US 20070028225A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2007/0028225 A1l

Whittaker et al. 43) Pub. Date: Feb. 1, 2007
(54) METHOD AND APPARATUS FOR (60) Provisional application No. 60/364,907, filed on Mar.
PREEMPTIVE MONITORING OF 16, 2002.
SOFTWARE BINARIES BY INSTRUCTION
INTERCEPTION AND DYNAMIC Publication Classification
RECOMPILATION
(51) Int. Cl
(76) Inventors: James A. Whittaker, Indialantic, FL GO6F 9/44 (2006.01)
(US); Rahul Chaturvedi, Melbourne, (52) US. Clo vt 717/162; 717/166
FL (US); John R. Wagner, Melbourne,
FL (US) 57 ABSTRACT

A method of executing a program in a controlled environ-
ment includes initiating execution of an operating system
with which the program is adapted to execute, inserting
redirection logic at the beginning of the program, and
executing the program such that the redirection logic is
executed. A current instruction pointer is stored, and execu-

Correspondence Address:

IP STRATEGIES

12 172 WALL STREET
SUITE I

ASHEVILLE, NC 28801 (US)

. tion control is redirected to a program loader. The program

(21) Appl. No: 11/528,982 loader selects a first block of instructions of the program,
(22) Filed: Sep. 27, 2006 based at least in part on the stored current instruction pointer.
This selected block of instructions is manipulated to provide

Related U.S. Application Data a first phantom instruction block, which is executed in the

controlled environment. This manipulation includes copying

(63) Continuation of application No. 10/390,397, filed on at least a portion of the selected first block to form the first
Mar. 17, 2003. phantom instruction block.

110.

[INITIATING EXECUTION OF OPERATING SYSTEM r

_— 120

[INSERTING FIRST REDIRECTION LOGI(_W

l 130

[EXECUTING PROGRAA/;—[

l /140

’ STORING CURRENT INSTRUCTION POINTER (

! _—

REDIRECTING EXECUTION CONTROL TO PROGRAM LOADER ’

I 160

SELECTING. BY PROGRAM LOADER, FIRST BLOCK OF
INSTRUCTIONS OF PROGRAM BASED AT LEAST IN
PART ON STORED CURRENT INSTRUCTION POINTER

| -

MANIPULATING SELECTED FIRST BLOCK OF INSTRUCTIONS 172
TO PROVIDE FIRST PHANTOM INSTRUCTION BLOCK '

150

COPING AT LEAST A PORTION OF SELECTED FIRST
BLOCK TO FORM PHANTOM INSTRUCTION BLOCK

l / 180

EXECUTING FIRST PHANTOM INSTRUCTION
BLOCK IN CONTROLLED ENVIRONMENT

Patent Application Publication Feb. 1,2007 Sheet 1 of 5 US 2007/0028225 A1

/ 110

INITIATING EXECUTION OF OPERATING SYSTEM }

_— 120

INSERTING FIRST REDIRECTION LOGIC

l / 130

EXECUTING PROGRAM

FIGURE 1

140

I STORING CURI\ENI’INSH\UL TION POINTER l

/

REDIRECTING EXECUTION CONTROL TO PROGRAM LOADER]

160
y /
r SELECTING, BY PROGRAM LOADER, FIRST BLLOCK OF

INSTRUCTIONS OF PROGRAM BASED AT LEAST IN
PART ON STORED CURRENT INSTRUCTION POINTER

. 170
' /

MANIPULATING SELECTED FIRST BLOCK OF INSTRUCTIONS 172
TO PROVIDE FIRST PHANTOM INSTRUCTION BLOC //,

COPING AT LEAST A PORTION OF SELECTED FIRST
BLOCK TO FORM PHANTOM INSTRUCTION BLOCK

/ 180

EXECUTING FIRST PHANTOM INSTRUCTION
BLOCK IN CONTROLLED ENVIRONMENT

Patent Application Publication Feb. 1,2007 Sheet 2 of 5

FIGURE 2

L S

MANIPULATING SELECTED FIRST BLOCK OF FNSTRUCT NS TO
PROVIDE FIRST PHANTOM INSTRUCTION BLOCK

COPYING AT LEAST A PORTION OF SELECTED
FIRST BLOCK OF INSTRUCTIONS TO PROVIDE
FIRST PHANTOM INSTRUCTION BLOCK

174 L - 176
N L

MARKING SELECTED LOGICALLY MODIFYING
FIRST BLOCK OF AT LEAST A PORTION OF
INSTRUCTIONS AS FIRST PHANTOM

READ-ONLY INSTRUCTION BLOCK

L '

