

INVENTOR
JOHN E. OSTLINE
BY Davesi civieney, fimith of houto
ATTORNEYS

$$
\begin{gathered}
\text { F|G.2 } \\
\text { ZONE } 38 \\
\text { EXCHANGE - I }
\end{gathered}
$$

INVENTOR.
JOHN E. OSTLINE
BY Naves, Lexidey, fmich of houts ATTORNEYS

FIG. 5
PRIMARY SELECTOR 40

- JOHN E. OSTLINE

BY Aavis, Aindsey, fmith oskonts

Dec. 26, 1950
J. E. OSTLINE

FIG. 6

INVENTOR.
JOHN E. OSTLINE
BY Aavis, Dindsey, Amich othonts
ATTORNEYS

FIG. 8
PRIMARY REGISTER 50

INVENTOR.
JOHN E. OSTLINE
BY Daves', Aendsey, finith \&honto
ATTORNEYS

Dec. 26, 1950

INVENTOR.
E. OSTLINE
JOHN E.OSTLINE
BY Davis), Lividsey, Encith *honts
ATTORNEYS

Dec. 26, 1950
J. E. OSTLINE

2,535,510
DUAL RATE AND/OR REVERSED CHARGING
IN AUTOMATIC TELEPHONY
Original Filed Sept. 18, 1941

Dec. 26, 1950

Dec. 26, 1950
J. E. OSTLINE

Dec. 26, 1950
dUaL RATE AND EOR REVERSED CHARGING
2,535,510 IN AUTOMATIC TELEPHONY
Original Filed Sept. 18, 1941
28 Sheets-Sheet 17

J. E. OSTLINE

2,535,510
DUAL RATE AND/OR REVERSED CHARGING IN AUTOMATIC TELEPHONY
Original Filed Sept. 18, 1941

FIG. 25
2601
DETECTOR 80

JOHN E. OSTLINE
BY Davis, Audsey, \&nith thouts
ATTORNEYS
FIG. 29 ALSO THE SUFFIX DIGIT 9
IS PRINTED HERE, IN THE
EVENT THE CALLING
SUBSCRIBER SUBSTATION
IS RENDERED EXTENDED
SERVICE.
∞
$\stackrel{\infty}{N}$
$\stackrel{0}{L}$

$\begin{aligned} & \mathcal{M} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \text { NO } \\ & \hline \mathbf{H} \end{aligned}$
N No U	$\begin{aligned} & 0 \\ & N \\ & \dot{N} \\ & \underline{I I} \end{aligned}$
	10 ¢ 1
O N O 1	N O O 1
$\frac{n}{\mathscr{O}}$	$\frac{\sigma}{\dot{0}}$
$\frac{ \pm}{\frac{0}{1}}$	$\stackrel{\infty}{\text { ¢ }}$
$\frac{\mathrm{m}}{\frac{\mathrm{~g}}{L}}$	$\frac{N}{\frac{N}{L I}}$
$\frac{N}{\mathbf{U}}$	$\begin{aligned} & \underline{\varrho} \\ & \frac{\mathbf{O}}{\mathbf{L}} \end{aligned}$

INVENTOR.
JOHN E. OSTLINE
BYavis, pindsly, forich rhhonto-
at TORNEYS

UNITED STATES PATENT OFFICE

2,535,510
DUAK RATE AND/OR REVERSED CHARGTNG IN AUTEMYRACH TELEPHONY

John E. Ostline, Chicago, IIl., assignor to Automatic Electric Laboratories, Inc., a corporation of Delaware
Original application September 18, 1941, Serial No. 411,350 . Divided and this application September $\mathbb{1 1}, 1942$, Serial No. 457,926

1

The present invention relates to automatic telephone systems and more particularly to automatic recording apparatus operative to record given particulars of certain calls in the systems. More specincally, the present invention relates to improvements in telephone systems of the character disclosed in the copending application of John E. Ostline, Serial No. 354,301, filed August 26, 1940, now Patent No. 2,385,288, granted September 18, 1045. This application is a division of the copending application of John \mathbb{E}. Ostline, Serial No. 411,350, filed September 18, 1941, now Patent No. 2,409,063, granted October 8, 1946.
In a telephone system serving a large metropolitan area and the adjacent suburban areas, it is usually desirable to divide the system into a plurality of zones and to handle calls between the exchanges in different zones and between certain of the exchanges in the same zone as toll calls, for which special charges are made, depending upon the distances between the zones or the distances between the exchanges in the same zone and the time duration of the call. In accordance with conventional practice, the connections for a call of this type are set up with the sid of an operator, which operator records upon a toll ticket certain particulars concerning the call, including the codes of the calling and called zones, the codes of the calling and called exchanges, the directory numbers of the calling and called lines, the rate applicable to the coll, the time duration of the call, and possibly the total charge for or cost of the call.

While a telephone system of the type described is entirely satisfactory in operation, it requires the services of a large number of operators and necessitates some delay in extending a call of the type mentioned while the information concerning the calling and called subscriber substations is being transferred from the calling subscriber to the operator.
Accordingly, it is an object of the present invention to provide in an automatic telephone system of the type noted, improved recording apparatus which is operative automatically to record, without the aid of an operator, given particulars of certain calls in the system for which special cinarges aie made.
Another object of the invention is to provide in an automatic telephone system of the type noted, improved register mechanism for controlling the operation of the switching apparatus to set up the various connections and for

2

collecting the various items of information pertaining to the connections to be recorded.

A further object of the invention is to provide in an automatic telephone system including a plurality of stations of first and second classes and automatic apparatus for recording in conjunction with a call an item indicating the established charge for the call calculated on a first basis, automatic apparatus governed in the event the station to be billed is of the second class for recording an item indicating that the established charge for the call should be recalculated on a second basis.

A still further object of the invention is to provide in an automatic telephone system including a plurality of stations of first and second classes in which the charges for calls are normally billed to calling stations of the first cless on a first basis and to calling stations of the second class on a second basis, automatic means governed by the class of the calling station for registering in conjunction with the call a first item indicating that the charge for the call is to be billed to the calling station on the first basis or the second basis, and means controllable from the called station for registering an overriding item indicating that the charge for the call is to be billed to the called station on a basis consistent with the class thereof.

Further features of the invention pertain to the particular arrangement of the circuit elements of the system, whereby the above-outlined and additional operating features are attained.

The invention, both as to its organization and method of operation, together with further objects and advantages thereof, will best be understood by reference to the following specification taken in connection with the accompanying drawings, in which Figure 1 is a schematic diagram of the area served by a telephone system embodying the present invention; Figs. 2 and 3 , taken together, illustrate the general arrangement of the apparatus incorporated in exchange I zone 38 of the telephone system; Figs. 4 to 27 , inclusive, taken together, illustrate the details of the apparatus incorporated in exchange I zone 38 of the telephone sy tem, which apparatus has incorporated therein the features of the invention as briefly outlined above; Fig. 028 illustrates the mode of combining Figs. 4 to 27, inclusive, to form a unified system; and Fig. 29 illustrates a toll ticket printed by a toll ticket printer provided in exchange I zone 38 of the telephone system.
More particularly, Figs. 4 to 7 , inclusive, il-
lustrate the details of the switching apparatus and trunking network incorporated in exchange I zone 38 of the telephone system; Figs. 8 to 11, inclusive, illustrate the details of one of the primary registers provided in exchange 1 zone 32 of the telephone system; Figs. 12 to 19, inclusive, illustrate the details of one of the register translators provided in exchange 1 zons 38 of the telephone system; and Figs. 20 to 27, inclusive, illustrate the details of the detector provided in exchange 1 zone 38 of the telephone system.

The general arrangement of the telephone system

Referring now more particularly to Fig. 1 of the drawings, it will be observed that the automatic telephone system serves a large metropoitan area comprising a number of subareas or zones, each of which includes one or more exchanges. More specifically, the area served by the telephone system comprises the zones 13, 46, 62 and 38; the zone 73 includes exchanges 1, 2 and 3 illustrated; the zone 40 includes the single exchange illustrated; the zone 62 includes the exchanges i, 2, 3 and 4 illustrated; and the zone 38 includes the exchanges 1, 0, 3, 4 and 5 illustrated. Further, it is noted that in some of the zones two exchanges are housed together. F'or example, in zone 38 , exchanges i and 0 are housed together; while in zone 62, exchanges 1 and 2 are housed together. Each exchange in each zone comprises a 10,000 terminal unit; although it may not be initially installed to serve its ultimate terminal capacity. The lines terminating at each exchange in each zone comprise both private subscriber lines and party subscriber lines; the private subscriber lines including both ordinary private subscriber lines and extended service private subscriber lines; and the party subscriber lines being of the foursubstation type. The party subscriber lines are arranged on a terminal per substation basis, thereby reducing the actual number of lines terminating at each exchange.
The various exchanges in each zone are interconnected by suitable groups of trunk lines; while at least one exchange in each zone is interconnected with at least certain of the exchanges in other zones by suitable groups of toll lines, as clearly indicated.
In the automatic telephone system the various local, trunk and toll calls are set up by automatic switching apparatus under the control of the subscriber substation equipment, including the usual calling device or dial. In order to facilitate the setting up of various connections, a mixed numbering scheme is utilized in the autcmatic telephone system, whereby all called subscriber substations in the various exchanges in the various zones of the system are dialed as listed in the directory. Accordingly, the directory number of each subscriber substation in the telephone system comprises a code portion, including either two or three digits, and a numerical portion, including four digits. More particularly, the directory number of each subscriber substation in zone 46 comprises a code portion including only the digits 4 and 6, in view of the fact that there is only one exchange in this zone; whereas, the directory number of each subscriber substation in zones 73,62 and 38 comprises a code portion including three digits, in view of the fact that there are a plurality of exchanges in each of these zones. Thus, it will be understood that the directory number of each
subscriber substation in zone 38 , for example, will comprise a code portion including the digits 3 and 8 and an additional digit identifiying the particular exchange in zone 38 , including the subscriber substation. Accordingly, the directory number of each subscriber substation in exchange 5 zone 38 , for example, will comprise a code portion including the digits 3,8 and 5 . Further, it is pointed out that, in view of the fact that the party subscriber lines are arranged on a terminal per station basis, the directory number of each subscriber substation in each exchange in each zone comprises, in addition to the code portion, a numerical portion including only four digits; no suffix digits being necessary. In view of the above, it will be understood that the directory numbers of the various subscriber substations in the telephone system comprise different numbers of digits, the number of digits varying between 6 and 7 , depending upon the particular zone of the exchange, including the subscriber substation.
The apparatus incorporated in exchange 1 zone 38 of the telephone system

