects
of the Concept and Relationship Editor which are
particularly unique to the invention.

Concept_ Editor

The Concept Editor is comprised of a plurality of
programmed procedures. The Concept Editor embodies
means for editing the concept records of the Knowledge
Representation Database and assuring that all records
maintain appropriate fundamental relationships.

The Concept Editor coordinates the Record
Operations to create new records and to store the
appropriate information in the substructures of the
records. The coordination of these operations assures
that all records are connected to the network through
appropriate fundamental relationships. The Concept
Editor also coordinates user interface to enable user
interaction in identifying the values for the
fundamental relationships. The Concept Editor is
invoked by the Natural Language Interface with
Knowledge Representation and the User View Interaction
interface as required to edit concept records in the
Knowledge Representation Database. The microfiche

10

15

20

25

30

WO 94/18631

PCT/US94/01037

65

appendix includes an implementation of a range of
functions of the Concept Editor.

Fig. 24 illustrates a Flow Diagram for Adding a
Node (record) to the Knowledge Representation Database.
It illustrates the principle steps in creating a record
and assuring that the fundamental relationships are
correctly formed. Each new record must have the
correct fundamental relationships in order to assure
interpretability in the network.

User interaction to add a node can be implemented
in a variety of ways through the Natural Language
Interface and through the User View Interaction
interface. A variety of procedures are illustrated in
the microfiche appendix.

Each new record will be added in relationship to
some existing concept record. Getting the Parent
record reference number (step 24a) can be accomplished
through user interaction. For example the Natural
Language Interface or the Tree View can be used to ask
the user to identify an appropriate Parent for the
concept record which is to be added to the database.

Often the request'to add a new record is invoked
by identifying the parent and requesting the addition
of a child (this is especially typical of Tree View
interaction). 1In such Case step (24a) is merely the
process of determining which record is highlighted or
active on the display screen of the computer when the
request to add a record was made. The record can be
made immediately without any information stored in the
substructures (step 24b). If the record is made as
illustrated, the additional information for the record,
which is subsequently derived, can be added to the
record. The record can be made as a final step if all

10

15

20

25

30

WO 94/18631

PCT/US94/01037

66

of the additional information is temporarily stored for
addition to the record as soon as it is made.

In general the procedure illustrated in Fig. 24,
wherein the record is made first and the subsequent
information added to the record as the information is
derived, will result in multiple disk accesses during
the creation of and addition of the information to the
record. This does not present a problem for single user
systems. In networked systems, however, moving step
(24b) to last may be preferable as it will minimize
disk accesses.

The next step is to Update Parent and Children
Lists(24c). The Parent reference number field of the
new record must contain the reference number of the
Parent record. Reciprocally, the Children reference
number list of the Parent record must include the
reference number of the new record as a descendant of
the Parent.

Project Library records require Type references,
therefore step (24d) determines if the new record is a
Project record. 1If the outcome of (24d) is YES, then
the Type reference is retrieved and stored in the
interstrata Reference List of the New Record (step
24e). If (24d) is NO, then the flow proceeds to step
(24f) to read the New Record.

The Type reference can be determined by querying
the user for the type of the record. This is done by
displaying the Component library in a Tree View, and
allowing the user to select the component which
corresponds to the Type of the new Project record. The
process of selecting a component for the Type can be
supplemented through the addition of routines which
will provide best guesses on what type of component the
Project record is, based on the context of the parent

10

15

20

25

30

WO 94/18631

PCT/US94/01037

67

of the new record. The context of the parent record
may provide guidance in selecting the Type by one of
two means which can be implemented by the system
designer as supplementary procedures to assist the user
in identification of the type of a new Project record.
First, the parent record may include an abstraction
defining the type of the objects which exist in its
compositional hierarchy as children. This abstraction
may furnish a list of likely'types from which the user
can select the Type of the new record.

The second method is to infer a likely Type based
on examination of the existing children of the parent
record. It is likely that a new record will be of the
same Type as the record’s siblings. The addition of
these supplementary procedures for determining the Type
is at the discretion of the system designer.

If the Type does not'already exist, the user
should be allowed to create a new component of the Type
desired, and then select that new component as the Type
of the new Project record. This is merely a
modification and enhancement of the selection of the
type, and therefore is not discussed in further detail.
This enhancement is set forth in the microfiche
appendix.

The new Record is read at step (24f) by using the
Read Network Operations (l6e) to assemble the
Descriptive Database for the new record. This will
assemble the relationship inheritance for the new
record. This is required because the record Name will
be the value of an external relationship of the new
record.

In order to Make and Store the Name in the New
Record (24g), an external relationship for the name
must be formed and added to the Relationship List of

10

15

20

25

30

WO 94/18631

PCT/US94/01037

68

the new record. The name and the attribute
characterizing the name must be obtained either by user
interaction wherein the user specifies the name and
characterization of the name for the new record, or by
deriving the name and characterization from the
inherited relationships of the new record. The
procedures consist of prompting the user to provide a
name, and prompting the user to specify which of the
external relationships of the new record contain the
Attribute characterizing the name. Such is set forth in
the microfiche appendix.

The procedure for deriving the name from the
inherited relationships of the new record is by means
for Pattern Recognition and Storage wherein a pattern
specifying some portion of the name relationship for
the new record has been previously identified and
stored. These means are disclosed in detail in the
microfiche appendix.

Note that in some cases the attribute
characterizing the relationship for the name will not
be part of the relationship inheritance of the new
record. In this case a relationship with the correct
characterization must be added by means of the
Relationship Editor and then selected by the user.

The name must be stored in the appropriate
structures of the record. 1In the preferred embodiment
this includes storing the name in the Name location of
the concept record structure, and storing the
characterization in a substructure of the record.

With the completion of step (24g) the process of
adding a new record is complete and all that remains is
housekeeping including clearing the Descriptive
Database and any internal variables or data structures
used in the process (24h).

10

15

20

25

30

WO 94/18631

. PCT/US94/01037

69

The following paragraphs provide notes on the
preferred embodiment of the invention to provide
guidance to the system designer in implementation.

In practice it has been found advantageous to keep
a list of reference numbers of all deleted records, and
to use a deleted record reference number whenever
possible in creating a new record.

The preferred embodiment allows for the definition
of synonyms for each of the concepts. This is enabled

" by providing a single name for each concept in the Name

field of the record, but indexing all synonyms as part
of the index associated with the database. This means
that a plurality of names will be associated with each
reference number in the index. This is particularly
convenient in connection with the Natural Language
Interface wherein synonyms for the concepts will
regularly be defined.

Another optimization that is present in the
preferred embodiment is that conjugate types of
relationships are not stored in the corresponding
component record. Rather, the conjugate relationships
between the component record and the Project record are
stored by indexing the reference number of the
component récord in the index of the Project database.
This is particularly convenient in multi-project
databases, in that it allows for distinguishing the
presence of the component in a particular database.

Relationship Editor

The Relationship Editor is comprised of functions
for editing the relationships describing a concept
record of the Knowledge Represenfation Database. These
functions include editing 1) the relationship list of a
record; 2) the characterizations of relationships; and
3) the values of relationships.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

70

The Relationship Editor coordinates the unit
operations of the Descriptive Database, the Network
Operations, and the Record Operations to edit the
relationships in the Relationship List in the records
of the Knowledge Representation Database. The
Relationship Editor also coordinates user interface to
enable user interaction in identifying the
characterizations of and values for the relationships.
The Relationship Editor is invoked by the Natural
Language Interface with Knowledge Representation and
the View User Interaction interface as required to edit
relationships in the Knowledge Representation Database.

Each of the domains declared for the Values
(internal or external) will in general require a
separate class of editor. This is because the domains
of the Values are distinct from each other. External
values are those that are not further conceptualized
(no record embodying the concept exists) in the network
and are represented in the value field by a character
string such as ‘red’ or ’‘positive’. 1Internal values
are those that are further defined by other concept
records and the value field holds the reference numbers
of those concept records.

In specific implementations where additional
classes of external values are implemented, specific
editors suitable for those classes of values may be
required. For example, in the preferred embodiment,
there is a domain declared for representing graphical
icons as the values of external relationships. Such
icon definitions require a separate editor suitable to
editing the entities comprising said definition.

In the preferred embodiment the editor for the
external values is implemented in a manner very similar
to standard word processing type environments, wherein

10

15

20

25

30

WO 94/18631

PCT/US94/01037

71

the editor includes the full range of event processing
characteristic of word processors. 1In general, editors
implemented for the Values include event driven
processing of user actions in control of the editor.
These editors, in many ways, resemble standard word
processing programs designed to create a particular
type of document. The specifics of the development of
these types of editors is not disclosed herein, as it
is considered standard technology which will readily
occur to any skilled practitioner given the value
domain upon which the editor must operate.

The code in the microfiche appendix includes a
range of functions the equivalent of which are
recommended in any embodiment of the invention.

Adding a Relationship

The following discussion identifies the procedures
for adding a relationship to the Relationship List of a
specific record. The process of adding a relationship
is essentially to identify a characterization for the
relationship and adding it to the Relationship List
with an unbound value.

Each relationship has a reference number of an
attribute, or an attribute property, which defines the
characterization of the relationship. The Value of a
relationship is constrained by the characterization in
that the characterization specifies the properties of
an acceptable Value (e.g. data type, field length,
range, etc.).

In any specific relationship the value can be
undefined: such values are said to be "free" or
"unbound". A relationship is always initially added to
the Relationship List of a record (or equivalently to a
description in the descriptive database) with the value

10

15

20

25

30

WO 94/18631

PCT/US94/01037

72

unbound. The value is subsequently bound through
various means for specifying the value.

Figure 25 illustrates a Flow Diagram for Adding a
Relationship to the Relationship list of a Record in
the Knowledge Representation Database. Each of the
steps of the process are briefly discussed in the
following paragraphs.

In step (25a) the selected attribute should not be
the same as any characterization in the current
description of the Active record. The selection may be
supplemented by a variety of means to assist the user
by making a "best guess" or likely choice based on the
view context in which the query occurs. A variety of
such techniques are included in the microfiche
appendix.

The user must identify the target for the addition
of the new attribute relationship at 25b. The user is
prompted for the specification of the Target. It is
helpful to present a menu of possible targets for the
user’s selection. The target will be one of the
Component Library concepts in the descriptive network
of the Active record.

At step (25c), the Target Relationship list is
read using the Output Record Operations to read the
Relationship list stored in the target record of the
Knbwledge Representation Database. The Relationship
list is passed forward to step (25d) where the new
relationship is added to the Relationship list. The
new relationship is formed using the new
characterization and a nil value.

Finally, at step (25e) the target Relationship
list is replaced with the new Relationship list using
the Input Record Operations to store the new

10

15

20

25

30

WO 94/18631

PCT/US94/01037

73

Relationship list in the target record of the Knowledge
Representation Database.
Instantiating a Value
The following discussion identifies the procedure
for instantiating a Value for a relationship and adding

‘the relationship with said Value to the Relationship

List of a specific record.

The process of instantiating a Value is
essentially to use the characterization for the
relationship as a basis for guiding the user in editing
the current Value to specify an acceptable Value. All
relationships always have a value in that an unbound
value can be considered to be nil. Thus the process of
instantiating a Value is equivalent to the process of
editing a value.

The Value domain is comprised of two domains:
Internal and external. The following discussion refers
to flow diagrams and descriptions of procedures for
instantiating both types of values. The procedure for
instantiating a value assures that all relationships
are stored at the correct locations in the networks and
that reciprocal relationships for internal values are
coordinated.

The Relationship Editor is invoked by the Natural
Language Interface with Knowledge Representation and
the View User Interaction interface, as required to
edit concepts in the Knowledge Representation Database.
The microfiche appendix sets forth a range of functions
of the Relationship Editor, the equivalent of which are
recommended in any embodiment of the invention.

Instantiating an Internal Value

Fig. 26 illustrates a flow diagram for
establishing a reciprocal relationship between two
records. The calling functions will typically track

10

15

20

25

30

WO 94/18631

PCT/US94/01037

74

both the current Active record and the current
relationship of the Active record. Typinally, the
Active record will be in the Descriptive Database, as
is assumed in the following discussion. These items
must be present prior to proceeding with establishing a
reciprocal relationship. °

The first step (26a) is to determine the
characterization reference number of the current Active
relationship. The characterization reference number is
required because the reciprocal relationship will be
based on a compatible relationship in the target record
(the record to be connected to). At step (26b) the
target record is selected as described above.

First, it must be determined if the Active record
has an abstraction which identifies a pattern for the
target of the Characterization reference number (see
subsequent discussion of Means for Pattern Recognition
and Storage).

A second procedure for selecting the target record
is to prompt the user and transfer control of the
selection to an appropriate View for user selection of
a target record. This can be optimized by making a
best guess by looking at other instantiated
relationships for the Active record of the same
attribute class as the Active characterization and
prompting the user to an appropriate view document of
the local network. Once the target record has been
selected, the Target record is read at step (26c) by
using the Read functions of the Network operations.
This will assemble the relationship inheritance of the
Target in the Descriptive Database.

The relationships of the Target in the Descriptive
Database are checked to determine if a suitable
relationship is available for the reciprocal of the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

75

Active Characterization at step (26d). The suitability
of the relationship is governed by two things: 1) the
attributes must be of the same Attribute Class (i.e.
the same Attribute Class system concept must be a
common parent of both the Active and the Target
characterizations); and 2) the Attribute Class of the
characterizations must not exclude the available Target
characterizations.

If a suitable relationship is available the flow
proceeds to step (26i) to select the characterization
of the reciprocal relationship from the target record.
If a suitable relationship is not available then the
user is notified that the Target contains no suitable
relationships and the user is prompted to add a
Relationship to the Target record at step (26e).

If the user declines, the procedure is aborted. A
modification would be to return to step (26b) Select a

. different Target Record, instead of aborting. This

could be augmented by asking the user whether to abort
or select new target.

If the user wants to add a Relationship to the
Target record, then an Attribute is selected to
characterize the relationship to add from the
descendants of the Attribute Class system concept of
the Active relationship characterization at step (26f).
Tree View is a convenient view for enabling this
selection. The selection could also conveniently occur
through a menu pick wherein the appropriate candidate
attributes are presented for user selection.

The selected characterization must be added to one
of the records in the Target Type taxonomy. The user
typically must, at step (26g) select where to add the
new relationship in the Target Type taxonomy. This can
be accomplished by means of presenting the names of the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

76

Taxonomical ancestry of the Type record together with
the name of the Type record in a menu for the user to
identify which record (Source) should store the
uninstantiated relationship.

The new uninstantiated relationship should then be
added to the source record at step (26h) by means of
the Input function of the Record operations. At step
(261) a Reciprocal Relationship for the Target is
selected from the available relationships. If only one
relationship is present take it. If more than one
relationship is present the names of the attributes
characterizing the relationship can be presented to the
user for user selection of the desired relationship.
Note that this selection process may be modified by
(1b) Means for pattern recognition and storage if
previous patterns of connections have been identified
(see subsequent discussion of the (1b) means).

The program can then complete and save
Relationships in the Active and Target records at step
(26)). The relationships are completed in a form
similar to that illustrated in Figure 5 where (5c) and
(5d) are typical of the instantiation of the
relationships which will be stored at the Active and
Target records respectively.

Instantiating an External Value

Fig. 27 illustrates a Flow Diagram for
Instantiating the Value of an External Relationship.
Each step is described in the following paragraphs.

At step (27a), the user is prompted for the value.
External values must be entered by the user. It is
possible to assist the user with likely defaults,
particularly if the means for pattern recognition and
storage have been implemented and a pattern has been
stored for the characterization of the value. Such

10

15

20

25

30

WO 94/18631

PCT/US94/01037

77

assistance is an optional enhancement of the embodiment
presented here.

Upon user definition of the value, test (27b) the
value is approved by comparing it with any restrictions
on or specifications of data type which may be part of
the description of characterization of the
relationship. Step (27b) may be comprised of a
plurality of tests to determine if the value is ok.

For example, the test might include data type, field
length, and value range. If the value is not
satisfactory to all tests, then step (27c) prompts the
user of the error (failed test) and allows the user to.
edit the value. If the value is satisfactory to all
tests, then step (27d) replaces that value in the
Descriptive Database. The user will need to invoke the
Save operations in order to place the new value in the
(3a) Knowledge Representation Database.

Some useful variations include: allowing the user
to set a flag which will automatically save all new
values to the Knowledge Représentation database; or to
always automatically save the new values to the
knowledge representation database.

(1b) PATTERN RECOGNITION, STORAGE,
AND UTILIZATION MODULE

The pattern recognition, storage, and utilization
module (1lb) recognizes patterns in the relationships
stored in the Knowledge Representation Database, stores
the recognized patterns as relationships in the
relevant records of the Knowledge Representation
Database, and utilizes the stored patterns in the
editing of concepts and relationships comprising the
Knowledge Representation Database.

Recognizing, abstracting, and storing patterns
provides for the embodiment of significant knowledge

10

15

- 20

25

30

WO 94/18631

PCT/US94/01037

78

which, when utilized, results in intelligent behavior
of the system.

Relationships in the Knowledge Representation
Database are established by the Concept and
Relationship Editor (3i). Patterns in rélationships
can be abstracted and learned by adapting procedures to
monitor and record the operation of the Concept and
Relationship Editor. Such procedures are implemented
in the invention so that the recognition, utilization,
abstraction, and storage of the patterns occurs as part
of the operation of the Concept and Relationship
Editor.

The abstraction of the patterns are stored by
means of a class of Attributes which will be known
herein as Rules. All Rules are implemented as system
concepts and are used to characterize a relationship
wherein the Value stores the abstraction of the
relationship pattern. All rules are declared as system
concepts in that the interpretation of each Rule must
be embodied in specific code associated with the
relevant editor. The values in relationships
characterized by rules can be edited to provide a
priori definitions and to modify stored patterns. The
principles by which such a Value editor can be
implemented was briefly described in connection with
the means for editing relationships.

Relationships characterized by rules are added to
a Relationship List of an appropriate record. by use of
the same editing procedures that are used to add any
relationship to the Relationship List of a specific
record.

The patterns are, in essence, a record of the
patterns in relationship at the next higher level of
abstraction, than the level upon which the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

79

instantiation of the value occurs. This means, for
example, that when a substructure is being added to a
project concept record, what is recorded is the
reference number of the classification or type of the
specific substructure rather than the reference number
of the specific record embodying that substructure.

The rule embodying the abstraction is stored within the
Type record of said project concept record.

Similarly, patterns of relationship between
external values, (for example as occurs in the
concatenation of First Name, Middle Name, and Last Name
to derive the value of the Full Name) would store the
reference numbers of the characterization of the values
in the concatenation, independent of their values (e.g.
the attribute record for the concept of "Full Name"
would include a rule for concatenation, the value of
which would be comprised of the reference numbers of
the attribute concepts for First Name, Middle Name,
Last Name.)

The unique means for pattern recognition, storage,
and utilization are discussed under the following
subheadings: implementing Attributes characterizing
Rules as system concepts; implementing Attribute
Properties of Rules as system concepts; and
implementing programmed code for pattern recognition,
storage and utilization in conjunction with the means
%or editing relationships and values.

Implementing Rules as System Concepts

The Rules of this invention is the class name for
characterizations of the relationships wherein
recognized patterns are stored in the (3a) Knowledge
Representation database. All recognized patterns are
stored in relationships as values with an associated
characterization that must be a Rule. This provides

10

15

20

25

30

WO 94/18631

PCT/US94/01037

80

compatible means for storing the abstracted patterns as
properties of the concepts in the Knowledge
Representation database. The specific
characterizations implemented as system concepts will
typically be implemented as a subclass of the Attribute
Library. The rule system concepts are implemented as
per the methods for including system concepts typical
of the Knowledge Representation database.

Figure 28 provides a tree diagram of a taxonomy of
rules system concepts and illustrates the principles
for deriving rules and implementing said rules as
System Concepts. Figure 29 provides a summary and
description of specific rules which are illustrated in
column (28d) of Figure 28 and included in the preferred
embodiment. Column A of Figure 28 merely represents
that we are talking about the Rules. This corresponds
to the suggested implementation of a Rules system
concept.

The predicate classes illustrated in Figure 28
Item (28b) are typical of the editor predicate
(procedure) classes responsible for establishing and
editing relationships in the preferred embodiment.

Said classes include: define concept, which provides a
plurality of program means for creating and editing a
concept definition; and instantiate values, which
provides the programmed means for instantiating the
values embodying the user relationships in the
Knowledge Representation database.

The attribute classes in Column (28c) identify
typical classes of rules implemented in the preferred
embodiment. Each of these classes are associated with
the operations or the predicate classes relevant to the
instantiated values within said classes. Having
identified .the predicate classes for establishing and

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

81

editing relationships, and having identified the
classes of characterizations of those relationships,
the final step is to identify specific Rules
characteristic of the programmed operations for each of
the attribute classes.

The specific Rules in Column (28d) illustrate
specific rules which have been found useful and are
implemented in the preferred embodiment. Broadly
conceived, they represent a plurality of system
concepts which may be defined by the system designer to
meet the objectives of the specific implementation.

The specific function and purpose of the rules
identified in Column (28d) will not be discussed in
detail as they will be obvious from the description and
preferred embodiment thereof.

Figure 29 is provided as a summary and with a
brief description of the specific Rules implemented as
system concepts in the preferred embodiment. This will
assist the system designer in understanding the
specifics of the preferred embodiment. It also
provides some sense of the function of the Rules.

Implementing Rule Properties as System Concepts

The values of Rules are typically complex
structures of (12f) Mixed Type. There are a variety of
attribute properties which are useful in constraining
the behavior of mixed values. The attributes
characterizing the behavior of a specific Rule’s value
are most easily implemented as attribute properties
system concepts. As such, they may only be stored in
the relationship list of records in the attribute
library. More specifically, the attribute properties
of rules (or rule properties) may be stored only in the
relationships lists of rules system concepts. This
restriction on where said rules properties may be

10

15

20

25

30

WO 94/18631

PCT/US94/01037

82

stored must be embodied by the system designer within
the program definition of rules properties systems
concepts.

Figure 30 provides a summary and description of
specific rule properties implemented as system concepts
in the preferred embodiment. In general, the rules
properties will be implemented as part of the attribute
properties library. They may however, be implemented
in any of several other taxonomies, as their function
as system concepts can define their meaning independent
of the taxonomy of said concept. 1In the preferred
embodiment, the rules properties system concepts were
implemented within the attribute library. This
illustrates the flexibility of the system in specific
location of system concepts.

The specific properties identified and described
in Figure 30 and implemented in the preferred
embodiment should be viewed as merely specific
embodiments of the principle disclosed herein and most
broadly conceived. A wide variety of specific rules
properties system concepts will occur to the system’s
designer in the course of implementing a specific
embodiment, given understanding of the principles of
the invention and the example of the preferred
embodiment. Each of the plurality of programmed means
comprising the (3i) Concept and Relationship Editor
will utilize the reference number of the rules system
concepts as means for identifying said rules which
pertain to each of the specific programmed means for
editing.

Programmed Pattern Recognition,
Storage and Utilization -

The programmed pattern recognition, storage and

utilization functions are implemented within the

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

83

procedures of the (3i) Concept and Relationship Editor.
The functions are implemented within the editing
procedures so that the editing procedures both utilize
and modify the patterns in order to enable the
intelligent operation of the editing function. The
functions implemented in the editing procedures include
the ability to recognize and abstract user variance
from the stored patterns, and to update said stored
patterns based on the observed user variance.

Figure 31 provides a Flow Diagram of programmed
means for Pattern Recognition and Storage in the
Knowledge Representation. Upon entering each of the
plurality of programmed editing procedures, Step (3la)
is to get any relevant patterns for the active record,
current relationship, and editing procedure to be
performed. Step (31b) checks to see if any relevant
pattern(s) were obtained.