v

US 2007/0028225 Al

Patent Application Publication Feb. 1,2007 Sheet 3 of 5 US 2007/0028225 A1

FIGURE 3
180

v

EXECUTING FIRST PHANTOM INSTRUCTION
BLOCK IN CONTROLLED ENVIRONMENT 186

182
1 \ l : 18\4& r/

y
PREVENTING | MODIFYING AT

MONITORING
EXECUTION AT LEASTA LEAST A
OF THE FIRST . FIRST ~ | SECOND
PHANTOM PORTION OF PORTION OF
INSTRUCTION THE FIRST ~ | THE FIRST
BLOCK : PHANTOM PHANTOM
INSTRUCTION " | INSTRUCTION
BLLOCK FROM BLOCK BEFORE
EXECUTING THE SECOND
' PORTION
EXECUTES
v v y

Patent Application Publication Feb. 1,2007 Sheet 4 of 5 US 2007/0028225 A1

FIGURE 4

210

INITIATING EXECUTION OF OPERATING SYSTEM 220
\ 4 /

FOR AT LEAST ONE OF THE AT LEAST ONE BLOCKS OF INSTRUCTIONS,

PERFORMING THE FOLLOWING ACTS: /22]

DIRECTING EXECUTION CONTROL
TO PROGRAM LOADER

l 222

SELECTING, BY PROGRAM LOADER,
BLOCK OF INSTRUCTIONS OF PROGRAM

l

MANIPULATING SELECTED BLOCK OF
INSTRUCTIONS TO PROVIDE PHANTOM
INSTRUCTION BLOCK

COPYING AT LEAST A PORTION OF
SELECTED BLOCK OF INTSTRUCTIONS TO
FORM PHANTOM INSTRUCTION BLOCK

I / 224

EXECUTING PHANTOM INSTRUCTION"
BLOCK IN CONTROLLED ENVIRONMENT

(VS

223a

N\
\

o v

Patent Application Publication Feb. 1,2007 Sheet 5 of 5 US 2007/0028225 A1

FIGURE 5 210

N\

' INITIATING EXECUTION OF OPERATING SYSTEM f
220

EOR AT LEAST ONE OF THE AT LEAST ONE BLOCK OF INSTRUCTIONS,

PERFORMING THE FOLLOWING ACTS: 221
/
DIRECTING EXECUTION CONTROL TO
[PROGRAM LOADER J

l

SELECTING. BY PROGRAM LOADER,
BLOCK OF INSTRUCIOTN OF PROGRAM

l 22
MANIPULATING SELECTED BLOCK OF INSTRUCTIONS 223a
TO PROVIDE PHANTOM INSTRUCTION BLOCK ‘

COPING AT LEAST A PORTION OF SELECTED
BLOCK OF INSTRUCTIONS TO I'ORM PHANTOM
INSTRUCTION BLOCK

EXECUTING PHANTOM INSTRUCTION
BLOCK IN CONTROLLED ENVIRONMENT

| "
|

l / 225
HALTING THE SUBSEQUENT ACTS UPON
OCCURRENCE OF A HALT EVENT

US 2007/0028225 Al

METHOD AND APPARATUS FOR PREEMPTIVE
MONITORING OF SOFTWARE BINARIES BY
INSTRUCTION INTERCEPTION AND DYNAMIC
RECOMPILATION

CROSS-REFERENCE TO RELATED
DOCUMENTS

[0001] This document claims the priority benefit, and
incorporates by reference in its entirety, U.S. Provision
Patent Application No. 60/364,907 filed on Mar. 16, 2002.

FIELD OF THE INVENTION

[0002] The present invention relates to software monitor-
ing, testing and analysis.

BACKGROUND OF THE INVENTION

[0003] Processes for monitoring software behavior have
many applications in both offensive and defensive cyber-
warfare and also in software testing/debugging. Whenever
intelligence about an application needs to be gathered, the
behavior of the application is monitored and conclusions
drawn by analyzing the results.

[0004] When the source code of the application is avail-
able, one can monitor the behavior of the application on an
instruction-by-instruction basis. Such monitoring allows the
behavior to be better understood for the purposes of reengi-
neering or debugging. Access to the source code allows
exposure of all relevant information about the software’s
behavior, both external behavior and internal behavior. This
includes calls to external components and the parameters of
these calls, calls to internal components and the parameters
of these calls, internally stored data, and control structures.