Preferably, each exchange in the telephone system comprises apparatus substantially identical to that provided in exchange 1 zone 38 , which apparatus, as best shown in Figs. 2 and 3, includes automatic switching equipment serving a maximum of 10,000 terminals; two of the terminals respectively terminating the private subscriber lines 601 and 804 and four of the terminals commonly terminating the party subscriber line 807 . The switching equipment comprises a number of line switches individually associated with the subscriber lines terminating at exchange 1 zone 38 , the line switches 30,31 and 32 being respectively associated with the private subscriber lines 401 and 404 and the party subscriber line 407. At this point it is noted that the private subscriber line 401 has a. private subscriber substation IP connected thereto which is rendered ordinary private substation service; the private subscriber line 404 has a private subscriber substation TX connected thereto which is rendered extended private subscriber substation service; while the party subscriber line 407 has four party subscriber substations TSI, TS2, TS3 and TS4 connected thereto which are rendered party subscriber substation service. Also, the switching equipment comprises a number of groups of primary selectors which are accessible to the various line switches. For example, the switching equipment comprises a group of primary selectors including the primary selector 40 , which is accessible to a number of line switches, including the line switches 30,31 and 32 . Each primary selector is provided with an individually associated finder switch having access to a group of primary registers, the finder switch F500 being individually associated with the primary selector 40.

Further, exchange 1 zone 38 is provided with a group of primary registers or register senders, including the primary register 5 n, which is accessible to the various finder switches individually associated with the primary selectors. Further, exchange I zone 38 is provided with a group of register translators or secondary registers, in cluding the register translator $\mathbf{7 0}$, and a register trans!ator allotter 60. The register translator allotter 60 comprises a finder switch Fil 1 O 0 having access to the group of register translators; and
each register translator comprises a finder switch having access to the group of primary registers, the register translator 70 comprising the finder switch Fll80 having access to the group of primary registers. At this point it is noted that the group of primary registers is larger than the group of register translators in order to effect a saving in equipment in view of the fact that the connection and arrangement of a primary register is much more simplified than the relatively. complex connection and arrangement of a register translator. Also, exchange I zone 38 is provided with a local switch train comprising a number of first selectors, including the first selector 41, a number of groups of second selectors, one of the groups including the second selector 42, a number of groups of individual connectors, one of the groups including the individual connector 43, a number of special service selectors, including the special service selector 19, and a number of groups of party connectors, four of the groups respectively including the party connectors 45, 48, 47 and 43. A switchboard is also provided in exchange I zone 33 which includes a manual operator position 0, a toll operator position 110, an information operator position 1.13 and a miscellaneous operator position 112.
In addition to the apparatus described above, exchange 1 zone 38 is provided with toll ticketing apparatus comprising, in addition to the number of register translators including the register trans'ator 70, a number of groups of toll ticket repeaters, one of the groups including the toll ticket repeater 98, a number of printer controllers, including the printer controller 92, a printer controller allotter 91, a number of toll ticket printers, including the toll ticket printer 95, and a printer al'otter 93 . Each printer controller comprises a finder switch having access to the toll ticket repeaters, the printer controller 32 comprising a finder switch FT03 having access to the toll ticket repeaters; the printer controller allotter 91 comprises a finder switch F701 having access to the printer controllers; and the printer allotter 83 comprises a finder switch F784 having access to the printer controllers and a finder switch F705 having access to the toll ticket printers. Further, the toll ticketing apparatus comprises a date and time unit 94 and a detector 80, the detector 80 comprising a finder switch F2210 having access to the register translators. Also, extending from exchange I zone 38 are a number of groups of outgoing trunks to the other exchanges in zone 38 , one of the groups including the trunk 111, a number of groups of outgoing toll lines to zones 62 and 73, one of the groups including the toll line 112, and a number of groups of incoming toll lines from zones 62 and 73, and trunks from the other exchanges in zone 38, one of the groups including the toll line or trunk 113.
In exchange 1 zone 39 the various primary selectors have access to the first selectors in the local switch train, to the special service selectors, to the outgoing trunks extending to the other exchanges in zone 38, to the manual operator position 0 and to the toll ticket repeaters; while the various special service selectors have access to the toll operator position 110 , to the information operator position 113 and to the miscellaneous operator position 112. Also, the various first selectors in the local switch train have access to the different groups of second selectors; while the various groups of second selectors have access to a corresponding number of the groups of individual connectors and to a corresponding num-
ber of the groups of party connectors. For example, the group of second selectors, including the second selector 42, has access to the group of individual connectors, including the individual coninector 6 , and to the four groups of party connectors, respectively including the party connectors 45, 46, 47 and 48. Finally, each individual connector has access to an associated group of the private subscriber lines; and each party connector in each related group of four has access to an associated group of the party subscriber lines. For example, the individual connector 43 has access to a group of 100 private subscriber lines, including the private subscriber lines 401 and 404; while the four party connectors 45, 46, 47 and 48 each have access to 100 party subscriber lines, including the party subscriber line 407. At this point it is noted that each of the party connectors $45,46,47$ and 48 is adapted to seize the party subscriber line 407 and respectively to project ringing current thereover having the respective frequencies in cycles per second of 66, 50, 33 and 16. Also, incoming selectors are provided, similar to the various first selectors 41 in the local switch train, each of which is individual to the toll lines in the groups of incoming toll lines from zones 62 and 73 and the trunk lines in the groups of incoming trunks from the other exchanges in zone 38.

Further it is noted thot each toll ticket repeater in exchange ! zene 38 is individually associated with one of the outgoing toll lines to zone 62 or 13, the toll ticket repeater 00 being individually associated-with the outgoing toll line 712 . Also, the detector 80 has access to each subscriber line terminating at exchange 1 zone 38 ; and the associated finder switch F2210 has access to each register translator in exchange 1 zone 38. Further, each printer controller in exchange 1 zone 3s. is accessible to the printer controller allotter 9 ! therein and has access to each toll ticket repeater therein; similarly, each toll ticket printer in exchange zone 39 is accessible to the printer allotter 93 therein; while the printer allotter 93 has access to each printer controller therein. Finally, the date and time unit 94 in exchange 1 zone 38 is accessible to each printer controller therein.

Each subscriber substation in exchange 1 zone 30 is provided with substation apparatus including a telephone instrument, a ringer and a calling device or dial. The calling device disposed at each private subscriber substation and at each first party subscriber substation is of conventional construction; while the calling device disposed at each second, third and fourth party subscriber substation is of special construction. More particularly, the calling device disposed at each second, third and fourth party subscriber substation is of the construction and arrangement of that disclosed in the copending application ef John E. Ostline, Serial No. 404,103, filed July 26, 1941 , now Patent No. 2,410,520, granted November 5, 1946.

For example, the calling devices respectively 5 disposed at the second party subscriber substation TS2, at the third party subscriber substation TS3 and at the fourth party subscriber substation TSA, connected to the party subscriber line 407, are of the special construction mentioned; each comprising, as best shown in Fig. 4, in addition to a set of impulse springs, a set of cam springs. In these calling devices the set of impulse springs is operated in accordance with the pull of the associated finger wheel in order to transmit a corresponding variable series of switch control im-
pulses; while the set of cam springs is operated by an associated cam governed by the associated finger wheel in order to transmit a fixed number of substation identifying ground impulses. More specifically, when the finger wheel of the calling device at the second party subscriber substation TS2 is pulled in accordance with a digit of two or more the associated cam operates the set of cam springs to transmit one substation identifying ground impulse over the associated party subscriber line 407. Similarly, when the finger wheel of the calling device at the third party subscriber substation TS3 is pulled in accordance with a digit of two or more the associated cam operates the set of cam springs to transmit two substation identifying ground impulses over the associated party subscriber line 807 . Finally, when the finger wheel of the calling device at the fourth party subscriber substation TS4 is pulled in accordance with a digit of two or more the associated cam operates the set of cam springs to transmit three substation identifying ground impulses over the associated party subscriber line 407.

Preferably, the line switches included in exchange 1 zone 38 are substantially identical; the line switches 30,31 and 32 each comprising, as best shown in Fig. 4, rotary switching mechanism including a wiper set and a rotary magnet, and suitable control relays, not shown, connected and arranged in a conventional manner. At this point it is noted that in each line switch the rotary magnet has a predetermined resistance; and that in each line switch associated with a private subscriber line, which is rendered extended service, a resistance shunt is provided across the rotary magnet. For example, in the line switch 31 individually associated with the private subscriber line 404, which is rendered extended service, the resistance shunt 413 is bridged across the rotary magnet M4!2 as illustrated, for a purpose more fully explained hereinafter.
Preferably, each of the primary selectors included in exchange I zone 33 is identical to the primary selector 40 which comprises, as best shown in Figs. 5 to 7, inclusive, a switch mechanism 600, a relay group including a cut-in relay R630, a send relay R640, a line relay R650, a hold relay R655, a transfer relay R660, a split relay R610, a step relay R680 and a switch-through relay R690, and a circuit network connected and arranged in a manner more fully described hereinafter.
The switch mechanism 600 is of the Strowger split level type and of the construction and arrangement of that disclosed in the copending application of John E. Ostline, Serial No. 405,155, flled August 2, 1941, now Patent No. 2,315,010 granted March 30, 1943. More specifically, the switch mechanism 600 comprises a wiper set including the wipers 601, 602 and 603 and an associated contact bank 700; the contact bank 700 including ten vertically spaced-apart rows or levels of contact sets arranged in circumferentially spaced-apart relation. Also, the switch mechanism 600 comprises a vertical magnet M61t for driving the wiper set step by step in the vertical direction, a rotary magnet MS12 for driving the wiper set step by step in the rotary direction, and a release magnet M6 14 for releasing the wiper set and for causing it to be returned to its normal vertical and rotary positions. Further there are associated with the switching mechanism 600 three sets of switch springs S615, S616 and S617 which are actuated when the wiper set is moved in the vertical direction away from its normal
position, twò sets of switch springs S626 and S627 which are actuated when the wiper set is moved in the rotary direction eleven steps away from its normal rotary position, a set of switch springs $\mathbf{S 6 2 0}$ which is actuated when the wiper set is moved in the vertical direction either one or ten steps away from its normal vertical position, and a set of switch springs 5623 which is actuated when the wiper set is moved in the rotary direction a predetermined number of steps away from its normal rotary position after it has been previously moved in the vertical direction a predetermined number of steps away from its normal vertical position. More particularly, the set of switch springs 5623 is actuated when the wiper set is moved six steps in the rotary direction away from its normal rotary position after it has been previously moved one step in the vertical direction away from its normal vertical position, or when the wiper set is moved eight steps in the rotary direction away from its normal rotary position after it has been previcusly moved ten steps in the vertical direction away from its normal vertical position.