If no relevant pattern is present, then execute
Step (31d), the edit procedure without a pattern. This
procedure may simply be no action at all (the null
case.)

If a relevant pattern(s) is present, Step (31lc)
indicates use of the pattern(s) in a suitable
procedural variant of the editor. The pattern(s) are
used to constrain the operation of the procedural
variant. The values are used during the procedural
operation.

A primary means by which the system concepts are
defined in the programmed code is the embodiment of the
procedural variant that uses the pattern stored in the
relationships characterized by one of the system
concepts. 1In some ways, the definition of the system
concepts can be thought of as being embodied in the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

84

procedural variant for the editing operation for which
the system concept was declared.

Step (3le) tests to see if the rule or procedural
variant worked. If it did not, then the failure case
should take it to Step (31d) to execute the procedure
with out a pattern.

If user selected options occur during the course
of the editor operation in either Steps (31c) or (31d),
which are not part of a pattern, an abstraction is
made, then the pattern could change to accommodate the
new options.

Step (31f) checks to see if the pattern of the
rule changed during the course of the execution of the
procedure. If the pattern did not change, then the
procedure has been successful, and is (31h) done. 1If
the value did change then the new value needs to be
stored.

Step (31g) stores the changed pattern in the
source record for that rule. This is accomplished by
storing the pattern in the appropriate relationship in
the record which is indicated as the source of the
relationship. The means for identifying the source
record and the meaning of source have been defined in
previous discussion. In short, the source record is
the record within the primary Knowledge Representation
within which the relationship storing the pattern is
stored as a member of a relationship list of said
source record.

Step (31h) indicates the completion of the editing
procedure.

(1c) NATURAL LANGUAGE INTERFACE WITH
THE KNOWLEDGE REPRESENTATION

The Natural Language Interface module for

interaction with the Knowledge Representation database

10

15

20

25

30

WO 94/18631

PCT/US94/01037

85

(NLI) processes Natural Language expressions in
conjunction with stored language related concebts for
use in the Natural Language processing system. The NLI
is particularly suited for implementation in
conjunction with the Knowledge Representation database
in that the network of relationships present in the
Knowledge Representation is similar to the network of
relationships present in linguistic expressions.

The Natural Language processing utilizes specific
adaptations of standard Natural Language processing
techniques. The Natural Language Interface module
includes: 1) The sequential use of a functional parse
and a functional pattern match parse which combines the
features of both transitional network analysis and
parsing by differences; 2) The use of a functional
identification of the word in the Knowledge
Representation instead of a grammatical identification
as the basis for the functional parse; and 3) parsing
by differences list based on function and value instead
of value only wherein the function is identified by
means of the system concepts in the descriptive network
of the identified concept.

The Natural Language processing module interprets
human language input expressiohs and responds
appropriately thereto. The module includes the ability
to recognize and learn new words and concepts contained
in the input expression through interaction with the
user concerning the definition of the new concept.

The program relies on the information stored in
the Knowledge Representation database, and uses the
patterns in the network of the Knowledge Representation
to understand and respond to the linguistic patterns in
the input expression.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

86

In essence, the NLI matches the patterns inherent
in human languages to the patterns embodied in the
networks of the Knowledge Representation. This pattern
matching enables human interaction with the computer in
ways characteristic of human interaction with other
people. This is a result which has heretofore not been
achieved on this scale, and which is a major advance in
the state of the art.

The preferred embodiment uses a natural language
dialogue window, with suitable means for displaying the
dialogue as it occurs. Such means are standard and
will be obvious to the skilled practitioner, therefore
they are not disclosed in detail.

Fig. 34 illustrates a flow diagram for Natural
Language Interface with the Knowledge Representation.
Figure 34 is an expansion and annotation of the Natural
Language Interface of Figure 1. Step (34a) Get Input
Statement From User indicates the process of getting an
input expression from the user. Such processes may
include speech recognition or keyboard input or other
appropriate means. In any case the result will be the
presence of an ASCII string in an input buffer. The
ASCII string is the expression that is processed by the
subsequent steps of the NLI.

Step (34b) Scans the Input Expressién to Token
List. Scanning is a well known process which consists
of converting the input expression into a list
comprised of the words and punctuation present in the
input expression. The token list is passed to the next
step.

Step (34c) represents the Augmented Transition
Network Parsing of the token list. The (34c) Augmented
Transition Network Parsing of the token list results in
the identification of the function of each token in the

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

87

token list. The Functional identification is in terms
of the system concept (e.g. library) in the descriptive
network of the concept represented by the token in the
Knowledge Representation database.

In standard Augmented Transition Network Parsing,
the identification of the function of each token is in
terms of the standard part of speech (e.g. noun, verb,
adjective, etc.) It is this difference in the
identification of the token which is a significant
contribution of the invention to the state of the art.

Another significant feature in the (34c) Augmented .
Transition Network Parsing of the Token list, is that
words or expression that are unknown to the Knowledge
Representation are learned through interaction with the
user to ascertain the definition of the expression.

Upon completion of the Augmented Transition
Network Parsing of the Token list, each token has been
associated with a functional indicator, and the overall
functional pattern of the input expression has been
identified. The patterns in the functional definition
are then matched to known patterns within the Knowledge
Representation. This matching of functional pattern to
the network patterns of the Knowledge Representation
database is accomplished through a pattern matching
algorithm, known generically as parsing by differences.

Step (34d) Parsing by Differences is the procedure
which matches the functional patterns to the network
patterns of the Knowledge Representation database. The
pattern matching during parsing by differences
generally includes rearranging portions of the pattern
to optimize the search paths required to respond to the
input expression. Such optimization is recommended but
is not required for the operation of the system. The
optimizations will not be discussed in detail here,

10

15

20

25

30

WO 94/18631

PCT/US94/01037

- 88

however, such optimizations are included in the
microfiche appendix. In step (34d), the parsing is
based upon parsing of the patterns and functions
identified in the Augmented Transition Network.

Step (34e) Evaluate Structure evaluates the
expression as structured by the parsers. The
evaluation is the action taken by the computer in
response to the input expression. The evaluator must
be programmed to evaluate the input structures
recognized by the parsers. The code for this procedure
is illustrated in the microfiche appendix.

Step (34f) Response may combined with step (34e)
in many implementations. The response in general is an
acknowledgement to the user that the input expression
has been satisfied. The response may take the form of
a report of action completed based on the expression,
or may take the form of display of the answer to a
query based on the action taken. The response can
often be integrated with the program for evaluating the
structure, however, in most cases, some type of a
response will occur subsequent to the evaluation to
indicate the completion of the evaluation. Step (34f)
Response typically consists of derivation of a document
of one of the plurality of views of the Knowledge
Representation in order to show the user the results of
a requested process, or the answer to a query. As
such, Step (34f) often constitutes a transfer of
control from the NLI module to related modules in the
overall system. Step (34f) Response may include
returning to the Natural Language Interface Step (34a).
This return to Step (34a) is indicated in Figure 34.

Figure 35 illustrates a flow diagram of program
means for the Augmented Transition Network Parse. The
Augmented Transition Network Parse is comprised of a

10

15

20

25

30

WO 94/18631

¢ _ ' PCT/US94/01037

89

plurality of program means, whereby the token list
resulting from the scan of the input structure is
associated with the function of that token in the
Knowledge Representation (e.g. Attribute, Component,
Project, etc.) This is distinct from standard methods
of Augmented Transition Network Parsing in that
Augmented Transition Network Parses traditionally
associate the input token with the part of speech
represented by that token (e.g. nouns, adjectives,
adverbs, noun phrases, etc.)

In order to accomplish the association of the
function of the token with the token, it is necessary
that the tokens be recognized as concepts within the
Knowledge Representation and that the token be
associated with the function of the concept in the
Knowledge Representation. The concepts may be
identified be creating supplemental libraries of
concepts in the Knowledge Representation or,
equivalently, through supplementary external files or
indexes identifying the function.

The association is most easily achieved by means
of suitably declared database domains wherein the
function of the token, the token, and its corresponding
record reference number (if it is a concept in the
Knowledge Representation) may be stored. Figure 36
illustrates a suitable database declaration for storing
the associations it used in the Augmented Transition
Network Parse.

Figure 35 Step (35a) indicates the initialization
of the ATN Parse. This is merely the implementation of
various housekeeping functions in making sure that the
database and relevant registers are initialized. Step
(35b) checks to see if the input token list is empty.
If the input token list is not empty, then Step (35c)

10

15

20

25

30

WO 94/18631

PCT/US94/01037

90

calls for removing the first token from the token list.
This is a simple list operation, that s@2parates the
token to be identified from the list. The reduced list
is saved for further processing, and the token is
passed forward. Step (35d) Identify the Token and
Assert the Token with its Functional Identification in
the NLI Function Database. The tokens are identified
by programmed means for identifying the tokens in the
index(es) of the Knowledge Representation database.
Alternatively, the tokens may be identified by means of
code containing the tokens or by means of supplementary
files containing the tokens and/or synonyms thereof.

Figure 37 provides a summary of suggestions for
system concepts and associated user concepts to add to
the Knowledge Representation database. These concepts
will need to be added in order to assure that the
variety of tokens present in a Natural Language
expression are in fact recognized. In column A of
Figure 37, there is an indication of various categories
of words that need to be accounted for in order to
implement a functional system. This list is not
intended to be exhaustive, but illustrates the type of
supplement appropriate to the Knowledge Representation
database in order to insure that a wide variety of
input expressions can be interpreted. Column B of
Figure 37 provides examples of each of the libraries of
concepts. Column C provides notes on how these concepts
were implemented in the preferred embodiment.

All of the supplementary concepts can be
implemented within a framework of appropriate library
system concepts with associated classes of user
concepts within the Knowledge Representation database.
Many of the supplementary concepts can equivalently be
implemented as specific identification of the words

10

15

20

25

30

WO 94/18631

PCT/US94/01037

91

within the ATN Parse (as is the case with logical
operators) or by means of supplementary files
containing lists of words of that class (as is the case
with words to ignore.) Any of these classes could be
implemented by any of the three means. 1In the
preferred embodiment, various classes have been
implemented in each of the three ways to illustrate the
flexibility of the invention, and the principles
whereby such supplements to the Knowledge
Representation may occur.

In Figure 35 Step (35d) identifies the token and
assert the token with its functional identification
into the Natural Language Interface functional
database. Unknown tokens will regularly be encountered
in the process of evaluating an input expression. The
meaning of such unknown concepts can generally be
derived by the context of the tokens which have
previously been identified.

Step (35e) Define Unknown Token allows for
identification of an unknown token by means of the
context provided by the input expression together with
supplementary user dialogue as required to identify the
token. Said means for defining the unknown token
should include means for adding the concept designated
by the token to the Knowledge Representation database
(or supplementary file) so that the token is recognized
in future transactions with the user.

In general, it is best to implement most of the
libraries indicated in Figure 37 within the Knowledge
Representation database so unknown concepts may easily
be categorized and added to the knowledge
representation. Note that it is difficult to add
system concepts to code, therefore only those concepts
which are categorically knowable a priori should be .

10

15

20

25

30

WO 94/18631

. _ PCT/US94/01037

92

implemented as system concepts (for example, the
logical operators.) This means of identifying unknown
tokens and dynamically adding them to the Knowledge
Representation database are unique to this invention.

System operators provide means for linking
programmed operational concepts to the Knowiedge
Representation. This makes these concepts easily
available to support view definition.

There are two classes of system operators which
are particularly useful to the invention: Logical
Operators, and Relational Operators. These may be
implemented in programmed code and may be represented
by system concepts in the Knowledge Representation
database. These System operators may be supplemented
by additional operators useful to the designer in a
particular knowledge domain.

Logical Operators provide the means for
implementing logical queries on the Knowledge
Representation. Logical Operators are the standard
logic functions (i.e. AND, OR, NOT, NOR, NAND, etc.) as
implemented for list processing. They are implemented
to perform the logical operations on lists of reference
numbers. This provides the basis for logical statements
used in subsetting nodes and relationships in
developing particular views of the data.

Relational Operators represent relational concepts
in the Knowledge Representation. Relational Operators
represent concepts typical of prepositions (i.e. in,
through, containing, before, beyond, etc.).

Step (35f) provides for the Transition to the Next
State. The transition is typical of standard
state-transition procedures used in standard transition
network analysis. The formulation of the
state-transition rules is based upon the functional

10

15

20

25

30

WO 94/18631

. o PCT/US94/01037

93

constructs of the Knowledge Representation, rather than
the grammatical constructs of the NLI. This is the
only significant difference in Step (35f) as required
for this invention and standard techniques. The
implementation of program procedures embodying the
Transition to the Next State are described in the
microfiche appendix. The Step (35f) Transition to the
Next State moves to Step (35b) to see if any tokens
remain in the token list and, if so, the process is
repeated for the next token.

Note that in Step (35d) in Identifying the Token
and asserting the token in the NLI function database
that many known expressions in the Knowledge
Representation database will be comprised of a
plurality of tokens. Upon recognition of a token as
being the front token of an expression comprised of
said plurality, additional tokens should be taken from
the input token list to match the concept name in the

‘Knowledge Representation database.

Figure 38 illustrates a flow diagram for Parsing
by Differences. The Parse by Differences is
illustrated in simple form since the essence of Parse
by Differences is well understood.

Step (38a) looks to see if the inputted list from
the Augmented Transition Network is nil. If it is nil,
then the process is complete, and we are done at Step
(35d). 1If the list is not nil, then the list is
evaluated in the parse by differences procedure.

The patterns used to match the ATN list indicated
in Step (38b) are comprised of a plurality of program
functions embodying the mapping of the structure of the
ATN into structures that will readily be executed in an
evaluator. This plurality of program means embodying
the patterns is typical and is the essence of a parsing

10

15

20

25

30

WO 94/18631

PCT/US94/01037

94

by differences scheme. 1In effect, the parse by
differences constitntes a transformation of the
structure received from the ATN. This transformation
should be designed to make the evaluation of the input
expression as optimum as possible.

The patterns in the parse by differences
correspond to patterns in the evaluator; thus, if a
successful match is achieved in Step (38b) the eventual
outcome of the parse would be assured to be
interpretable. Step (38c) tests to see if a successful
match was achieved in Step (38b). If a successful
match was achieved, the process returns to Step (38a)
to process the balance of the ATN list. If there was
no successful match for the pattern matching of the ATN
list, then Step (38e) the procedure fails and returns
to the NLI for a new query.

Note that in Step (38b), that the pattern match
proceeds by matching substructures within the ATN list.
As these substructures are successfully matched to
patterns defined in the differences parser, the
elements of the ATN list which have been successfully
matched are removed from the ATN list to form a new
list. This new list is then passed forward for further
evaluation.

(1d) MEANS FOR AUTOMATICALLY DERIVING A PLURALITY OF
DOCUMENTS OF THE KNOWLEDGE REPRESENTATION

The (1d) module for Automatically Deriving a
Plurality of documents of the Knowledge Representation
provides the means for view management and derives a
plurality of view documents from the information
network in the Knowledge Representation database.

The automatic derivation of a document is
accomplished by programmed means which embody three
levels of abstraction of document characteristics.

10

15

20

25

30

WO 94/18631

. 7 _ PCT/US94/01037

95

A View is the highest level of abstraction which
embodies identification of relevant classes,
representation of connectivity, and ranges of meaning
of icons in documents.

A Class abstracts the organization of icons within
a document. The procedures embodying orgaﬁization can
be thought of as embodying a grammar for the document
class.

A Type abstracts the icons used to represent
concepts in a document and the principles whereby the
concepts are selected for representation. These
procedures for selecting and representing icons can be
thought of an embodying a vocabulary for the document
type.

Figure 39 summarizes some examples of various
views, classes, and types of documents which can be
derived for the Knowledge Representation. Figure 39 is
intended to be illustrative only, and should not be
interpreted as a restriction of the claims of the
invention. Column (39a) summarizes some examples of
views, Column (39b) summarizes examples of view
classes, and Column (39c) summarizes examples of
document types for each class. Each of the columns in
principle comprise an unbounded set of possible views,
classes, and types.

A specific document derived from the Knowledge
Representation database is sent to the desired output
device (display screen, printer, disk, etc.).

View Management

The view management enables the selection of the
view, class, and type of document desired. It
generally enables the coordination and selection of a
document from the information available in the
Knowledge Representation database.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

96

Figure 40 illustrates a flow diagram of programmed
means for view management. The major features are that
it shows the coordination of Step (40b) the means for
deriving plurality of view documents with Step (40d)
the means for enabling user interaction with the
Knowledge Representation through view documents.

This coordination is facilitated by a system flag
herein called ‘Active’ which, in the preferred
embodiment, is established by means of a database
declaration similar to that shown in Figure 41. The
declaration of the Active is comprised of at least four
key features.

Item (4la), stores a statement of the view which
is to be derived. This can be accomplished by means of
establishing system concepts corresponding to each view
and recording the reference number as the view in the
Active, or by directly using the names of the various
views. The view will indicate the view, view class,
and the specific type of document desired.

Item (41b), stores the record reference number of
a specific concept for which the view document is to be
developed. All view documents are developed or derived
from the Knowledge Representation with respect to a
single active concept.

Item (41c) stores the database of the active
concept. This is required in systems where multiple
databases are used in that it is not possible to
distinguish the reference number of the active without
designating which database it came from. The database
may be a symbol or may be a string containing the
database file name, or it may be a system reference
number wherein system concepts are established for each
of the database files in every database file comprising
the system.

10

15

20

25

30

WO 94/18631

. o PCT/US94/01037

97

Item (41d) stores the reference number of the
characterization. This is used in later processing
within the view to indicate which of the relationships
are current in the display, wherein current means which
of the relationships are currently highlighted or are
near the current cursor position.

The specific order of the items comprising the
declaration of the active as indicated in Figure 41 is
arbitrary. Note also that the system flags comprising
the declaration of active can be implemented in a
variety of ﬁeans other than database declaration,
however, the system flags identifying these four items
must be present in order to manage the views.

In Step (40a) we indicate the system start-up. 1In
general, the view management function will be the
initial entry point at start-up of the system. This
start-up should include the assertion of an initial
active. Which view and which active is initially
asserted is up to the designer. 1In the preferred
embodiment, the-system is started up using a text based
tree diagram of the taxonomical relationships using the
root library concept as the active, in the environment
database, with a nil characterization. Other
appropriate selections can be made. However, an active
must be asserted in order for the process to proceed.
Step (40b) indicates the means for defining a plurality
of documents. These means include the means for using
the active to determine which view, class, and type of
document is requested, and for deriving the requested
class of document relative to the active concept. The
explanation of this Step is expanded and detailed in
subsequent discussion.

If, in Step (40c), no user interaction is
required, then the Step (40d) means for user

10

15

20

25

30

WO 94/18631

PCT/US94/01037

98

interaction are bypassed. 1If user interaction is
requested, then Step (40d) the means for user
interaction are invoked.

The means for user interaction correspond to (le)
and are discussed in detail subsequently. The means
for user interaction include means for retracting the
active upon completion of the interaction. Some of the
means for interaction will include the ability to
select additional views. Such additional selection
will result in the assertion of an additional active
onto the stack. Upon completion of either Steps (40c)
or (40d) the program proceeds to evaluate whether there
are any remaining actives available on the stack.

Step (40e) indicates the test of whether
additional actives have been set for the system. If
so, the process cycles back to Step (40b) to derive a
view document by means embodied in the plurality of
views. .If there is no active left in the stack, then
Step (40f) indicates a system exit. The system exit

‘typically will include an interaction with the user to

verify that exit is desired, and to allow options for
backing-up files or re-entering the system. A variety
of system exit procedures will readily occur to the
skilled practitioner.
(40b) Defining a Plurality of Documents

Figure 42 illustrates a flow diagram for deriving
a plurality of documents from the Knowledge
Representation. This flow diagram is a generalized
abstraction that applies to all views. Subsequent
discussion will illustrate specific application of
these general principles in developing the plurality of
views. The flow diagrams and the principles disclosed
in the following paragraphs, together with the examples
of the preferred embodiment in the microfiche appendix,

10

15

20

25

30

WO 94/18631

¢ PCT/US94/01037

99

will enable a skilled practitioner to derive a
plurality of views, and extend the principles herein
illustrated to encompass any class of document that is
traditionally used within the knowledge professions,
such as engineering, law, business, etc.

Step (42a) is a test to determine which views are
supported by the program. This typically takes the
form of a series of tests wherein the program checks to
see if view 1 is wanted, if not, it looks to view 2,
and so forth. Step (42b) indicates that an unbounded
set of additional views may be defined by the system
implementer. Within each view, there are a plurality
of classes. Step (42c) checks to see which class is
desired. Step (42d) transfers the test to the
unbounded set of class definitions comprising the view.

Each class is comprised of a plurality of types.

| Step (42e) checks to see which type of document is to

be developed, and Step (42f) indicates that the
plurality of type is comprised of an unbounded set for
each class. Subsequent discussion will show typical
expansions of Steps (42b), (42d), and (42f) together
with typical means for testing as indicated in Steps
(42a), (42c), and (42e.)

All documents of the Knowledge Representation are
derived with respect to an active concept. The active
concept must be one of the concepts within the network
of the descriptive relationships that are the basis of
the view. This property makes it fairly easy to
implement programmed means for determining which views
may be applicable to a given concept. This enables the
system designer to implement code which will prompt the
user of the available views for any desired concept.
This provides much easier user interaction in that
Steps (42a), (42c), and (42e) may be reduced to user

10

15

20

25

30

WO 94/18631

PCT/US94/01037

100

selection of a valid view, class, and type for said
Active concept. The preferred embodiment in the
appendix includes specifics adapted to this type of
intelligent behavior.

Having successfully identified the view, class,
and type of document that is to be derived for the
Knowledge Representation, the subsequent typical steps
occur in deriving the view. Steps (42g) through (421)
are typical of specific means which must be established
for view, class, and type of document.

Step (42g) is a process of reading a descriptive
set for the type. The descriptive set is comprised of
a plurality of concepts read into the descriptive
database. The concepts are read into the descriptive
database by means of the read functions of the
Knowledge Representation. Subsequent discussion of
procedures for reading a descriptive set will occur
hereafter. The descriptive set is read by reading the
Defining and Auxiliary relationships for the active
concept. Each type of document will have specific
defining and auxiliary relationships.

Step (42h) assigns appropriate icons to the -
descriptive set. The type of document being derived
defines which icons are appropiiate. The icons are the
symbols for the concepts in the descriptive set. These
symbols can be thought of as the vocabulary of the
language in which the view will be expressed, wherein
'vocabulary’ is considered in its broadest sense,
including, but not limited to texts, graphics, sound,
mathematical equations.

The association of an icon with a concept occurs
either in the Descriptive database, or in a
supplementary database. If the association occurs in
the Descriptive database, then suitable domains must be

10

15

20

25

30

WO 94/18631

¥ 4 PCT/US94/01037

101

declared to contain the information required for the
definition of the appropriate icons. Such supplemental
structures are included in the domains declaration of
the Descriptive database in the preferred embodiment of
the appendix. These will serve as examples and
illustrations which can be adapted to accommodate the
plurality of views which may be desired by the system
designer.

The implementation of the association of the icons
with the concepts as a separate database requires the
declaration of suitable domains in that database. In
effect, said implementation merely isolates the domains
augmentation required for the descriptive database into
a separate database.

The Descriptive database typically includes the
association of every concept with all of the
relationships within the descriptive network which
apply to said concept. In general, a particular view
document will not express all of the relationships of
the actives in the working set of the descriptive
database. Typically, a view document will include a
single icon for the concept with one or more icons
developed to illustrate specific relationships between
the working concepts. Since this is the case, the icon
is generally stored in a separate structure in the
descriptive database from the structures which store
the relationships. This icon is then associated with
the active by including the reference number and the
database of the concept illustrated by the icon.