[0005] However, when the source code is not available,
one must work with only the compiled binary of the appli-
cation (for example, the executable, library or component).
This means that only the machine code is available for
analysis. As such it is much more difficult to get the detailed
information that source debuggers can get.

[0006] Conventional systems include technology to inter-
cept external behavior such as calls to the operating system
or third party components. This technique is called system
call interception. Conventional techniques also include the
use of disassemblers to extract certain bits of internal
information, but disassembly is a painstaking process
fraught with trial and error. In general, information inside
the binary executes without scrutiny and with no opportunity
to intervene to change behavior in any predictable fashion.
Internal functions, stored data, and individual control state-
ments can be unreachable externally.

[0007] System call interception has many uses including
proactive antivirus tools and testing/debugging tools. How-
ever, there are many behaviors that escape such external
scrutiny. For example, instructions that call exception han-
dlers or interrupts execute without making system calls and
can bypass monitoring or protective software.

[0008] The only currently-known solution to intercept
such dispatch mechanisms is to insert code into the operat-
ing system kernel that detects these dispatches and notifies
the monitoring application. There is a disadvantage to this
solution in that because the actual operating system kernel is

Feb. 1, 2007

modified, every single application is intercepted instead of
just the application being monitored, and such “kernel
mode” solutions tend to destabilize the operating system.

[0009] Therefore, there is a need for an improved software
monitoring solution.

BRIEF SUMMARY OF THE INVENTION

[0010] The present invention includes a method of execut-
ing a program in a controlled environment, which can be
embodied in software components and user interface pro-
grams that can either be incorporated into other software or
that can be used in a standalone fashion. The broad process
of the invention can be realized in any of many specific
embodiments, and there are many advantageous uses for the
process. For example, the process can be applied to blocking
the behaviors of malicious programs such as viruses, worms,
and Trojan horse and zombie programs. Further, the process
can be used to monitor behavior so that an application can
be coaxed into revealing hidden features and functionality.
For example, the process can be used to crack encryption
keys (to discover private data and information) and CD keys
(to enable software piracy). These applications are useful as
evaluation tools.

[0011] Therefore, according to an exemplary aspect of the
invention, a method of executing a program in a controlled
environment includes initiating execution of an operating
system with which the program is adapted to execute,
inserting redirection logic at the beginning of the program,
and executing the program such that the redirection logic is
executed. A current instruction pointer is stored, and execu-
tion control is redirected to a program loader. The program
loader selects a first block of instructions of the program,
based at least in part on the stored current instruction pointer.
This selected block of instructions is manipulated to provide
a first phantom instruction block, which is executed in the
controlled environment. This manipulation includes copying
at least a portion of the selected first block to form the first
phantom instruction block.

[0012] The selected first block of instructions includes one
or more instructions. That is, although referred to as a block,
the block can be a single instruction, or it can include a
number of instructions.

[0013] The manipulation of the selected block of instruc-
tions can also include marking the selected first block as
read-only, or logically modifying at least a portion of the
first phantom instruction block, or both. In turn, logically
modifying at least a portion of the first phantom instruction
block can include any one or combination of inserting
program logic into the first phantom instruction block,
deleting program logic from the first phantom instruction
block, and changing program logic in the first phantom
instruction block.

[0014] Execution of the first phantom instruction block in
the controlled environment can include any one or combi-
nation of monitoring execution of the first phantom instruc-
tion block, preventing at least a first portion of the first
phantom instruction block from executing, and modifying at
least a second portion of the first phantom instruction block
before the second portion executes. The controlled environ-
ment can include a user interface by which a user can
execute and monitor execution of the first phantom instruc-
tion block.

US 2007/0028225 Al

[0015] The current instruction pointer can be stored by
pushing the current instruction pointer onto a stack.

[0016] The acts can further include storing a next instruc-
tion pointer, for example, after executing the first phantom
instruction block. In this case, the program loader selects a
second block of instructions of the program based at least in
part on the stored next instruction pointer, and the selected
second block of instructions is manipulated to provide a
second phantom instruction block. This manipulation of the
selected second block includes copying at least a portion of
the selected second block to form the second phantom
instruction block, and executing the second phantom
instruction block in the controlled environment. The
selected second block of instructions includes one or more
instructions. The manipulation of the selected first and
second blocks can also include marking the first and second
blocks as read-only, or logically modifying at least a portion
of the first and second phantom instruction blocks, or both.
In turn, logically modifying at least a portion of the first and
second phantom instruction blocks can include any one or
combination of inserting program logic into the first and
second phantom instruction blocks, deleting program logic
from the first and second phantom instruction blocks, and
changing program logic in the first and second phantom
instruction blocks.