The set of switch springs S523 is actuated, in the manner explained above, in view of the splitting of the first and tenth levels in the associated contact bank 700, the first level of the contact bank being split at the sixth contact set and the tenth level in the associated contact bank 700 being split at the eighth contact set. More particularly, in the contact bank 700 of the switching mechanism 500 the first five trunks in the first level extend to five first selectors included in the first group; the second five trunks in the first level extend to five special service selectors included in the group mentioned; the first seven trunks in the tenth level extend to seven first selectors included in the tenth group; the last three trunks in the tenth level extend to the manual operator position 0; while the ten trunks in each of the levels from 2 to 9 respectively extend to ten first selectors respectively included in the groups from 2 to 9.
Preferably, the finder switches in exchange 1 zone 38 and individually associated with the primary selectors are identical. For example, the finder switch F500 individually associated with the primary selector 50 comprises, as best shown in Fig. 5, a rotary switch including six wipers 501 to 506 , inclusive, provided with individually assocated contact banks, and a magnet FM501 for driving the wipers noted.

Preferably, each of the primary registers in exchange 1 zone 38 is identical to the primary register 50 which comprises, as best shown in Figs. 8 to 11, inclusive, a first code switch A800 of the rotary type, including two wipers 801 and 802 provided with individually associated contact banks, a magnet AM803 for driving the wipers noted, and a set of switch springs AS805 which is actuated when the wipers noted are moved away from their home positions; a second code switch B810 of the rotary type, including two wipers 811 and 812 provided with individually associated contact banks, a magnet BMel3 for driving the wipers noted, and a set of switch springs BS815 which is actuated when the wipers noted are moved away from their home positions; and a third code switch C820 of the rotary type, including a single wiper 821 provided with an associated contact bank, a magnet CM822 for driving the wiper noted, and a set of switch springs CS823 which is actuated when the wiper
noted is moved away from its home position. Also, the primary register 50 comprises a sequence switch 5830 of the rctary type, including three wipers 831 to 833 , inclusive, provided with individually associated contact banks, a magnet SM834 for driving the wipers noted, and a set of switch springs SS836 which is actuated when the wipers noted are moved away from their home positions; and a send switch $\mathbf{U 8 4 0}$ of the rotary type, including two wipers 841 and 842 , provided with individually associated contact banks, and a magnet UM853 for driving the wipers noted.

Further the primary register 50 comprises a relay group, including a transfer re!ay R860, a party line relay R910, a line relay R920, a pulse relay R 930 , an extended service relay R980, two cutoff relays R950 and RIC80, a hold relay R950, a control relay R970, a send relay R1010, a send slave relay R1020, a delay send relay RI033, a hold relay R1040, a translate relay R1050, a release relay R1000, a transfer slave relay R1010, a digit cutoff relay R1I18, three party relays RII20, RII33 and Ril4 , and a control network connected and arranged in a manner more fully described hereinafter.
Finally, the primary register 50 comprises a mechanical impulse repeater 1170 of the general construction and arrangement of that disclosed , in U. S. Patent No. 2,188,461, McClew and Woodland, granted January 30, 1940. More particularly, the mechanical impulse repeater 1110 comprises, as best shown in Fig. 11, a receive magnet RMII71, a mark magnet MMIIT2, a send magnet SMII73, a mechanism, not shown, operated by the magnets mentioned, a set of impu!se springs Sli78 and a set of switch springs silit.
In the primary register 50 the code switches A800, B810 and C820 are adapted re-pectively to register the first, second and third code digits of a called directory number; while the sequence switch 5838 is arranged to select the code switches A800, 3310 and C 223 in sequence, for purpose of registration. Each of the code switches A800, B310 and C825 is arranged to determine, as far as possible, in accordance with the code digit registered therein whether the call may be completed under the direct control of the calling device at the calling subscriber substation or must be translated by a register translator. Finally, by the time the third code digit is registered in the third code switch $\mathbf{C 8 2 0}$ the code switches mentioned have determined whether the call may be completed under the direct control of the calling device ${ }^{5}$ the calling subseriber substation or must be translated by a register tranclator. In the event the coll may be completed under the direct control of the calling device at the calling subscriber substation, the code switches mentioned effect the release of the primary register 59 ; on the other hand, in the event the call must be translated by a register translator, the code switches mentioned effect the association of an idle register translator with the primary register 50.

The sender switch U849 is arranged to send to the associated register translator the firct code digit registered in the first code switch A830, the extended service marking as determined by the operated position of the extended service relay R9sn, and the party subscriber substation marking as determined by the operated positions of the thee party relays R1130, R1130 and RII43. Finally, the mechenical impule repeater 1170 is arranged to register, to store and to transmit to the associated register translator the second
and third code digits and the four numerical digits transmitted to the primary register 50.

The register translator allotter 68 provided in exchange I zone 38 comprises, as best shown in Fig. 11, a finder switch Fill 160 of the rotary type, including a single wiper $||g|$ provided with an associated contact bank, and a magnet FM1162 for driving the wiper noted. Also, the register translator allotter 60 comprises a start relay RII53 and a control network connected and arranged in a manner more fully explained hereinafter.

Preferably, the finder switches in exchange 1 zone 38 and individually associated with the register translator are identical. For exampie, the finder switch F1180 individually associated with the register translator 10 is of the rotary type and includes, as best shown in Fig. 11, eight wipers 1181 to 1188 , inclusive, provided with individually associated contact banks, and a magnet FMIIs8 for driving the wipers noted.

Preferably, each of the register translators included in exchange ! zone 38 is identical to the register translator 70 which comprises, as best shown in Figs. 12 to 19, inclusive, a first code switch Al710 of the rotary type, including three wipers 1711 to 1713 , inclusive, provided with individually acsociated contact banks, a magnet AMI7IA for driving the wipers noted, and a set of switnh springs ASIIIS which is actuated when the wipers noted are moved away from their home positions; a second code switch Bl120 of the rotary type, including two wipers 1721 and 1722 pro ided with individually associated contact banks, a magnet BMi723 for driving the wipers noted, and a set of switch springs BS 1720 whinh is actuated when the wipers noted are moved away from their home positions; and a third code switch CI730 of the rotary type, including three wipers 1731 to 1733 , inclu-ive, provided with individually associated contact banks, a magnet CMI734 for driving the winers noted, and a set of switch springs CS 1737 which is actuated when the wipers noted are moved away from their home positions. Also, the register translator 10 comprises a first numerical switch DIT40 of the rotary type, including three wipers 1741 to 179?, inclusive, provided with individually associated contact banks, a magnet DMITAS for driving the wipers noted, and a set of switoh springs DSilat which is actuated when the wipers noted are moved away from their home positions; a second numerical switoh El7马? of the rotary type, including three wipers 1751 to 175%, inclusive, provided with individually associated contact banks, a magnet EMI75A for driving the wipers noted, and a set of switch springs ESt1756 which is actuated when the wipers noted are moved away from their home positions; a third numerical switch Flale of the rotary type, including three wipers 1811 to 1813 , inclusive, provided with individually associated contact banks, a magnet FMi814 for driving the wipers noted, and a set of switch springs Fisigis which is actuated when the wipers noted are moved away from their home positions; and a fourth numerical switrih G182n of the rotary type, including three wipers 1821 to 1823 , inclusive, provided with individually associated contast banks, a magnet GM1824 for driving the wipers noted, and a set of switch springs GSi 825 which is actuated when the wipers noted are moved away from their home positions.

Further, the register translator 10 comprises a register sequence-switch si840 of the rotary type,
including two wipers 1841 and 1842, provided with individually associated contact banks, a magnet SM1843 for driving the wipers noted, and a set of switch springs sSi845 which is actuated when the wipers noted are moved away from their home positions; a station switch UB1830 of the rotary type, including a single wiper $183!$ provided with an associated contact bank, a magnet JBMI 832 for driving the wipers noted, and a set of switch springs UBSI834 which is actuated when the wiper noted is moved away from its home position; a storage transfer switch UI910 of the rotary type, including four wipers 1911 to 1914 , inclusive, provided with individually associated contact banks, a magnet UMI 915 for driving the wipers noted, and a set of switch springs USI917 which is actuated when the wipers noted are moved away from their home positions; a sender switch K 1920 of the rotary type, including three wipers 1921 to 1923 , inclusive, provided with individually associated contact banks, a magnet KMI924 for driving the wipers noted, and a set of switch springs KSI 926 which is actuated when the wipers noted are moved away from their home positions; and a digit sequence switch NiG10 of the rotary type, including three wipers 1611 to 1613, inclusive, provided with individually associated contact banks, a magnet NMIG14 for driving the wipers noted, and a set of switch springs NSIG16 which is actuated when the wipers noted are moved away from their home positions.

