Office de la Proprieté Canadian CA 2518468 C 2008/09/30

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 51 8 468
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de dépét PCT/PCT Filing Date: 2004/04/14 (51) CLInt./Int.Cl. GO6F 11/34(2006.01),
(87) Date publication PCT/PCT Publication Date: 2004/11/04 GO6F 9756 (2006.01)
(45) Date de délivrance/lssue Date: 2008/09/30 (72) Inventeurs/inventors:

(85) Entree phase nat

ARMSTRONG, WILLIAM JOSEPH, US;
lonale/National Entry: 2005/09/07 FLOYD. MICHAEL STEPHEN, US;

(86) N° demande PCT/PCT Application No.: GB 2004/001586 LEITNER, LARRY SCOTT, US;

KALLA, RONALD NICK, US;

(87) N° publication PCT/PCT Publication No.: 2004/095282 SINHAROY BAL ARAM US

(30) Priorité/Priority: 2

003/04/23 (US10/422,025) (73) Propriétaire/Owner:

INTERNATIONAL BUSINESS MACHINES
CORPORATION, US

(74) Agent: WANG, PETER

(54) Titre : PROCEDE ET LOGIQUE DE COMPTABILITE POUR LA DETERMINATION D'UTILISATION DE
RESSOURCES DE PROCESSEUR POUR CHAQUE FILIERE DANS UN PROCESSEUR MULTIFILIERE

SIMULTANE

54) Title: ACCOUNTING METHOD AND LOGIC FOR DETERMINING PER-THREAD PROCESSOR RESOURCE
UTILIZATION IN A SIMULTANEOUS MULTI-THREADED (SMT) PROCESSOR

Processor Core 10
ISU 12 Controt Logic 11
Timebase
Threac cycle | Fixed Point
Dispatch/detect priority counter Unit 14
T #counter4d |e—=ef registers 47 — i
’ ——
45
I I it
| Processor cycle time usage unit 40 ‘;1 '
‘ .
[Half-cycle Latch >
> counter 428 | a3A j » Thread 0 usage 414 l
- v J |
L Half-cycle e B I > Thread 1 usage 41B
counter 42B 438
(57) Abréegée/Abstract:

An accounting method and logic for determining per-thread processor resource utilization in a simultaneous multi-threaded (SMT)
processor provides a mechanism for accounting for processor resource usage by programs and threads within programs. Relative
resource use Is determined by detecting instruction dispatches for multiple threads active within the processor, which may include

Idle threads that are st

Il occupying processor resources. If instructions are dispatched for all threads or no threads, the processor

cycle Is accounted eq
prior state, or in confo
entire processor cycle.
than two threads), the
threads and a fraction
fractional usage.

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

ually to all threads. Alternatively If no threads are in a dispatch state, the accounting may be made using a
rmity with ratios of the threads' priority levels. If only one thread Iis dispatching, that thread is accounted the
If multiple threads are dispatching, but less than all threads are dispatching (in processors supporting more
processor cycle Is billed evenly across the dispatching threads. Multiple dispatches may be detected for the
al resource usage determined for each thread and the counters may be updated in accordance with their

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

OPIC - CIPO 191

4/095282 A1 0 V) A0 0 A0 0 R0 00 00 A 1

CA 02518468 2005-09-07

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date

4 November 2004 (04.11.2004)

(51) International Patent Classification’: GO6F 11/34, 9/38

(21) International Application Number:

(10) International Publication Number

WO 2004/095282 Al

(US). LEITNER, Larry, Scott [US/US]; 11328 Avering
lane, Austin, TX 78754 (US). KALLA, Ronald, Nick
[US/US]; 2143 Hilton Head Drive, Round Rock, TX

