MOVABLE WELL BORE CLEANING DEVICE

Inventors: Gérard Daccord, Vauhallan (FR); Diego Moser, Aberdeenshire (GB); Mathew Samuel, Sugar Land, TX (US)

Publication Date: Nov. 3, 2011

Publication Classification
(51) Int. Cl.
E21B 37/00 (2006.01)
(52) U.S. Cl. ... 166/111; 166/173
(57) ABSTRACT

The invention provides a device for cleaning a wellbore, comprising a tubular section, a helical scratcher mounted thereof wherein said helical scratcher contains flexible wires characterized in that the helical scratcher is able to rotate axially to tubular section when a fluid flows axially to tubular section. Alternatively, the invention provides the method to clean a wellbore wall of a well, said method comprises the steps of: incorporating a device as previously described into the wellbore; moving the device in the well and allowing the fluid flowing axially to the wellbore wall to rotate the scratcher; removing deposit at wellbore wall; leaving a cleaned wellbore wall.
Figure 2
MOVABLE WELL BORE CLEANING DEVICE

FIELD OF THE INVENTION

[0001] The present invention broadly relates to oilfield applications. This invention relates to a movable well bore cleaning device for attachment to a well casing or the like, and more particularly to a movable well bore cleaning device adapted for cleaning the well bore wall before and during cement placement in a subterranean reservoir, such as for instance oil and/or gas reservoir or a water reservoir.

DESCRIPTION OF THE PRIOR ART

[0002] At the completion of every oil and gas drilling operation, whether the operation results in production or a dry hole, it is necessary that some cementing be done in the bore hole. In the case of production, the casing must be cemented in the hole for support thereof and prevention of the flow of fluids between formations. In the case of a dry hole, cement plugs must be set at various depths to seal various formations.

[0003] When cementing casing, the casing is run into and centered in the hole and then cement is pumped down through the casing to displace the drilling mud from the annulus. When setting a plug, a pipe of relatively small diameter is run into the hole to the depth of the bottom of the plug and cement is pumped through the pipe to displace the mud above the end of the pipe until a plug of sufficient length has been formed at which time the pipe is withdrawn from the hole and the cement is allowed to harden.

[0004] In all cases, it is necessary that the walls of the bore hole be cleaned of mud cake and the like so that the cement will bond properly with the formation. Failure to remove unreactive solids between the cement sheath and the formation will leave a potential axial flow path for formation fluids, hence compromising hydraulic isolation.

[0005] Mechanical well bore wall cleaning is accomplished by means of devices known as scratchers. Non-mechanical means of cleaning the well—based for instance on the use of wash fluids flowing in turbulent flow—are being used, but they are felt as being less efficient. The turbulent action of wash fluids can be enhanced by placing passive obstacles in the flow conduit that disturb laminar flow.

[0006] There are two basic types of scratchers: reciprocating and rotating. Reciprocating scratchers are designed to operate when the casing or pipe to which they are attached is moved axially within the bore hole and they usually include a single collar having a plurality of wire bristles or flat loops of wire extending radially to contact the well bore wall. Another type of reciprocating scrubber includes a pair of collars having a plurality of spiral wires connecting the collars and a plurality of fingers extending radially inwardly and upwardly from the upper collar, which help cleaning the well bore wall when the casing or pipe is reciprocated.

[0007] Rotating type scratchers are designed to operate when the casing or pipe to which they are attached is rotated and include an axially extending strip having thereon a plurality of radially outwardly extending loops or bristles or a combination of loops and bristles. There is an additional rotating scrubber which includes a helical strip having thereon a plurality of radially outwardly extending bristles.

[0008] Reciprocating scratchers clean only when reciprocated, rotating scratchers, with the exception of the helical strip type which cleans to a limited extent while reciprocated, clean only when rotated.

[0009] In summary, there are a number of existing scratchers that work during casing or pipe reciprocation and/or rotation. Some of them are disclosed in patents U.S. Pat. No. 4,750,558; and U.S. Pat. No. 3,390,725. However, all existing scratchers require casing movement to work. In other words, if casing or pipe movement is not feasible, which might be a common case due to different reasons, these scratchers are not useful. None of these solutions work when the tubular remain static.

[0010] There are other devices used for different purposes (casing or pipe centralization), known as centralizers. Some of them (in instance: SpiralGlider) consist of a steel centralizer and two asymmetrically-beveled stop collars. The shape of both centralizer and collars is designed to minimize running resistance. The unique stop collar performs both as a positioning device and provides protection to the leading edge of the centralizer. It is designed specifically for highly inclined or horizontal wells and is ideal for use with liner hangars. This configuration allows the centralizer to rotate and also allows a certain degree of axial movement. These movements have the objective of making easier running the casing or pipe. However, they are not designed to work as scratchers, neither to rotate and/or move axially using the fluids flow to induce such movements.