[0017] The operating system can include a thread spawn-
ing routine having at least one block of instructions. In this
case, the method of the invention can also include inserting
second redirection logic at a beginning of the thread spawn-
ing routine that directs execution control to the program
loader and executing the thread spawning routine.

[0018] The operating system can include an exception
handling routine having at least one block of instructions. In
this case, the method of the invention can also include
inserting, at a beginning of the exception handling routine,
second redirection logic that directs execution control to the
program loader, and executing the exception handling rou-
tine.

[0019] According to another aspect of the present inven-
tion a method of executing, in a controlled environment, a
program having at least one block of instructions includes
initiating execution of an operating system with which the
program is adapted to execute, and performing a number of
subsequent acts for at least one of the blocks of instructions.
These acts include directing execution control to a program
loader. Also, a block of instructions of the program is
selected by the program loader, and the selected block of
instructions is manipulated to provide a phantom instruction
block. This phantom instruction block is executed in the
controlled environment. The manipulation of the selected
block of instructions includes copying at least a portion of
the selected block to form the phantom instruction block.
Each selected block includes at least one instruction.

[0020] The subsequent acts can also include halting the
subsequent acts based on the occurrence of a halt event.

[0021] The manipulation of the selected block of instruc-
tions can also include marking the selected block as read-
only, or logically modifying at least a portion of the phantom
instruction block, or both. In turn, logically modifying at
least a portion of the phantom instruction block can include
any one or combination of inserting program logic into the

Feb. 1, 2007

phantom instruction block, deleting program logic from the
phantom instruction block, and changing program logic in
the phantom instruction block.

[0022] Execution of the phantom instruction block in the
controlled environment can include any one or combination
of monitoring execution of the phantom instruction block,
preventing at least a first portion of the phantom instruction
block from executing, and modifying at least a second
portion of the phantom instruction block before the second
portion executes. The controlled environment can include a
user interface by which a user can execute and monitor
execution of the phantom instruction block.

[0023] The method of the invention can also include
inserting first redirection logic within the program that
directs execution control to the program loader, and execut-
ing the program. The subsequent acts can include storing a
respective current instruction pointer. In this case, the pro-
gram loader selects the block of instructions of the program
based at least in part on the stored respective current
instruction pointer.

[0024] The operating system can include a thread spawn-
ing routine having at least one set of instructions, wherein
the set of instructions can include as few as a single
instruction. Thus, the method of the invention can also
include inserting second redirection logic at the beginning of
the thread spawning routine that directs execution control to
the program loader, and executing the thread spawning
routine. In this case, the method of the invention can also
include performing additional actions for at least one set of
instructions. These additional actions include redirecting
execution control to the program loader. Also, a set of
instructions of the thread spawning routine is selected by the
program loader, and the selected set of instructions is
manipulated to provide a phantom instruction set. The
phantom instruction set is executed in the controlled envi-
ronment. Each selected set of instructions includes at least
one instruction, and manipulating the selected set of instruc-
tions includes copying at least a portion of the selected set
of instructions to form the phantom instruction set.

[0025] Alternatively, or in addition, the operating system
can include an exception handling routine having at least
one set of instructions. Thus, the method of the invention can
also include inserting additional redirection logic at a begin-
ning of the exception handling routine that directs execution
control to the program loader, and executing the exception
handling routine. In this case, the method of the invention
also includes performing subsequent actions for at least one
set of instructions. These subsequent actions can include
redirecting execution control to the program loader. A set of
instructions of the exception handling routine is selected by
the program loader, and the selected set of instructions is
manipulated to provide a phantom instruction set. The
phantom instruction set is executed in the controlled envi-
ronment. Each selected set of instructions can include as few
as a single instruction, and manipulating the selected set of
instructions includes copying at least a portion of the
selected set of instructions to form the phantom instruction
set.