PCT/GB2004/001586 78664 (US). SINHAROY, Balaram [US/US]: 15E Hud-
(22) International Filing Date: 14 April 2004 (14.04.2004) son Harbor Drive, Poughkeepsie, NY 12601 (US).
(25) Filing Language: English (74) Agent: WALDNER, Philip; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester,
(26) Publication Language: English Hampshire SO21 2JN (GB).
(30) Priority Data: | (81) Designated States (unless otherwise indicated, for every
10/422,025 23 April 2003 (23.04.2003) US kind of national protection available): AE, AG, AL, AM,
(71) Applicant (for all designated States except US): INTER- ég ‘g{ ‘AEZU B(quz’ BI?]% B];}I%Bé{ﬂfvg,zBE’ngﬁcgécg,scg,
NATIONAL BUSINESS MACHINES CORPORA- GB, GD’ GE’ Gﬁ GI,\/I H’R H’U I]S IIi IN’ S ,JP ,KE,
TION [US/US]; New Orchard Road, Armonk, NY 10504 ’ ’ ’ ’ ’ ’ T T T T ’
(US) KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
' MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
(71) Applicant (for MG only): IBM UNITED KINGDOM PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
LIMITED [GB/GB]; PO. Box 41, North Harbour, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
Portsmouth, Hampshire PO6 3AU (GB). A S
(72) Inventors; and (84) Designated States (unless otherwise indicated, for every
(75) Inventors/Applicants (for US only): ARMSTRONG, kind of regional protection available): ARIPO (BW, GH,

William, Joseph [US/US]; 5106 Nicklaus Drive NW,
Rochester, MN 55901 (US). FLOYD, Michael, Stephen
[US/US]; 15108 Terra verde Drive, Austin, TX 78717

GM, KE, LS, MW, MZ, SD, SL., SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, FI, FR,

[Continued on next page]

(54) Title: ACCOUNTING METHOD AND LOGIC FOR DETERMINING PER-THREAD PROCESSOR RESOURCE UTILIZA-
TION IN A SIMULTANEOUS MULTI-THREADED (SMT) PROCESSOR

FProcessor Core 10

15U 12 Control Logic 11
Timebase
Thread cycle Fixed Point
Dispatch/detect priotity counter Unit 14
> e regist A7 o
“ # counter 44 registers a7
45
.{;
|
Processor cycle time usage unit 40 %
¥
Half-cycle Latch >
counter 42A > 43A Thread 0 usage 418,
Half-cycle Latch | Thread X
> > o Thread 1 usage 418
counter 42B 43B

(57) Abstract: An accounting method and logic for determining per-thread processor resource utilization in a simultaneous multi-
threaded (SMT) processor provides a mechanism for accounting for processor resource usage by programs and threads within pro-
grams. Relative resource use is determined by detecting instruction dispatches for multiple threads active within the processor, which
may include idle threads that are still occupying processor resources. If instructions are dispatched for all threads or no threads, the

& processor cycle is accounted equally to all threads. Alternatively if no threads are in a dispatch state, the accounting may be made us-
& ing a prior state, or in conformity with ratios of the threads’ priority levels. If only one thread is dispatching, that thread is accounted

N (he entire processor cycle. If multiple threads are dispatching, but less than all threads are dispatching (in processors supporting

more than two threads), the processor cycle is billed evenly across the dispatching threads. Multiple dispatches may be detected for
the threads and a fractional resource usage determined for each thread and the counters may be updated in accordance with their
fractional usage.

CA 02518468 2005-09-07

WO 2004/095282 A1 | {00 IAYH YA A0 1 A 0 0T 0

GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, For two-letter codes and other abbreviations, refer to the "Guid-
TR), OAPI (BF, BJ, CFE, CG, CI, CM, GA, GN, GQ, GW, ance Notes on Codes and Abbreviations" appearing at the begin-
ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:
— with international search report

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

ACCOUNTING METHOD AND LOGIC FOR DETERMINING PER-THREAD PROCESSOR RESOURCE
UTILIZATION IN A SIMULTANEOUS MULTI-THREADED (SMT) PROCESSOR

BEACKGROUND OF THE INVENTION

Technical Pield

The present invention relates generally to processors and computing

systems, and more particularly, to a simultaneous multli-threaded (SMT)

processor. The present invention also relates TO processor usage

accounting systems.

Description of the Related Art

Present-day high—speed processors include the capability of

simultaneous execution of instructions, speculative execution and loading

of instructions and simultaneous operation of various resources within a

processor. In particular, it has been found desirable to manage execution

of one or more threads within a processor, so that more than one execution

thread may use the processor and so that resources more effectively than

they are typically used by a single thread.