Also, the register translator 78 comprises a composite code switch P1640 of the Strowger type, provided with a wiper set including eight wipers 1641 to 1648 , inclusive, and an associated contact bank; the associated contact bank comprising ten vertically spaced-apart rows or levels of contact sets, each level of contact sets including ten circumferentially spaced-apart individual contact sets. Also, the Strowger mechanism comprises a vertical magnet PM1650 for driving the wiper set step by step in the vertical direction and a rotary magnet PMI65 for driving the wiper set step by step in the rotary direction. Further, there is associated with the Strowger mechanism a set of switch springs PS!652 which is actuated when the wiper set is moved in the vertical direction away from its normal vertical position.

Further, the register translator 70 comprises a rate and route switch R1620 of the Strowger type, including a wiper set provided with eight wipers $162!$ to 1528 , inclusive, and an associated contact bank; the associated contact bank comprising ten vertically spaced-apart rows or levels of contact sets, each level of contact sets including ten circumferentially spaced-apart individual contact sets. Also, the Strowger mechanism comprises a vertical test wiper 1629 which is moved only in the vertical direction by the wiper set and an associated vertical test contact bank. Further, the Strowger mechanism comprises a vertical magnet RMI630 for driving the wiper set step by step in the vertical direction and a rotary magnet RM168: for driving the wiper set step by step in the rotary direction. Further, there is associated with the Strowger mechanism a set of switch springs RS:632 which is actuated when the wiper set is moved in the vertical direction away from its normal vertical position. Also, it is noted that a jumper field is arranged between the contact banks of the composite code switch P1640 and the rate and route switch R1620, for a purpose more fully explained hereinafter.

Further, the register translator 10 comprises a mechanical storage unit SU 1930 which includes,
as best shown in Fig. 19, four code storage devices Si93! to S1934, inclusive, and a master magnet SUM1335. Each of the code storage devices includes four unit or WXYZ magnets. The mechanical storage unit SU1930 is of the construction and arrangement of that disclosed in the copending application of John E. Ostline, Serial No. 334,886, filed May 13, 1940, now Patent No. 2,292,471, granted August 11, 1942.
Finally, the register translator 70 comprises a relay group including a contol relay Ri2lo, a stop relay R1220, a transfer relay R1230, a slip relay $\mathrm{R} \mid 240$, a release slave relay $\mathrm{R} \mid 250$, a hold relay RI260, two pulse relays Ri310 and R1420, a cutoff relay RI320, a storage relay R1330, a mark relay R1340, a step.relay R1350, a cut-in relay R1360, a start relay R141t, a wiper switching relay R1430, a digit spacer relay R1440, a release relay R1450, a digit stop relay R1460, a first digit relay RI510, an extended service relay R152e, three party relays R1530, Ri540 and R1550, and a storage slave relay R1940, and a control network connected and arranged in a manner more fully described hereinafter.
In the register translator 70 the code switches A1718, B1720 and C1730 are adapted respectiveIy to register the first, second and third code digits of a called directory number; and the first, second, third and fourth numerical switches DI740, E1750, F1818 and G1820 are adapted respectively to register the first, second, third and fourth numerical digits of a called directory number. Thus, the code switches A1710, B1720 and C:130 taken together comprise a first code register adapted to register a code comprising N digits, wherein $\mathrm{N}=3$; while the numerical switches D:748, EIT50, Fi\&10 and GIE20 taken together comprise a second register adapted to register a number comprising M digits, wherein $M=4$.
The station switch UB1830 is arranged to control the registration in the first code switch Al710 to govern the extended service relay R1520 and the three party relays R1530, R1540 and R1555; the register sequence switch S1848 is arranged to select the code switches B1720 and C1730 and the numerical switches D1790, E1750, F1810 and G1820 in sequence, for purposes of registration; while the digit sequence switch Nigio is arranged to control the sequence of transmitting the digits from the register translator 10, some of these digits being registered in the rate and route switch R1620 and other of these digits being registered in the numerical switches D 1740 , E1750, Fi810 and G1820. The impulse sender switch K1920 is arranged to control the actual number of impulses transmitted in each numerical digit transmitted from the register translator 70; while the storage transfer switch U1910 is arranged to transmit code digits from the register translator 70, these code digits being registered in the rate and route switch R1620, the code switches Al7io, B1720 and C1730, the numerical switches DI740, E1750, F1810 and G1820, the extended service relay RI529 and the mechanical storage unit SUI930. Finally, the composite code switch P1640 is controlled in accordance with the digits stored in the code switches A1719, Bi720 and C1730 and governs the operation of the rate and route switch R1620.
The detector 80 included in exchange 1 zone 38 has access to 10,000 terminals and comprises, as best shown in Figs. 20 to 27, inclusive, ten groups of A relays, each group of A relays including ten individual A relays. The tenth group of A relays mentioned is illustrated and comprises the in-
dividual A relays 00 A to 09 A , inclusive, and is associated with the 1000 S leads from the 0 thousand connectors. Each A relay comprises 100 make contacts, whereby a given A relay in the tenth group is operative to connect the corresponding 100 S leads in the 0 thousand group to the detector 80 for test purposes.

At this point it is noted that the S lead S43I extends to the line switch 30 individually associated with the private subscriber line 401 and is accessible to the 00A relay included in the tenth group of A relays; whereby the directory number of the private subscriber line 401 includes the digits 00 and the directory number of the private subscriber substation TP connected to the private subscriber line 401 may be 0099. Similarly, the S lead S432 extends to the line switch 31 individually associated with the private subscriber line 404 and is accessible to the 09A relay included in the tenth group of A relays; whereby the directory number of the private subscriber line 404 includes the digits 09 and the directory number of the private subscriber substation TX connected to the private subscriber line 404 may be 0901. Finally, the S lead $\mathbf{S 4 3 3}$ extends to the line switch 32 individually associated with the party subscriber line 407 and is accessible to the 01A, 02A, 03A and 04A relays included in the tenth group of A relays; whereby the directory number of the party subscriber line 407 includes the digits $01,02,03$ or 04 and the directory numbers of the party subscriber substations TSI, TS2, TS3 and TS4 connected to the party subscriber line 407 may be, respectively, $0100,0200,0300$ and 0400.

A'so, the detector 80 comorises 1,000 test -leads arranged in ten groups of 100 each, each A relay in each group of 10 being operative to connect the associated group of 100 S leads to the associated group of 100 test leads.
Further, the detector 30 comprises ten B relays 0 B to 9B, inclusive, individually associated with the corresponding groups of A relays, the tenth B relay $O B$ being individually associated with the tenth group of A relays 013 to 00A, inclusive. Further, the detector 80 comprises four hold conductors C1973, C1974, C1975 and C1976 which are suitably multipled to make contacts provided on the various B relays. More particularly, the first hold conductor Cl973 is multipled via contacts of appropriate ones of the B relays to the windings of the various ones of the A relays in each group corresponding to the private subscriber substations and to the first party subscriber substations; while the second, third and fourth hold conductors C1974, C1315 and C1976, respectively, are multipled via contacts of appropriate ones of the B relays to the windings of the various ones of the A relays in each group respectively corresponding to the second, third and fourth party subscriber substations. For example, the first hold conductor Cl973 is milltipled via the contacts $3 B 0$, OB5 and OBS to the windings of the A relays $00 \mathrm{~A}, 05 \mathrm{~A}$ and 09 A , respectively, corresponding to groups of private subscriber substations, respectively including the private subscriber substations TP, etc., and TX, and via the contacts OBI to the winding of the A relay OIA, corresponding to a group of first party subscriber substations, including the first party subscriber substation TSI; similarly, the second, third and fourth hold conductors C197s, C1975 and C1976, respectively, are multipled via the contacts 0B2, OB3 and 0B4 to the windings of the A relays $02 \mathrm{~A}, 03 \mathrm{~A}$ and 04A, respectively,
corresponding to groups of second, third and fourth party subscriber substations, respectively including the party subscriber substations TS2, TS3 and TS4.

Further, the detector 80 comprises ten C relays 0 C to 9 C , inclusive, respectively corresponding to the ten groups of 100 test leads, and ten test conductors C2590 to C2509, inclusive. Each C relay is operative to connect the corresponding group of 100 test leads to the corresponding one of the test conductors. For example, the ninth C relay 8 C is operative to connect the ninth group of 100 test leads to the ninth test conductor C2509. Also, the detector 80 comprises ten D relays 0 D to 9D, inclusive, respectively corresponding to the ten groups of 100 test leads, and ten E relays $\mathbf{O E}$ to งE, inclusive. Each D relay is operative to connect the corresponding group of 100 test leads to 100 riser conductors included in an associated riser cable 2500; while each E relay is operative to connect a corresponding group of ten riser conductors in the riser cable 2500 to the ten corresponding test conductors C2500 to C2509, inclusive. For example, when the ninth D relay 3D and the ninth E relay 9E are operated the ninth group of 100 test leads are connected to the corresponding 100 riser conductors in the riser cable 2500 and the ninth group of ten riser conductors in the riser cable 2500 are respective1 y connected to the ten test conductors C2508 to C2509, inclusive.

Further, the detector 80 comprises ten amplifiers QAMP to GAMP, reswectively connected to the ten test conductors $\mathbf{C 2 5 0 0}$ to $\mathbf{C 2 5 0 9}$, inclusive, and ten test stop relays OR to 9R, inclusive, raspectively associated with the ten amplifiers ®AMIP to 9AMP, inclusive. Also, the detector 80 comprises ten test mark relays 0T to 9 T , inclusive, ten test lock relays 0 S to 9 S , inclusive, ten step relays 0 K to 9 K , inclusive, and three cycle relays KC, KB and KA. Further, the detector 80 comprises a finder switch F 2210 of the rotary type, including a single wiper 2211 and an associated contact bank, and a magnet FM2212 for driving the wiper noted. Also, the detector 80 comprises a tone generator 2201, a relay group including a start relay R2220, a pulse relay R2230, a release relay R2240, two test relays R2259 and R3280, two test hold relays P2260 and R2270, a hold relay R2290 and a switch relay R2310, and a control network connected and arranged in a manner more fully described hereinafter.