[0026] The manipulation of the selected block can also
include determining if the selected block is represented by
current data stored in a cache. If the selected block is not
represented by the current data stored in the cache, at least

US 2007/0028225 Al

a portion of the selected block is copied to form the phantom
instruction block, and additional data representative of the
formed phantom instruction block is added to the cache. On
the other hand, if the selected block is represented by the
current data stored in the cache, the current data represen-
tative of the selected block of instruction is referenced to
provide the phantom instruction block. The manipulation of
the selected block can also include determining if the
selected block of instructions invariably directs execution
control to a different block of instructions represented by the
current data stored in the cache. If the selected block of
instructions is determined to invariably direct execution
control to the different block of instructions, redirection
logic is inserted into the selected block that directs execution
control to a cached phantom instruction block representative
of the different block.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] The present invention is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which:

[0028] FIG. 1 is a flow diagram illustrating an exemplary
process of the invention.

[0029] FIG. 2 shows an exemplary detail of an instruction
manipulation action according to the invention.

[0030] FIG. 3 shows an exemplary detail of a phantom
instruction execution action according to the invention.

[0031] FIG. 4 is a flow diagram illustrating another exem-
plary process of the invention.

[0032] FIG. 5 is a flow diagram showing yet another
exemplary process of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0033] FIG. 1 illustrates an exemplary aspect of the inven-
tion, in which a method of executing a program in a
controlled environment includes initiating execution of an
operating system with which the program is adapted to
execute (110), inserting redirection logic at the beginning of
the program (120), and executing the program such that the
redirection logic is executed (130). Further, a current
instruction pointer is stored (140), and execution control is
redirected to a program loader (150). The program loader
selects a first block of instructions of the program (160),
based at least in part on the stored current instruction pointer.
This selected block of instructions is manipulated to provide
a first phantom instruction block (170), which is executed in
the controlled environment (180). This manipulation
includes copying at least a portion of the selected first block
to form the first phantom instruction block (172). Thus,
controlled execution of the program (or selected block or
blocks) is achieved by executing a phantom block or blocks.
As shown, the original program itself is not executed;
instead, a phantom copy of the program (a phantom block or
blocks instructions) is executed.

[0034] 1t should be noted that the selected first block of
instructions can include one or more instructions. That is,
although referred to as a block, the selected block can be a
single instruction, or it can include multiple instructions.

Feb. 1, 2007

[0035] As shown in FIG. 2, the manipulation of the
selected block of instructions (170) can also include marking
the selected first block as read-only (174), or logically
modifying at least a portion of the first phantom instruction
block (176), or both. By marking the selected first block as
read-only (174), the risk that self-modifying code will
modify a previously selected block of instructions is
avoided, so as to ensure, for example, that program control
is not lost. In turn, logically modifying at least a portion of
the first phantom instruction block (176) can include any one
or combination of inserting program logic into the first
phantom instruction block, deleting program logic from the
first phantom instruction block, and changing program logic
in the first phantom instruction block.

[0036] As illustrated in FIG. 3, execution of the first
phantom instruction block in the controlled environment
(180) can include any one or combination of monitoring
execution of the first phantom instruction block (182),
preventing at least a first portion of the first phantom
instruction block from executing (184), and modifying at
least a second portion of the first phantom instruction block
before the second portion executes (186). The controlled
environment can include a user interface by which a user can
execute and monitor execution of the first phantom instruc-
tion block, such as monitoring the values of system and/or
program variables and states, and system memory, as well as
other system or program states and conditions. According to
another exemplary aspect of the invention, a user interface
can provide a “debugging” environment, with which a user
can execute, monitor, modify and/or prevent execution of
one or more instructions contained in a phantom instruction
block. In another exemplary aspect of the invention, a user
interface can allow a user to trace and step through, on an
instruction-by-instruction basis, the one or more instructions
contained in a phantom instruction block. Further, a user
interface can allow a user to watch changes in the values of
variables as instructions are stepped through or traced.

[0037] The current instruction pointer can be stored in a
memory, such as RAM, hard drive, or other memory, for
example and not in limitation. Further, the current instruc-
tion pointer can be stored by pushing the current instruction
pointer onto a stack, for example and not in limitation.

[0038] The method can further include executing a second
block of instructions in the controlled environment, follow-
ing storage of the current instruction pointer (140). For
example, the method can further include storing a next
instruction pointer, after executing the first phantom instruc-
tion block. In this case, the program loader selects a second
block of instructions of the program based at least in part on
the stored next instruction pointer, and the selected second
block of instructions is manipulated to provide a second
phantom instruction block. This manipulation of the selected
second block includes copying at least a portion of the
selected second block to form the second phantom instruc-
tion block, and executing the second phantom instruction
block in the controlled environment. The selected second
block of instructions includes one or more instructions. The
manipulation of the selected first and second blocks can also
include marking the first and second blocks as read-only, or
logically modifying at least a portion of the first and second
phantom instruction blocks, or both. In turn, logically modi-
fying at least a portion of the first and second phantom
instruction blocks can include any one or combination of

US 2007/0028225 Al

inserting program logic into the first and second phantom
instruction blocks, deleting program logic from the first and
second phantom instruction blocks, and changing program
logic in the first and second phantom instruction blocks.