Prior processor designs have dealt with the problem of managing
multiple threads via a hardware state switch from execution of one thread

o execution of another thread. Such processors are known as hardware

multi-threaded (HMT) processors, and as such, can provide a hardware

switch between execution of one or the other thread. An HMT processor

overcomes the limitations of waiting on a stalled thread by permitting the

hardware to switch execution to another thread. Execution of both threads
can be performed not simultaneously, but by allocating execution slices to
cach thread when the other thread experiences a stall condition such as a

cache miss.

gimultaneous multi-threaded (SMT) processors provide an even more

p—

efficient use of processor resources, as multiple threads may

simultaneously use processor resources. Multiple threads are concurrently

executed in an SMT processor so that multiple processor execution units,

such as floating point units, fixed point instruction units, load/store

units and others can be performing tasks for one (or more depending on the

execution units' capabilities) of multiple threads simultaneously. Storage
and register resources may also be allocated on a per-thread basis so that

the complete internal state switch of the HMT is avoided.

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

Accounting for processor time use is necessary for administration of

computer services sales, as well as for internal cost—accounting

management when, for example, some processor runs are for research and

development activities that permit the hardware to be capitalized 1n a

Jdifferent manner for tax purposes than other uses. A server may be

partitioned and processor time told to multiple users "on demand" or on an

as-used basis. Additionally, processor time may be utilized by hardware

owners or lessors and also subcontracted out to entities paying for
services. Therefore, accurate accounting for processor execution time is a
necessity in computer architectural and software models. Also, processor
rime usage, especially on a per-thread basis, 1s useful for profiling

programs for optimization.

In single-threaded processing systems, accounting 1s generally

straightforward. A count of processor cycle use Or even simple

1wall-clock" time measurement can be provided for complete job runs, as -

priar

even if multiple threads within multiple programs are executed, they are

not executed simultaneously, but sequentially. A tally of cycle times 18

maintained until a job is complete and the total is presented rfor

accounting purposes. The measured time correlates directly to processor

resource utilization.

Tn an HMT machine, the task is similar in that within the processor

hardware, only one thread is executing at a time and multiple counters are =~

used to track the processor time usage of each thread while, by running a

counter only while its associated thread is active. However, in an SMT

processor, two or more threads may be simultaneously executing within a

single processor core and the usage of resources by each thread is not

easily determined by a simple execution count or time measurement.

t is therefore desirable to provide a method and apparatus that can

account for processor time usage in an SMT processor. It 1s further

desirable to provide a method for accounting for resource usage within an

SMT processor usage among threads executing within such a processor.
SUMMARY OF THE INVENTION

The objective of accounting for processor time usage within a

simultaneous multi-threaded (SMT) processor is accomplished 1n a processor

having processor utilization counters and a method for accounting for

processor tilime usage.

CA 02518468 2005-09-08

£

1 i |
A Pnnied 1 019.358,....\,5 S, P‘E,..,,SF??%MB New Page: 23 February 2 0‘..0..472731 0
ﬂ . .
3

The processor incorporates multiple processor usage cycle counters,
one associated with each thread executing within a processor to provide a
count corresponding to processor resource ﬁsage by each thread. Relative
resource usage is detection on a per-thread basis and is used to update
the cycle counters. The resource usage. detection may be carried out by
detecting the presence of a particular cyclé state indicating active
instruction processing for a thread. The cycle state is detected by
sampling periodically, which may be at each clock cycle, and the counters
are incremented (or alternatively decremented) in conformity with the
detected cycle state. The detected state is chosen to be indicative of
relative processor resource usage by each thread.

The detected cycle state may be a dispatch of an instruction for a
thread. Cycles for which neither thread is in the particular cycle state
may be' charged evenly to each thread, or the cycle may be charged in
conformity with a last dispatch state for all threads. Alternatively,
non-indicating cycles may be charged in conformity with an ordered thread
priority, which gives an indication of relative thread resource usage.
Cycles in which one thread is in the particular cycle state and the other
thread is not may be charged fully to the thread in the particular cycle
state, thus providing for charging active threads over idle -threads. Also,
cycles may be charged in conformity with fractional values indicating the
number of resources used in a given cycle by each thread.

The processor may be capable of both SMT and single~threaded (ST)
operating modes, and the accounting may be selectively responsive to a
selected mode, charging all cycles to a single thread executing in ST
mode.

US patent publication 2001/0056456 dlscloses a priority based
simultaneous architecture combining 08 priority information W.‘Lth thread
-heuristics to prov:Lde dynamic priorities for selecting thread instructions
for.processing.