In some views every relationship is in fact
expressed within the view. 1In such cases, the icon may
be associated with each relationship or embodied within
the relationship record in the descriptive database.
The association of the relationship with the icon will

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

102

need to include the active reference number, the
database, and the reference number of the
characterization for which the icon is developed. 1In
these cases, the icon is typically some expression of
the value. Both means of associating icons with the
descriptive database are included in the pfeferred
embodiment of the invention.

. Step (42i) provides programmed means to locate the
icons within the document according to the class
grammar. The location of the icons is per the
standards and placement typical of the class. The
grammar governing the placement and the relationship of
icons in a document is comprised of the rules whereby
the location of the icons within the display space are
established and the rules or procedures whereby
relationships between concepts are illustrated within
the display space.

The procedures for location are a function of the
class, whereas Step (42j) the Development of the
Relationship Icons, is a function of the view. 1In Step
(42j) the relationship icons are developed to
illustrate the connection and interrelationship of the
concepts described in the derived document. Upon
completion of Steps (42g)-(42j), the resulting
information can be output to an appropriate device.

In Step (42k) we indicate the output of the
document to an appropriate device. Devices may include
external files, monitors, plotters, printers, or any
suitable device for output. It is often desirable to
output a particular view into a file format adapted to
the requirements of some other program. For example, a
drawing could be output as a DXF file for use in
various CADD programs. Such output is easily

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

103

accomplished by writing the suitable translator for the
output. . ,

Certain output devices facilitate user
interaction. Output to a CRT or other type of video
display terminal can facilitate human interaction with
the Knowledge Representation through the view document.

Step (421) tests to see if user interaction was
requested. If so, the process continues with Step
(42n), which is the programmed means for user
interaction, discussed subsequently. If no user
interaction is requested, then Step (42m) the process
of deriving the view document is complete.

Step (42n) indicates the retraction of the active.
This removes the active that was the basis for the
derivation and subsequent output of a document in
preparation of the next activity.

Step (420) provides for the cleanup of the
Descriptive database. This is essentially a system
reset, to clear the descriptive database and view
associated databases in order to initialize all
relevant databases, counters, and associated system
parameters in preparation of the next view document.

Step (42p) indicates the completion of programmed
means for deriving a plurality of views of the
Knowledge Representation.

Steps (42a)-(42f) comprise the means for
determining the specific type of document to be
developed. Steps (42g)-(42j) can be seen as the steps
for view derivation which must be embodied for each
view, class, and type of document. Steps (42k)-(42p)
can be seen as the output and view control procedures.
Note that particularly Steps (42n)-(42p) are an
embodiment of view management steps corresponding to

10

15

20

25

30

WO 94/18631

¢ , PCT/US94/01037

104

Step (40f). These view management steps are typically
embodied immediately following Step (42k) the output to
the device.

Document Type Selection

The view derivation, Steps (42g)-(42j), must be
developed to accommodate the plurality of views that
will be developed for the Knowledge Representation.

The development of each of these steps is a function of
the view, the class, or the type of document. Figure
43 summarizes the correlation between the view
derivation step and the level of abstraction. Column
(43a) summarizes the view derivation steps for Steps
(42g)-(42]j) of Figure 42, while Column (43b) summarizes
the level of abstraction in terms of the view, the
class, and the type.

Note that Steps (42g) Read Descriptive Set for
Type and (42h) Assign Type Icons to Descriptive Set are
a function of the type of document. Step (42i) Locate
Icons According to Class Grammar is a function of the
class of the document. Step (42j) Develop the
Relationship Icons is a function of the view of the
document.

Figure 44 illustrates a flow diagram of
programmed means for deriving a plurality of views in
the Knowledge Representation wherein Steps (44a)
through (44e) constitute testing to determine which
view is required. Figure 44 is an expansion of Figure
42 wherein Step (42b) is expanded to include three of
the specific views identified in Figure 39 and an
indication of the unbounded extension that is possible
to said views.

Step (44d) the Schematic View is a view comprised
of classes of schematic illustrations. Several classes

10

15

20

25

30

WO 94/18631

‘ : . PCT/US94/01037

105

of the schematic view are implemented in the preferred
embodiment in the appendix, and are used as the basis
for the illustration of implementing the plurality of
classes for each view and of implementing the plurality
of types for each class. Fig. 45 contains an
illustration of the program flow for implementing the
plurality of classes for the schematic view.

Step (44a) the Tree View, in some senses, is not a
distinct view, in that a tree view is essentially a
schematic view of the tree class of a type that shows
either a taxonomical or the hierarchical relationships.
However, for the purposes of this discussion and the
preferred embodiment, Tree View is considered to be a
separate view in that it is used only for the ;
fundamental relationships of taxonomy and hierarchy,
and thus enables user interaction with the Knowledge
Representation. Because Tree view is particularly
useful to the operation of the system and is used
extensively in any user interaction with the Knowledge
Representation, many optimizations to the basic flow
outlined in Figure 42 have been accomplished within
Tree View. For example Step (44f) Getting the Tree has
combined Steps (42g) and (42h) into a single operation
wherein the children lists in the concept records of
the Knowledge Representation database are used to
assemble the tree description. The names of the
concepts in the Knowledge Répresentation database
constitute the icons expressed in the view.

Steps (44a) through (44e) illustrate some of the
views that are given as examples in Figure 39 Column
(3%a).

The flow for Step (44a) Schematic View indicates
that Step (44i) Developing the Relationship Icons and
Step (44j) Output to Device and Step (441) Test for

10

15

20

25

30

WO 94/18631

PCT/US94/01037

106

User Interaction are common to all classes of Schematic
view. This is a way in which that commonality may be
implemented, by having all class derivations return to
the standard procedures as indicated in Steps (44i),
(443), and (441).

These steps correspond to Steps (40j), (40k), and
(401) of Figure 40. These steps must be implemented
with respect to each view. Step (44f) refers to Figure
45 which is an elaboration of the means whereby the
classes of the schematic view are implemented and
corresponds to Steps (42c) and (42i). In principle, an
unbounded set of classes may be implemented for each
view. Steps (45a) through (45d) illustrate some of the
classes of the schematic diagram view that are given as
examples in Fig. 39 Column (39b). Again, as indicated
in Step (45e), the classes comprise an unbounded set
which may be implemented to meet the system developer’s
objectives for the system. Steps (45]j) through (45m)
indicate that the location of the icons is according to
the grammar of the view. This principle was discussed
earlier. This illustrates that the plurality of types
that may be developed for each class will all return
for the location of the icons according to the standard
grammar for that class. Each of Steps (45f) through
(45i) indicate that an unbounded set of types may be
implemented for each class.

Step (45f) refers to Figure 46 which is a flow
diagram of programmed means for deriving a plurality of
schematic cluster diagram types of the Knowledge
Representation and corresponds to Steps (42e), (42g),
and (42h). Again Step (46e) indicates that an
unbounded set of additional types may be developed for
each class of drawings. The types of documents
illustrated in Steps (46a) -through (46d) correspond to

10

15

20

25

30

WO 94/18631

¢ ‘ A PCT/US94/01037

107

those in the examples of Figure 39, Column (39c), for
the schematic cluster diagram. The figure emphasizes
that in Steps (46f) and (46g), we have the
correspondence of development of Steps (42g) and (42h)
for the specific type of document being developed.
Similarly, Step (46h) and (46i) for the Process Flow
Diagrams (PFD), Steps (46j) and (46k) for the Wiring
diagram, and Steps (461) and (46m) for the Circuit
diagram correspond to Steps (42g) and (42h).
(42g) Read Descriptive Set for Type

Figure 47 illustrates a flow diagram for reading
descriptive sets. This is an expansion of Step (42q)
and illustrates that reading the descriptive set is
comprised of two main processes: reading the defining
relationships, and reading the auxiliary relationships.
Defining relationships are the relationships which the
document is designed to illustrate. The defining
relationships will form a network of concepts essential
to the document. There are a variety of auxiliary
relationships which are expfessed for each of said
concepts. These auxiliary relationships are
relationships of the concepts in the network of the
defining relationships to concepts not comprising said
network. Such auxiliary relationships are typically
read to only one or two levels removed from the concept
in the network of the defining relationship.

Step (47a) reads the defining relationships for
the type of document being developed. Step (47b) reads
the auxiliary relationships for the type of document

~ being developed. Upon completion of reading both the

defining relationships and the auxiliary relationships,
the process of reading a descriptive set is complete.
In each case the reading makes use of the network
operations of the primary Knowledge Representation in

10

15

20

25

30

WO 94/18631

PCT/US94/01037

108

order to read a description of particular concepts into
the descriptive database.

The principle of reading is that documents are
fundamentally based on the display of relationships in
a set of related concepts. One of the reasons that a
plurality of documents has been developed to embody
knowledge is that the human mind and the available
means of knowledge conveyance are inadequate to the
representation of many relationships between the
concepts. Because of this, each document has a small
characteristic set of relationships that the document
is developed to explicate. The relationships explicated
in the document are herein called the defining
relationships of that document type.

In order to facilitate clarity, most documents are
based on a single defining relationship. More complex
documents may be based on a plurality of defining
relationships. 1In our experience, there are very few
types of documents in which more than a single defining
relationship is expressed.

Figure 48 provides examples of defining and
auxiliary relationships for various types of documents.
The examples of Figure 48 are based on a selection of
the documents identified as examples in Figure 39.
Column (48a) identifies the type, Column (48b)
identifies the defining relationships characteristic of
the corresponding type, Column (48c) identifies the
depth to which the defining relationships are read,
Column (48d) identifies the auxiliary relationships
characteristic of the corresponding type, and Column
(48e) identifies the depth to which the auxiliary
relationships are read.

The idea of depth as identified in Columns (48c)
and (48e) is that of chainihg through the

10

15

20

25

30

WO 94/18631

¢ : PCT/US94/01037

109

relationships. For example, if concept A refers to
concept B in a relationship, you would read concept A,
identify the relationship, and read concept B.

Reading concept B would constitute one step. 1If
concept B, in turn, has a relationship with concept C,
and concept C is read, that constitutes two steps. If
concept C has a relationship with concept D, and
concept D is read, that constitutes three steps, and so
forth. In each case, the relationship must have
characterizations of the same attribute class.

Noted in Fig. 48, that most defining relationships
are characterized by a single attribute class. This
however, is not necessary, in that a plurality of
classes may constitute the set of defining
relationships. Fig. 49 and Fig. 50 illustrate a
specific implementation suitable for Steps (47a) and
(47b), respectively. Figure 49 illustrates a flow
diagram for reading defining relationships. Step (49a)
gets the defining relationships in terms of the
reference numbers of the system concepts identifying
the attribute classes that will characterize the
relationships. This means for example, that if the

defining relationship in a wiring.diagram is a wire

connection, then under the connections class of
attributes, there should be a concept of wire as a
system concept. The reference number of wire would be
the defining relationship system concept. Attribute
class concepts, such as wires, are not used as
characterizations of relationship. They are, however,
the class concept of a plurality of user concepts.
These user concepts are in fact used in the
characterization of relationship.

Step (49b) checks to see if the set of defining
relationship system concepts is nil. If it is, then

10

15

20

25

30

WO 94/18631

PCT/US94/01037

110

Step (49d) the process of reading the defining
relationships is complete. 1If Step (49b) is not nil,
then Step (49c) we get the next defining relationship
system concept (or attribute class system concept) and
identify all user concepts constituting said attribute
class.

Step (49e) checks the Descriptive database to
determine if there are any relationships characterized
by one of the user concepts for the attribute class
that we are currently testing for which there is a
relationship with a concept which is not a member of
the descriptive database. If there is a concept
referred to in a relationship characterized as one of
the defining relationship, then we need to read the
value, by reading the concept indicated in that value,
into the descriptive database, at which point we
recycle and continue with Step (49e) until all values
for the descriptive relationships have a corresponding
concept in the descriptive database. Upon completion
of Step (49e), we return to Step (49b) to determine if
there any additional defining relationships defined for
this type of document. If there are no more
relationships in the list of references for the
attribute classes characterizing the defining
relationships, then the process is complete.

' Note that Step (49f) may instantiate controls to
assure that the defining relationships are only read to
a specified depth. Note further that if additional
values are read in Step (49f) then the relationships
maintained by the concept read in Step (49f) should
also be read for each of the defining relationships.

Fig. 50 illustrates a flow diagram for the
programmed means for reading the auxiliary
relationships. Step (50a) gets the auxiliary

10

15

20

25

30

WO 94/18631

‘ , PCT/US94/01037

111

relationship system concepts in much the same manner as
was explained in Step (a) of Figure 49.

Step (50b) checks to see if the list of auxiliary
relationships is nil. If it is, then Step (50c) the
process of reading the auxiliary relationships is
completed. If it is not nil, then Step (50d) gets the
next relationship, which is an attribute class concept
and gets all of the user concepts of that class which
will characterize the auxiliary relationships.

Step (50e) checks the descriptive database to
determine if there is a defining member which has an
auxiliary relationship or relationship characterized by
one of the attributes of the auxiliary relationship,
which is connected to a concept which is not yet
present in the descriptive database. If so Step (50f)
gets that defining member and Step (50g) reads the
auxiliary relationships for that defining member to the
depths specified for the auxiliary relationship. This
process is repeated until all defining members have had
all auxiliary relationships read to the specified
depth, at which point the process resumes with Step
(50b).

Step (50b) then checks to see if there are any
additional auxiliary relationships, and if so performs
Steps (50d)-(50g) as appropriate for said additional
auxiliary relationships. The cycle terminates when the
list of auxiliary relationships has been exhausted, at
which point Step (50c) the process is complete.

(42h) Assign Type Icons fo Descriptive Set

Step (42h) assigns an icon to descriptive set
based on the type of document being developed. The
means for assigning the icon expanded and illustrated
in Fig. 51.

10

15

20

25

30

WO 94/18631

¢ A PCT/US94/01037

112

Fig. 51 illustrates a flow diagram for assigning
icons to a descriptive set. Such procedures must be
implemented for each type of document supported by the
system. There are two primary methods whereby an icon
may be associated with the concept: stored icons, and
programmed procedures. Most implementations of the
programmed procedures for assigning icons to a
descriptive database will have a combination of stored
icons and programmed procedures.

An icon may be explicitly defined and stored as a
concept in the Knowledge Representation. This storing
icons typically requires the declaration of additional
specialized database domains within the relationship
list to accommodate the data types required for icon
definition. A variety of such supplementary data types
are declared in the preferred embodiment in the
appendix.

A second method whereby an icon may be defined is
by programmed procedures for developing the icons.
Many types of views have characteristic icons whereby
they represent the concepts displayed within the
document. Such characteristics may be embodied in
programmed procedures whereby the icon may be
developed.

In Figure 51, Step (5la) is to identify the type
of document which is being developed for the class.
Step (51b) indicates that a plurality of types may be
defined for each class. Step (51lc) identifies a
concept in the descriptive database without an icon.
If there are no concepts in the descriptive database
without associated icons, then Step (51d) the procedure
is completed. If there are concepts without icons
associated, then Step (5le) would get the concept

10

15

20

25

30

WO 94/18631

¢ , PCT/US94/01037

113

reference number with which no icon has yet been
associated.

Step (51f) tests to see if an icon has been stored
for the concept without an icon. If an icon has been
stored, it will be indicated as the value in a
relationship. System concepts should be implemented
for each type of document to characterize the
relationship of the concept with its icon. This system
concept identifying the characterizing of the
relationship with the stored icon will identify the
icon. If in Step (51f), an icon is identified as being
stored, then Step (51g) reads the icon and initializes
the values of the icon with the values of the concept.

Step (51h) test to see if the icon is defined as a
procedure. This test is generally comprised of an
examination of the types of relationships maintained by
the icon to determine if the types of relationships fit
any of the predetermined patterns, whereby concepts
suitable for procedural development of an icon may be
identified. If an icon procedure is available for the
concept, then Step (51i) will create the icon for the
concept according to the programmed means of said
procedure. If no icon procedure is available for the
concept, then Step (51j) will bypass the concept.
Bypassing the concept means that the concept will not
appear in the document. Since no appropriate
vocabulary is available for the concept to be expressed
in the document, it simply will not appear. In
general, the bypassing includes reforming the
relationships of the concept so that temporary
relationships are established in the descriptive
database which makes it appear as if concepts related
to each other via the bypassed concept were directly
related to each other.

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

114

The outcome of Steps (51g), (51i), and (513) is
that the concepts without an icon will now have an icon
in the Descriptive database, or will be bypassed. Each
of these steps returns to Step (5lc) to determine if
any additional concepts are present in the descriptive
database for which no icon is yet present.

Notes on Implementation

Three types of documents are included in the
appendix which are particularly useful in concept
editing and in establishing the fundamental
relationships and user relationships of the Knowledge
Representation Database. They are called "TREEVIEW",
"FORMVIEW", and "DRAFTVIEW". Note that these views
are not views in the formal sense of ’‘view’ as defined
herein.

Tree View displays the fundamental relationships
between the concepts in the Knowledge Representation.
Together with the user interaction with the Knowledge
Representation through the tree view, the Tree View
enables a user to create new concepts in the Knowledge
Representation database and establish and edit
fundamental relationships between the concepts in the
Knowledge Representation database. Tree view provides
a basic tool whereby the user may manipulate the
fundamental relationships of the Knowledge
Representation.

Form View provides the essential tool whereby the
user may interact with the user relationships of the
concepts in the Knowledge Representation database.

Draft View enables a user to create and define a
graphics icon for concepts in the Knowledge
Representation database.

The icon editor represents the embodiment of the
relationship editor so that it can be immediately

10

15

20

25

30

35

WO 94/18631

s ‘ _ PCT/US94/01037

115

accessed to edit the class of values typical of
graphical icons. No derivation nf the descriptive set
is required, no assignment of icon is required as the
icon is what comprises the relationship, and no
location or connection of the relationships based on
the view grammar is required as these are irrelevant to
discrete icons.

It may be desirable to treat additional classes of
editors as if they were views in order to facilitate
the user interaction with values of the data types
supported by the system. This is strictly a system
designer’s choice, and could be implemented through
other routes of editing.

These three views, or their equivalent, are
required for successful operation of any embodiment of
the invention in that all embodiments must provide:
means for manipulating fundamental relationships; means
for manipulating user relationships; and means for
defining icons, if graphical representations of the
Knowledge Representation are desired.

(le) MODULE FOR USER INTERACTION WITH THE KNOWLEDGE

REPRESENTATION THROUGH THE VIEWS
The (le) Module for User Interaction with the

. Knowledge Representation through the views is comprised

of a plurality of programmed procedures to accommodate
the types of interaction appropriate to each view.

In practice, the programmed procedures for interaction
are implemented in conjunction with a specific view.
Such view actions often contain variants based on the
specific classes and types of documents comprising the
view. However, in general, the majority of the
functions for the program which enables user
interaction will be common to all classes of documents
comprising the view. The plurality of programmed

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

116

procedures for (3b) Record operations and (3e) Network
operations and the (3i) Concept and Relationship
editor, are employed and coordinated by the programmed
procedures for user interaction. The structure of the
means for enabling user interaction with the Knowledge
Representation through the view documents is
illustrated in Figure 52. The illustrated are typical
of event driven means, in common practice within the
state of the art.

Figure 52 illustrates a flow diagram for user
interaction with the Knowledge Representation through
the view documents. The microfiche appendix provides a
specific embodiment of the illustrated means. Step
(52a) indicates an event logger. An event logger
consists of programmed means for scanning the input
devices to the computer to detect a user event,
together with the means for storing said detected event
in a register from which said logged event can be used
to select the appropriate action.

Step (52b) indicates a plurality of programmed
means for acting on the event. The events which will be
acted upon must be specifically identified and enabled
by the system designer, and correlated with programmed
means defining the action which the system is to
perform in response to the event. It is with respect to
the types of actions and the means for determining
which action can occur in response to a user event,
that the invention makes novel contributions which are
subsequently disclosed.

Some of the user events will signal that the user
is done with the current view document. Such
signalling can be indicated by asserting a flag
indicating ‘done’ in an appropriate register. Step
(52c) tests the register to see if the ’‘done’ flag has

10

15

20

25

30

WO 94/18631

o , v PCT/US94/01037

117

been asserted. If not, then the program returns to the
means of the (52a) event logging. If ’‘done’ has been
asserted, then Steps (52d) and (52e) provide means for
cleaning up the data associated with the view,
resetting relevant registers, and proceeding to the
next operation in the program. Step (52d) provides the
means for clearing the view active. The view active is
the means for specifying the initial concept around
which the view document is to be derived. The function
meaning of active was discussed in connection with the
means for deriving a plurality of view documents.
Essentially, the active is an assertion to a register
of the type of document to be derived, the concept with
respect to which to document is to be derived, the
database of said concept, and the current attribute of
said concept.

Step (52e) provides the means for clearing all
view related registers and databases in order to reset
them in preparation for the derivation of the next
view.)

Several embodiments of steps 52(a), (c), (d) and
(e) are provided in the appendix.

The nature of the triggering events to be (52b)
processed are totally at the discretion of the system
designer. The triggering event may be a user action
with a function key, a mouse button, a mouse motion, a
keyboard entry, vocal input through a speech
recognition system, etc. Both the specific event, and
the programmed response thereto are implemented at the
discretion of the system designer. While both the
events and the programmed response are essentially
arbitrary, there are reasonable events and responses to
enable. The preferred embodiment in the appendix

10

15

20

25

30

WO 94/18631

PCT/US94/01037

118

includes suggested events and responses that would be
suitable for any implementation of the invention.

The actions based on the events of Step (52b)
comprise a plurality of programmed procedures for
actions in response to the specified user event. Many
of these actions will employ standard programming
techniques to enable view manipulation (e.g. scrolling,
panning, zooming, etc.) and editing (e.g. changing
values, etc.) Because of the nature of the invention,
several unique abilities are enabled which can be
called upon by a user specified triggering event.

The invention includes two novel features in this
respect which are (1) determining which of programmed
responses are appropriate by evaluation of the
contextual meaning of the icons comprising the view
document; and (2) interacting with the networks of the
Knowledge Representation. The means for deriving a
plurality of views identified the assignment of an icon
to each of the concepts and relationships represented
in the view document as one of the essential defining
characteristics of the invention. Because each concept
is represented in a network of relationship to other
concepts, it is possible to consider the icon as
representing not only the concept, but a plurality of
the implied relationships and associations of that icon
and because the plurality of meanings are associated
with the icon in the descriptive database, the
invention enables a variety of novel interpretations of
each icon. These implied meanings of the icon are used
as the basis for developing context-sensitive
interaction with the Knbwledge Representation. This is
accomplished by means of decision trees designed for
each view wherein the substance of the decision trees
is the evaluation of the implied context. Such

10

15

20

25

30

WO 94/18631

¢ ‘ PCT/US94/01037

119

decision trees are not possible in the current state of
the art in that the entities comprising documents are
not icons explicitly connected to Knowledge
Representations.

Figure 53 provides a summary of the icon symbology
implicit in the descriptive database. The icon can
symbolize any of a number of concepts in the Knowledge
Representation database because of the association of
the icon with a plurality of record reference numbers.
The implications of the icon association with concepts
in the Knowledge Representation database are the basis
for the novel actions made possible by the invention.
The association referred to is stored in the
descriptive database, disclosed previously, wherein the
icon is associated with references to a plurality of
records in the Knowledge Representation database, and
with the location of said icon within the document
display space. The icon may be interpreted as
representing any of the items associated with the icon
in the Descriptive database. These items are
associated by the domains declarations of the
Descriptive database and of the icon structures in the
Descriptive database.