[0039] According to a further exemplary aspect of the
invention, the operating system can include a thread spawn-
ing routine having at least one block of instructions, and
therefore, the method can further include actions for
accounting for thread spawning, which can cause a loss of
execution control. Accordingly, the method can further
include actions that logically mirror other actions in execu-
tion of the method, starting from initiation of execution of
the operating system. Thus, the method of the invention can
also include inserting second redirection logic at a beginning
of the thread spawning routine that directs execution control
to the program loader, and executing the thread spawning
routine.

[0040] Alternatively, or in addition, the operating system
can include an exception handling routine having at least
one set of instructions. Accordingly, the method of the
present invention can further include actions for accounting
for exceptions, which can also cause a loss of execution
control. Accordingly, the method can further include insert-
ing second redirection logic, at a beginning of the exception
handling routine, that directs execution control to the pro-
gram loader, and executing the exception handling routine.

[0041] As shown in FIG. 4, according to another exem-
plary aspect of the present invention, a method of executing,
in a controlled environment, a program having at least one
block of instructions includes initiating execution of an
operating system with which the program is adapted to
execute (210), and performing a number of subsequent
actions for at least one of the blocks of instructions (220).
These actions include directing execution control to a pro-
gram loader (221). Also, a block of instructions of the
program is selected by the program loader (222), and the
selected block of instructions is manipulated to provide a
phantom instruction block (223). This phantom instruction
block is executed in the controlled environment (224). The
manipulation of the selected block of instructions includes
copying at least a portion of the selected block to form the
phantom instruction block (223a). Each selected block
includes at least one instruction.

[0042] As shown in FIG. 5, the subsequent actions can
also include halting further actions based on the occurrence
of'a halt event (225), which can include, for example and not
in limitation, a stop command, and a logical condition within
program logic (for example, WHILE NOT END OF FILE).

[0043] The manipulation of the selected block of instruc-
tions can also include marking the selected block as read-
only, or logically modifying at least a portion of the phantom
instruction block, or both. In turn, logically modifying at
least a portion of the phantom instruction block can include
any one or combination of inserting program logic into the
phantom instruction block, deleting program logic from the
phantom instruction block, and changing program logic in
the phantom instruction block.

[0044] Execution of the phantom instruction block in the
controlled environment can include any one or combination
of monitoring execution of the phantom instruction block,
preventing at least a first portion of the phantom instruction

Feb. 1, 2007

block from executing, and modifying at least a second
portion of the phantom instruction block before the second
portion executes. The controlled environment can include a
user interface by which a user can execute and monitor
execution of the phantom instruction block, such as moni-
toring the values of system and/or program variables and
states, and system memory, as well as other system or
program states and conditions. According to an exemplary
aspect of the invention, a user interface can provide a
“debugging” environment, with which a user can execute,
monitor, modify and/or prevent execution of one or more
instructions contained in a phantom instruction block.
According to another exemplary aspect of the invention, a
user interface can allow a user to trace and step through, on
an instruction-by-instruction basis, the one or more instruc-
tions contained in a phantom instruction block. Further, a
user interface can allow a user to watch changes in the
values of variables as instructions are stepped through or
traced.

[0045] This method of the present invention can also
include inserting, within the program, first redirection logic
that directs execution control to the program loader, and
executing the program. In this case, the subsequent actions
can further include storing a respective current instruction
pointer, such that the program loader selects the block of
instructions of the program based at least in part on the
stored respective current instruction pointer.

[0046] According to another exemplary aspect of this
invention, as per an earlier described exemplary aspect, the
operating system can include a thread spawning routine
having at least one set of instructions, wherein a set of
instructions can include as few as a single instruction. Thus,
this method of the invention can also include inserting, at the
beginning of the thread spawning routine, second redirection
logic that directs execution control to the program loader,
and executing the thread spawning routine. In this case, this
method of the invention can also include performing addi-
tional actions for at least one set of instructions. These
additional actions can include redirecting execution control
to the program loader. Also, a set of instructions of the thread
spawning routine is selected by the program loader, and the
selected set of instructions is manipulated to provide a
phantom instruction set. The phantom instruction set is
executed in the controlled environment. Each selected set of
instructions includes at least one instruction, and manipu-
lating the selected set of instructions includes copying at
least a portion of the selected set of instructions to form the
phantom instruction set.