Finally, the detector 80 comprises four groups of marking leads 1970, 1979, 1978 and 1911 of the WXYZ type, which are respectively utilized for purposes of marking the first, second, third and fourth digits of a detected directory number. More particularly, the WXYZ conductors in the first and third groups of marking leads 1978 and 1978 are marked by the various step relays 0 K to 9 K , inclusive; while the WXYZ conductors in the second and fourth groups of marking leads 1079 and 1877 are respectively marked by the various test lock relays 0S to 9S, inclusive, and by the various test mark relays 9 T to 9 T ; inclusive.
More particularly, it is pointed out that the WXYZ conductors in each of the groups of marking leads 1970 to 1971, inclusive, are marked in accordance with a code arrangement. For example, the various step relays 0 K to 9 K , inelusive, mark the WXYZ conductors in the first group of marking leads 1970 in accordance with
the particular thousand digit of the directory number of the calling subscriber line terminating at exchange 1 zone 38 and detected by the detector 80 and in accordance with the following code:

Particular Thousand Digit	Marked WXYZ Conductors in the First Group of Marking Leads 1970
1	-
2	$\mathrm{~W}-\mathrm{X}$
3	$\mathrm{~W}-\mathrm{Y}$
4	$\mathrm{X}-\mathrm{Z}$
5	$\mathrm{X}-\mathrm{Z}$
6	$\mathrm{Y}-\mathrm{Z}$
7	X
8	Y
9	Z
0	

Preferably, each of the toll ticket repeaters included in exchange 1 zone 38 is identical to the toll ticket repeater 90, diagrammatically illustrated in Fig. 7, which is identical to the corresponding element disclosed in Figs. 15 to 17, inclusive, of the copending application of John E. Ostline, Serial No. 354,301, filed August 26, 1940, now Patent No. 2,385,228, granted September 18, 1945.

Preferably, each of the printer controllers included in exchange zone 38 is identical to the printer controller 92 , diagrammatically illustrated in Fig. 7 , which is identical to the corresponding element disclosed in Figs. 6 to 9, inclusive, of the copending application of John E. Ostline, Serial No. 354,301, filed August 26 , 1940, how Patent No. 2,385,228, granted September 18, 1945.

The printer controller allotter 91 included in exchange I zone 38, diagrammatically illustrated in Fig. 7, is identical to the corresponding element disclosed in Fig. 6 of the copending application of John E. Ostline, Serial No. 354,301, filed August 26, 1940, now Patent No. 2,385,228, granted September 18, 1945.

The date and time unit 94 included in exchange I zone 38 , diagrammatically illustrated in Fig. 7, is identical to the corresponding element disclosed in Figs. 36 to 39, inclusive, of the copending application of John E. Ostline, Serial No. 278,728, filed June 12, 1939, now Patent No. 2,373,908, granted April 17, 1945.

Preferabiy, each of the toll ticket printers included in exchange 1 zone $\mathbf{3 8}$ is identical to the toll ticket printer 95, diagrammatically illustrated in Fig. 7, which is identical to the corresponding element disclosed in Figs. 29 and 30 of the copending application of John E. Ostline, Serial No. 278,729, filed June 12, 1939, now Patent No. 2,272,475 granted Feb. 10, 1942.

The printer allotter 93 included in exchange 1 zone 38, diagrammatically illustrattd in Fig. 7, is identical to the corresponding element disclosed in Fig. 26 of the copending application of John E. Ostline, Serial No. 354,301 , filed August 26, 1940, now Patent No. 2,385,228, granted September 18, 1945.

The toll ticket printer 95 in exchange I zone 38 is so connected and arranged that it is adapted to be controlled from any one of the printer controllers 92, etc., to print a toll ticket of the character of that shown in Fig. 29. Referring to Fig. 29 , it is noted that the toll ticket printer 35 is operative to print the following information upon the toll ticket illustrated:

1. The month and the day of the termination of the call.
2. The hour and the minute of the termination of the call.
3. The zone and the exchange code of the directory number of the calling subscriber line.
4. The numerical line terminal of the directory number of the calling subscriber line.
5. The suffix digit 9 (not shown) following the
i0 last digit of the numerical line terminal of the directory number of the calling subscriber line, in the event the calling subscriber line is rendered extended service.
6. The zone and the exchange code of the directory number of the called subscriber line.
7. The numerical line terminal of the directory number of the called subscriber line.
8. The rate factor applicable to the call.
9. The duration of the call in minutes.
10. The cost of the call in appropriate monetary value (in the present example, in dollars and cents).
11. The special service digit 0 , in the event this digit is dialed over the called subscriber line, indicating that the charge for the call is to be reversed and assessed against the called subscriber substation instead of the calling subscriber substation.
Preferably, in exchange 1 zone 38, each first selector, such as the first selector 41, each second selector, such as the second selector 42, each special service selector, such as the special service selector 49, each individual connector, such as the individual connector 43, and each party connector, such as the party connectors 45,46 , 41 and 48 , as diagrammatically illustrated in Fig. 7, are of the well-known Strowger type. At this point, it is noted that the special service selector 49 is of the well-known back-drop Strowger type. Finally, in exchange 1 zone 38, the manual operator position 0 , the toll operator position IIB, the information operator position 113 and the miscellaneous operator position 112, as diagrammatically illustrated in Fig. 7, comprise conventional position apparatus for answering calls and for extending calls, when such is desirable, in a well-known manner.
A better understanding of the connection and arranzement of the apvaratus incorporated in the telephone system will be facilitated from a concideration of the details of operation of the various pieces of apparatus incident to the extension of various calls from exchange 1 zone 38, as will appear hereinafter.

The selection of an inle mrimarn snlpn*nr nnत an idle primary register in exchange 1 zone 38

In exchange 1 zone 38 . When a call is initiated at a subscriber substation associated with one of the subscriber lines terminating thereat, an idle primary selector is automatically associated with the calling subscriber line. For example, when a call is initiated at the private subscriber substation TP by removing the receiver of the telenhone instrument thereat from its associated switchhook, a bridge path is completed thereat between the line conductors CAS2 and C403 of the private subscriber line 801 and operation of the individually associated line switch 30 is initiated. The line switch 30 operates to find an idle primary selector in the associated group, including the primary selector 40. More pavticularly, the switching mechanism of the line switch 30 is operated in order to cause the test 5 wiper in the associated wiper set to test progres-
sively the idle or busy condition of the various primary selectors in this group. Assuming that the primary selector 00 is the first idle primary selector in this group, the switching mechanism in the line switch 30 operates to seize the trunk 420 extending thereto, the primary selector 40 being marked as idle by the absence of ground potential upon the control conductor Cu23 of the trunk 920 extending thereto. Also, the line switch 30 operates to mark the private subscriber line dol as busy to the connectors having access thereto.

When the primary selector 40 is thus seized by the line switch 30 a circuit is completed for energizing in series the upper winding of the line relay R350 and the upper winding of the transfer relay R560. This circuit extends from ground by way of the set of switch springs S615, the upper winding of R 560 , the contacts 691 and 682 to the line conductor C 221 ; and from battery by way of the upper wincing of R350 and the contacts 693 and 685 to the line conductor C422, the line conductors C 821 and $C 422$ of the trunk 620 being connected together by way of the line switch 30, the line conductors C 802 and CaO3 of the private subscriber line 801, and the bridge at the calling private subscriber substation TP. When this series circuit is completed the line relay R650 and the transfer relay R060 operate. At this point it is noted that an obvious path, including the set of switch springs S615, is normally completed for short-circuiting the upper winding of the split relay R370, thereby positively to prevent the latter relay from operating at this time. Upon operating, the line relay R650 completes, at the contacts 651, an obvious circuit, ineluding the contacts 697, for energizing the winding of the hold relay R855, thereby to cause the latter relay to operate. Upon operating, the hold relay R655 completes, at the contacts 658, an obvious path including the contacts 648 for applying ground: potential to the control conductor C423 of the trunk 420, thereby to mark the trunk 420 as busy to the other line switches having access: thereto and to complete an obvious holding circuit for energizing the rotary magnet m4it of the switching mechanism in the line switch 30.
Upon operating, the transfer relay R660 completes, at the contacts 663, a connection including the contacts 885 and 508 between the test wiper 506 and the magnet FM5507 of the finder switeh F500. At this time, the wipers 501 to 506 , inclusive, of the finder switch FE 00 engage contacts in the respective associated contact banks terminating conductors extending to one of the primary registers, which primary register is marked either idle or busy, depending, respectively, upon the absence or presence of ground potential upon the test conductor thereof. Assuming that the primary register mentioned is busy, ground potential appears upon the test conductor thereof which is terminated by the contact engaged by the test wiper 58 of the finder switch $F 500$, thereby to complete an obvious circuit for energizing the magnet FM501. When thus energized the magnet FMM5gy operates to condition the wipers noted of the finder switch F500 to be driven one step in the clockwise direction, and to interrupt; at the contacts 508, the previously traced circuit for energizing the magnet FMM50. The magnet FM507 then restores, thereky to drive the wipers. noted of the finder switch F 500 one step in the clockwise direction, and to reprepare, at the con-
tacts 508, a circuit substantially identical to that previously traced and including the test wiper 506 for testing the idle or busy condition of the next primary register.
Assuming that the primary register 50 is the first primary register in the associated group, the magnet FM507 is operated intermittently, thereby to drive the wipers noted of the finder switch F500 step by step in the clockwise direction until they engage the contacts in the associated contact banks terminaing the conductors C5ll to C519, inclusive, extending to the primary register 50; whereupon further operation of the magnet FME0? of the finder switch FEDG is arrestod. More particularly, when the wipers noted of the finder switch Feot engage the contacts in the associated contact banks terminating the conductors C5lf to C5le, inclusive, extending to the primary register 50, no ground potential appears upon the test conductor $\mathbf{C} 510$, whereupon the previously traced circuit for energizing the magnet Fivs07 of the fincer switch F50e is interrupted. At this time, a series circuit is completed for energizing the winding of the $\mathrm{cu}^{2}-\mathrm{in}$ relay $R 330$ in the primary selector 60 and the magnet FMW507 of the finder switch F300, this circuit extending from ground by way of the contacts 658 and 681 , the contacts 618 of the set of switch springs S 517 , the contacts 899 , the winding of R630, the contacts 598 and the magnet FM507 to battery. When this series circuit is completed the cut-in relay R630 operates; however, the magnet FMEOT does not operate due to the high series resistance of the winding of the cut-in relay R630. At this point, it is noted that, as long as the test wiper 505 of the finder switch F500 engages contacts in the associated contact bank terminating test conductors having ground potential thereon, a path is completed for shortcircuiting the winding of the cut-in relay R63v, thereby positively to prevent operation of the latter relay until the finder switch Fsos finds an idte primary register. The path mentioned for shortcircuiting the winding of the cut-in relay R63s extends, when completed, from ground by way of the contacts 658 and 651 , the contacts 518 of the set of switch springs 617, the centacts 669, the winding of R630, and the contacts 663 and 635 to the grounded test wiper 505: of the finder switch F500. Accordingly, at this time, the finder switchF500 has operated to seize the idle primary register 50 .