The foregoing and other objectives, features, and advantages of the
invention will be apparent from the f:ollowing, more particular,
description of the preferred embodiment of the invention, as illustrated
in the accompanying drawings.

i .-f‘*P ﬂlh t

1, AMENDED SHEET 2510212005 |

CA 02518468 2005-09-08

Pl‘inted 10/03/20@5 £ DESCPAMD. 04727810

-...“\ Mdsh -

-t Ui i L. WIS SO L New Page: 23 February 20v.. - --

3a

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set
forth in the appended claims. The invention itself, however, as well as a
preferred mode of use, further obj ectives, and advantages thereof, will
best be understood by reference to the following detailed description of
an illustrative embodiment when read in conjunction with the accompanying
drawings, wherein like reference numerals indicate like components, and:

b ety R SR PRI i ey Py [

R A

AMENDED SHEET 125/02/2005
e T o s :
- f)\ R . Y R ¢ H “‘.\s‘o A

e WY N . o eﬁi PR L W AT

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

Figure 1 is a block diagram of a system in accordance with an

embodiment of the invention.

Ficure 2 ig a block diagram of a processor core in accordance with

an embodiment of the invention.

Figure 3 is a block diagram of details of functional units within

processor core 10 of Figure 2.

Figure 4 is a flowchart depicting a method in accordance with an

embodiment of the present invention.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENT

With reference now to the figures, and in particular with reference
to Figure 1, there is depicted a block diagram of a system in accordance

with an embodiment of the present invention. The system includes a

processor group 5 that may be connected to other processor Jgroups via a

bridge 37 forming a super-scalar processor. Processor Jgroup 3 is connected

to an L3 cache unit 36 system local memory 38 and various peripherals 34,

as well as to two service processors 34A and 34B. Service Processors

provide fault supervision, startup assistance and test capability to

processor group 5 and may have their own interconnect paths to other

processor groups as well as connecting all of processors 30A-D.

Within processor group 5 are a plurality of processors 30A-D,

generally fabricated in a single unit and including a plurality of

processor cores 10A and 10B coupled to an L2 cache 32 and a memory

controller 4. Cores 10A and 10B provide instruction execution and

operation on data values for general-purpose processing functions. Bridge
37, as well as other bridges within the system provide communication over
wide buses with other processor groups and bus 35 provide connection of

processors 30A-D, bridge 37, peripherals 34, L3 cache 36 and system local

memory 38. Other global system memory may be coupled external to bridge 37

for symmetrical access by all processor groups.

Processor cores 10A and 10B are simultaneous multi-threaded (SMT)

processors capable of concurrent execution of multiple threads. Processor

cores 10A and 10B further support a single-threaded operating mode for

efficient execution of a single thread when program execution conditions

dictate single threaded operation, e.g., when high-priority program

WO 2004/095282

CA 02518468 2005-09-07
PCT/GB2004/001586

execution must be completed by a known time, or when one thread in a

multi-threaded processor is known to be idle. Multi-threading introduces

some inefficiencies over full-time execution of a single-thread, but

overall there is

waiting on other

a system efficiency advantage as threads are often 1dle

tasks to complete. Therefore transitloning between

single-threaded and multi-threaded mode provides an advantage in adapting

to one or more of the above-described conditions, and embodiments of the

present invention provide accounting for processor time in a manner

consistent with a processor that provides processor time accounting

responsive to such transitions.

Referring now to Figure 2, details of a processor core 10 having

features identical to processor cores 10A and 10B is depicted. A bus

interface unit 23 connects processor core 10 to other SMT processors and

peripherals and connects L1l Dcache 22 for storing data values, L1l Icache

20 for storing program instructions and cache interface unit 21 to

external memory,

processor and other devices. Ll Icache 20 provides

loading of instruction streams in conjunction with instruction fetch unit

IFU 16, which prefetches instructions and may include speculative loading

and branch prediction capabilities. An instructlon sequencer unit. (ISU) 12

controls sequencing of instructions issued to varlous internal units such

as a fixed point

unit (FXU) 14 for executing general operations "and a .

floating point unit (FPU) 15 for executing floating point operations:

Global completion tables (GCT) 13 track the instructions issued by ISU 12

via tags until the particular execution unit targeted by the instruction

indicates the instructions have completed execution.