SUMMARY OF THE INVENTION

[0011] It is therefore an object of the present invention to provide a movable well bore cleaning device (flow-induced scratcher) that will clean independently of casing movement. It is a further object of the present invention to use the fluids annular flow as the driving force to rotate or move axially mechanical scratchers.

[0012] In a first aspect, a device for cleaning a wellbore is disclosed, said device comprises a tubular section, a helical scraper mounted thereon wherein said helical scraper contains flexible wires characterized in that the helical scraper is able to rotate axially to tubular section when a fluid flows axially to tubular section.

[0013] Preferably, the device comprises at least two helical scratchers mounted on the tubular section, wherein the two helical scratchers are connected through a cleaning wire and further comprising a restoring aid connected on one side to tubular section and on the other side on one of the helical scratchers. Alternatively, the device can further comprise, on the helical scraper, a cone like structure to create a jet with the fluid.

[0014] In a second aspect, a method to clean a wellbore wall of a well is disclosed, said method comprises the steps of: incorporating a device as previously described into the wellbore; moving the device in the well and allowing the fluid flowing axially to the wellbore wall to rotate the scraper, removing deposit at wellbore wall, leaving a cleaned wellbore wall.

[0015] Preferably, the method further comprises the step of selecting a zone of interest and using one scraper above the zone of interest and a second scraper below the zone of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Further embodiments of the present invention can be understood with the appended drawings.

[0017] FIG. 1 shows a schematic diagram illustrating the apparatus according to the invention in a first embodiment within the wellbore.

[0018] FIG. 2 shows a schematic diagram illustrating the apparatus according to the invention in a first embodiment.
FIG. 3 shows a schematic diagram illustrating the apparatus according to the invention in a second embodiment within the wellbore.

FIG. 4 shows a schematic diagram illustrating the apparatus according to the invention in a second embodiment within the wellbore.

FIG. 5 shows a schematic diagram illustrating the apparatus according to the invention in a third embodiment within the wellbore.

FIG. 6 shows a schematic diagram illustrating the apparatus according to the invention in a third embodiment.

FIG. 7 shows a schematic diagram illustrating the apparatus according to the invention in a fourth embodiment.

DETAILED DESCRIPTION

FIG. 1 shows the wellbore cleaning device in a well, comprising a formation 10, a wellbore wall 11 and the rotating scraper 1 inside. In a first embodiment, the wellbore cleaning device is able to rotate radially only. FIG. 2 shows in more detail the cleaning device. The cleaning device is made of one of several helical blades 30, fastened together. These blades can freely rotate around the casing and their axial movement is restricted by means of a top and a bottom stop collar 21, 22 fastened to a tubular 20. The blades are equipped with flexible wires 31 long enough to touch the wellbore wall 11. These blades can be fitted with wires either along their full length or only along part of their length to reduce the drag with the wellbore wall.

The flow of the fluid 5 circulating axially in the wellbore imparts a rotating movement to the blades which, upon rotation, scratch any fragile deposit on the wellbore wall along the full length of the rotating scraper. This fragile deposit may be made of filter cake, settled solids (barite or cuttings) or other kind of debris. The removed material is cleaned out of the hole by the flow of the annular fluid and leaves a cleaned wellbore wall 3.

The deposit 2 is thus fully replaced by the circulating fluid; if this circulating fluid is a cement slurry, once it sets, it will bond with the formation and provide an efficient hydraulic isolation barrier to prevent any fluid in the annulus. This hydraulic isolation will be much better than in places without scratchers because the presence of a fragile deposit at the cement-formation interface presents an easy leakage path.

Preferably, the tubular will be equipped with a plurality of rotating and reciprocating scratchers, placed at different depths along the tubular to ensure several hydraulic isolation sections along the well.

FIG. 6 illustrates a wellbore after cementing, where a rotating and reciprocating wellbore cleaning device was used before and during cement placement 4.

Similarly multiple rotating cleaning devices can be used in long sections in order to provide several hydraulic seal sections at any required casing or pipe (i.e.: surface, intermediate, etc.), as illustrated at FIG. 4. In such a way also, cement in direct contact with the wellbore wall provides a section with an efficient hydraulic seal 8.

In a third embodiment, the wellbore cleaning device is able to rotate radially and also move axially. FIG. 5 illustrates an example of a rotating and reciprocating cleaning device. The cleaning device is made of multiple “rings” 40 attached together. These rings can freely rotate around the casing and their axial movement is allowed within certain pre-determined length. The “rings” are equipped with flexible wires 31 long enough to touch the wellbore wall. These “rings” can be fitted with wires either along their full length or only along part of their length to reduce the drag with the wellbore wall. The “rings” are also fitted with helical fins 30 designed to make the “rings” rotate with the flow circulating axially in the wellbore. In order to improve the cleaning efficiency, cleaning wires 32 can be used as “link” between two “rings”. These flexible wires would allow the “rings” to move axially within certain length. Moreover, and whenever required, an axial movement restoring aid 41 (i.e.: spring type, etc.) attached to the stop collar 22, might be used to aid the movement against the flow (i.e.: down towards the bottom of the casing). Axial movement of the “rings” would depend on fluids properties and circulating rate. Therefore, depending on the drag force of the fluid applied on the “ring”, its axial position can change. In other words, changes of fluid type (washes, mud, cement, etc.), and rates will lead to changes in the “rings” axial position, extending the cleaning effect to a section effectively longer than the length of the “ring”.