Upon operating; the cut-in relay R630 completes, at the contacts 631 and 632, a series loop circuit for energizing the upper winding of the line relay R920 and the upper and lower windings of the party line relay R910 in the primary register 50. This loop circuit extends from ground by way of the lower winding of R910, C514, the wiper 501 of the finder switch $F 500$ and the contacts 631 to the line conductor cad of the trunk 420; and from battery by way of the upper winding of R920, the upper winding of R910, C513; the wiper 503 of the finder switch FF 50 and the contacts 632 to the line conductor $\mathbf{C} 92$ of the trunk 420, the line conductors of the trunk 420 being connected together by way of the bridge at the calling private subscriber substation TP, as previously noted. When this series circuit is completed the line relay R 920 operates; however, the party line relay R910 does not operates as the latter relay is of the differential type. Upon operating, the line relay R920 completes, at the 5 contacts 92 I , a circuit for energizing the winding

19
of the send relay R640 in the primary selector 40 , this circuit extending from ground by way of the contacts 921 , the wiper 831 of the sequence switch S830 and the engaged home contact in the associated contact bank, the contacts 105i, C514, the wiper 504 of the finder switch $F 500$, the contacts 683 and the winding of R 690 to battery. When thus energized the send relay R640 operates.
Also, upon operating, the line relay R 920 in the primary register 50 completes, at the contacts 923, an obvious circuit for energizing the winding of the hold relay R!od, thereby to cause the latter relay to operate. Upon operating, the hold relay R1040 completes, at the contacts 104i, an obvious circuit, including the contacts 1111 and the dial tone conductor C1125, for energizing the lower winding of the line relay R920, whereby dial tone voltage is induced into the upper winding of the line relay R920 in order to cause dial tone current to be returned over the previously traced loop circuit, including the finder switch F590, the primary selector 40, the trunk line 420, the line switch 30 and the private subscriber line 401 to the calling private subscriber substation TP, thereby to indicate to the subscriber thereat that he may proceed with the extension of the call by dialing the first digit of the called directory number.
Also, the hold relay R1040 completes, at the contacts 1045, an obvious path including the contacts 1061 for applying ground potential to the test conductor C516, thereby to mark the primary register 50 as busy to the other finder switches in the group, including the finder switch F590. Also, the application of ground potential to the test conductor C516 completes a holding circuit, including the test wiper 505 of the finder switch $\mathrm{F}^{5} 50$ and the contacts 634 and 508, for energizing in series the winding of the cut-in relay R630 and the rotary magnet FM597.
When the send relay $R 640$ in the primary selector 40 operates it completes, at the contacts 646, an obvious holding circuit including the contacts 633 for energizing the winding thereof. Also, the send relay R640 completes, at the contacts 641, an alternative circuit for energizing the upper winding of the transfer relay R660, this circuit extending from ground by way of the set of switch springs S615, the upper winding of R660, the contacts 691 and 641, the wiper 502 of the inder switch $\operatorname{F503}, \mathrm{C} 512$, the contacts 1087 and 1062 and the resistors 1118 and 1119 to battery. Also, the send relay R840 completes, at the contacts 044 , an alternative circuit for energizing the upper winding of the line relay R350, this circuit extending from ground by way of the contacts 921, the wiper 831 of the sequence switch S830 and the engaged home contact in the associated contact bank, the contacts 1051, C514, the wiper 504 of the finder switch F 500 , the contacts 644 and 693 and the upper winding of R650 to battery. Further, the send relay Rg40 interrupts, at the contacts 642 and 645 , the previously traced original loop circuit for energizing in series the upper winding of the transfer relay R660 and the upper winding of the line relay R050; however, the latter relays remain in their operated positions at this time due to the completed alternative circuits above traced for energizing the upper windings thereof. Further, the send relay R960 interrup's, at the contacts 643, the original operating circuit for energizing the winding
thereof, and interrupts, at the contacts 648, the previously traced original path for applying ground potential to the control conductor C423 of the trunk 420. Also, the send relay R640 completes, at the contacts 641, a circuit for energizing in series the winding of the extended service relay R940 in the primary register 50 and the rotary magnet M4ll of the switching mechanism in the line switch 30 , this circuit extending from ground by way of the winding of R940, C515, the wiper 505 of the finder switch F500, the contacts 647, the control conductor C423 of the trunk 423, and the rotary magnet MA1! to battery. When this series circuit is completed the rotary magnet M4ll of the switching mechanism in the line switch 30 is retained in its operated position, thereby to retain the line switch 39 operated; however, the extended service relay R940 in the primary register 50 does not operate unless low resistance battery potential is applied in the seizing line switch to the control conductor C423 of the trunk 420. In the present example, high resistance battery potential is applied by way of the rotary magnet M4II of the switching mechanism in the line switch 30 to the control conductor C423 of the trunk 423; accordingly, the extended service relay Rg40 in the primary register 50 does not operate. Further it is noted that the application of ground potential by way of the winding of the extended service relay R940 and the above-traced path to the control conductor C 423 of the trunk 420 retains the trunk 420 marked as busy to the other line switches 31, etc., having access thereto. Finally, the send relay R640 interrupts, at the contacts 649 , the previously traced original operating circuit for energizing the winding of the cut-in relay R 630 .

Accordingly, at this time, the line switch 30 individually associated with the private subscriber line 40 : has seized the primary selector 40; and the finder switch F500 individually associated with the primary selector 40 has seized the primary register 50 ; and the primary register 50 is in readiness to receive the first digit of the called directory number dialed at the calling private subscriber substation TP.

Calls to the manual operator position 0 in exchange 1 zone 38

Assuming that the call extending from the calling private subscriber substation TP to the primary selector 40 and the primary register 50 is to be extended to the manual operator position 0 in exchange 1 zone 38 , the subscriber at the calling private subscriber substation TP proceeds to dial the directory number of the manual operator position 0. The directory number of the manual operator position 0 comprises the single digit 0 .

Accordingly, the subscriber at the calling private subscriber substation TP proceeds to dial the single digit 0 , thereby to cause a corresponding number of impulses to be transmitted over the private subscriber line 40I, in a well-known manner. The line relay RS20 in the primary register 50 follows the impulses of the digit 0 transmitted over the calling private subscriber line 601 in view of the fact that the circuit for energizing the upper winding thereof includes the previously traced loop circuit extending to the calling private subscriber substation TP; 75 however, the party line relay R910 does not fol
low the impulses of the digit 0 transmitted over the loop circuit mentioned as the latter relay is of the dinferential type, as previously noted. Accordingly, the line relay R920 operates and restores intermittently in accordance with the digit 0 . Each time the line relay RS20 restores it interrupts, at the contacts 921 , the previously traced circuit, including the conductor C5la, for energizing the upper winding of the line relay R6ES, thereby to cause the latter relay to restore; and each time the line relay R920 operates it recompletes, at the contacts 921, the previously traced circuit, including the conductor C514, for energizing the upper winding of the line relay R650, thereby to cause the latter relay to reoperate. Accordingly, the line relay R55d in the primary selector 60 follows the line relay R920 in the primary register 50 . Also, each time the line relay R320 restores and then reoperates it interrupts and then recompletes, at the contacts 923, the previously mentioned circuit for energizing the winding of the hold relay R1040; however, the latter relay does not restore during impulsing as it is of the slow-to-release type. Finaily, each time the line relay R920 restores and then reoperates it completes and then interrupts, at the contacts 924 , a circuit for energizing in series the winding of the transfer relay R860 and the magnet AM893 of the first code switch A800. The series circuit mentioned extends, when completed, from ground by way of the contacts 924 and 1025 , the winding of R860, the contacts 1058 , the wiper 632 of the sequence switch 5839 and the engaged home contact in the associated contact bank and the rotary magnet AM803 to battery. Each time the above-traced series circuit is completed the magnet AMO日3 is energized and operates in order to condition the wipers noted of the first code switch A808 to be driven one step in the counterclockwise direction; and each time this circuit is interrupted the magnet AM803 is deenergized in order to drive the wipers noted of the first code switch A800 one step in the counterclockwise direction. When the wipers noted of the first code switch A8se are driver one step in the counterclockwise direction away from their home positions the set of switch springs As805 is actuated, thereby to prepare a release circuit traced hereinafter for energizing the magnet AM303 of the first code switch A000. Also, when the above-traced circuit is completed the transfer relay R360 operates and remains operated during impulsing, the transfer relay Reso being of the slow-to-release type.