Fixed point unit 14 and floating point unit 15 are coupled to

various resources such as general-purpose registers (GPR) 18aA, floating

point registers

(FPR) 18B, condition registers (CR) 18C, rename buffers

18D, count registers/link registers (CTR/LR) 18E and exception registers

(XER) 18F. GPR 18A and FPR 18B provide data value storage for data wvalues
loaded and stored from Ll Dcache 22 by load store unit (LSU) 19. CR 18C

stores conditional branching information and rename buffers 18D (which may

conmprise severa.l

execution unitsg)

rename units associated with the varlous internal

provides operand and result storage for the execution

units. XER 18F stores branch and fixed point exception information and

CTR/LR 18F stores branch link information and count information for

program branch execution. GPR 18a, FPR 18B, CR 18C, rename buffers 18D,
CTR/LR 18E and XER 18F are resources that include some fixed (architected)

registers that store information during execution of a program and must be

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

provided as a fixed set for each executing thread, other non-architected

registers within the above resources are free for rename use. Control

logic 11 is coupled to various execution units and resources within
processor core 10, and is used to provide pervasive control of execution

units and resources. An SCOM/XSCOM interface unit 25 provides a connection

to external service processors 34A-B.

Referring now to Figure 3, details of functional blocks within

'gU 12 indicates to control logic 11 when

processor core 10 are depicted.

‘nstructions are dispatched for particular threads executing with

gy

processor core 10. Control logic 11 updates half-cycle counters 42A and

42B selectively depending on whether instructions were dispatched by ISU

12 for a thread associated with a given counter (thread 0 for half-cycle

counter 423 and thread 1 for half-cycle counter 42B) in a given cycleqas
detected by a dispatch detect circuit 44. Outputs orf half-cycle counters
422 and 42B are latched by a latches 43A and 43B that are coupled to
rimebase cycle counter 47. On each 8™ processor cycle of timebase cycle
counter 47, the output of latches 43A and 43B are provided to increment
thread usage counters 41A and/or 41B, providing an update of thread usage
counters 41A and/or 41B every 8 processor cycles that the timebase cycle
counter 47 ig active (which will preclude special operations where the

timebase is inactive from being charged to active threads). Timebase cycle

counter 47 resets latches 43A and 43B after the increment. The
above-described action provides counts at the outputs of thread usage
counters 41A and/or 41B that are fractions of the timebase counter for the

processor and can be used directly to compute the relative thread resource

usage in a "usage time" value.

In accordance with alternative embodiments of the invention, other
particular cycle states can be used by control logic 1l and ISU 12 (or
other execution unit within processor core 10) to trigger an update of ’

half-cycle counter 42A and/orxr 42B in each cycle, but instruction dispatch

is chosen in the exemplary illustration of the invention, as instruction

dispatch provides a mechanism for measuring the commencing of each

processing activity using processor core 10, instead of the progress oOr

completion of such activities, which are dependent on code efficiency. For

example, an inefficiently coded program may generate many incorrect branch

predictions and consequent prefetches and flushes, using critical

processor resources while generating few completions. Therefore, use of
instruction completions rather than instruction dispatches would generate

a lower processor time usage measurement for thread executing inefficient

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

code. Therefore, the use of instruction dispatch as the particular trigger

—
p—

event for updating half-cycle counters 41A and 41B provides an estimate of

processor resource usage that does not "reward" inefficient code.

While prior accounting models have been able to allocate essentially

all of processor core 10 time to a particular thread, due to the lack of

simultaneous execution of threads in a given processor, 1in an SMT

processor, "billing" of processor time usage on a per-thread basis must be
distributed across the two or more threads that may be simultaneously
executing within processor core 10. When ISU 12 is not dispatching
instructions for any thread using processor core 10, it is still necessary
to account for the use of processor core 10 by all of the threads. The
threads may not be commencing new work in the form of dispatched

instructions but are still "tying up" processor core 10, or may be active

in phases of execution other than instruction dispatch. For example, one

thread may be causing long prefetch sequences and another thread may'be":

performing a lengthy floating point operation. Processor resources and

execution units are being used actively by both threads, while only a
small number of instruction completions would be associlated with
processing intervals in accordance with the above example. Another

particular instruction state that is preferable to completions are

instruction fetches, that would provide an indication similar to that of

the instruction dispatch, but providing usage counts biased more toward

IFU 16 and LlIcache 20 usage, rather than the usage of execution units

including FXU 14, FPU 15 and their associated resources.

Therefore, the exemplary embodiment described herein provides a

mechanism for accounting for all processor core 10 cycles based on an - -

estimate of execution unit and resource usage, even when no dispatch

occurs in a given cycle (or in alternative embodiments, other particular

cycle states or resource usages detected by control logic 11). In cycles
where no instruction dispatch occurs for any thread, the cycle 1is
accounted an equal division of the cycle value for each thread executing-

within processor core 10 (including idle threads that have not been

unloaded from processor core 10 and are still tying up processor

regsources). But, in an alternative embodiment or selectable behavior of

control logic 11, control logic 11l may remember the last dispatch state

and may use that to update half-cycle counter 42A and/or 42B instead.