There are at least nine items which are explicitly
associated with the icon in the Descriptive database.
These nine are enumerated in Column (53a). Each of
these associations can be interpreted as the item
symbolized by the icon. Column (53b) summarizes what
each of these items associated with the icon are that
the icon can be interpreted as symbolizing. Notice
that, of the nine items associated with the icon, six
of them are concept record reference numbers. Two of
the items are entities, comprising either the icon per
se, or a value. The final one is a definition of a

10

15

20

25

30

WO 94/18631

PCT/US94/01037

120

location or region in the display occupied by the icon.
Based on this, it is clear that the icon, generically,
can symbolize three possible types of items: (1) a
concept record reference number; (2) a region or
location in the document display space; and (3)
entities comprising the icon or items dispiayed in the
document display space.

Figure 54 provides a summary of the symbol
interpretation for each of the three types of items
which the icon can symbolize (i.e. location, entities,
or concept record reference numbers). Three icon
interpretations are summarized in Column (54a). Each
of these icon associations can be interpreted in a
variety of ways. The ways in which the associations
can be interpreted are summarized in Column (54b).
Column (54c) indicates a subsequent Figure number
illustrating a flow diagram of programmed means
embodying the corresponding interpretation.

There is only one item for which the icon
symbolizes location, that being the location of the
icon; there are two items for which the icon symbolizes
the entities; and there are six items for which the
icon symbolizes a concept record reference number.

Each of the two possible symbolized entities can be
interpreted in at least the four ways shown in Figure
54. Similarly, each of the six concept record
reference numbers which the icon can possibly symbolize
can be interpreted in at least the thirteen ways
summarized in Figure 54. 1In general, there will be
approximately one hundred possible interpretations for
an icon. 1In specific usage, this range of possibility
is greatly reduced.

The richness of possible interpretation associated
with each icon provides for behaviors within the system

10

15

20

25

30

WO 94/18631

PCT/US94/01037

121

that are without precedent. Such behaviors are based
on the evaluation of the context of *he event and of
the icon to determine which interpretation of the icon
should prevail. When appropriately implemented, such
context evaluation provides the sense to the user that
the computer is anticipating what the user is thinking
about, or reading their mind. This is possible because
of the richness of possible meaning, which is
explicitly enabled by the associations within the
Descriptive database.

Every event handler in the event processing Step
(52b) must determine the interpretation of the event.
This is done by programmed means embodying a decision
tree similar to that illustrated in Figure 55.

Fig. 55 illustrates a standard decision tree for
event processing. This is the type of decision tree
embodied in all standard event-based programs and is
presented to contrast with the means of this invention.
In Step (55a), a plurality of events are defined which
the system will respond to. These events are explicitly
identified by the system developer, and each of the
branches of this decision tree are a test to see
whether the logged event of Step (52a) is one of the
plurality of events known to the event processor. Given
the detection of a known event in Step (55a), then Step
(55b) decides which of a plurality of possible
procedures to invoke in response to the event. In many
cases, the plurality of procedures in Step (55b) is
reduced to a single procedure. However, in general,
‘there are a plurality of procedures, and the specific
procedure that is invoked is a function of the command
history and previous system flags that have been set.
The specific procedure is then determined based on the
command history and system flags that are present.

10

15

20

25

30

WO 94/18631

PCT/US94/01037

122

The means of event processing for this invention
are illustrated :in Figure 56 which shows the
recommended decision tree for icon symbol
interpretation.

Step (56a) is to segregate the interpretation by
view. Each view is designed to show particular
relationships and a subset of concepts linked by those
relationships. Each view document is showing a small
subset of the concepts and relationships present in the
Knowledge Representation database. The icons which
symbolize those concepts and relationships will have
meanings that are intuitively clear to the user.

Each view document will be interpreted by the user as
having specific implicit meanings. The symbols will be
interpreted in relation to these implicit meanings.

The system designer will need to enable specific events
and interpretations based on the users likely
perception of the meaning of the icon, given the
context of the view document. Therefore, the view is a
primary determinant of the méaning of the icons in the
view.

Step (56b) indicates that, given the view, every
view event processor will have a set of interpretable
events. The same considerations as were discussed for
Step (55a), apply to Step (56b). The events of Step
(56b) must be specifically identified and enabled by
the system programmer. For each interpretable event,
the icon will correspond to one of the possible
symbols. In general, the possible associations
symbolized by the icon will be significantly reduced
based on knowledge of the view and the event. In most
cases, knowing the view and knowing the event will
indicate the icon as symbolizing a particular:
association. Step (56d) indicates that an appropriate

10

15

20

25

30

WO 94/18631

PCT/US94/01037

123

procedure or process will be invoked which embodies the
interpretation appropriate to the association
symbolized by the icon. Step (56d) indicates that the
response may consist either of a procedure, which
corresponds to Step (55b), or may consist of a process.
The need for processes in Step (56b) is a
distinguishing feature of this invention in that the
process may be comprised of a recursive call to another
view or may consist of a call to one of the entity
class editors defined for the data types of the icons
and values of the system. A process which is a
recursive call to another view will obviously have an
event processing decision tree similar to that of
Figure 56.

A process that corresponds to one of the editors
will have its own decision tree for event processing
which will be similar to that illustrated in Figure 55.
In this sense, the means of the invention can be seen
as a preliminary step to, or a superset of, the
standard means for event interpretation as embodied in
Figure 55.

In general the processes will in turn provide
additional decision trees for determining the
significance of the event. This stacking of the
decision trees is a distinguishing characteristic of
this invention.

Figures 57 through 72 embody portions of typical
procedures which embody the means for interpreting the
icon symbol. The Figure numbers are associated with
the icon symbol and the interpretation in Column (54c).
The programmed steps illustrated in the figures are the
essence of the plurality of procedures embodying an
interpretation of as association symbolized by the
icon. The figures are not intended to exhibit the

10

15

20

25

30

WO 94/18631

PCT/US94/01037

124

complete specific behavior of a given procedure.
Rather, they are the generalization of the essence of
the procedure. A wide variety of specific embodiments
of the illustrated procedures will be developed by the
system designer to accommodate the various meanings of
the icons in the plurality of views. In the plurality
of procedures comprising Step (56d) there will be many
embodiments of the same procedure, wherein the
specifics of the embodiment are a function the event
which triggers the interpretation, and the association
symbolized by the icon.

The application of the illustrated programmed steps,
which embody the plurality of possible interpretations
for the symbols, are amply illustrated in the preferred
embodiment included in the appendix. Fig. 57
illustrates a typical flow diagram for updating the
active reference based on the user event location.
This is possibly the most frequent use of the icon
location in the processes for interpretation. The
identification of the active distinguishes all of the
information associated with the icon based solely on
the location of the event within the display space.
Step (57a) gets the event location out of the event
log. The event location is typically expressed in
terms of screen coordinates, either as cursor location
or as mouse location. 1In either case, this location
can be matched to the region occupied by the icon.
Step (57b) matches the event location to the location
occupied by the icon to determine which icon the event
occurred within. Step (57c) determines if a match was
found. 1If no match was found, then the event occurred
outside of an icon, in which no update occurs. 1If a
match was found in Step (57c), then Step (57d) updates
the active based on the reference number of the active

10

15

20

25

30

WO 94/18631

¢ , . PCT/US94/01037

125

which the icon represents. Updating the active is the
process of replacing the reference number of the active
concept in the active register. The active register is
a means for recording which concept reference number is
currently active in the view.

Fig. 58 illustrates a flow'diagram for
highlighting entities. This is one of the most
frequent uses of the interpretation of the icon as
symbolizing associated entities. Step (58a) gets the
entities and the location for the active concept. Step
(58b) passes the entity list and the location to the
output display driver, together with the flag for
highlighting. The output then refreshes the screen
with the entities comprising the symbol highlighted.

Fig. 59 illustrates a flow diagram of programmed
means for interpreting icons as system concepts
associated with icon entities. The outcomes of this
process are indicated in Steps (59e), (59h), and (59j.)
The outcomes illustrated are the generalization of the
three possible interpretations for the system concepts
associated with icon entities. 1In specific
embodiments, it is often possible to know a priori that
only one of the three possible interpretations apply.
As such, the process can be simplified to embody the
Bpecific relevant interpretation. Step (59a) is to get
active reference number, Step (59b) is to get the
relationship characterization reference number, and
Step (59c) is to get the icon source reference number.
These three reference numbers will be used as the basis
for determining the system concepts associated with the
icon entities. Step (59d) test to see if the source
reference number is equal to a known system concept.

If the source is a system concept, it indicates that
the icon was derived by a programmed procedure. The

10

15

20

25

30

(B2

WO 94/18631

¢ ‘ PCT/US94/01037

126

system concept that is associated with those entities
is therefore the procedure whereby the icon was
developed for the illustrated concept. As such, the
output Step (59e) will be the source reference number.
If the icon source is not a system concept, then Step
(59f) gets the source library. The source library
reference number will indicate whether the entities
comprising the icon are stored entities.

Step (59g) tests to see if the library equals the
icon library. If the library of the source is the icon
library, that means that the icon entities were a
stored value and the system concept relevant to the
icon is the library class concept associated with the
library and the concept. Step (59h) gets the class
system concept for the source, and Step (59i) outputs
the icon class system concept. The programmed
procedure for determining the icon class system
concepts is outlined in Figure 71, discussed
subsequently. 1If the library is not the icon library,
then the system concepts relévant to the
characterization of the entities must be the
characterization system concepts, which are the system
concepts for the relationship characterization
contained in Step (59b). Step (593j) the procedure for
getting the characterization system concepts is
elaborated in Figure 71, discussed subsequently. Step
(59k) shows that the output will be the
characterization system concepts.

Fig. 60 illustrates a flow diagram for
interpreting an icon as the abstraction associated with
the icon entities. The abstraction associated with the
icon entities is the abstraction associated with the
Pattern Recognition, Storage, and Utilization as
discussed in connection with Figure 1. The

10

15

20

25

30

WO 94/18631

¢ A PCT/US94/01037

127

implementation of the abstractions is an optional
enhancement to the system which the system designer
will, in general, choose to implement because of its
power. The point of this interpretation is to identify
which abstractions may be relevant to the relationships
of the active concept symbolized by the icon.

Step (60a) is to get the active record reference
number, Step (60b) is to get the relationship
characterization, and Step (60c) is to get the
abstraction relationship which applies to the active
and the relationship characterization.

Fig. 61 illustrates a flow diagram of programmed
means for interpreting an icon as an entity editing
procedure. This interpretation will result in calling
the appropriate editor to edit the entities comprising
the icon. The steps illustrated in Figure 61 show a
generalization for determining which of the possible

“editors apply to the entities comprising the icon. 1In

general, the class of editor can be determined promptly
by examination of the data type of the entities, and
therefore a full sequence of test illustrated in Steps
(61c), (61d), and (6le) will not be required. However,
the elimination of the steps in a specific case will
readily occur to the system designer once the
generalization as illustrated in Figure 61 is clearly
understood.

Step (6la) gets the entities and the source of the
entities. Step (61b) typically unreads the event that
triggered the interpretation. This is done so that the

. event may be used within the editor as the first event

for the editing process. This is not always required,
in that it depends on the system designer’s choice as
to the triggering event for the editing sequence. For
example, if a function key, such as <F2> is used to

10

15

20

25

30

WO 94/18631

¢ ' PCT/US94/01037

128

invoke the editor, there is no point in unreading <F2>,
as its entire symbolic significance was the invocation
of the editor. 1If, however, the keyboard is enabled
for invoking the editor, then the user might strike the
letter <A>, intending to insert an 'A’ in the icon at
the current position. 1In such case, the character 'A’
and the position should be unread or fed forward to the
editor, so the 'A’ will in fact be inserted at the
desired position. The editor will control the
modification of the entity list comprising the icon.
Step (61lc) is a test to determine if the icon is
comprised of a data type suitable for editing in the
text editor. If so, the Step (61f) passes the entity
list, source, and the unread event to the text editor.
Step (61d) checks to see if the entity data type is
suitable for processing in the graphics editor. 1If so,
the graphics editor is invoked, and the ehtity list,
source, and the event pass forward to Step (61g) the
graphics editor. The testing may proceed to Step (61le)
which provides for a plurality of additional editors as
required to accommodate the entity classes comprising
the icons supported by the system. Said plurality of
editors will be designed and implemented by the system
designer in accordance with the principles disclosed
for the Knowledge Representation, and each type of icon
will have an associated editor. 1In all cases, the
results of the editor will be passed to Step (61h)
which will replace the entities in the descriptive
database. They may also replace the entities in the
source record in the Khowledge Representation database.
Step (61i) indicates that a flag should be set to
indicate that entities have been updated. This flag
may be used to remind the user at the completion of
activity within a view document that the entities

10

15

20

25

30

WO 94/18631

¢ 4 PCT/US94/01037

129

within the view document have been modified and,
possibly, should be saved to the primary knowledge
representation. This is only applicable if Step (61h)
replaces the entities in the descriptive database,
without updating the Knowledge Representation database.
Fig. 62 illustrates a flow diagram for
interpreting an icon as procedure for transferring view
derivation to the active. Many view documents are
developed relative to a specific concept. Shifting the
concept that the document is developed relative to
will, in general, change the document, even though the
view, the view class, and the document type remain
constant, the specific embodiment of the document will

" be altered based on the concept that is the basis for

the derivation.

Step (62a) is to get the active concept. Step
(62b) is assert ’‘done.’ 'Done’ is asserted to a
register which will be used in Step (52c) as a flag to
proceed with Step (52d) the clearing the view active
and Step (52e) cleaning the descriptive database for
the document. Step (62c) asserts the current view type
with the current active into the active register. This
assertion will provide a redundant assertion of the
active. This is required so that when Step (52d) occurs
and we clear a view active, one of the redundant pair
will be removed, leaving the current redundant pair to
serve as the basis for the view regeneration.

Fig. 63 illustrates a flow diagram of programmed
means for changing a view of the current active. This
is similar to the procedure illustrated in Figure 62,
except that a different view document is being
requested for the active. Step (63a) gets the active
concept. Step (63b) determines choice of views
available from the context of the active. Step (63c)

10

15

20

25

30

WO 94/18631

PCT/US94/01037

130

provides for the selection of a new view for the active
concept. Step (63d) tests to see whether a new view
was in fact selected. In it was then, Step (63e)
update the view and the active and Step (63f) assert
‘done.’ The result of this will be that the next view
and active will be the new requested view of the active
node. Step (63c), in general, will consist of a menu
of views appropriate to the active. Specific code for
developing the menu are included in the microfiche
appendix. In many cases, the triggering event will be
such as to indicate transfer to a specific view that is
a logical view to transfer to, based on the user
profile, and the current view.

Fig. 64 illustrates a flow diagram for
interpreting the icon as a procedure for identifying
library system concepts of the active. It consists of
a single step, which is to (64a) get the library of the
active.

Fig. 65 illustrates a flow diagram for
interpreting the icon as an abstraction associated with
the icon. Step (65a) is to get the reference number of
the symbol, and Step (65b) is to get the abstraction
associated with that reference number. The point here,
is that every symbol potentially has an abstraction
associated with it, which abstraction can be readily
derived based on patterns of reference in the
descriptive database, and within the relationship
storing the abstraction.

Fig. 66 illustrates a flow diagram for
interpreting the icon as a procedure for concept and
relationship editing. The essence of this procedure is
the concept and relationship editor of the Knowledge
Representation database. Step (66a) is to get the
symbol reference number, and Step (66b) is to call the

10

15

20

25

30

WO 94/18631

¢ _ , PCT/US94/01037

131

concept and relationship editor of the Knowledge
Representation database for the symbol reference. A
general call to the concept and relationship editor
will result in a menu of relevant editing operations
which may be performed with respect to the referenced
concept. The call to the editor of Step (66b) in
specific procedures may bypass this menu function and
directly call the desired editing process.

Fig. 67 illustrates a flow diagram for
interpreting an icon as an external procedure.

External procedures are considered to be programs
outside of the invention. Such external procedures can
readily be represented within the Knowledge
Representation database, and transfer to such external
procedures may occur through the process illustrated in
Fig. 67. Step (67a) is to get the symbol reference
number. Step (67b) is to get the filename associated
with symbol reference number. The filename will be
stored as an attribute within the relationships
applicable to the concept of the symbol. Step (67c)
gets the external procedure, which will be stored as a
value of a relationship within the symbol applicable to
the symbol. Step (67d) is to execute the procedure for
the file as appropriate to the external procedure. The
essence is that both the filename and the procedure can
be stored as relationships for the symbolized concept.
This enables significant flexibility for the Knowledge
Representation to include knowledge of other computer
programs, systems, and files.

Fig. 68 illustrates a flow diagram of programmed
means for interpreting an icon as the ancestry context.
The ancestry context is the series of parents in the
'parent’ fundamental relationships applicable to the
concept. Step (68a) gets the symbol reference number,

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

132

Step (68b) reads the symbol ancestry, and Step (68c)
outputs the ancestry. The output is typically used to
report information about the ancestry context. For
example, in the preferred embodiment, the ancestry
context is concatenated and displayed in the top line
to indicate the context of the currently active item in
the view document.

Step (68b) is a call to the corresponding function
of the Knowledge Representation database. Essentially,
Step (68b) consists of reading the parents of the
symbol, reading the parents of the parents, and so
forth until the root record is read. The resulting
collection of record reference numbers are then
consolidated in a sequential list indicating the
ancestry of the current concept.

Fig. 69 illustrates a flow diagram for
interpreting an icon as the descendants context. This
is similar to interpreting the symbol as the ancestry
context, with the exception that the fundamental
relationship that is used as the basis for establishing
the descendants is the children rather than the
parents. The illustrated procedure is for a chain of
single children. This procedure can be readily
elaborated to the case of multiple children, just as
Fig. 68 can readily be elaborated for the case of
multiple ancestry.

Step (69a) sets the next equal to the symbol
reference number. Step (69b) gets the children of the
next. Step (69c) checks to see if the children list is
nil. If it is, it means that there are no descendants,
and thus the process is done. If it is not nil, then
Step (69d) adds the children record reference numbers
to the output list. Step (69e) set next equal to the
child, at which point the process returns to Step (69b)

10

15

20

25

30

WO 94/18631

‘ ‘ _ PCT/US94/01037

133

to get the subsequent children. The consolidation of
children record referance numbers in the output list
means that when Step (69c) does indicate that the
process is done, the output will be contained in the
output format. Output may either be a list, or some
type of database assertions.

Fig. 70 illustrates a flow diagram for
interpreting an icon as the type context. The type
context is established by the fundamental relationship
of type between a project and a component. It is
applicable only to symbols which are project concepts.
Equivalent interstrata relationships will establish an
equivalent context for other propagations.

Step (70a) is to get the symbol. Step (70b) reads
the symbol record’s type. Step (70c) outputs that
type. Step (70b) reading the symbol type is
accomplished by means of the Output operations of the
Knowledge Representation database.

Fig. 71 illustrates a flow diagram for identifying
the attribute class concepts for active attribute user
concepts. This provides the interpretation of the
symbol as the attribute class context of the symbol.
Step (71a) is to set next equal to the symbol reference
number. Step (71b) is to read the parents of next.
Step (71c) then checks to see if the parents include
the attribute library system concept. If so, then the
reading process Step (71g) is done. Step (71d) checks
to see if the parent is a system concept. The
attribute class concepts will be descendants of the
attribute library concept. Therefore, if the parent
symbol is not the attribute library (as determined in
Step (71c)) but it is a system concept (as determined
in Step (71d)) then it is a attribute class concept.

10

15

20

25

30

WO 94/18631

¢ _ PCT/US94/01037

134

Attribute class concepts are to be saved in Step
(71e) by adding the parents to the attribute class
list. Step (71f) then continues by setting next equal
to the parent, which then returns to Step (71b) to read
the next parents.

Fig. 72 illustrates a flow diagram for
interpreting the icon as the user connection context.
This is similar to the processes used to determine the
other contexts wherein we are determining the
relationships maintained by the concept. Step (72a) is
to get the symbol reference number. Step (72b) is to
look at the descriptive database to determine if there
are any user relationships present in the descriptive
database for the symbol. If there are no next _
relationships, then the process is completed. If there
is a next relationship, then Step (72c) checks to see
if the next relationship should be output as one of the
user relationships. Step (72c) may include
constraining which of the user relationships to output.
For example the user relationships to be output may be
restricted to those which indicated wire connections.
Such restrictions are implemented by the system
designer, and the test of Step (72c) is a test to
determine if the user relationship is to be part of the
user context to be reported in the output. If it is,
the Step (72d) adds that next relationship to the
output and the process cycles back to Step (72b) to
determine if there are any additional relationships in
the descriptive database.

The invention having been thus described, it will
be apparent that the same may be varied in many ways
without departing from the spirit of the invention.

Any and all such modifications are intended to be
covered by the following claims.

WO 94/18631 . ¢ . PCT/US94/01037

135

WHAT IS CLAIMED IS:
1. A method for representing information in a computer
system, comprising the steps of:
providing in said computer a knowledge
representation database made up of individual records,
wherein each record is associated with a unique
reference number (URN) by which each record is
identified and wherein each record stores at least one
relationship comprised of a characterization and a
value,
the characterization of said
relationship being a URN of a second record
which defines the nature of said
relationship, and
the value of said relationship being a
complex data representation composed of at
least one internal value, external value, or
mixed value which define the object of said
relationship,
internal values storing only URNs of
other records,
external values storing external data
such as character strings, integers, real
numbers, etc., and
mixed values storing a combination of
internal and external values;
providing an index to said knowledge
representation database made up of the name of each
record together with its associated URN, wherein the
name of the record is an external value of a
relationship stored therein which designates that
external value as the "name" of a concept represented
by that record;

35

40

45

50

55

60

65

WO 94/18631 - . | PCT/US94/01037

136

establishing, for each record in said knowledge
representation database, fundamental relationships
between said record and other records in said database,
said fundamental relationships being comprised of
intrastratum relationships which store
URNs of other records on the same strata or
level of abstraétion designated as separate
libraries within the knowledge representation
system, said intrastratum relationships being
designated as parent and children
relationships which identify the record in
which they are stored as a member of that
library, and
interstrata relationships which store
URNs of other records in different strata or
libraries, said interstrata relationships
being designated as Type record relationships
which identify the record in which they are
stored as a particular instance of records in
another stratum or library;
designating certain records as system concepts by
storing the URNs of said certain records in a system
concept index to said database reserved for records
which represent system concepts of said knowledge
representation database,
system concept records being records
which are used as termination points of
networks of said fundamental relationships
and which are recognized by the system by
determining whether the URN or the name of a
particular record is in said system concept
index, wherein
system concept records designating
strata or libraries (such as System,

70

75

80

85

90

95

100

WO 94/18631

. v _ PCT/US94/01037

137

Attribute, Component, and Project) are the

termination of parent fundamental

relationships,

system concept records designating

attribute classes (such as Assignment,

Connection, Non-Binding, Rules, and External)

are the termination of parent fundamental

relationships for records which are

descendants thereof and which store the URN

of the Attribute library system concept as a

parent relationship, and

system concept records designating

attribute properties (such as Name, Data

Type, Field Length, and Prompt) are the

termination of relationship characterization

networks,

said system concepts being required to store only
fundamental relationships;

storing within each record comprising the
Attribute library at least one relationship which is
characterized by a URN of an attribute property system
concept record, wherein said at least one relationship
stores the value of the name of the concept represented
by that record;

storing within each record comprising the
Component library at least one relationship which is
characterized by a URN of an Attribute library record,
wherein said at least one relationship stores the value
of the name of the concept represented by that record;

storing within each record comprising the Project
library at least one relationship which is
characterized by a URN of a Component library record,
wherein said at least one relationship stores the value

‘of the name of the concept represented by that record;

WO 94/18631 A ¢ _ PCT/US94/01037

138

providing in said computer system at least one
editor for modifying the records and relatiounships
stored in said database, including means for
recognizing patterns in the relationships stored in
105 said records;
storing said recognized patterns as relationships
in the records associated with the recognized patterns;
establishing an additional class of system concept
records to identify relationships storing values that
110 define said recognized patterns, wherein each of said
additional class system concept records represent
particular types of patterns in said relationships;
utilizing said stored patterns in the operation of
said at least one editor by reading relationships
115 storing patterns predetermined to be relevant to said
at least one editor and using the values of said
relationships in limiting the operation of said editor,
said relationships storing patterns relevant to said
editor being identified by the characterization of said
120 relationships as system concepts identified by the
system as being relevant to said editor;
providing in said computer a descriptive database
for describing an active concept record designated by a
user, comprised of a plurality of records each of which
125 stores a single relationship having an associated URN
for said active concept record, and an associated URN
for a source record in which said relationship is
stored,
the URN for said active concept being
130 the URN of the record in said knowledge
representation database for which the
description in the descriptive database is
assembled, and

135

140

145

150

155

160

165

WO 94/18631

. o PCT/US94/01037

139

the URN for said source record being the
URN of that record in said knowledge
representation database in which said
- relationship is stored;
reading a descriptive network for said active
concept by reading all records in said knowledge
representation database forming a network of related
records through the fundamental relationships of parent
and type, combining the relationship lists from said
read records, and storing said relationships from said
read records in said descriptive database,
said relationship lists being combined
by applying Taxonomy, Type, Composition and
User inheritance rules,
said relationships being stored in said
descriptive database together with the URN of
said active concept and the URN of said
source record;
selecting a view, class and type of display for
said active concept and deriving the selected type of
display by assigning icons to the records representing
concepts in said descriptive database according to the
type of display selected, orgahizing and locating said

~ icons in a display space of said computer according to

the selected class, and creating connection icons for
interconnections between concept icons located in said
display space according to the selected view; and

providing user interaction with said knowledge
representation database through interaction with said
icons in said display space and evaluation of said icon
interaction through the use of decision trees for
evaluation of the view, command history, system flags,
and icon association for identification of appropriate
responses to said icon interaction.