[0047] Alternatively, or in addition, the operating system,
as per a previously described exemplary aspect of the
present invention, can include an exception handling routine
having at least one set of instructions. Thus, the method of
the invention can also include inserting, at a beginning of the
exception handling routine, additional redirection logic that
directs execution control to the program loader, and execut-
ing the exception handling routine. In this case, the method
of'the invention also includes performing subsequent actions
for at least one set of instructions. These subsequent actions
can include redirecting execution control to the program
loader. A set of instructions of the exception handling routine
is selected by the program loader, and the selected set of
instructions is manipulated to provide a phantom instruction
set. The phantom instruction set is executed in the controlled

US 2007/0028225 Al

environment. Each selected set of instructions can include as
few as a single instruction, and manipulating the selected set
of instructions includes copying at least a portion of the
selected set of instructions to form the phantom instruction
set.

[0048] According to yet another exemplary aspect of the
present invention, the manipulation of the selected block can
also include determining if the selected block is represented
by current data stored in a cache. If the selected block is not
represented by the current data stored in the cache, at least
a portion of the selected block is copied to form the phantom
instruction block, and additional data representative of the
formed phantom instruction block is added to the cache. On
the other hand, if the selected block is represented by the
current data stored in the cache, the current data represen-
tative of the selected block of instructions is referenced to
provide the phantom instruction block. The manipulation of
the selected block can also include determining if the
selected block of instructions invariably directs execution
control to a different block of instructions represented by the
current data stored in the cache. If it is determined that the
selected block of instructions invariably directs execution
control to the different block of instructions, redirection
logic is inserted into the selected block that directs execution
control to a cached phantom instruction block representative
of the different block.

[0049] Tt should be noted that the present invention can be
further embodied in an apparatus, as well as a computer
readable medium, each of which being based on the process
embodiments described herein.

[0050] In the foregoing written description, the invention
has been described with reference to specific embodiments
thereof. However, it will be evident that various modifica-
tions and/or changes may be made thereto without departing
from the broader spirit and scope of the invention. Accord-
ingly, the specification and drawings are to be regarded in an
illustrative and enabling, rather than a restrictive, sense.

1. A method of executing a program in a controlled
environment, comprising:

initiating execution of an operating system with which the
program is adapted to execute;

inserting, at a beginning of the program, first redirection
logic;

executing the program such that the first redirection logic
is executed;

storing a current instruction pointer;

redirecting execution control to a program loader;

selecting, by the program loader, a first block of instruc-
tions of the program based at least in part on the stored
current instruction pointer;

manipulating the selected first block of instructions to
provide a first phantom instruction block; and

executing the first phantom instruction block in the con-
trolled environment;

wherein the selected first block of instructions includes at
least one instruction, and manipulating the selected first
block includes copying at least a portion of the selected
first block to form the first phantom instruction block.

Feb. 1, 2007

2. The method of claim 1, wherein manipulating the
selected first block of instructions further includes at least
one of

marking the selected first block as read-only, and

logically modifying at least a portion of the first phantom
instruction block.
3. The method of claim 2, wherein logically modifying the
at least a portion of the first phantom instruction block
includes at least one of

inserting program logic into the first phantom instruction
block,

deleting program logic from the first phantom instruction
block, and

changing program logic in the first phantom instruction

block.

4. (canceled)

5. (canceled)

6. The method of claim 1, wherein the selected first block
of instructions includes a plurality of instructions.

7. The method of claim 1, wherein storing a current
instruction pointer includes pushing the current instruction
pointer onto a stack.