Another alternative is for control logic 11 to use the relative thread

priorities set in processor core 10 to fractionally divide the clock cycle

value used to updated half-cycle counter 42A and/or 42B in orxrder to

properly allocate a cycle in which no dispatch occurs for any thread.

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

gimilarly, when instructions are dispatched in a given cycle for

more than one thread, the cvcle is accounted an equal division of the

cvele value for each thread for which instructions are dispatched. Or
again, control logic 11 may use the relative thread priorities set in
processor core 10 to fractionally divide the clock cycle value used to

updated half-cycle counter 42A and/or 42B in order to properly allocate a

cycle in which dispatches occur for all threads.

Therefore, in the equal division methodology (and not the priority

or prior cycle scheme listed as alternatives above), in a processor core

that supports the execution of one or two threads, a one-half wvalue 1is

accounted to each thread for cycles in which no dispatch occurs or in

cycles in which an instruction dispatch occurs for each thread. In cybles

where an instruction dispatch occurs for only one thread, the thread for
which instruction dispatch occurs is billed for the entire cycle. Control
logic 11 detects one of four potential states: neither thread dispatching,
thread 0 dispatching, thread 1 dispatching, or both threads dispatching,
and updates thread 0 half-cycle counter 42A and thread 0 half-cycle

counter 42B in conformity with the above-described cycle billing

distribution.

gince the lowest distribution value described above is for an

allocation of one-half cvcle increments, half-cycle counters 42A and 42B

are updated by an increment (or decrement) of 1 for the half-cycle or 2

—

for the full cycle allocation. In practice, each of thread usage counters

413 and 41B are updated at one eighth of the possible instructlon dispatch

rate for chip area, power and timing reasons (or due to the rate of

rimebase cycle counter 47 which is chosen as 1/8 of the processor cycle

time for the same reasons), so the four-bit half-cycle counters 42a and

42B that do not form part of the "architected" thread usage cdﬁnter5+
provide an effective 8 cycle usage count per overflow (since a value of

rwo will be allocated to the total increment of half-cycle counters 42A

and 42B). Half-cycle counters 42A and 42B overflow into the portion of .

thread usage counters 41A and 41B that are read by fixed point unit 14

when an accounting routine (program) retrieves the processor cycle time

usage information. Half-cycle counters 42A and 42B are implemented as

adders that add two sub-counts for a full cycle allocation or one-sub

count for a half cycle allocation.

Tn an alternative embodiment of the present invention, processor

cycle time usage unit 40 uses an addition to increment (or subtraction to

decrement) thread usage counters 41A and 41B. The added value 18

CA 02518468 2005-09-07
WO 2004/095282 PCT/GB2004/001586

determined by dispatch detect circuit 44 detecting that multiple

dispatches are being made for a given thread, and the associated

sub-counter is incremented by (has added to it) a value proportional to

the ratio of the number of instructions dispatched for the thread to the
rotal number of instructions dispatched for all threads for the cycle. For

example, when processor core 10 is executing two threads and in a given

cvcle 3 instructions are dispatched for a first thread and one instruction
is dispatched for the second thread, a value of 3/4 is allocated to the

thread usage counter for the first thread and 1/4 is allocated to the

thread usage counter for the second thread. If no dispatches are made in a

given cycle, the cycle is still allocated evenly between the threads.

Referring now to Figure 4, a method in accordance with an embodiment

of the present invention is depicted in a flowchart. The method depicted

is for accounting within an SMT processor having an SMT and an ST mode and

is capable of simultaneously executing multiple threads in SMT mode. It

the processor is in ST mode (decision 50) the thread cycle counter for the
executing thread is updated by 1 cycle value every cycle (step 51). Ifuthe
processor is in SMT mode (decision 50) if only one thread is dispatching-:

(decision 52), the associated thread cycle counter is updated by 1 cycle

value (step 53). If all threads are dispatching (decision 54), the thread

cycle counters for all threads are updated equally according to a fraction

of a cvcle determined by the number of threads or according to the number

of dispatches issued (or resources used) for each thread (step 55). If no

threads are dispatching, the thread cycle counters can be updated equally,

or in proportion to the last dispatch sampling, or in proportion to their
priority (step 57). Finally if no threads are dispatching, the thread |
cycle counters can likewise be updated equally, or in proportion to the

last dispatch sampling, or in proportion to their priority (step 58)

While the invention has been particularly shown and described with

reference to the preferred embodiment thereof, it will be understood by

 —d

those skilled in the art that the foregoing and other changes in form, and

details may be made therein without departing from the spirit and scope of

the invention.