10

10

WO 94/18631

‘ . PCT/US94/01037

140

2. The method for representing information in a
computer system according to claim 1, further
comprising the step of establishing at least one
optional user relationship in the knowledge
representation database by specifying a user defined
Attribute other than a system concept, and storing said
user defined Attribute as a record in said knowledge
representation database, wherein the URN of said user
defined Attribute is stored in records having said user
defined Attribute as the characterization of a
relationship stored therein.

3. The method for representing information in a
computer system according to claim 1, further
comprising the step of providing in said computer
system a plurality of editors for modifying the records
of said database and relationships stored in said
records, wherein said editors enable users to create,
read and replace information in each of the records in
the knowledge representation database, and enable users
to identify and store relationships in the records in

‘the knowledge representation database by specifying the

characterization and value of a relationship and
storing the specified relationship in a record.

4. The method for representing information in a
computer system accor&ing to claim 1, wherein said
patterns in said relationships are comprised of
recurring correlations in values of fundamental
relationships in Project library records, and recurring
correlations in values of user relationships in records
of the Project and Component libraries.

5. The method for representing information in a
computer system according to claim 4, wherein patterns
recognized in Project library records are stored in the
component record represented by the URN stored in the

10

10

15

WO 94/18631

‘ ‘ ' PCT/US94/01037

141

type fundamental relationship of said Project records
or in a parent record of said component record, and

wherein patterns recognized in Component library
records are stored in the component record in which
they are first identified or in a parent record of said
component record;

the characterization of the relationship storing
the recoghized pattefn being designated as a system
concept.
6. The method for represenfing information in a
computer system according to claim 1, further
comprising the steps of:

evaluating a natural language user input
expression by sequential application of an augmented
transition network parse based on identification of the
function of a recognized expression in said knowledge
representation database, and by parsing by differences
based on the evaluation of said recognized expression
and said identified function;

wherein a recognized expression corresponds to a
name associated with a record in the knowledge
representation database, and the function of a
recognized expression is evaluated by identifying the
system concepts in a descriptive network of recognized
expressions. '
7. The method for representing information in a
computer system according to claim 6, further
comprising the steps of dynamically defining concepts
not found in said knowledge representation database and
adding said defined concepts to the knowledge
representation database in a particular location within
a particular library through evaluation of said input
expression as a constraint on the fundamental
relationships of said dynamically defined concepts.

10

15

WO 94/18631

PCT/US94/01037

142

8. The method for representing information in a
computer system according to claim 6, further
comprising the steps of coordinating the derivation of
appropriate views of the information in the knowledge
representation database in response to said natural
language user input expression through evaluation of
the input expression for specifying the active concepts
and selected appropriate view, class and type of
display for response to the input expression.
9. A method forbrepresenting information in a computer
system, comprising the steps of:

providing in said computer system a knowledge
representation database made up of individual records,
wherein each record is associated with a unique
reference number (URN) by which each record is
identified;

storing in each of a plurality of records of said
knowledge representation database the URN of at least
one other record of said knowledge representation
databaée; and

providing means in said computer system for
automatically deriving a human understandable format
for displaying information contained in said records
through reading and evaluation of said stored URNs.
10. The method for representing information in a
computer system according to claim 9, further
comprising the step of storing in at least one record
the URN of a second record with said second record
storing the URN of said at least one record.
11. The method for representing information in a
computer system according to claim 9, wherein each
record of said database stores a plurality of

10

15

20

WO 94/18631

. , PCT/US94/01037

143

relationships, said relationships being comprised of a
characterization and a value,
the characterization of said relationship being a
URN of a second record which defines the nature of
the relationship, and
the value of said relationship being a complex
data type comprised of internal, external and
mixed values which define the object of a
relationship,
internal values storing only URNs of other
records and,
external values storing values other
than the URNs of other records such as
character strings, integers, real
numbers, etc., and
mixed values storing a combination of
values typical of internal and external
values.
12. The method for representing information in a
computer system according to claim 11, further
comprising the step of storing in at least one record a
relationship that has the URN of a second record as an
internal value and storing in said second record a
relationship that has the URN of said at least one
record as an internal value.
13. The method for representing information in a
computer system according to claim 9, wherein each
record is also associated with a name by which each
record is identified.
14. The method for representing information in a
computer system adcording to claim 11, further
comprising the step of naming each record by storing a
designated name of thereof as an external value of a
relationship in each record.

WO 94/18631

PCT/US94/01037

144

15. The method for representing information in a
computer system according to claim 11, further
comprising the step of providing an index to said
knowledge representation database made up of a name of
each record together with its associated URN, wherein
said name is a designated external value of a
relationship stored therein as being the name of a
concept represented by that record.

16. The method for representing information in a
computer system according to claim 15, further
comprising the step of designating certain records as
System Concepts in a system concept index to said
database, said system concepts being recognized by the
system by determining whether the URN or the name of a
particular record is in said system concept index.

17. The method for representing information in a
computer system according to claim 16, wherein System
Concepts. designating strata, levels of abstraction, or
libraries (such as System, Attribute, Component, and
Project) are defined.

18. The method for representing information in a
computer system according to claim 16, wherein System
Concepts designating attribute classes (such as
Assignment, Connection, Non-Binding, and External) are
defined.

19. The method for representing information in a
computer system according to claim 16, wherein System
Concepts designating attribute properties (such as
Name, Data Type, Field Length, and Prompt) are defined.
20. The method for representing information in a
computer system according to claim 16, wherein system
concepts designating pattern storage characterizations
(such as Children, Node Name Attr, Parent, Use Isa
Name, Concat Attrs, Os Path Name, Sibling Inc, User

10

15

20

WO 94/18631

¢ A PCT/US94/01037

145

Text, Connect To, Linear, Multiple, and Single) are
defined.
21. The method for representing information in a
computer system according to claim 11, further
comprising the steps of:
establishing, for each record in the knowledge
representation database, fundamental relationships
between said record and other records of said knowledge
representation database, said fundamental relationships
being comprised of:
intrastratum relationships which store URNs
of other records on the same strata or level of
abstraction designated as separate libraries
within the knowledge representation system, said
intrastratum relationships comprised of parent and
children relationships, and
interstrata relationships which store URNs of
other records in different strata or libraries,
said interstrata relationships being comprised of
Type relationships which identify the record in
which they are stored as a particular instance of
records in another stratum or library.
22. The method for representing information in a
computer system according to claim 11, further
comprising the step of establishing at least one
optional user relationship stored in at least one of
the records in the knowledge representation database by
specifying a user defined Attribute that is not a
system concept and storing the URN of said user defined
Attribute in said at least one record as the
characterization of said optional user relationship.
23. The method for representing information in a
computer system according to claim 9, further
comprising the step of providing in said computer

10

10

WO 94/18631

PCT/US94/01037

146

system a plurality of editors for modifying the records
of said knowledge representation database and
information stored in said records, wherein said
editors enable users to create, read and replace
information in each of the records in the knowledge
representation database.
24. The method for representing information in a
computer system according to claim 11, further
comprising the step of providing in said computer
system a plurality of editors for modifying the
relationships stored in said records of said knowledge
representation database, wherein said editors enable
users to identify and store relationships in said
records in said knowledge representation database by
specifying the characterization and value of a
relationship and storing said relationships in at least
one of said records.
25. The method for representing information in a
computer system according to claim 11, further
comprising the step of providing in said computer
system a plurality of editors for that enable users to
create a new record in said knowledge representation
database, said editors including means for establishing
appropriate fundamental relationships of said new
record to other records in said knowledge
representation database and storing said fundamental
relationships in said new record.
26. The method for representing information in a
computer system according to claim 24, wherein
relationships are created further comprising the steps
of:

identifying the characterization of a relationship
pertinent to a given record;

10

10

10

WO 94/18631

¢ _ PCT/US94/01037

147

designating the record in which said
characterization is to be stored, wherein said
designated record is either said given record or one of
its taxonomy ancestors; and

storing said characterization in said designated
record in a relationship with a nil value.
27. The method for representing information in a
computer system according to claim 24, wherein
relationships are edited further comprising the steps
of::

identifying the value to be edited;

identifying the source record of said value to be
edited, wherein said source record is the record in
said knowledge representation database wherein said
value to be edited is stored;

modifying said value to be edited to obtain a new

- value; and

replacing said value to be edited in the
relationship in said source record in which said value
to be edited is stored with said new value.
28. The method for representing information in a
computer system according to claim 11, further
comprising the step of: ’

providing in said computer system a descriptive
database for describing an active concept record
designated by a user, comprised of a plurality of
records each of which stores a single relationship
having an associated URN for said active concept
record, and an associated URN for a source record in
which said relationship is stored,

the URN for said active concept being the URN

of the record in said knowledge representation

database for which the description in the

descriptive database is assembled, and

15

10

15

WO 94/18631

¢ _ PCT/US94/01037

148

the URN for the source record being the URN
of that record in the knowledge representation
database in which said relationship is stored.
29. The method for representing information in a
computer system according to claim 28, further
comprising the steps of:
reading a descriptive network for an active
concept in the knowledge representation database
forming a network of related records through the
fundamental relationships of parent and type, combining
the relationship lists from said read records, and
storing the said relationships from said read records
in said descriptive database,
said relationship lists being combined by
applying inheritance rules comprised of Taxonomy,
Type, Composition and User inheritance,
each relationships comprising said
relationship list being stored in said descriptive
database together with the URN of said active
concept and the URN of source record, wherein said
each relationship is stored in the Knowledge
Representation Database.
30. The method for representing information in a
computer system according to claim 29, wherein Taxonomy
inheritance rules define manners of combining the
relationship list in the series of records linked
through the parent fundamental relationship for
component and attribute library records.
3l1. The method for representing information in a
computer system according to claim 29, wherein Type
inheritance rules define manners of combining the
relationship list in the component records identified
by the URNs stored in the type fundamental relationship
of a project record.

WO 94/18631 - o _ ' PCT/US94/01037

149

32. The method for representing information in a
computer cystem according to claim 29, wherein
Composition inheritance rules define manners of
combining the relationship list in the series of
records linked through the parent fundamental
relationship for project library records.
33. The method for representing information in a
computer system according to claim 29, wherein User
inheritance rules define manners of combining the
relationship lists in a series of records linked
through the URNs stored as internal values in
relationships stored in said records.
34. The method for representing information in a
computer system according to claim 24, further
comprising the steps of:

providing in said computer system means for
recognizing, storing, and utilizing patterns in the
records and relationships created by said modifying
editors; and

recognizing the patterns in the records and
relationships by recording the plurality of URNs of
records and relationships created by one of said
editors and determining whether said URNs are typical
of the operation of said one of said editors in |
modifying said records and relationships.
35. The method for representing information in a
computer system according to claim 34, wherein said
patterns in said relationships are comprised of
recurring correlations in values of fundamental
relationships in Project library records, and recurring
correlations in values of user relationships in records
of the Project and Component libraries.

10

10

WO 94/18631

. | PCT/US94/01037

150

36. The method for representing information in a
computer system according to claim 34, further
comprising the steps of:

establishing system concepts to characterize
relationships storing values that define recognized
patterns established by said one of said editors,
wherein each of said system concepts identify
particular types of patterns created by said one of
said editors; and

storing relationships characterized by said system
concepts in relevant records comprising said knowledge
representation database.
37. The method for representing information in a
computer system according to claim 35, wherein patterns
recognized in Project library records are stored in the
component record represented by the URN stored in the
type fundamental relationship of said project records
or in a parent record of said component record, and
wherein patterns recognized in Component library
records are stored in the component record in which
they are first identified or in a parent record of said
component record;

the characterization of the relationship storing
the recognized pattern being designated as a system
concept.
38. The method for representing information in a
computer system according to claim 34, further
comprising the steps of:

identifying the relevant relationship storing said
stored pattern as a value;

reading said relevant relationship; and

using the pattern stored within said relevant
relationship within the operation of said one of said
editors.

10

15

WO 94/18631

PCT/US94/01037

151

39. The method for representing information in a
computer system according to claim 16, further
comprising the steps of:

evaluating a natural language user input
expression by sequential application of an augmented
transition network parse based on identification of the
function of a recognized expression in said knowledge
representation database, and by parsing by differences
based on the evaluation of said recognized expression
and said identified function;

wherein a recognized expression corresponds to a
name associated with a record in the knowledge
representation database, and the function of said
recognized expression corresponds to the system
concepts in a descriptive network of said recognized
expressions.
40. The method for representing information in a
computer system according to claim 39, wherein the
recognition of the user input expression occurs by
matching the input expression to names of records in
said knowledge representation database and associating
with said input expression the library system concept
in the parent fundamental relationship of said records.
41. The method for representing information in a
computer system according to claim 40, further
comprising the steps of dynamically defining concepts
not found in said knowledge representation database and
adding said defined concepts to the knowledge
representation database in a particular location within
a particular library through evaluation of said input
expressions as a constraint on the fundamental
relationships of said dynamically defined concepts.
42. The method for representing information in a
computer system according to claim 40, further

10

10

15

WO 94/18631

. _ PCT/US94/01037

152

comprising the steps of coordinating the derivation of
appropriate documents from the information in the
knowledge representation database in response to said
natural language user input expression through
evaluation of the input expression for specifying the
active concepts and selected appropriate view, class,
and type of display for response to the input
expression.
43. The method for representing information in a
computer system according to claim 18, further
comprising the steps of:

reading the relationships stored in a designated
active concept record and identifying the attribute
class concepts of the characterizations of said
relationships;)

identifying relevant documents to said record by
comparing said identified attribute class concepts to
system concepts known by the system to be associated
with the types of documents which the system can
automatically derive;

selecting from said identified relevant documents
a specific document for display of said record;

deriving said specific document; and

displaying said specific document.
44. The method for representing information in a
computer system according to claim 43, wherein the step
of deriving a specific document includes the steps of:

selecting a view, class, and type of display for
said active concept record;

automatically deriving the selected type of
display by reading a subset of the records in said
knowledge representation database relative to said
active concept record, based on stored relationships

10

15

WO 94/18631

. ‘ PCT/US94/01037

153

therein, which subset defines the concepts constituting
said selected type of display;

assigning icons to said subset of the records
according to said selected type of display;

organizing and locating said icons in a display
space of said computer system according to said
selected class; and

creating connection icons for interconnections
between concept icons located in said display space
according to said selected view.
45. The method for representing information in a
computer system according to claim 44, wherein the type
specifies particular procedures for selecting a subset
of the information in said knowledge representation
database, reading the descriptive networks for the
concepts in said subset, and assigning icons to the
concepts in said subset.
46. The method for representing information in a
computer system according to claim 44, wherein the
class identifies the relevant types and specifies
particular procedures for organizing and locating the
icons of the concepts in said display space.
47. The method for representing information in a
computer system according to claim 44, wherein the view
identifies the relevant classes and specifies
particular procedures for creating icons for the
relationships between the concepts located in the
document display space.
48. The method for representing information in a
computer system according to claim 11, further
comprising the steps of:

providing means for user interaction with said
knowledge representation database through interaction
with a display of said computer system;

10

15

20

25

WO 94/18631

PCT/US94/01037

154

selecting a view, class, and type of display for a
designated active concept record and automatically
deriving the selected type of display by reading a
subset of the records in said knowledge representation
database relative to said active concept, based on
stored relationships therein, which subset defines the
concepts constituting said selected type.of display;

assigning icons to said subset of the records
according to said selected type of display;

organizing and locating said icons in the display
space of said computer system according to said
selected class, and creating connection icons for
interconnections between concept icons located in said
display space according to said selected view;

detecting user interaction with the icons in said
display space;

evaluating said icon interaction through the use
of decision trees for evaluation of the view, command
history, system flags, and icon association for
identification of the appropriate process or procedure
for response to said interaction; and

applying said appropriate process or procedure for
response and developing a response to said interaction.
49. The method for representing information in a
computer system according to claim 48, wherein said
icon is interpreted as the entities comprising said
icon.

50. The method for representing information in a
computer system according to claim 48, wherein said
icon is interpreted as the location in said display
space occupied by said icon.

51. The method for representing information in a
computer system according to claim 48, wherein said

WO 94/18631 N PCT/US94/01037

155

icon is interpreted as one of the plurality of URNs
associated with said icon.
52. A method for representing information in a
computer system, comprising the steps of:
providing in said computer system a knowledge
representation database made up of individual records,
wherein each record is associated with a unique
reference number (URN) by which each record is
identified and wherein each record stores at least one
relationship comprised of a characterization and a
value,
the characterization of said
relationship being a URN of a second record
which defines the nature of said
relationship, and
the value of said relationship being a
complex data representation composed of at
least one internal value, external value, or
mixed value which define the object of said
relationship,
internal values storing only URNs of
other records,
external values storing external data
such as character strings, integers, real
numbers, etc., and
, mixed values storing a combination of
internal and external values;
designating certain records of said knowledge
representation database as System Concepts by including
the names and associated URNs of said certain records
in a System Concept index to said knowledge
representation database provided in said computer
system;

35

40

10

15

20

WO 94/18631

PCT/US94/01037

156

creating user defined records based on said System
Concepts, and storing said user defined records in said
knowledge representation database, wherein at least one
user defined record stores therein the URN of a System
Concept as a relationship thereof, and wherein all of
said user defined records store therein the URN of
least one other record in said knowledge representation
database; and

deriving comprehendible information through
evaluation of relationships stored in said records of
said knowledge representation database and recognition
of System Concepts through consultation of said System
Concept index.
53. A method for representing information in a
computer system, comprising the steps of:

providing in said computer system a knowledge
representation database made up of individual records,
wherein each record is associated with a unique
reference number (URN) by which each record is
identified and wherein each record stores at least one
relationship comprised of a URN to a second record,
said stored relationships constituting a knowledge
network conceptually interconnecting said records of
said database in said computer system so as to yield
comprehendible information; and

deriving comprehendible information by designating
a record in said database as an active record,
assembling in said computer system all records related
to said active record by reading relationships stored
in said active record, and deriving information about
said designated active record by evaluating said
assembled records, which information can be retrieved
from said computer system by a user of said system.

PCT/US94/01037

WO 94/18631

1/71

_

_

*

|

|
I

|A—'| —_— e e e —— — NyomiaAN

SIvend0Qq P4 N19novigy I_
N Z & | 2 NOTIdL /P ISAVL IY
DoAY Rt] SovIYIANT wutu«ukluz B0 BIMONA iy _
#3550 23sn Y35 Sa|HLIM BowIIunT
YIsn wox SNUIW NWE
N Ce e e % i ! rvinﬁ |_
M3 IA M3ITA MITAT gar] 1 SYyorxa3 _

JIHSNOTIVIIY o
ANY LdI>MN0D _

— s T]

»

LITXD
W AaALsAS €
dsvavivqg
- » IAXIdIYDOSAQg
gnipipd s ANIwW DOy NYW]
W3LsAS > M3 TA _ - - - - Il_

NMOILVLINISIVIIY I9931morny FINVATIUINNT
FHL o SIVIWAS0d 30 ALAIIVYnd y e+ |aznsmozivaay 3AvS
INTATHAG RIWITAWwwOLNY Yoo SNVYIW (P) — X spoXayyado

A . e _

JovayIand _ — -)
_ IOWNINVT pYaLbIy _
e e e IIA.IIY— LndLno ANoNT

L —L

| NOTLYI ;553U IY _ SMoTav¥3d0 _
3DaRTmony DHL HATIM 3ov3¥34NT _’ quo2iy
T s 3oVNIviw] WP NLIYN Yoy SnyIw NUNI._ —_— —_— . e— | _
I 90o3 Y | 3Isvaviva _
WAETRUY | NOTLWANISIYdIH
_ _ 3903 1MONY _

HMOXLraAXIITAN ANy IO UDLS
_.I\Zou.;zeauwx NYIirod Woy SHYIW (]) _ NOTUVANIGIYUIIY FDPAIIMONY Yos SNyIW QN._

FIGURE |
"SCHEMATIC DILAGRAM OF COMPUTE RTZED MERNS

FOR THOUGHT PROCESSTANG

PCT/US94/01037

WO 94/18631

2/71

3svavLvo
NOTLWATSIVIIA FP7FIFWNONA SHL 4O NOILYANIWIVAuT Yoy IV LINS

ANDNNOYIANT LANIWDOIINATg . Uoy SUINIwWwININDIYy WWNWI NI

Z ayn=oIxd

HLONI] OVYos33y £DTALSIY LON AINGHS LNFWHNOHITANT
FoAd vibd Avod3IY XIWJwo> IIMGWHNI 0InoHS LINEFSINOIIANT

Isv8uiva INL NI 509YCIIY ML OL XIONT NV FJUwIYS> o4 Igy

T(S)XIINI O31WI>085ty oMy
S50Yo>3y 3ISv8wivd NI »38wWaN 3IOM3Y¥IIIY IYodsS ol QY

QPES Y 14I0I HLIM QIAVIIOSSY AMNINULAYIG ¥IEWAN 37N3IVTI3Y

QYo23d H>03 wod 318vI1IWAYy YIBwaN IONIYIYIY INBINDN

(£
(3)
(P)

(27

(97
(%)

WO 94/18631

Q) .