As for the rotating cleaning device described before, the flow of the fluid circulating axially in the wellbore imparts a rotating movement to the “rings” which, upon rotation will lead to scratch any fragile deposit on the wellbore wall along the full length of the rotating scraper. This fragile deposit may be made of filter cake, settled solids (barite or cuttings) or other kind of debris. The removed material is cleaned out of the hole by the flow of the annular fluid.

The deposit is thus fully replaced by the circulating fluid; if this circulating fluid is a cement slurry, once it sets, it will bond with the formation and provide an efficient hydraulic isolation barrier to prevent any fluid in the annulus. This hydraulic isolation will be much better than in places without scratchers because the presence of a fragile deposit at the cement-formation interface presents an easy leakage path.

Preferably, the tubular will be equipped with a plurality of rotating and reciprocating scratchers, placed at different depths along the tubular to ensure several hydraulic isolation sections along the well.

FIG. 6 illustrates a wellbore after cementing, where a rotating and reciprocating wellbore cleaning device was used before and during cement placement 4.

In such a way, cement in direct contact with the wellbore wall provides a section with an efficient hydraulic seal 8.

In a fourth embodiment, the wellbore cleaning device comprises a cone in the wings or helicoidal part of the cleaning device to allow the fluid going up to go through the tube like structure and create a jet that can further clean. The cone can be closed 70 or open 71. FIG. 7 illustrates such an alternative.

1. A device for cleaning a wellbore comprising: a tubular section, a helical scraper mounted thereon wherein said helical scraper contains flexible wires characterized in that the helical scraper is able to rotate axially to tubular section when a fluid flows axially to tubular section.

2. The device of claim 1, comprising at least two helical scratchers mounted on the tubular section, wherein the two helical scratchers are connected through a cleaning wire and further comprising a restoring aid connected on one side to tubular section and on the other side on one of the helical scratchers.

3. The device of claim 1, comprising further on the helical scraper a cone like structure to create a jet with the fluid.
4. A method to clean a wellbore wall of a well, comprising the steps of:
 incorporating a device into the wellbore, said device comprising: a tubular section, a helical scratcher mounted
 thereof wherein said helical scratcher contains flexible wires and is able to rotate axially to tubular section;
 moving the device in the well and allowing the fluid flowing axially to the wellbore wall to rotate the scratcher;
 removing deposit at wellbore wall;
 leaving a cleaned wellbore wall.
5. The method of claim 4, further comprising the step of selecting a zone of interest and using one scratcher above
 zone of interest and a second scratcher below zone of interest.
6. The method of claim 4, wherein the device comprises at least two helical scratchers mounted on the tubular section,
 wherein the two helical scratchers are connected through a cleaning wire and further comprises a restoring aid connected
 on one side to tubular section and on the other side on one of the helical scratchers.
7. The method of claim 4, wherein the devices further comprises, on the helical scratcher, a cone like structure to
 create a jet with the fluid
8. The method of claim 4, wherein the well is a highly inclined or horizontal well.
9. The method of claim 4, wherein the cleaning is independent of tubular section movements.
10. The method of claim 4 wherein the deposits are carried to surface by fluid flow, resulting in a cleaned wellbore.
11. The method of claim 10, wherein the fluid is a cement slurry.
12. The method of claim 5 wherein the zone of interest is a reservoir zone.
13. The device of claim 1, wherein the helical scratchers are made of several blades.
14. The device of claim 1 wherein the helical scratchers are made of multiple rings equipped with flexible wires.
15. The device according to claim 14 wherein the rings are able to freely rotate around the tubular section.
16. The device according to claim 1 wherein the tubular is equipped with a plurality of blades and rings.
17. A device for cleaning a wellbore comprising: a tubular section, at least two helical scratchers mounted thereof
 wherein said helical scratchers contain flexible wires and are able to rotate axially to tubular section when a fluid flows
 axially along the tubular section wherein the two helical scratchers are connected through a cleaning wire and further
 comprising a restoring aid connected on one side to the tubular section and on the other side on one of the helical scratchers.
18. The device according to claim 17, wherein the helical scratchers are made of multiple rings equipped with flexible
 wires.
19. The device according to claim 17, wherein the helical scratchers are made of multiple rings equipped with flexible
 wires.
20. The device according to claim 17, wherein the tubular is equipped with a plurality of blades and rings.
 * * * * *