[

Al

CA 02518468 2005-09-08

PHinted: 10/03/2005 - fe A
NS IR I .*vﬂu_,o.v_, CLM$AEAMD New Pagé: 23 Februa.ry 21
10
. QLAIMS
1. A method of accounting for processor time usage in a processor,
comprising:

at each processor clock cycle, determining whether or not each
thread is in a particular processor cycle; and |

in response to said determining, updating a plurality of processor
resource usage counts each associated with a particular one of a plurality
of threads in conforniity with said relative resource usage, wherein said

updating equally updates each of said plurality of said processor resource |
usage counts in response to said determining determining that none of said

plurality of threads are in said particular cycle state.

2. .The method of Claim 1, wherein said determining further determines a
number of resources for which each thread is in a particular cycle state.

3. The method of Claim 2, wherein said updating fractionally updates
each of said plurality of said processor resource usage counts in
conformity with said determined number of resources used by said
agsoclated thread.

4, The method of Claim 1 or 2, wherein said particular cycle state is a

state indicating an instruction dispatch for a thread.

5. The method of any of Claims 1 to 4, wherein in response to said
determining dei:ermi;iing that one or more of said plurality of threads are
in said particular cycle state, said updating equally updates each of said
plurality of said processor resource usage counts associated with said one
or more threads.

6. The method of any of Claims 1 to 5, wherein said updating
fractionally updates each of said plurality of said processor resource
usage counts in conformity with a determined number of resources used by
sald assocliated thread from a prior one of said periodic intervals, in
response to said determining further determining that none of said
plurality of threads are in said particular cycle state.

7. The method of any of Claims 1 to &, wherein said updating
fractionally updates each of said processor resource usage counts in
conformity with a priority level of said associated thread, in response to

PR 2N “wu_‘?m“’ .-

AMENDED SHEET 2500

04727310

‘
-l

2/2005

CA 02518468 2005-09-08 -

;qw -»_. . .H‘ .

tF’) " i 3
,rinted 10/92.{8?9 059 15 CLM-'-S\F?&MD New Page: 23 February 2 :.94}72.?31 0
1l

said determining determining that none of said plurality of threads are in
said particular cyecle state.

8. - The method of any of Claims 1 to 7, wherein said processor has a
single~-threaded mode of operation and a multi-threaded mode of operation
and further comprising:

determining whether ox not said processor is in said single-threaded
mode; and |

in response to determining that said processor is in said
single~threaded mode, performing said updating such that each processor
cycle is attributed to a single thread executing within said processor.

8. A processor supporting concurrent execution of a plurality of threads,
said processor comprising: |

a plurality o¢of resources used by said plurality of threads:; .

- an instruction control unit coupled to said plurality of resources,
wherein said instruction control unit controls a number of resources used
by said processor each processor clock cycle;

a plurality of processor resource usage cycle counters, each
associated with a particular one of said plurality of threads; and

a logic circuit coupled to said instruction control unit and said
pProcessor resource usage cycle counters, wherein said logic circuit
updates each of said processor resource usage cycle counters in conformity
with a determination of relative resource usage by said associated thread,
and wherein said logic circuit determines whether or not each thread is in
a particular cycle state and said control logic equally updates each of
said plurality of said processor resource usage counts in response to
determining that none of said plurality of threads are in said particular
cycle state.

10. The processor of Claim 9, wherein said control logic further
determines a number of resources for which each thread is in a particular
cycle state.

11. The processor of Claim 10, wherein said control logic fractionally
updates each of said plurality of said processor resource usage counts in

‘.T':&i.:';af :"=Z POt

2 AMENDED SHEET 251@2/305

TR " S v

CA 02518468 2005-09-08 — —~.

\

Printed: 1 0/03/2005; CLMSPAMD! (04727310

ORI S e | S T b e New page 23 February 2. ...

12

conformity with said determined number of resources used by said
associated thread.

12. The pérocessor of Claim 9, 10 or 11 wherein said particular cycle
gtate is a state indicating an instruction dispatch for a thread.