CounmcEpr Ruw
RECATIgISZP

PCT/US94/01037
3/71

()
KNowLEps &
REPRESEN TATLON
DRATABRSE

M — (;b)Rscano»- —[
' Ofit»:tmt

Qurpur !
Lid

L T2 - —

Eprror

- .} . DEs¢crzPTIVE
< Parngmsc
_Frevees 3. _ __ ____. el

SCHEM
Kuaow

RTIC Scukmsmnry OF THE AERMS LoR
(EPE REPRESENTATION

SOTLULINAWIFIWIWIT O Fgriwnmodrsy ST STi|
iSB7Td FwITLIoW NI OBUINIHDIAINT
58 Avw A0 riwvirnIsIvday Fo081mony

PCT/US94/01037

WO 94/18631

4/71

Hh Funord

-
n..uv.u‘\..“mq ..

i T B
b |
S¥ 913D oory] .
Terozizosy o - l._ m
. L]) H
) boLeo o \ ' \
' YR | L -
~ o -— .f \m _
A !/ M '
\ jl-/
Ispavivg Agyi10d X2ary
s & He £
£>3C0¥4 >3 0dd Lum&w%
| dd
./{'_
ISKFFwivd Jsyavaiyg .
A Q wRany
423 coYd 123Co0yd A
2T Loud

IsvEviea

ArNP _
~poyINKE :
™ (®) :

(9>

PCT/US94/01037

WO 94/18631

5/71

Biw 1938202 A SN
SATIHSNOZUYIRY FAVYINLNOD o SINTWA NI S3IoNwAIATY

S 3Ynoxy _
i
(Y _\«Einup_ o
((511~.721.)2 an) A (5115 012)7 STZ) A L _
st~ &) 5 e (G2
a ! _ ‘
(P} % __
QI\A(I_\ S
L YiLy ' : 2 Yiiy

(9)

3
’

WO 94/18631

6/71

PCT/US94/01037

I, —
//Strata of Abstraﬂtlon // =
ey //// / 835!
VN
// /Eomponentf// //LAttrlbute/ / =1
E L l | Various ‘:D___l
'ﬁ | L Attribute Classes
et R D B
- | O et
BN Bl iz 1]
o o | | '\!\!\!>—><> ng,
— - — — > a0
T | | i T
(N S IO N P<|—=a 8L
S -
o - SEReR
[S . ___A__lL_ =X |
LEGEND
(A) Properties KIRAXRA
(B) Strata VA
(C) Attribute Classes NN
(D) Code
(E) User Concepts .
(F) Relationship Characterization
(G) Intrastratum (Taxonomy) ————
(H) Intrastratum (Composition) -----------
(I) Interstrata —_—————
(J) Internal Value ———m

Figure. 6

Illustration of the orginization of records
in a knowledge representation database.

WO 94/18631

7/71

PCT/US94/01037

Ue
, 8
—Aﬂnﬂlnnun-FZ rﬂhﬂlv matrurment PCe
- Cadie ~ -3 r
r~ Asmgnment = Drowngs « >
) I~ Srocess Controi= b
i & Soitwore « e ~
! . £5
Oata m-tg F‘-E‘A‘YL
AV
' Fov
3 (- ANSI iatrument ~ F :»!
Do ¥
Pipe: L] v 4
Py n
H i)
10 F.. e Y]
&r o FATH &
. £ v
7. “ Flaid INStrument ——— o
8 I~ NS Laoco= N ..-t :§
e [~ Buildngs = Sotatite mutrument Meuse tuy
10~ = 24
:?' (a4
Digitel =y Oigried mout = P 8 te PE
o £ ae To S TR
= “+= Camoassmion - Pows L
- ~ s
tc«ne;;n M: Pow= =i/0 e :.a - Tev
Ruies Ruies Pow Shistd ot nout e
-Cn.w-'——1:nn Cait « Core L3 T ac
Hoosers - = Orowwnge = o ey =TT
Avadery AFO00 I xy
[' T + Core ...gc
Oete iupwwey =
I~ Candustar =t~ Pow «
Power Line =
Wew -
Cannacters =
i T
P Eoomat T iuvro0s
I Pongt ~t+ Ponai2 ToU20-02
Penen «
Octe Logger -
[~ Procass <= 1/0 Bey
:ﬁ:: Magute
TMAGING w=d = Auserser t:lo lormwnas
= Asley 13 Terrnes
=Tewenel Sirip <= 14 Termmnen
t Conneoter Pin Term
TOC Tervwnewen
= ow
P Moaheresl < Moter
= Pave
(- dree
:cnn-1n
Ouotay /D 8
res C -
Orowngs == 00 0
Fid .1: P& £ r~ Cabien =
Nerunemtsten Wrng “i= Seftwre <
Juncuen Sex 't:... -

"= Projects = Freject Aem 20 e 2400 =

24-PC. 302

26=m2 333
r~ 2-1-377

24=Tv-328

248302
- s
Codine 0000
241328 -E§°°°1
0002
= natrument Wiring 0003
wres 0000
0001
= Junetion Gou = 20-TBA=22 0002
Semer e TBY 1060 0003
"“""'I::r-nlln-l-n JOPO0-80
T itao-s0
m302
=
32
. -
!ﬂJ-1:: 1303

T3
Nn3274
il =55

328
328 -E nizea
a2

= Termingl Qew «w= TOFP-12

Figure 7

TITTTITTTTT
i
.

i
§

= Veanse = Tarw == Firary

LEGEND

(a) =—— Taxonomy
(b) === Composticn

llustration of library structure used
in knowledge representation.

PCT/US94/01037

WO 94/18631

8/71

FOXTLSIYIUAOHYGHD WibMUIS G AVUMMiMnNS

g zaynord4

w
|
|
|

UrIrvodNDY @
SorprisrT .

SIMOLi 2040,
o Hdal

SA4NG I YLL Yy o

SIUN8ITHiuly .

Snoxvp) o
NOTLTSodvio)

Avvorpxud

_ o
(I I
BOADTMelrd =T

sAMOMUT)Ny OoIiWwIANMYaSIT

MM SANDNOS o

SO IMOXUY I TWNIST (T
i .
!

Sdipp Tuiay
28 OIFZ2TVYRId5vHUHD

SO IMSIMPTAVIDY MATI
$S1430/~n0> 0323030

]
. Ll
[.
o
' Vo
!
P !
.
, !

4O FATHSHOTAMIRY

T AL S %m:od Yoy !

SHOTIVO ydod

SaA N3 rogNO)

DM §$S3TILYSdoYd . Ao o XYy . “ u.-h_uu»uc«wiu . SI4n8THLLY
. . : : ! . i : .
! ' |
Sdeoy ;
Fooe D MAULS AHY ‘$PS5VID “
O et Y 20Uy GYNTINrPIY dowm BurSIYsy (S BUNITYLLY :
/7T o3M3IH34 - ANIXINBIANGD Je SITJivISoVWd IrII3Qq .,
58,202 1AM Oo M. ANOMNORYL . u.LtuCIo.v wRASAC S3TUUIIJONS
AT HSMNOTAA 1D Y |~ IAWEIP3iovBonD ALTIATI2Ireved VAV YLS VNI N R
WAV AIS D IANT I ITNErAILPIBY WALUMNLS pVYANT =9 MOXi4ITVOISIQ 43ryg I
i . . H ! N
(=7 (PJ () | ! (97 (e7

WO 94/18631 PCT/US94/01037
9/71

1
[Alubrory System | | (B)Attabute Proserty |
| ~oncepts i Concests |
))t t
! (] |
| 1t !
! [|
! ' mnome !
1 — Prosarties ——tmi——i- Oata Type !
i . il tt’--ﬁ ongnt. !
! ! r !
I . [Ty —— - — e -
1 : i T
I 11 (C)Atromte Gom | Ces
: ! : | System Conceota) Olaniey matrument +;C-
! ' [' .
! ! t -_-_--.: n
! ! 1y ~ , e
: i : ! | A J:I -
) !) _‘Ecma- -3 . :.L
: | [~ Aamgnmant -
‘ | 1y 1 [Procwes Comtrus« [o
! i [| M v
: i : ! : Dete c3 [ANS) inatrumen ~ Lrfh
{ Highwoy
I i Iy i [T g
I 1y 1) XY,]
! ! [! 2 wu
1 [} ¢ 3 LELW
b | P me
. 1 o = w
X i i h ﬁ-——_..g) T :k t;ll‘
t h 1 | [} 2.
i by 3 9 Je = Flaid INOtRanent e fors
i by 1 ~I~° ;. < :»Q Laco= u-ﬁ:g
1 | Busiengs - Sctatita wwtrument Heuse
' : : —Cmun-—!—:::-r.- our e‘tu = Cormeusenyg Buieng ;‘;'
: ‘—"‘M‘-—rv—" : = Preprined Wiing « 7. Digitel == Digitet ineest = ol ﬁsm
—ae s Qutot ~)
! { : ' ?o-_ D‘E.:-q et :t't
1 N R R I e
ot
! b | Artmbts Rules - o Loge Core on- -'-Egc
H H : —Ruh-—l—-;('am.—n— . Pore I~ Orewwngn = L L7
i 1 [o8 iy P e F""’" T e X
| 1y " ! . Caiste = C
[oo T Mavaars - L Contuetar ‘:2“‘. -5
! | SO | Power Line =
| | Softews «
i ! g «
! 1 > Connestors == Jumeers
1 | [Encresure — /8 %:m;
| | ol EEST BB
| t Sonel
| 1 Panets
H) pg:.hl- Precem Unit
1 | I= Presess =t~ 1/0 Bey
! 1 -Ec/_o Mot
| IMAGINE I - heserser " 10 termenate
{ : -1 13 Terwunan
=Tewvuna Strig 14 Terrunem
i | ﬁt Cannestar Mn Tarem
| f L Frow Termunanen
I 1)
! ! T
) ! [A
| l F S
1 ! I~ Controner
' . ! CQmor 108
| : Fraw " COMDE rCones
f ! = Ancuon Sna -:M -
I 1 b P =
| | oo]
| 1 —W—E:m‘.m [Systarn.
I ! 24=Tv=328 P> Tovrn e
t | 249302 I Tormuna Strige
! ! [~ Csiey— = 130 Coes
| I Catien 0000 b= Praumetiv=yr- Tormunat
] ! A 0001 e Toe = bt
1 ! 0002 ~ate
' [[tretrument: Wring [ronem- octranic 1= iorar
1 I . 0000
i 1 0001 -m-tu---tr-r
| 1 = Junstn Soz = 20=TBA-22 0002 Proumetis—r
noner-
: : _Ee-w—mm-eo :m T oo
- Bestranic—rflaher
! | =Pl = Tormmeusn 1= J0P00-%0 Biuad -
IL —hi-m—j——m A 20 = 2400 = caz0~-60 I Gote u-..--:r.:;-
- - M3024 mt her
P02 302 > Glote =
o302 - Nesme =
#303 ~—oay C e
1303 At Cruse Surge Tem
[y .4 Oet Tower
tm Fosd Asecwr
328 Ve — T :a T
™2 nI28 L)
{ﬂ&! El“
‘= Tervenst B0t~ TBFP~12 Severater

Figure 9

llustration of system concepts in the library structure
used in knowledge representation.

PCT/US94/01037

WO 94/18631

10/71

ATTATBUVTE

__PROPERTIES

DEScrrPrronrd

NAmsg

PrRorae T

Drvra_ vypPrs
Freco- CewerH

Locrhrrons

LoLor

Lineyyre

LCiwe wviecewurT

PUBLre MAawmaE OFf ATrRr@urs Cdosmcgpr

PRompr rmor NArrRrgurm T6 BE uceo Tae VIEuwss
. ’ | |

DAra_. vvr® Actiowrey o0t VYALUE

) |
Frecp LE&wmcrrt Actowey For Vaive
1 N .
. P !
REtnrzvgk Locmreons OF ATrRIGurE ILu A Fonm
VEEw Or AITRIBUTES OF THS SAME CLASS. | :
|] . - " m
Stoncdevd <coler for L..w\?\ ...s.. VEBwS 7 AMAy B Xitpll ErFrcTEY
Af Vegw CPRopEnr Y- : ! |
Stanclarel ?.\.nx\\n for deon In Views! pnay P& ECnnligmfasrd
AS vrsw FProsaprir. ‘
Ste wderd line (@..\P$ For sreon Ja wvicw i ArAY BE IreplEMIWTED
NS Vrew lrrorervY.

EIZGURE |O .

SUmMmmnryY . OF TIPZCmL

ARrrZ JVTE

UseerulL’

PROPERTIES

PCT/US94/01037

WO 94/18631

11/71

S3ISSH I IUngTuidy.
NNIISA WITIAL HdO AWpwmn S

1l Ayhoxd _
) .
. ! , [
. ' ') :
N _ :
(Yeorog ‘reewrsaives ! : N | "
54D b'3) 5SS Diwrropoos CENSTY Py e 4 ' _ : A T
ONTLIIS2 43N TTISWIDB0S str SLPIDIvOD VeI LS1S Cepy . ?Ux\\ R [oN | n h _X NOILWVIOT
0 ! . 1
(1735607 | . SN .
1 . H . . t
\\(;0\‘0«& NUM $3AAL 35138303 pg QUFVQ\\\»M 5evgen)> : __ ! . .
INTUIIISIVAS Yy SISSNI>0S s u..\Wv?BuN-thux\ v\\\.ﬂ \»Q}_\ aus\% WNIIeS Q\\ .\._mevmu‘& uw!msh»m&k
. e . o . : ' . [A T
R N “ _ L HEAEEN IR
: i : P
SE RN ! 2 R
.“.v.—w \uu\.n.k : : i ' ! 1 ! :
‘SDUTY .“.U\ sPhi IOT LI PTIt0 D nm.kﬁa\\lw. [1=34)> ! _ '
FINNIIIVISY SIISHIDHAS s SIIDD>pv0) MeSASAS SV [Skemay | (324)8 Prrvsarex oNn b 4\ \ﬂougumkl.ou
i ' ' : . . ' .
: ; X : i
_ AMITIYy :
_ : ZrondTIIY
i ' : | sssvaoy l
TFOrNe) IO SIMTOorTgE IVINIS WININ |SaorywA [ty 3sfky orys t At 44 vV IAXT
. ! ; . . i
‘SOVWCIBY UDPLOUY 1T Aireo (1n924)> AXOIN 350 '
ththL!-ﬁ‘Ik”.hlq?\, #T SDTorIg g Iia N vodrw | (334)5 |rvrwung O AX S>31440 LI 9T SS Y
‘5443 >3MOD , howp 1704 Fpasmusspas :
VISt AVOHI 2 AIILOVA Wod AINO SIVINEIN |sawmopy #4324 |uraved | Smp 3YN4oNY4LS 1o XL xs0d w0)
'S4t FOrr@> UudIDfoYy Ty _ : _ _
Vo3 AIWINDIY reriwdTII55w1 FAdBIINOD Vs sp | ForvwisSHNT ! ‘
. i
AVEVITT 4rvINOSNCD Y2 Voo O5UITAPIY Sorpraspey |saveny 215247 wery SN [PRYIrIISSK1D 2dAL
. S !
: : ' I
SUBINOS sd3foud LIPIXI S.sDO/OD VISA M1y rYa 1T 1 S5¥158n g B
AN SLEFI 05 SrIUSRS vy Wad gznwinp3Iy |vene X ou |siromyy S HA 2 e IHHONOXY, |
sSHuwingl “wipy | Doy [Fivivog Fravworng| 8§ 31d 4 X 5 ” 33vio
: Wipy ! F1nG Lfutsy BLNBTYLLY

PCT/US94/01037

WO 94/18631

12/71

: I . G P
! ; . b P I
(a.4rm0)) Vo - ! SRR
. H [- vt [
It 3unoI1d | L
| O
. — :
E I w P Eo !
o : : i i
: Co ! S
m aE | . _ _ ._ '
} ! N . oo '
i H i ' f ! .
. 1 ' ! I '
, : I _)
| i _ P
! ! \ i
! P ! : | "
: _ | P _
1 .) _ ; i
“ | . , _ ! | |
' : [! !
. i : o _
i w _ _ P A _
.) . ! | | |
: . . |
; I i : '
_ i
Sro0 T | vy
VWOTHIAN YD —HQ ~CISATAM;NIISg dISn LAVYLIBYY Ad>o
Yod srme1ly Sr3ITA IwoeS woy aITe®IY P ALY $3IA |15 |re10208 oy ©3d huu‘tLth
IWON wix DSy i
\\L\“ -‘ln!)“\h ,
I Ovpess : 4a=>v] :
P-Xad 4 \&Q.NLH.V\WBVWN\ H¥Diriey IO \(QNuu\.v“HQ . v—.!v\..é\ f
3dS AFIDIIOD v FuUsAS IUYy SEor»ny Mgy 1PVNY Jsnbrvp a3jiawvy oN xvs\~.<u MWd\uq
SHYww3ay 150" | FIKL | Nrwmag | Tvarsieg T35diNoxy L FswI>
-4X 73y Hipg ~wo NNy LN T YLl 'PLOE IV ILY

WO 94/18631 PCT/US94/01037

13/71

GLoBAL DATABAse

a) Nd,-e=)“'h'.qg

b) Clw.mtcfcv-'z;l‘n'an = ref

€) Iurcpuac <= Clre¥, ref)

d) ExrcrmAc = Sstring); lintegar); rlreal) ; d(e{.{.):‘ e
®) Val = Twrsruac) Exreanat

§) Mmzeep = VALe

9) Valve = Ladevnal; ExTERmal! Mreeo

h) PROGrmpr = STRS oy

1:) ORra. TYPE T SrrZ..

J) Frzioaisaera = Zwressr

K) Locarzow s Iwrgza

Y PRofPrrTzsg T Z(Promp?, Date.Tyse, Eicld. /‘.741. ; /-u}.'..)

m) RECATZ2HsHIP = Y{Chcudtm'e.sh'on} Value) ; Pra/oerfl‘es
n) RECArzamswsp_list = re-lai-u’or.:éi,o*

o) Paremts = pef
P) Children = yess
§) TurersTaATA- Sref¥

¥) Comegrr = y{Na.mc, Parents, CA:IJVQA/INPEKST}Q‘TA , str.:m«u.'r.zrsr)

Froure (2
EXampic oF Domaza DECLARRTIOWN Fon
KioweEpes REPRZsEwrmrson DRFABRSE

WO 94/18631
14/71

Ca)

LS Mamr
Posromecvrswep FoRr
SYsTem Lomcepr

No
(b)

Is REFEREMCE puUmBER
Prsroamvurswer For
SYSraan Cosccgpr

_ MO
— e)
SuUTCcOMME
No
(e) 7‘
e . | GET REFsmgmce Mo.
- A OF SYsrEm Coscerr

S

. CurREyr Ref. =
SYSTEm Raf, ?

e - ['9‘)‘ ——
T T T T e - _OUrCamé

- —— C e .. MO

o . _FTGURE 153

_Ftow Drpgrasm os PROGRAMMEDS MEmadS

PCT/US94/01037

e

Ld) AL

QuTrcom s

YEs

-FOR RcScoeMrrTrosm o SYSTEM CLomeceprrs

WO 94/18631
15/71

(2)

Cace

TOo

PCT/US94/01037

THPLT OPSRAT=op

(b)

Is Tmrcer REcrr _NES

A SYSTEM ComncEPT

NO
(d)
_ .. To .
e = -CALuEC
- QPERRTEON

"I Prgure |4

THAT SYSrgm CONCRPATS AnrE INVZé4LATS

(c)

!

CAN'T" Do ry
MESSHGE

(e) ’l’

To
~ExzxT
CRLLED
OPEprATION

-FLOW DCacRAM OF PROGRAMMED Mcaws FOR ASSURTMG

WO 94/18631 PCT/US94/01037
16/71

(a) T

SeTr
NExr = peTrve

(b) ¥
R&ems0 ~NgxkT

REcaRrD
Poremur ¢ Hamg

(c))\ (d)
APD MNamg TO

Pagewts _YES | NomE LzsT

_ . _l—

APD PRRENT T2
ANCE=sror LIST

(e)

($) !

ARDp Namg TO
Namg Logr

(s) 4
. SeEr
NEXT = PARENT

FIGURE 15
- FLow DIAGRAM OF PROGRRAMMED /NEANS FIOR
ASSEmEBLTMG ANCESTOR LISTS BS AN EXAMPLE
OF MNErwork TRAVERSAL

WO 94/18631

PCT/US94/01037
17/71

(a)

GEr MEYr AcTrVE
REFEREMCE Nyt

(b)

ASSEmgLg

RELAT‘_’_'OH;H_L-,__LBI_
For_BcTrvem Somd

Le)

Re PLRCE

RELaTromsure. wrs7]
i z ACP:VE RE(&‘O

{d)

‘ (e)
OTHER AcCrrvs ~ES
RE<onos?

- Pome

FIG—U.Réj',b—-' e e

Flow Oracamm oF PROGRAMMED MEANS FOR SAvIwe. -
INPORMATTON STIRED LN THE DESCRIPTCVE DATABASE
OY SroRzm¢ IT IM THE KNCWLEOGE REPREBSSw 7Arzorn Darngnss

PCT/US94/01037

WO 94/18631

18/71

vv.!n\(.km.)\ b)Hn\hlvmWQ ML ~O oISy g
IOHLATIINHNT JIHS I I@TAIVIZH | O hm.\x.s_uxk LQ Wi NS

£) gmad | ol b
KRR o
o L
! |
\44“. | .
Hersmeg y , C \ d NS 7O Td 917 o)
~orag S A _ S FTA SIA S3IA i orv : T M mhﬁ
. : “ _ i _
oy . _ : o AW(EU\.«CMM
oL S5FA o oN SIA o ! | i~mexaxs00WoD
IoNviININMT - _ . | o
Tk, 2o |(romsrrzsasznz)
] SAA ary IN 534 SIA ! | _ ! MR\Ak
190y _ . (s50712)
oL saf SFL s 3N £3A SIA A VVOPOXLL
[o ﬂ
Wora1(HDaAs55covd [gIrdned oS [palngidlidly (3419 l\.ﬂﬂﬂuﬂm:tutxu SoMNvLTUIRNT
712 od SIIvwuwIIT7 ol S3Tral SLIu3hHNT T (%)

WO 94/18631

19/71

PCT/US94/01037

-
~ Nome
F—Mm-v-‘o_cta Tyne
“eid ionqht
:PQM:"
. -
Atochments == 2 ~Olagioy Watrunamt = BC «
Cabie = -3 e
 Asmgrement -EOW- ;‘-
| Process - ~
Softwore = e -
-
o]
A L
Doto nqnu,-E} (A
av
: i3
§ r»& Inetrument « Lr a
£ e e
Plog st § " w e
: T Eu\-!-\’
H 5 L LY
~ .- o ue
J-Cm - Preumatic « our QTM t\;
r—mmm- lé i L riue L :‘c
- $: L S setntte rtriment reves u
Nen= r uy
= Binging = Stringe ~ ;9_' Tc........., Suang en
acv
N .
Obgita - Diital input = -F-Eﬂc
- Crbute Mules & o r T O Outint - ”
- Rutes “r~ Camsosiwon - Powe L J ‘:"'-1 oot o
Egnu re?‘m: Pows (= 1/0 Bearded=1/0 Nosk « ev
Pow Shisia o SC e mou £w
-an—:m €dit - -u..c..to.'c“ T t;‘ic
1= Orownge < by =17
[~ dmilury Fig =y~ AFO00 -
’\:u Cardt _g
:c.-- Czc
Oute rupway
-"P- Line =
[Seftwwre ~
o wre +
[~ Enstomre —— /8 TBU 1
EM-:W‘O—OI
t= Dot ~1 Punei t 1
Porat = Ponei2 ™
-P-
8::- Pracess Unit
t Proseus == 1/0 Sey
J :./:- Powaer
| St 10 termenem
= Rutwy ;I.\ Tarmenas
—Towens rip == 14 Tormmae A Term
flow tﬂ‘r_
[Meehans ~ deter
Aeen
Chilgrem
PM we
o
-m-cw 0
= Fiaid - PalD € .EC“Q"&-
. Wring e -
= Amcusn Sea e
b= Sunat =
200307 C e~
26=M- 303 po
-“-EH-‘H-JH -”_m
24-Ty-328 L i
e T s
[Oleway —1— 247377 C vaiwen «
241328 Codies —— 0000 """‘"T}z'." Sirip
E s
= rewnert Wring = Chaek «
rw-:ﬂ'.
‘ e = Ciaprwrarn Marm v Faner
== anstion Sem == 20=TBA=22 -
Sarmer — TBU10-60 et
_E b~ vatve = Oostranis=y~ Fleher
[Pt = Yermvanetion wy— 10P00-80 5
e Projects == Aromet A== 20 === 2400 = - TCB20~60 peGate u---t her
L)
PT302 ﬁ-—-q_-_r»-
302 |- Globs =
2 - Hesate -
#303 —— m303 [fetvenr -
b e - Ayt Cruge Surge Tens
vunu - Vesome e - Fors
-
s —{=nyim e
mazs = Ressrves

‘= Tarmngl Box == FBFP~12

Figure 18

llustration of concepts in the descriptive
network of an attribute node.