Upon operating, the transfer relay R8se completes, at the contacts 861 , an obvious circuit for energizing the magnet SMI834 of the sequence Switch S830, thereby to cause the magnet SM834 to operate in order to condition the wipers noted of the sequence switch S830 to be driven one step in the counterclockwise direction. Also, the transfer relay 2860 completes, at the contacts 80.2, an obvious circuit for energizing the winding of the transfer slave relay R1070, thereby to cause the latter relay to operate. Upon operating, the transfer slave relay R1078 interrupts, at the contacts 1075, a point in a circuit traced hereinafter for energizing the winding of the translate relay R1059, and interrupts, at the contacts $\mathbf{1 0 7 5}$, a point in a circuit traced hereinafter for energizing the winding of the release relay R1060, thereby positively to prevent operation of
either the translate relay R1050 or the release relay R1060 during impulsing. Further, the transfer slave relay RIO70 completes, at the contacts 1074, an obvious circuit, including the contacts 1ll5, for energizing the lower winding of the digit cutoff relay RIIID, thereby to cause the latter relay to operate partially in order to complete, at the contacts /115, a path for short-circuiting the upper winding thereof. The path mentioned extends from ground by way of the contacts 1074 and 1115 , the upper winding of RIIIO and the contacts 1116 and 1047 to ground. This arrangement positively prevents full operation of the digit cutoff relay RIIIO during impulsing.
At the conclusion of the single digit 0 , the wipers noted of the first code switch A890 engage the tenth contacts in the associated contact banks and shortly thereaiter the transfer relay R860 restores, the latter relay being of the slow-to-release type, as previously noted. Upon restoring, the transfer relay R860 interrupts, at the contacts 851 , the previously mentioned circuit for energizing the magnet SiM83s of the sequence switch $\$ 830$, thereby to cause the magnet mentioned to restore in order to drive the wipers noted of the sequence switch 5930 one step in the counterclockwise direction. When the wipers noted of the sequence switch 5830 are driven one step in the counterclockwise direction away from their home positions; the set of switch springs $\mathbf{S 5 8 3 6}$ is actuated, thereby to prepare a release circuit traced hereirafter for energizing the magnet SMEss of the sequence switch S 830 . Also, upon restoring, the transfer relay R600 interrupts, at the contacts 802, the previously mentioned circuit for energizing the winding of the transfer slave relay Rin7s, thereby to cause the latter relay to restore. Upon restoring, the transfer slave relay R1070 interrupts, at the contacts 107月, the previously traced path for short-circuiting the upper winding of the digit cutoff relay $\mathrm{RI} 1 \mathrm{I} / \mathrm{B}$, whereupon an obvious circuit, including the contacts 10067 and 1016, is completed for energizing in series the upper and lower windings of the latter relay. When the upper and lower windings of the digit cutoff relay R1110 are thus energized in series this relay operates fully in order to interrugt, at the contacts 1115, a further point in the pre viously traced path for short-circuiting the upper winding thereof, and to interrupt, at the contaets 111!, the previously traced circuit, including the dial tone conductor C1425, for energizing the lower winding of the line relay Rg20. Accordingly, at this time, dial tone voltage is removed from the previously traced locp circuit extending between the calling private subscriber substation TP and the primary register 50. Further, the digit cutoff relay PIU4S interrupts, at the contacts 1117, a common point in circuits traced hereinafter for energizing the lower windings of the party relays R1120and R1130 and the winding of the party relay R1140, thereby positively to prevent operation of any of the party relays R1120, R1430 and R11gO: incident to the dialing of subsequent digits following the first digit, for a purpose more fully explained hereinafter. Further, the digit cutoff relay Rdils prepares, at the contacts 1112 and 1114 , circuits for respectively energizing the mark magnet MMN172 and the receive magnet RMI474 in the mechanical impulse repeater 1 lite, for a purpose more fully explained subsequently.

Finaily, upon restoring, the transfer slave relay R1070 prepares, at the contacts 1070 and 1075, respectively, the previously mentioned circuits for energizing the translate relay P1008 and the release relay $R 1060$. In the present example, the circuit for energizing the winding of the translate relay R1050 is not completed in view of the fact that the single digit 0 registered in the first code switch A800 does not indicate that the first digit 0 received from the caliing private subscriber substation TP is to be translated; while the circuit for energizing the winding of the release relay R1060 is completed in view of the fact that the single digit 0 registered in the first code switch A800 indicates that no register translator is to be utilized and that the call may be extended to its destination directly under the control of the calling device at the calling private subscriber substation TP. More particularly, the circuit for energizing the winding of the release relay R1053 extends from ground by way of the contacts $92 i$, the wiper 801 of the first code switch A800 and the engaged tenth contact in the associated contact bank, the release conductor C803, the contacts 1915 and the winding of R1060 to battery. When thus energized the release relay R1080 operates in order to complete, at the contacts 1064, an obvious holding circuit, including the contacts 1047, for energizing the winding thereof; to interrupt, at the contacts 1061, the previousiy traced holding circuit for energizing the winding of the cut-in relay R 630 in the primary selector 40 in series with the magnet FiME07 of the finder switch F 500 ; and to interrupt, at the contacts 1052, the previously traced circuit for energizing the upper winding of the transier relay RG60 in the primary selector 40.
Accordingly, the cut-in relay Re3s in the primary selector 40 restores immediately when the release relay R1060 in the primary register 50 operates; while the transfer relay R36B in the primary selector 40 restores shortly following the operation oi the release relay Rl060 in the primary register 50 , the transfer relay R660 being of the slow-to-release type, as previously noted.
Considering now the operation of the primary selector 40 during the dialing of the digit 0 and prior to the restoration of the cut-in relay R630 and the transfer relay R660, it is again pointed out that the line relay R920 in the primary register 50 repeats the impulses of the single digit 0 to the line relay R650 in the primary selector 40 . Each time the line relay R§50 restores it interrupts, at the contacts 651 , the previousiy traced circuit for energizing the winding of the hold relay R655; and completes, at the contacts 652, an obvious circuit, including the contacts 691 and 656, for energizing in multiple the lower winding of the transfer relay R660 and the vertical magnet Mi61I. Each time the line relay R550 operates it recompletes, at the contacts 65I, the previously traced circuit for energizing the winding of the hold reay R655; and interrupts, at the contacts 652, the above-traced circuit for energizing in multiple the lower winding of the transfer relay R 660 and the vertical magnet M6II. Accordingly, the hold relay R655 and the transfer relay R660 remain operated during impulsing, each of these relays being of the slow-to-release type. Each time the vertical magnet MGII is energized it operates to drive the wiper set of the switch mechanism 600 one
step in the vertical direction. When the wiper set of the switch mechanism 600 is driven one step in the vertical direction the sets of switch springs S615, S616 and S617 are actuated. More particularly, the set of switch springs 5615 is actuated into disengagement, thereby to prepare a series circuit substantially identical to that previously traced and including the conductor C512 and the resistors 1118 and 1119 in the primary register 50 for energizing in series the upper windings of the transfer relay R660 and the spit relay R670. However, in the present example, the split relay R670 does not operate due to the inclusion of the resistor 1118 in the primary register 50 in the above-traced circuit for energizing in series the upper windings of the transfer relay R660 and the split relay R670, in view of the fact that the split relay R670 is of the marginal type. The set of switch springs S616 is actuated into engagement, thereby to prepare a circuit traced hereinafter for energizing the release magnet M6/4. The set of switch springs S 617 is actuated in order to complete, at the contacts 619 thereof, an obvious circuit, including the contacts 661 and 658 , for energizing the winding of the step relay R680. When thus energized the step relay R680 operates in order to prepare, at the contacts 682, a circuit traced hereinafter for energizing the rotary magnet M612, and to complete, at the contacts 681, a ho'ding circuit for energizing the winding thereof. The holding circuit for energizing the winding of the step relay R680 extends from ground by way of the contacts 697, 681 and 613 , the contacts 619 of the set of switch springs 5617 and the winding of R680 to battery. Also, the step relay R 380 completes, at the contacts 681 , a path including the contacts 697, the set of switch springs S 627 and the contacts 658 for shortcircuiting the winding of the switch-through relay R690, thereby positively to prevent operation of the latter relay at this time.

At the conclusion of the digit 0 repeated to the line relay R050 in the primary selector 40 by the line relay R 920 in the primary register 50 , the wiper set of the switching mechanism 600 in the primary selector 40 occupies its tenth vertical step. At this time, the cut-in relay R630 restores and shortly thereafter the transfer relay R650 restores, incident to the operation of the release relay R1060 in the primary register 50, as previously explained.

Upon restoring, the cut-in relay R630 interrupts, at the contacts 831 and 632, the previously traced alternative loop circuit for energizing in series the upper and lower windings of the party line relay RS 10 and the upper winding of the line relay $R 92$ in the primary register 50 , thereby to cause the line relay Rg20 to restore. Also, the cut-in relay Rn30 interrupts, at the contacts 633 , the previously traced holding circuit for energizing the winding of the send relay R640, thereby to cause the latter relay to restore. Upon restoring, the send relay R640 recompletes, at the contacts 642 and 645 , the previously traced original loop circuit for energizing in series the upper windings of the line relay R 650 and the transfer relay R630. Also, at this time, the upper winding of the split relay R570 is incouded in the loop circuit due to the actuated position of the set of switcia springs Sis5. However, the resistance of the loop circuit, includ'ng the upper winding of the line relay R650, the upper winding of the transfer relay R660 and the upper winding of the
split relay R570, in addition to the substation equipment at the calling private subscriber substation TP, is considerabily high and of süch a value that the split relay R670 will not operate and the transfer relay $R 660$ is not retained in its operated position; although the line relay R650 is retained in its operated position. When the transfer relay R 660 restores it completes, at the contacts 662, the previously mentioned circuit for energizing the rotary magnet Ms!2, this circuit extending from ground by way of the contacts 658, 662 and 682 and the rotary magnet M612 to battery. When thus energized the rotary magnet Mh12 onerates to drive the wiper set of the switch mechanism 600 one step in the rotary direction and to interrupt, at the contacts 613, the previously traced holding circuit for energizing the winding of the step relay R580, thereby to cause the latter relay to restore. Upon restoring, the step relay R680 interrunts, at the contacts 682 , the previonsly traced circuit for energizing the rotny magnet MS12, thereby to cause the latter magnet to restore. At this point, it is noted that the set of switch springs 5620 is actuated when the wiper set of the switeh mechanism 696 is driven ten steps in the vertical direction away from its normal vertical position. Accordingly, when the rotary magnet M6!2 restores at this time it completes, at the contacts 613, an alternative circuit for energizing the winding of the step relay $R \approx 8$, this circuit extending from ground by way of the contacts 671 , the contacts 624 of the set of switch springs sin23, the contacts 621 of the set of switch springs 8620 , the contacts 896 and 613 , the contacts 619 of the set of switch springs S617, and the winding of R680 to battery. A'so, an alternative path, including the contacts 671 , the contacts 624 of the set of switch springs 5623 , the contacts 621 of the set of switch springs $\mathbf{S 6 2 0}$, the contacts 698, the set of switch springs 5627 and the contacts 658 , is completed for short-circuiting the winding of the switch-through relay Pasd, thereby positively to prevent operation of the latter relay at this time. When thus energized the step relay R 680 reoperates, thereby to recomplete, at the contacts 682, the previously traced circuit for energizing the rotary magnet M612 in order to cause the latter magnet to reoperate. The rotary magnet ME12 and the step relay R688 interact, in the manner described above, thereby to cause the wiper set of the switch mechanism 600 to be driven step by step in the rotary direction until the wipers of the wiper set engage the eighth contact set in the associated tenth level of the contact bank 100. At this time, a cam carried by the wiper shaft of the switch mechanism 6 ee actuates the set of switch springs S623, thereby to interrupt, at the contacts 624 thereof, a further point in the previously traced circuit for energizing the winding of the step relay R680; and to prepare, at the contacts 625 thereof, an alternative circuit for energizing the winding of the step relay $R 680$.