13. The processor of any of Claims 9 to 12, wherein said control logic,
in response to determining that one or more of said plurality of threads
are in said part:.cular cycle state, equally updates each of said plurality
of said processor resource usage counts associated with said ‘one or moxre
threads.

14. The processor of any of Claims 9 to 13, wherein said control logic
fractionally updates each of said plurality of said processor resource
usage counts in conformity with a determined number of resourxces used by
said associated thread in a prior one of said periodic intervals, in
response to determining that none of said plurality of threads are in said
particular cycle state. |

15, The processor of any of Claims 9 to 14, wherein said control logic
fractionally updates each of sald plurality of processor resource usage
counts in conformity with a priority 1evé1 of said assoclated thread, in
response to said determining that none of said plurality of threads are in
sald paftidular cycle state.

16. The procéssor of any of Clairris 9 to 15, wherein said processor has a
single-threaded mode of operation and a multi-threaded mode of operation,
and wherein said control logic determines whether or not said processor is
in said single-threaded mode, and in response to determining that said
processor is in said single-threaded mode, and updates said processor
resource usage cycle counter associated with a single thread executing
within sald processor at each cycle.

AT M
T 25/02/2005
AMENDED SHEE

,k‘.-:‘:-- ‘ﬂf’»
YR
- -) '

CA 02518468 2005-09-07

PCT/GB2004/001586

WO 2004/095282

1/4

sdnouib

Wve :
lossaoo.id 1Byl0

7 10SS9201d
9OINIDS

8¢

ave |
€] 105599014
90INIOG

Aowew ot Ve | LS
[e00] WolsAg oyoeo €7 sieieydiiad obpug

._m__o:co cc
\coEoS_ OYded 21 |
YOl |
2100
aoe J0€ g0¢
10SS9920.14 10SS900id | V0€ 10ss820id

10SS820.d

G dnoJr) 10ss990.d

CA 02518468 2005-09-07

PCT/GB2004/001586

WO 2004/095282

2 14

| €2 1un ce 12 uun 0¢
sjzlsydLIad . a0ela)u] oJeliou| .
pue siosssaoad ., snyg ayoeo(L1 | ayoen oyoroy L
S 1810
5T asit
siapng
NS aweuay
081 a8t | | Vel
d0 _ dd- ddb o

SI0SS9901d
90IAleg N G2 wun
pue siossesosd Y | 80eLBlU|

alls 1810 NOO

SL
HUN I0d
Buieo)

¥I Hun
Julod pexi

11 21607 [onu0N

91

¢l uun
laouanbeg

UOIIONJISUj -

1 |
109

ET]
H1/4.10

0l 8107 10SS820.1d

CA 02518468 2005-09-07

PCT/GB2004/001586

WO 2004/095282

374

¢ b1

S| | gev 181unod

gLy sbesn | peaiy] vT;mm_w_ ©]0A2-j[eH

. VEr Vet 1epunoo
Hole

OF 1un abesn awl] 8]9A2 10SS020.1d

- ,. o]oAo-j|eH
|
e

e

(17
— sio)siba) Priewnoo # | |
rL Hun 18JUnoo Aloud 10818p/yoledsi(]
HH10d pPeXid | o10fo | | peaiy] |

aseqgaul |

1L 21607 jo11Uu0H

L NS

L 9100 J0553301

CA 02518468 2005-09-07

WO 2004/095282

ST mode? 50

Only one thread
dispatching?
52

All threads
dispatching?
54

No threads
dispatching?
57

Update thread cycle counters for
dispatching threads equally, or in
proportion to last dispatches or
in proportion to priority

58

PCT/GB2004/001586

b { &

Y

| counter for dispatching

Update thread cycle
» counier by 1 cycle value
every cycle 51

Update thread cycle

thread by 1 cycle value
53

Update thread cycle
counters equally or In
proportion to resources
used/dispatched 55

Update thread cycle
counters equally, or in
proportion to last
dispatches or in
proportion to priority 57

‘

Processor Core 10

ISU 12 Controt Logic 11)
R Timebase _ -
Thread | cyele Fixed Point
Dispatch/detect priority | counter Unit 14
counter 44 registers | 47 —
45

! — 1
Processor cycle time usage unit 40

Half-cycle o Latch aan]
counter 42A 43A Thread O usage ﬂl&_
Half-cycle Latch _ ‘q Thread 1 usage 41B
counter 42B 43B IR —

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - abstract drawing