WO 94/18631

20/71

PCT/US94/01037

= Norne
= Srocerties o= Octa Tyee
EM

fcm-

[ASmgrement ~= Orowengu =

tbmuu Cantrol
Softeore «

ZOBNd Gl -
R
L1

35

(o ANS! instrument = pf -l

- ¢S Locoe

- Cantreitar: ‘: Oulawt ﬂ
1/0 Boerg=—4~1/0 Reck = eV
meut SC "ot L3
Legm Cord 1= Outou odd "c

n
i " - scasary Fia = w000 P =T
[;'- Core :;Ec
Gota wuppwey =
1= Conguciar <= Pow
Power Une ~
EScn—--
Wew -
Conneetors
Enciomary == 2§ Pm'm
1
- Oewtnens CMI TBU20-01

= Tormmet Bor — TBFP=12

i=Presess == 1/0 boy
-El(Dol
= Resarder 10 tormeenm
b= Rty Cl) Termmnms
=Termns Sirip == 14 Terveners
['&ATCM Pin Term
|- diesnarase ~ Moter
- fumne
-CM
-
> Chataren
= Cortremer
b ¢ [Owpioy ~00 8
-Dvm-tln]
- Flese 80 £ ~Cosina~
[atrumenteten Wirng =t Softwre =
b Junetmn Bou -tn-' -
I Pone =
= Poee =
24-AC-302 = Prar
24=M=30) = Precess
~ 240377 L Sywtem
24-Tv-328 - Tonea
240302 b Tormmel Strise
- i) i
Codies 0000 153 Tovwwangt
241328 0001 "‘-il't‘m‘ Strie
0002 :n-
| norwmant Wiring ooay Chack «
— Oectreme ~v=Fisher
= oneywes
- —E% [~ Olaprwrasm == daswass ~v= Faner
= danstion Gem ~ 20-Tha~12 0002 ” —~
_Cum—mto-w 0003 Th
L Oootroms = Furer
[ot Termanetion —— JOP00~80 Vore 2
b Arojects == Projagt A= 20 = 2400 =i = 1CB20-60 [~ Cete Ih—d-:f-—-
M0 m.-cr_-v
302 w302 I Giabe «
Lgd +] = Moogte =
I Remsow =
#303 w2303 L oares
- Ayt Cruse Surge Tamn
[Tora 027 I~ Owry
127 =iz - Oiett Tower
Ty - Fess Aesctor
‘= Vessuie == Tona <= Fikere
328 [~ mng Tona
Tazs 3284 = Rebasar
™z = Rewervesr
= Separeter

Figure 19

[llustration of concepts in descriptive
network of a component node.

WO 94/18631

21/71

PCT/US94/01037

‘EM——:,« Evt =
Howsers -

1~ Connaction ==t- Preumetic =

~ Attribute
= Rules
Connectron Ruies =
Ruies for Ruses

gEgCENaasLn-

-t ¢

[

g

jitirgereot g

{
i

p» ANSI

b Oanirient =

e Srojorty e Projost A 20 s 2400 o

1

= Jaotion O = 20=TBA=22

_Cm— TRU10-40
e Prorgt et
=t

24-PC-302

26=Ma 303
r 24=T1-327

24=TY=128

-
-
241328 C‘-—Eg
0002
[iwirument Wiring 0003
Wres

0000
0001
0002
00Q3

]
ss2)
rriaz
303 mo3
Ty
FoVI08
£108 e V108
e FT108
TEN28
28 3264
avr

‘e Tormingl Bux == TBFP=~12

o

FARFAFIRIRITIRKECCGEORGS FIAJENE i

l

= Vave -

" Yeanute == Tank ~=

Figure 20

[llustration of concepts in descriptive
network of a project node.

WO 94/18631

‘F TAXO~N~OrMmY |
' ZTMRERTTAME i

TVYPZE
ZMWEAT TN

‘ l

F CorPOS T EON l
TMNEARSTRNCE . ’

Us=ER ' [
T AMHERZ TR ' |

L

d) Seauence For
APPLYracc TYPES
OF ZAHEBRCTmMCE

|

- e — c—

I'e
.b) PROcespvrs Fen l
THAHRERAL ~pose(c

- c— m— — . —

. | Recvro, {
| Reeo s |
CowmrpnoL {
L
..\ ReLATrzOmsNCP '

1

Y [

VaLve —.- —7
LrHERZTA [l
L= .

—_— — — o — -1 —F:—Gu—/z—e—Z(—.

|
Il

T Hﬁn:rnuc;/m:-f N

|

22/71

MO

READ
NEXT
REconr O

(e)

DoE S

CHARACTSRZAATL o0l LM
nep

>—

YES

)

CHrarcranrzarzm Y€ S

DEsScrzerrve 0B

M)
H
<z

PCT/US94/01037

WHERLTRAMCE

_ AN
; (Maszs 7o (k) :/ \
g OZscrrPrrye muetzng VES
! PArnzAs= vYRwwes T
t
o ‘N
TS _ (2) Y
- ——--—A-‘-OVALUDEGEJSJN_‘MTAN“ RS mtovl Flow
AepLy? OuRCE REcorDd
I APROPRIAT
- YES ...
{m)
_ _._..(‘) T, G ptou€ Ffonn
. vRLUE XES | | ORscrzirive
_ __D®scarprzve 18 = IArp BENSE
« No —
o1 e
AP0 re
O&scrrpreve - I
0‘-7“@‘.;‘.- _
Y
No Fone (c) ExPAsmSzom oF
e _REmp T PRocegzpumE For

FLow Dragrmmn
FOR ZImPLErpzmrne RECATIONSWHIFP ImMHERITANMCE

\

0R PROGRAMmMmE P

LI HERZTAMCE

AMERNS

WO 94/18631
23/71

T

PCT/US94/01037

(b)

YES

X

CHARACTERT2ATL
NOT Degserraegp

NO

Floeupe 2Z
Flow DIruncmmm ©OF PROGR

FOR IMpLEmEmMT Lol CHRBRACTERIZIATION LilHERLIAICE

/

F}_ ELATIONSHE P
INHWERITAMCE FoR
| CHMRRACTERL ZATIOAN

BrrnED MEZEarss

WO 94/18631
24/71

GLOBAL DRTHBKSE — descripiive

(&) Daragass = env,) Fr:}’

(b) Aetive = (Dabubesy, ef)

(C) Source= (DAL\L«S:., re{)

(8) rr(hekive: Sowrce, Rulebionshly)

N _ . FIsure 23
Dosmarrmw OEClLRRATION FOR
DESCRZPr=vE PRTRAIASE

PCT/US94/01037

WO 94/18631

PCT/US94/01037

25/71

e

(&) ’

) GET PRARE~T RECorp |

REZFcp8sCE MNUMBER

C & I

MAKE RE€coR

e ———
Ce)
OPoORTE - Plrgsa™
Ba? CHREZLAALA
Lrcsrs
Cd) (e
G&T TYPE RerEncwce
TS NEw geconp LEL | Amno smee fw aew
A PROZECT KRecorp 1 Rzecopp
Yoo i
¢) R

S, Reao A7t REcomQ ? . ;

MAKE ARwmo SToRé .
] MAME EM MEW
e REcoar e
_ CLEAR = . | el
Descrzprrve . o e e
. PAF‘RSA{E o
L
FIGURE 2%

FlLow DraGcram OF PRoGrHmmMED MERNS FOR
ADprmeg B Nooe To THE WKANoWLEPSE
RerPresemMTrATrzon DornB8AsE

WO 94/18631 PCT/US94/01037
26/71

SELECT ADOCTIomMAL

ATTRZBUTE FoRr
LHARACTERCZATION

(b) l

SPECcr Ry TRRGET
FOoR ApprrzoN oF
THE RQLATSOMSHIP

Le)

Reno TARGAT
RELATIoMSHLP. LIST -

(d)
ADD NEwW -
RELATTonSHZP TO
RELRYLosss P LOST |
(e) L
‘ REPLAce Tarcer
REtnrronsnz P L=sT

Frecvre 25 . _
FLOW DTAGRAM OF PREGAAMMIED MEMANS [SoR RAooLmé A
RELHTrLonSHI® To € RELATLOMSNLA-LIST OF B RECORD

WO 94/18631

(a),

27/171

]

CHARARACTSRE 2ATTON

RECEAE~"E MNoanBay
o~ Acrres

b

i

SELECT
TARGET . RECORD

{ c)

l

PCT/US94/01037

—

Resro TARGeT (e)
Rzcor o . .
400 Relarzomsucr LY i
TO Teacar -
(d)

RE(mrrowsurr MO l (£) iad

AYRIcAGLE Sei@ey o
Recmrromsure J

YES | ¢) TS Avo
Y
Secgcr (s)

ReCoriomsmsr From

R=crpaocac
TARAAGET

-

l

§ Eompere Ao SAYE
Re¢ grromsurys Iat

ACTIVE A0 TRRGET |

FlLOw Drr<oam OF

FIcuRE 26

APD Tw TARGET
TYPE TRKO/somY

(h)

AoDp - -

RELATT0ces e P
To Sowr <<

SELger wrERE r:{

|

PrRoc RARAMMED

M ERNS

FrR T NSTRNMTIATING THE YRLUE OF As

INTERNAL

RELATIONMSHIP

WO 94/18631

PCT/US94/01037
28/71
- —
(a) _
PrRommer uvsgR
FOR VALVE
(b) (c)
J PROMmPT yser
Is VAawe No > OF ERAOR
oK. L
N
YES
- (cf). y
. . ..| RzpLmce VrLue
4 IN THE DESCRIPTIVE e e
o L OmraBaRsE

. FIGURE 27 ,
FLOW DIAGRAM OF PRAGRAMMED MEANS
FOR TMSTANTIATING THE VALVE COF
AM EXTERWMAL RELArLONSHIP

WO 94/18631

PCT/US94/01037

29/71
(d) Ch) =, ‘ le)
PREZpz c =z fr=TRZZYTE 5Pzzx=zz
Cengs cLr5s ZuLze
- Chldren
— DEerznge —_— Fun uu{l\! VrJ Nu b Yome A-H)‘
Cowncepr an &LL..-\:L,N Pacen
—Use Tee Name
| | Coneat - Mbs
RUuL=Z§ [_E)‘er{[/n{he: oS f’dLL Nams
S J'JIRLIX)C
"{SLY‘ N ‘gg'lL

b e CDV\'\LJ‘:‘"U

L\ TNSTAMPFrZArgs .|

VaLvES -

" Freure 28

Conneck T3
Linear
. MB}H"IP /L

|n7 13

— M Foeh
i o,
ru\ n

Lade "?,..;;;L;;;' Mol Cronrmnces

o Dnheretance

[TNone

aﬁ.r wland
yrn

_.__ _S-\7 [8

TREE DracrAam OF A TayomomyY OF .RULE ¢

SYSTEM CONCEPTS

PCT/US94/01037

WO 94/18631

30/71

.wo-*: oc%%tsxx:u 4)‘4. P‘ ,\. %uhzsﬂw dJ \:J:,o\ Uuwy

A DI TR 4T AT NYIIRSd RHL NI SAdI3oMCD WILSAS SY
AQ2ANINDIVWWI STy V2T4223dS JO NOTLLIYISIA ONY AWWWWNAS

bz 3FIN9d L

Uory>2uI¥ae? s»uo O B WIAYA Yy \:...t] vy w Nx.

..IQ.‘ucz*S:OU K A'Y-J :f% dsﬂf\R—:; ~.—;uo% <y N%.Md :%V Uy \P. @“H
\N.z:o?& \as.Z v m..& 3.;-\ :o.uo:.ﬁ_n..v .\.c?.\ v SV corq&r.ew v E.N 1. A‘ J,* u- v
gs.+c.w:¢w‘2. 42:‘.,. 5. ru&hk.:% % b | ¥
\ \u\SS :J.sj .s.*.e; ..Q: -.:,.. to. (.‘N:quﬁ \x(.w 44:_(

‘sIapon *;\2% x.\ _.w 5: a a: A Wullawvaa .7:, Jo prawasr e uw- w. J\(: ul*r ta
a\ W .w\% %o BTN ,:..‘k : % e,:, ‘5, -k.\a sne,\.\w uww“u: ”n.mv ‘ xr.» v
VAGER TNEYS Y ‘ __,.%#Q u‘a wer{vu av..ov “ FIUjvYA jvuu kol ? xa. (e €
\ <~ \ ! ::.#V.N Nc. w.“. LQQ, ‘ & S:. fo Iwew’ r.:s_iuﬂgﬂﬁﬁ.o“uk

ANp. G.m:.*u;__ .5—% u..Q u*.:a;:nb \%v.% _)‘u:_ G\J..kwwnb i—+ AV /vvr:x ﬁ#idto%inv %..* _ {

%, ¢ :au\ \,t.‘cvﬂ.:_ 3: Jo vy :? *- ro.»tn.xo*uv.:\.—v J*. .\.*a:.*-_w_n NU *&.H.qul_l

L.
by
abIu .J

9 *0¢:C0(U.
lmve- cu\k
g bopgis
ui—< A—-\Uic
4((2 Qur.—uc ,.wx

/v:ds.d
Ay TN

:ua\a:._U

JA: m :q.*v.\cwwpu:. XN* ¥ :?@\\.N \‘NS*:.\‘M:. 4«:-:4 :.\vlﬁ :. ﬂ»:e:cts_eu ,*n 1 v

T HNoITid IA5334

ERY]
>T4X¥23adg

PCT/US94/01037

WO 94/18631

31/71

U NDWRA0gwWR dIVYIIIAd

BMAL NI SUIJdIONGY WILSAS St/ AFAMIMITH T S3TUYRFoyd
ZNY PIIIOIIS 40 OT 4JTAPS5IA Ol pavWwing
O& 3ynord'

i
1 .
! ' ' !

|
. S
P
i
_
|
!
!
1
_
;

0
xn— 'ﬁ,*.\ 2ue \‘I S.(w0 \a\(‘ l‘m.— fan] vn
FURANE Wi k] $ v My uHvapl? 5! [£} ..‘08 v,
prret g e e J_%.,_ﬁ:\
-.\.Lv ut ‘'» vA
fTIOMeun>>9 i ,\‘...o.q:. o4 \du:m\qrt,ﬁ*.q:eiqxu.uu*N “wa %_\

M‘:w!.n Wwor :w uownu.'r—.‘.v ﬁ 4 ..:.@*teu .‘.\.\ o?~<) JJL!

NEEN
[|
!

AN

vuzi.su.—ﬂ— 2

Srmvan —..t

oL

#‘UGL&ID’V

n.wc;rs o > uwojuol) vvd +n\ d..~r> 2
..-w.. ... _..o :.t“:o& uw) 4\ ,.r_v> J#
I.;w: T Y e L ?_,_ ﬁ

Y

WO 94/18631

(a)

32/71

|

GET PATTERN
FOR EBDLTOR
PROCEEDVRE

(b))

ReLEvanT _NO

PCT/US94/01037

PAT‘?‘ERN?

YES
(e

) 4

PR Oc==zpURE
 WITH PATTERM|

FROCEEDURE
w/o0 PRTTERN

_. (=)

DXD PaTrEAN _NO |
woric?

CHANGE ?

. ___D:a PAH’ERN_N_,.

. FLow Dracemwm OF Pnoennmmro MEANS
FOoR PATTERN REBCOGMLTION ANC STORAGE
IN THE KNIWLEDGE REPRESENTATIIN

— __:_:_ e S e STORB PATTGAMN ————
. —_— 1. I~ APPROSRZA _ e
N o _|__RECoRrD i L
o - N _
L Chy
o DONE. —_—
FreuvRre 3/

WO 94/18631 PCT/US94/01037
33/71

Nm
>3

(a) -

GEr zIwm~ePur

EXxrrcssror =Ram
USER

(b)
Sca~ Tiuvvr
EXPRESSToN T?
TOKEAM LIST

(c) l
AuGmenreo

TRAmSETzOM NETVpa K
PARSTG

(d) Y o
PARSE BY
D: FFRERENCES

(e) . 2
EvhLymre -
SrR_VCTrUVRE

NS J ol

ResPonsE
- - i iio. Do .. — e ——— e L

_ . _ _Freure 3 _ . .
FLOW DIRNGRAAM OF PROGRAMMED MEANMS EOR. _ . . _ . . e
_— NATURAL LARAMGUARGE PRaCESSTMG T S

WO 94/18631 PCT/US94/01037
34/71

P

(a.) l

INITZALL 2E ’

ATN PRARSE

AN

Token Lzsr _YES
c2a

(g) Y

No FINAL STATE
(c)

REmovE Frasr roxen

FRom Tokz oz _.! .
Kae s sr ‘ . .
1 _ Dowme

(d) . Le)

TOEmTrey TOKEAM ANO . DEFImME urxstowss

AsSrar TN THE ALZ o Toxkens

Foatereon Dnrm:.«g .
(F) !

TRANSZTrzaar . TO

NExT STATE _. o

L Freure 35 .. .
FLOW Orpcrmm OF PROGRAmmED MEANS ROR
AUGMENTED TRANSITIoN NETwWorK PARSE

WO 94/18631 PCT/US94/01037

35/71

DATABRSEZ — NLIL pumcrrows

TYPE_Fum (STazm0)
ATTRZQUTEL Rum ($TRZmG, RER)
VALVE . FUM (STREMG, RER)
COomPOMBmr_ ;:wv(:rﬂrua-} Rer)
PRoJg cr. Fa»/(srRrNG, REe)
REL_FUM(sTRZG; RER)

Losre Fum{srazmg, RER)
COMPARE oM — Funtd STREMG , RE £)
Tomors _ Fur (STRTwG)
Cxrenwalarun(srarme)
Commnum 0 __Fus (sTRING, REE)
COMmPARE . FUN (STREZwe, REE)

. Freure 3% .
DATABasxe Deciarnrromn FOR WULI Fumerrownme
TZOENTIEICATION USED TN AUGMENTED TRANSETZON
NETwWork PRARSE . -

WO 94/18631

- (a)
[LT3rARY

36/71

Cs)
EXAimpees &

< LoOMNcEPTS

PCT/US94/01037

<e)
Noras om PRScsRzO
EmscoZ S~

LoGzcac
OPEgRToRS

Commnm D
oPzRATIRS

WoORDS o
I GaMorE

Query
DEsrounrors

RELArLOoNAC
QFPEARTORS

AND , OR, NAMD, NOR
NOoT

PREsmT , PRAW, SHow , ADp,
Decere

THE , A, ALL, L5

W H L) Wetm ™

y, WHEm , ul ity
WHQRE/

/ 7/

T‘a,

GREATER THAW , LS8 Tiam, BZEEST
SrmAllKST) LONGEST .

CIRCUET CONTATMLMG, SOMMECTrsY

ITmPeamBmirgo Til Z o004
anNLY

TmPlmEmread AS

SYSTE st ComccEPYTS i/
KdowicSpGCE REPRZESGuTRIZDY
Darapass

IMPLEMENTED AS
SUPHLEMME 4 TRRY FLLE

TpPLEMENTED 1S
SYSTEm CLomceEprs

I MPLE pEnTED _Tad
Kaowt g & REPRESE.y7ATION
DAaTrABgRSE

TPLE S rG O TN
| _SUPPEIgmTARY [Fri g

Froure 317

SUMMARY OF SUGGCESrLowS FOR SySTEes CoMNCEPTS

Awr
THE=
ForR NLT

A3S0crpTED USER COMCEPTS T2 Rop To
IKrMOWLEDGE REPRESGMTATION DATARASE

WO 94/18631

.. Flowe brre
o PRARsSE BY

DrerreREmMcCE S

Freure 38 -
RAM OF PROGRAMIMED MEANS [FOR

PCT/US94/01037
37/71
|
(a)/i\
IS ATN Lzse _YES
ca
\/ (d)
l MO Domne
(b)
MATCH ATM LzsTr
TO PAITERNS
(c)
SvUccgssruL
M RTE
(e)
_ B} YES NEw
aUEny

WO 94/18631 PCT/US94/01037

38/71
(=) . (b)) & B &
SXAMAES | Erasmecss A BExRMmOLES or ExAmrecss ’ Examoczs ¢ ‘ EXampizs
orR YL zw Documanr oF ; oF yrEw|os DOC i ape =
VIew | ClLASS |tvpe YEEw = CLmkss | Tyvee
S5CHEmnrzc | CROANCLZATIM| Thxomomy AMpctsres ,; FEA STRUC rva At
ComProsrrran ’ THERma ¢
OR& '
TREE Faver
Frow Ico Hvodpuise
: Lo6Gre ELgemmns
TRABUWAR | Tramrwas Scusone | Pear
PZu-qur Gore T
PR 3 Bre s vy
CLusrsR | Pgzo
PED PR0<555 STmularon
WIRZNG
Clrguze
LAacoga Powree
Losre
Ferm DArngas@ | Scmces
MuarzoLR

Fruaneza.| Form

N - Bacancs
- ITrncame

k Accous ™
T Srromare

DIsmemszona 2 D PLaowus
ELEVArTOus
SEecrramts
CRTHALRAIM
DeTazes.
PRorr gs
Tsomgreere

3D . .| Breex
. . D&ErAzL.