8. The method of claim 1, wherein the acts further
comprise:

storing a next instruction pointer;

selecting, by the program loader, a second block of
instructions of the program based at least in part on the
stored next instruction pointer;

manipulating the selected second block of instructions to
provide a second phantom instruction block, wherein
manipulating the selected second block includes copy-
ing at least a portion of the selected second block to
form the second phantom instruction block; and

executing the second phantom instruction block in the
controlled environment;

wherein the selected second block includes at least one
instruction.
9. The method of claim 8, wherein manipulating the
selected first and second blocks further include at least one
of

marking the first and second blocks as read-only, and

logically modifying at least a portion of the first and
second phantom instruction blocks.
10. The method of claim 9, wherein logically modifying
the at least a portion of the first and second phantom
instruction blocks includes at least one of

inserting program logic into the first and second phantom
instruction blocks,

deleting program logic from the first and second phantom
instruction blocks, and

changing program logic in the first and second phantom
instruction blocks.
11. The method of claim 1, wherein the operating system
includes a thread spawning routine having at least one block
of instructions, and said method further comprises:

US 2007/0028225 Al

inserting, at a beginning of the thread spawning routine,
second redirection logic that directs execution control
to the program loader; and

executing the thread spawning routine.

12. The method of claim 1, wherein the operating system
includes an exception handling routine having at least one
block of instructions, and said method further comprises:

inserting, at a beginning of the exception handling rou-
tine, second redirection logic that directs execution
control to the program loader; and

executing the exception handling routine.
13. A method of executing, in a controlled environment,
a program having at least one block of instructions, com-
prising:
initiating execution of an operating system with which the
program is adapted to execute; and

for at least one of the at least one blocks of instructions,
performing acts including

directing execution control to a program loader,

selecting, by the program loader, a block of instructions
of the program;

manipulating the selected block of instructions to pro-
vide a phantom instruction block, and

executing the phantom instruction block in the con-
trolled environment;

wherein each selected block includes at least one instruc-
tion, and manipulating the selected block includes
copying at least a portion of the selected block to form
the phantom instruction block.
14. The method of claim 13, further comprising halting
said acts based on the occurrence of a halt event.
15. The method of claim 13, wherein manipulating the
selected block of instructions further includes at least one of

marking the selected block as read-only, and

logically modifying at least a portion of the phantom
instruction block.
16. The method of claim 15, wherein logically modifying
the at least a portion of the phantom instruction block
includes at least one of

inserting program logic into the phantom instruction
block,

deleting program logic from the phantom instruction
block, and

changing program logic in the phantom instruction block.

17. (canceled)

18. (canceled)

19. The method of claim 13, wherein the method further
comprises:

inserting, within the program, first redirection logic that
directs execution control to the program loader; and

executing the program;

wherein said acts further include storing a respective
current instruction pointer, and the program loader

Feb. 1, 2007

selects the block of instructions of the program based at
least in part on the stored respective current instruction
pointer.
20. The method of claim 13, wherein the operating system
includes a thread spawning routine having at least one set of
instructions, and said method further comprises:

inserting, at a beginning of the thread spawning routine,
second redirection logic that directs execution control
to the program loader; and

executing the thread spawning routine;

wherein each set of instructions includes at least one
instruction.
21. The method of claim 20, further comprising

for at least one of the at least one set of instructions,
performing actions including

redirecting execution control to the program loader,

selecting, by the program loader, a set of instructions of
the thread spawning routine;

manipulating the selected set of instructions to provide
a phantom instruction set, and

executing the phantom instruction set in the controlled
environment;

wherein each selected set of instructions includes at least
one instruction, and manipulating the selected set of
instructions includes copying at least a portion of the
selected set of instructions to form the phantom instruc-
tion set.
22. The method of claim 13, wherein the operating system
includes an exception handling routine having at least one
set of instructions, and said method further comprises:

inserting, at a beginning of the exception handling rou-
tine, second redirection logic that directs execution
control to the program loader; and

executing the exception handling routine;

wherein each set of instructions includes at least one
instruction.
23. The method of claim 22, further comprising

for at least one of the at least one set of instructions,
performing actions including

redirecting execution control to the program loader,

selecting, by the program loader, a set of instructions of
the exception handling routine;

manipulating the selected set of instructions to provide
a phantom instruction set, and

executing the phantom instruction set in the controlled
environment;

wherein each selected set of instructions includes at least
one instruction, and manipulating the selected set of
instructions includes copying at least a portion of the
selected set of instructions to form the phantom instruc-
tion set.
24. The method of claim 13, wherein manipulating the
selected block of instructions further includes

determining if the selected block is represented by current
data stored in a cache;

US 2007/0028225 Al

if the selected block is not represented by the current data
stored in the cache,

copying at least a portion of the selected block to form
the phantom instruction block, and

adding additional data representative of the formed
phantom instruction block to the cache; and

Feb. 1, 2007

if the selected block is represented by the current data
stored in the cache, referencing the current data repre-
sentative of the selected block of instruction to provide
the phantom instruction block.

25. (canceled)