Docvmenr | LETTER STAMOARD

coNTRECT | SP ECTFIcATION

FIGURE . 39
ExAmpieas or uZesws, CLRSSES , RMO
TYPES COMPRISI NG A PLuRRLIFrY DOF
VEGWS OF THE KilowtEDGE REPRESE/ATATIOAN

WO 94/18631

PCT/US94/01037

39/71

(a)

SYSTEret
Srrnrup
ASssr— RMerrve

>

T (k) r

MEANS FOR DEFINTNG

A PLormpeeTYy oF
DocumENTS

Cc)

USeErR No
INTERARCTTON

YES

(d)

MErms For

USER .
TNTERRCTZON

(e) 4

£)
)/ C

Acrrve NO___ | Excr

71
“
g
3
m
X

YEsS ... : l_

< ExxzT

- FIcuriz HO
FLOW DrAacGcrman oF - -PROGCRMIIED MEANMS
FOR NIEW MMNACEMEMNT

WO 94/18631

PCT/US94/01037

40/71

DATR3Rs=z = YIEWS

acéive(Vrew, Acray

Ca) (b)

PATAZRIZ) CHRRACTSRIZATZIN)

Ce) (d)

FIcuRE 4/

Domarsay OcEciLmRAarros~, FeR
TREACKIMG ABerzve

WO 94/18631 PCT/US94/01037
41/71
o
. Cb)
VIgus _Ni{ UMBounogD
! ST or
VEgwS
(eco
d)
CLAass NI . umdounosD (g) Y
| SET oOF REaD
CLASSES DEScrrPTZIVE Sgr
751 FOR TvYpPr
(e l
() Ch) ,
T™YPE N0 ¢ UNBounoED ASSILN TYPE
! SET aF Iecens TO
TYPES DeEscrRIPTTVE SET
Y&s .
(e)
Locare ITcawms
AlcoroTHGg TO
_ CLASS GRARMmmapr
&P,
DevgLeor
_ RELnTZOMSHI P
ZcoNS
(n) y |
ReTrRACT (k) 3
_ AcroyreE . QuTePuT TO
- DevzeE
(o)
CLgan P N . - -
DESCRTPTENE _ | . _ . - —)
DATRnBASE USER
o _ INTERQCTTON
Cp) ,L_ | o (m)
_ e - PONME e N " X ->) TO mEaNS
B} . M For uUseR
B L L B _ - TN TERACTLION
" Freure 4z

FLOW DITAGRAM OF PROGRAMMED MSans FoR
DEeRIvrmG A Prurierry OF DOCUMENTS oF THE
MHKnoweeosE REPRESENTATION

WO 94/18631 PCT/US94/01037

42/71
La) (b)
VIEw UDERzyATrIoN Level oFf
Sres YIEw ABSTRACrTan
READ DEScRIPTIVE TYRE

SET FOR TYPE

ASSIGMN TYPE TComS TYPE
TO PESCRIPTIYE SET

Locare zcoms _
M CCoRDOTNG TO CLAass
CLASS GRAMMAR

DevEL 0P
REZLATTONSHEI P YT Ew
Tconsg

o — e FIGURE _ 43 - - }
SUmmnarny gr CORREZ[LATIonN BETwREMN VZgw
DERIvATIONM STEP AND LEVEL OF Vrgw .
Documenr RBsTRACTION

PCT/US94/01037

WO 94/18631

43/71

; 4 i 1 . .
' ! ' i _ m . '
EQHLS:m“wfmx wugu:;a»gx INL 90 an..; uo _ :u..a!.i v o " : _ | n *
SNIAIYSQ Yol SAVIW O3y oy ET) _S.cmuSno Mod | _ _ | ; I
_ b pmeramasxd |]
! . I N “ _ 1] t . : : _
_ : I “ _ | bl ” “ “ i |
| ! 1) ! . _ _ i WZQQ_ “ _ _ . '
| A i .ﬁ\ N \w i 1 m . _ "
i i i A Qe ! 1 :
: . ;| R by _ T
NOILDY NOILsy | _ ! “Noxuow “ _ P
ASNOTSNIWIA vivod' nZﬁ ITIWWIHDG P
H + ! w . .
_ ! _ (210 11 (a) 4_ N
i : MIIA o : NOTLIWPILIVI NOTAD WY IUNT
m i w?OHans\HQ _Mm> i~pod | _ =74 fy3aen)
i . . t . : ' A AR |
‘ : . | _ . _ . !
o «wum] | _%&N | m
' ' _ i ’ :
R-EEIY-T ' gs1a3a | I 352a340 m
oL 1nd.ino oL dnding | 11| D ot pndsno |
] v N F (w) | T T,
i (Pl I e w_ _ . _ m /
N SNooI _ SNo>T | | SnNo2X
JdIHSNOTIVI3Y . | dx1ssrv0xrabY JIMSHOLTLL 1Y
sdo13A3Q | 1| 4013A3a a013A3a
\H\ (X RSP _ 1 1)
Lo | _ e LA
5§3SSYID _ ! : _wwuu 1D : _ _ .m_r_wzno..n& _
40 ALITVYBANId ‘"o \Cthz;i m m © 338
Yy V i 2) 0 ¥F)
Sra3:xA ! (| _ _ _ﬁ mv I s34 (_
TuNCTLIdAY " _ . o L _ _ ! . P
. ' | H 1 H !
J40 135S MMATA : m ﬂ ! ! M3IITA u
dsannogiva ch_‘\(oumeEHQ Cl N STIYWIHIS
=) RN RN
. i |
| (2) (92 [1] mﬁdw
| SR B I o B

PCT/US94/01037

44/71

WO 94/18631

NOILYLINISIYIIY 99043 1Moy
Il do S3Sssv12 TITUYWIHDOS 40 ALIWwWYnid W
ININIVIA Yod SNVIW a3wwpV90dd JO wvww9vWIqd moly

St 3YNOITH m

) \4\‘ BYnosry !
. NI NED

et |

AV gD - O UO Yoty wvInB Y.l T vwwimwao mo1g YW MYy O WALISn1D
oL 9NIOVYEIOY oL HYrIovodoy o4 ONnZ20VEIOY oL 9ONIAYOOIIY
SNO>IT 3uvwd07 SHo2x 34avie SMNOIT Blvd049 $Kro31I FLWO077
)_‘ (27 /_| c4) ‘_v (67 (¥)
. . . A
S3JAL SPaLL S$SdAL
S0 1BS 20 138§ . J0O 43S 9 F¥nNnoxd
dSarwnoBNN 09arncaNN , avarnogNn oo EE T
| .
53ssv12 S3A SIA _ S3A . SOA
YYNOTATOO v . .
40 135 wwvouwIg R TR V) (VIIVISEYE 2| : WevowyId
O30NNOENN ~|| lel?l!OMLtnﬂttexu ON UVII8vL oN Mo 1 YILEN TS
(3 _ BN
(P2 (27 q) (®)
| L | :

il 2vad1y

PO)

PCT/US94/01037

WO 94/18631

45/71

SwyYSHTa YwILIN1D ITAINvINDOS SO
oMMINnTu3g Yod

NVOLAVAINISIYITY

3293 oy IHL DO

$dAL JO As4Tr0UAI4 ¢

SNYIW dSuvwwd90oud JdO WewoSwiq moTd
94 3ynoxd

M.\a MKBQH.&

Fnrvxurvo>

-

1

4138 3BAT10IBD>530
oL sSrve2IX
ATAOUTT MOISSY

438 IANTLAaTYOIS3A
oL SNNe2TI
DHIATIM NOISsY

41 R3 INTLdIU>T3Q
oL SHNODX
add N2IsSSy

L3S 3rx24TW553Q
oL sNo>7F
dx4d W9Issy

I (w) (> 212 (6)
FELETE R T DHIYIA vod EPRELE] arid
438 DPTadIVYI53Q 435 3IATL43YO>83¢q 435 m>u._Cu¢umwo Yod U4TJg
avIy ov3ly ! ov3iy PATISINOS3G AV IY
. c TR (57
SParL San z7 SIN <2 SIA S3A 3
NONOTLT IO Y
Ho 435 WYY owIg Wy o pag
o3amncgra § — 55 - aznsyis G FNIVINM o asd
(@)
crP> c>)

J\m:: |

WO 94/18631

PCT/US94/01037

46/71
PNe
(a) |
READ DErrmsImG
RELATLEOMSHIPS
(b)) ,
RzAD Auxcecary
RELarzom SHIPS
(C) /-l_/ . P
DonE
Frcure 47 -

ELOW DIZAGRAM OF PROGRAMMED MEANS FOR
REAOENG DESCRIPTIVE SETS

PCT/US94/01037

WO 94/18631

47/71

2O SDIA1

ABE IITXNE arvey oMMITHIHAIJ HO

SNoITJdwA 220~

Sdiv=wmpnpoo0qg
SdIHSNpTLE IS Y

MW@Q-\(QXM

8l 3vnory ;
| |
' 1 H H
. b) _
(v AIH4i0o My I u«:iuuut.mmam. kakwq
. _ 1 _ H
Q YHio MY v X4 PWnidNYLsENns uu.:tmr.hw
1 ' ! ! “ :
PIsvivOP pey i
A STUIM 2 IYNANLS @ns [veXiyvIVI S
- . - ' f
() Y Irveo MY
L |
U“A.‘v)\\sw}\h\ . .
2 £3vam Rard-4 .wvx:v:igv\m ns ax m&
JII3sn EE L AL LY :
2z YIhio 1Yy My S3uxrn aqr
z YIsn X" 27V DUN4Z7 UL s 95 a- A=
wfoy
A 1 v/ Iron 3)9N1s
|
. 33yy
v/t Fvorw + 3VNLINVLSEns |moTisogwoo
'
I3y,
v/~ I + Ssv158ns AWONONy
Hid3g dInspoxavr1ay Hid3q sd3IHSNOTiIw I3y JdAL
AYVIITANY 9NINIS3Q
(2) (P) (27 €97 (®)

WO 94/18631 PCT/US94/01037
48/71

GET ogrrtwrme }

RziarzomsnzPs|
SYSTZa Comcgors i

i Cb)/\

C 2 YES

7w L

Ne Dowmrme

(c)

GET w~exr

Dercnveie
RSLArZOMNSUIPS

|
=T

-~ NO UMREAD

YAaLve
Yes
($)
R=240
VaLuvG

FLeure 49
FLOW DIRGRAM OF PROGRRMMED MrZRatS [FOR
REnorre DErsNING RELATIOMSHIPS

WO 94/18631 PCT/US94/01037
49/71

(a) I '

GETr Auxcirary
RELATIONS T PS .
SYST™2 im0 EOA/c:P'Sl

LB /\

C7 YE s
_ _Auxrureny ’i
(c) L
NO Downrz

(d)

GET NE&XT .

AvXzLrarY
RELArronsSH P

» - i (cj /V\
e | ——— N9 Derrucws

_MEmBER

| GEr NEXr
| _DERININMG
MEMBE R

(9) y
Repo Auvxzerary

RecaTroNsHEPs
TO DEPTH

Frevre 5o
FLOW DI ARGRAM OF PROGRAMMED MEnNS FOR
Rekdosrs AUXILIARY RELATIOIMSHIPS

WO 94/18631

PCT/US94/01037
50/71
(a)
(b
TYrE _NO UNBounD gD
1 SET oK
\/ TYPES
| ves
(c))\
'Co~cspr5 NO
W/o Tceaws
cd)
Ygs Dowmeg
Ce)
GET ComceEpr |
o Lcon ‘
(+) (s)
REap rcon
Tcow MEs o AMD
STare INSTRAMTIZATE
NO .
(h) ()
- . CREATE ZTCon
Zcom MES | For comccerT
PRocgaOURE _
. ~YO L
(35)
Byrass
Camcerr
y
FIcure .5l

FLOW DT ARGRAM OR PROGRAMIMED MEAMS FoR

REsZoMNENG ZTCONs To A

DEccRT PTZYE JSET

WO 94/18631

PCT/US94/01037
51/71
F7la) v
Loe
EVENT
(b) l]
Eve~nT
PRocess e
(c) (d)
CLEAR
Danve _YES o VYIEW AMCrrve
No (e) r
o CLeaN
Descrnrrrzve D8
For Vrzw

4

ieeeiee FIcure 5L L
- FLoW DILAGRAmM OF PROGRAMmrED MEaAnS FoOR -~

USER INTERACTION WETH THE WKMOWLEQSGE REPARESE s rATrICArs
THRovaw THE YIgw ~DOcumiEZrmrs

WO 94/18631

52/71

PCT/US94/01037

(a) (k)
4Ssecrarey Zcon
WITH Ccond S¥Ymgaol-X2ES
Icon DEFINZTZMN| Enrzrrss
e T .. COMPRISTING LCON
_) Teom Lacar=an REcrom Iwn
_ Drspeay SPAcCE
TioM SourcE Comncgpr RECORD
o RGFERENCE MOmBER!
e ACTIvE .. .__._| . Concger RECOROD .| ... _ ___ . ——
e b RERERENCE ANUMBER .
——— —— _.|_REBLATramsmZ P Con<EPT REcerD R -__—
— R Sourez REFERENCE NumBER]
- e RELATIoNSHIP | ComncEPr REcCorD _
_ — - . |..CHARACIrBRIZATIOM REFERENCE NumEER
- - AccarrarsmsP Cancerr. RECARD
- - —| INTERMAL VYALLE REFEAGNCE NumgeR - _
— - CHARRACTE REArson e e - S
.REBLATEOMSINZP .QomcEPr RE¢oRD _ | .. _ _—__...
, ~ANTERMAL YMUE| REFELENCE _NumBER_
- ———ee i), COMNCEPT e e b
— i e RELATLOMSHTP | BMTZTTES
- e 1. Bxrar~nal | Compresrae - e
e | _VawuwE . | Yaccoe .

e _Frou

———e._SUM

Rg S3 _ .. .
MARY OFR ICoN _SYmBOLoO&Y

WO 94/18631 PCT/US94/01037
53/71
(a) {b) (c)
Icon SYrmBoL cam gg INTERPRETTVE
SYMBoLLBES TMTERFPRETSD AS PRgcz=pure
LocaTTon * TCoN ASsgczaTtoMs 5=
ENTITIZES *PER SE
M CHLEGH T 58
¢ PrRocrzruzs
T SYSTErm Conccerr 59
— AZSTRARCTI Do/ 6o
- Eorror - 6l
CoMczPT RECORD * PER S&
RerFemencE ~SET Perrve 5FZ
NumegeR ~HIGHLZGHT 58
- TRAMSEZR 62
-~ NEw VZEW 63
N e ® PRoczmpurrs=
T SYS TS comcErrs -~ 64 R
= RRSrRRCTCDN &5
. = CONCEP™ amO 66 i
- REcATLOMSHITP EDITOR
~ EXTERnAL PRocecpure | &%
* LoMTEXT _
- ANCESTRY 68 - -
. _ = DEscemosnTS €7 .
_ - rvrePe 70 i _
T ATTAIBUTE CLASSES 7/ -
- SUSER CommELTZONS b4

SUMMARY 0OfF SYmMBOL IMTERPRETATION

FLGURE 54

PCT/US94/01037

WO 94/18631

54/71

DONrIssIdou ANNIAZ
YOz IFI3AL roITSIDSIQ AIVANWLS

66 BUnoTH

Z |
3unoadoyd
SByuyndiroyd (_ _
YoNOILIAOY] | .
T |
|
=4 [} :
LA NIATZ ANIA]
SANINT | '

FerMOTLTAgY

%__.

Iuna WUOTQ

(9)

PCT/US94/01037

55/71

WO 94/18631

IYOIAVAIAJYILIHMI 209045 pqoDT
dod FIYL NOTS3IO3g AIGH I o>y
96 3YynNdITH

[..
S$Iss3o0ud § SsId2oud ! 3Y¥Na3roud

S3Ynaasowy _ w |
IWNCTLTOAY \\ I

o~

(P)

2 ' |
n0gaL g . eavvag
S108vvAs - _ _
IWNOITLAIadYy) ﬁ UM
A t _
AHNIANT A N3ARTF \
SAMIAY m _ ﬂ " ”
YoNOo TATOOY QV '
\—l\ t
P4 I |
MITIA Mm3ITA .
SPMIIA | | . o
awipvoxAT0OY) [~ \muw

WO 94/18631 PCT/US94/01037
56/71

P

e

GET EVENT
LOCATZON l

- 3

MBTEM (L Ocarzows
I IZCONS

|
(c) (d)
/\ UPDARTE ACTIVE ,

MBrerr YES
Foun O

FreurRe 5§57
FLOW DracrArt OF PROEGRAMmsnerd m@EasS FOR

UPDRTING RCTIv S BRASERO on USER EVEKMT
Locmarzons

WO 94/18631
57/71

(a) I

G&T™ Ewrrrres
f Locrrzon~

Cb > <
DESPLRY wrorH
HIGHLZGHT

L

Freure 58

FLow DIZAGRANMI OFR PRAGRAMNMMNED
HIGHLIGHTTNG ENTTITIES

PCT/US94/01037

MmEANS FOR

WO 94/18631
58/71

(&) l
GET
Rerzvye

(b) r
GeT

RELATTONSHI P
CHARMKC S R=a g

(c) l

PCT/US94/01037

GET
Seurce
(d) /k (e)
sa-gncs YES
SYSTRn comcEpr

ovuTPyr T¢ous

SavReE
Rer

4

GET

L SounRcE
CLASS Comcg pr [

No
(£)
GET
Sdures
) LrsrarY
) (9))\ Ch)
__-_. L.Isnnwz
I aN
e . {me (¢)
(j)
. Ger
- - CHnKAchk:ZAttou

6JUTPUS
SouKCE L
Cemss Corcgprs

SYSTE wn CorlexpT

oUT PUT

CHANALTERL 2ZRTL
CLASE Comcmpr

L

. FIGURE

59

(K) \

I

FLow DIAGRAM OF PROGRAMAMED MERMS FoR
INTERPRETING LEON-AS SYSTE4 <LomcEpT

ASSOCTATEYD wWLrm Tornw Eumur

T ES

WO 94/18631

PCT/US94/01037
59/71

-

GET A<rrve

(b)

GeT

RELATZAMSHIP
CHARRCTSRIZAT N

(c) l

Ger

ARBSTRACTE oM
RELATZd/SwEP

I}

FIeure ©0

FLowW DZAGRam 0OF PROGRAMMZED MEANS FER
INTERPRETING ITCON AS ARBSTRMcCcTZON
ASsocTATED wWrre LeoMN BNTITZES

WO 94/18631 PCT/US94/01037

60/71

ca) I

Ger /
Exrzrzes £
Sovreg
(b))
CUMREAD
EVENT
Cc)/)\ (£)
TEegr
T&xT ﬂ_,. Eorror
|
NO
(d) (g)
G-RRPHUTCS
GRrAPurcs _JE5 | EprreR
No (h) }
RErPLace
ENMTrzrrEs TN
Descarrrrve cg |
o Cd) (
R Ce) X [ser .
- OTHER CLRSSsS .| UPpaTE
. OF T¢eoNsS | Fers

- Frecure bl _
FLow DIrAGRAm OF PROGRAMMED MEANS FOR
INTERPRETING TLON AS ENTZTY EDLToWG
PRoOcsgEPURE

WO 94/18631

PCT/US94/01037
61/71

(a) T

G&arT

AcTzVvE

(b)

ARSSERT
DoNE

(c)

ASSERT

VIEw w/
ACTIVE

L

Frcure bl
FLOW DIARSRAM OF PROGRAMMED MEANS FIR
TNTERPRETING TCON 'AS PROCEEPURE FoR

TRANMSFERI WG VILEw DERIVATION To
RCrovs

WO 94/18631

62/71

T

(a) GET l
Actrve

) |
DErERmrme

VIEws oF
Acrrve |

(¢) l
SgLEeT
VIEw

¢d) (e)

Voe w YES
SELeerep

\{va (£) .

PCT/US94/01037

ASSERET [ZEwW
£ Acrzve

RSSERT
DonNE

FToure b3 _ .
FLOW DIaGcRAM OF PROGRAMMED MEANS FIR

CHANGING

VIEW OF ACTIVE

WO 94/18631 PCT/US94/01037
63/71

(a? T

GET Lra3rarsy

OF Acrrve

1

Freure o4)
FLOW DIAGRAM OF PROGRAMMED MEANS KFOR .
INTERPRETING Icoad AS- PROCEEDURE FoR TOENTIEIIMG
LEgRARY SYSTESM CoNncEPT OF ACTIVE.

WO 94/18631

PCT/US94/01037

64/71

(a)]:

GAET SvymBolL
REFERENMCTZ

Cb) y
GET SYmGBoL
RBsrrRAcrIOM

i

Freure 5
FLOW DrumcRem OF PROGRAMMED MEANS FOR
INTERPRETING T COWN A5 ABSTRACTZONM
ABSSOCZRTED WITH ACTIVE

WO 94/18631

FIcure (b
FLow Draxsaam g PROGRAMMED ppgnNS FOR
INTERPRETING ZCON AS PROCEEPURE FOR

CONCEPT. AND RELATLEOMNSHIP EDLTING

PCT/US94/01037
65/71
(a) T
GET Symsow
RereremncE
C b) N
Eorror FRoR
SYmBoL

WO 94/18631

(a)

Cb)

(e)

(d)

66/71

T+

GET
SYrmBo

GET
FILE NAME

Y

GET EyrirwAc
PRocxzzouns

<

ExecuTe
PrROCEEDURE FOR

| FrL&

—

EzGurRe b7

PCT/US94/01037

ELOoW DI AGRAM OF PROGRAMMED MSAMS FaR
INTERPRETING TLonM AS EXTSRNAL PROCSEDURE

WO 94/18631 PCT/US94/01037
67/71

(a) T

' GET
SYm@goL

(b

RERO SYm3oL
ABumcesray

(<)

QuTpur
ANCESTRY

L

Fzeure (%
FLOW DIAGRAM OF PROGRAMMED /EAMS FOR
INTERPRETING TCOM " AS AMCESTAY
ComnTrz=XT

WO 94/18631

PCT/US94/01037
68/71

(a) T

SET

NEXT T SYymBoL.
REESRENCE

+ (b)) £
Gar

-NEXT
CHELOREN

CC) /k
C.HILUREAJ YES ,

Mo Dom e

(d)

AOD CHILOREN
TOo oSwurpuT

(e)]

SE™ — -
NEXTTCHILD
Freure ©9

FLOW Dracrmam OF FROGRRMMED MEANS gag
INTERPRETING . TCON AS DESCEMPENTS
CoNTEXT

WO 94/18631 PCT/US94/01037
69/71

() T

GeT
SYmBac

(b |

REsp SYmaoL |
RgcorRo Tir=

(c) '

ourePuT
TYPE

L

FIGURE 0 e
_ . FLOW DOIAGRAM OF PROGRAN#MED MEAMNS [FOR

INTERPRETING ICO9N AS TYPE LOMNTEXT

WO 94/18631

PCT/US94/01037
70/71

(a) T

SET
NEXT = Syuwni3ol

[(b))

Re€aD

NEXT
PAREM TS

(c)

PargyT YES
ATTR. LZ8. ‘
Cg)

Ne poME
(d) (e)
ARDD FPame~nr ToO

Parewnr _YES .| ArrR ciAss Lzsm
SYSTEm (oncEpr

No

{F) Y
SeET™
NEXT = PAREMT R

ErsvRe Tl-
FLOW DragRam ©OF PROGRA~ N80 MEANS FOR
LOEMTIFEYING ATYTRIByYTE CLASS CONCEPTS
FOR ACTILVE ATTrRIBUTE WSER COAMCEPT

PCT/US94/01037

WO 94/18631
71/71

oy L

GET SymBow

RersrENCE
Nump=g
[T A
NG Nexr
REweTromsSHL P
DoNE
(c) (d)
ADOD NEXT
OUrPur' , RELA?':Du;u:P
MNExT TS oorPuT
y

FIGURE TL L
FLOW DIAGRAM OF PROGRAMMED MEAMS FOR
INTERPRETING ICorn MAS UDSER CONMELTION

CamTEXT

INTERNATIONAL SEARCH REPORT

.nternational application No.
PCT/US94/01037

A. CLASSIFICATION OF SUBJECT MATTER

IPC(S) :GOGF 15/18
US CL :395/54, 60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/54, 60, 51, 11, 12, 275, 600

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, IEEE

searched terms: natural language interface, knowledge based, unique reference number

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, 4,965,741 [WINCHELL ET AL.] 23 OCTOBER 1990, see| 1-53
abstract.
A US, 4,974,191 [AMIRGHODSI ET AL] 27 NOVEMBER 1990, | 1-53
see abstract.
A US, 4,930,071 [TOU ET AL] 29 MAY 1990, see abstract. | 1-53

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited d T later document published afier the international filing date or priority
date and not in conflict with the application but cited to understand the
A" d defining the g I state of the art which is not considered principle or theory underlying the invention
mbepanofpnmcuhrmlevw
"E" earlier document published on or afier the international filing date X oonndaudof tor be '.9“)”. Ve an & unno!":
L document which may dxmdoubuonpnomy claim(s) or which is whea the document is taken aloac
cited to blish the date o or other
reason Y d of s the claimed inveation cannot be
special (uw'ﬁd) idered to involve an ive stcp when the document is
el document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to & person skilled in the art
°p* documeat published prior to the intemational filing date but later than ~ *g* document member of the same patent family
the priority date claimed

Date of the actual completion of the international search

28 March 1994

Date of mailing of the international search report

06 JUL 1994

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. NOT APPLICABLE

Authorized officer B yj Q

Allen R. MacDonald

Telephone No. (703) 305-9645

Form PCT/ISA/210 (second sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