More particularly, at this time, the test wiper 68 of the wiper set is connected by way of the contacts 672 , the contacts 625 of the set of switch springs 5623 , the contacts 62 if the set of switch springs 5629 , the contacts 635 and 613 , the contacts 819 of the set of switch springs S617 and the winding of R680 to battery. Thus, the wipers of the wiper set of the switch mechanism 6013 engage the eighth contact set in the tenth level of the associated contact bank 700 terminating the first
of ground potential from the trunk circuit as603 completes a path, including the contacts 673,
the contacts 625 of the set of switch springs S 232 , 603 completes a path, including the contacts 673 ,
the contacts 625 of the set of switch springs 5323 , the contacts E 21 of the set of switch springs $S 520$, the contacts 695 , and the contacts 648 , for
applying ground potential to the control con5 applying ground potential to the control con-
trunk extending to the manual operator position 3; and further operation of the primary selector 40 is continued in the event the first trunk mentioned extending to the manual operator position is busy at this time. More particularly, ground or battery potential respectively appear upon the control conductor of the last-mentioned trunk in the event this trunk is busy or idle. Assuming that the trunk mentioned is busy at this time, ground potential appears upon the contros conductor thereof and is applied to the test wiper 608 of the wiper set of the switch mechanism $60{ }^{5}$ in order to complete the previously traced alternative circuit for energizing the winding of the step relay R689, thereby to cause the latter relay to reoperate. When the step relay R680 is thus reoperated the rotary magnet $M 012$ is reoperated in order to drive the wiper set of the switch mechanism 600 an additional step in the rotary direction, whereupon the wipers of the wiper set engage the next trunk extending to the manual operator position 0 .

Assuming that the last-mentioned trunk extending to the manual operator position 0 is idle at this time, battery potential appears upon the control conductor thereof and is applied to the test wiper 603 of the wiper set of the switch mechanism 600, thereby to complete a path substantially identical to that previously traced for short-circuiting the winding of the step relay R680 in order positively to prevent reoperation of the latter relay at this time. Also, the application of battery potential to the test wiper 603 completes a circuit for energizing the winding of the switch-through relay R690, this circuit extending from ground by way of the contacts 658 , the set of switch springs S621, the winding of R690, the contacts 696 , the contacts 621 of the set of switch springs 5820 , the contacts 625 of the set of switch springs s623, the contacts 673 and the test wiper 603 having battery potential thereon. When thus energized the switchthrough relay R690 operates to complete, at the contacts 695, a path substantially identical to that traced above for applying direct ground potential, at the contacts 658, to the test wiper 603, thereby to cause the trunk circuit, not shown, associated with the seized trunk extending to the manual operator position o to operate; whereupon ground potential is returned over the con* trol conductor of the seized trunk to the test wiper 608. The return of ground potential from the trunk circuit associated with the seized trunk to the test wiper 603 completes a holding circuit, including the contacts 673 , the contacts 625 of the set of switch springs 5623 , the contacts 621 of the set of switch springs 5920 , the contacts 695, the set of switch springs $\mathbf{S 6 2 7}$, the contacts 613 and the contacts 619 of the set of switch springs S6lf, for energizing the winding of the switch-through relay RS90 in series with the winding of the step relay R687. When this holding circuit is completed the switch-through relay R690 is retained in its operated position; however, the step relay R 680 does not operate due to the high series resistance of the winding of the switch-through relay $R 690$. Also, the return the switch-through relay R6go. Also, the return

28

ductor C423 of the trunk 423, thereby to retain the line switch 30 in its operated position subsecuent to the restoration of the hold relay R555 in the primary selector 60. Also, the application of ground potential to the control conductor C423 of the trunk 420 retains the last-mentioned trunk marked as busy to the other line switches 31, etc., having access thereto.
Also, upon operating, the switch-through relay R590 interrupts, at the contacts 691 and 693, the previously traced loop circuit for energizing in series the upper winding of the line relay R65s, the upper winding of the transfer relay RS60 and the upper winding of the split relay R670, thereby to cause the line relay R650 to restore. Further, the switch-through relay R699 interrupts, at the contacts 697, the previously traced circuit for energizing the winding of the hold relay R655, thereby to cause the latter relay to restore shortly there fter. Upon restoring, the hold relay R655 interrupts, at the contacts 658, the previously traced original path for applying ground potential to the control conductor C423 of the trunk 420; however, at this time, the previously traced alternative path for applying ground potential to the control conductor C423 of the trunk 420 is completed. Further, the switch-through relay R690 completes, at the contacts 692 and 694, a connection between the calling private subscriber substation TP and the manual operator position 0, this connection extending from the line conductor C 421 of the trunk 420 by way of the contacts 642 and 692, and the line wiper 601 of the wiper set to one of the line conductors of the seized trunk; and from the line conductor C422 of the trunk 420 by way of the contacts 645 and 694 and the line wiper 602 of the wiper set to the other line conductor of the seized trunk, the line conductors C42I and C422 of the trunk 420 being connected by way of the line switch 30 and the private subscriber line 401 to the private subscriber substation TP, and the line conductors of the seized trunk being connected to the position equipment at the manual operator position 8 after the operator at the last-mentioned position answers the call. Accordingly, the subscriber at the calling private subscriber substation TP and the operator at the manual oporator position a may converse at this time.
Returning now to the subsequent operation of the primary register 50, it is pointed out that, when the line relay R920 therein restores incident to the restoration of the cut-in relay R630 in the primary selector $\mathbf{4 0}$, the primary register 50 is released. More particularly, upon restoring, the line relay R 820 interrupts, at the contacts 923, the previously mentioned circuit for energizing the winding of the hold relay R1040, thereby to cause the latter relay to restore shortly thereafter, the hold relay R1040 being of the slow-to-release type. Upon restoring, the hold relay R1049 effects the complete release of the primary register 50, in a manner more fully explained hereinafter, whereupon ground potential is removed from the test conductor C5I6, thereby to mark the primary register 50 as idle to the finder switches F5b0, etc., having access thereto.

The release of the established connection between the calling private subscriber substation TP and the manual operator position 0, described above, is primarily under the control of the subscriber at the calling private subscriber substation TP and is effected when the subscreriber
thereat replaces the receiver of the telephone instrument at the private subscriber substation TP upon its associated switchhool, thereby to interrupt the previously traced loop circuit extending therefrom to the trunk circuit associated with the trunk seized by the switch mechanism 600. When the loop circuit mentioned is interrupted the trunk circuit associated with the trunk seized by the switch mechanism 600 is released, thereby to mark the trunk mentioned as idle, assuming that the operator at the manual operator position 0 has disconnected from this trunk at this time; and to remove the application of ground potential from the test wiper 603 of the wiper set of the switch mechanism 600. When ground potential is removed from the test wiper 603 the previously traced holding circuit for energizing the winding of the switch-through relay R690 in series with the winding of the step relay R680 is interrupted, thereby to cause the switch-through relay R690 to restore. Upon restoring, the switch-through relay R690 interrupts, at the contacts 695, a further point in the previously traced path for applying ground potential to the control conductor C423 of the trunk 420, and completes, at the contacts 697, a circuit for energizing the release magnet M614. The last-mentioned circuit extends from ground by way of the contacts 697, 652 and 651, the release magnet M614 and the set of switch springs S616 to battery. When thus energized the release magnet M614 operates to release the wiper set of the switch mechanism 600 and to cause it to be returned to its normal rotary and vertical positions, whereupon the sets of switch springs S623, S620, S615, S616 and S617 are actuated. More particularly, the set of switch springs S616 is actuated into disengagement, thereby to interrupt the previously traced circuit for energizing the release magnet M614 in order to cause the latter magnet to restore. At this time, the primary selector 40 is completely released and available for further use.
When ground potential is removed from the control conductor C423 of the trunk 420 the previously traced holding circuit for energizing the rotary magnet M4II of the line switch 30 is interrupted, thereby to cause the latter magnet to deenergize and effect the release of the line switch 30 . When the line switch 30 is thus released the private subscriber line 401 is marked as idle to the connectors having access thereto. At this time, the established connection between the calling private subscriber substation TP and the called manual operator position 0 is completely released.
In the foregoing explanation of the mode of operation of the primary selector 40, it was assumed that there was an idle trunk in the group extending to the manual operator position 0 ; however, it may occur that there is no idle trunk in the group mentioned at this time. In this event, the step relay R680 and the rotary magnet M6I2 interact, in the manner previously explained, whereby the wiper set of the switch mechanism 600 is driven in the rotary direction eleven steps away from its normal rotary position in order to actuate the sets of switch springs S626 and S627. More particularly, the set of switch springs 5627 is actuated into disengagement, thereby positively to prevent operation of the switch-throuch relay R690; while the set of switch springs $\mathbf{S 6 2 6}$ is actuated into engagement, thereby to complete an obvious circuit, including
the busy tone conductor C604, for energizing the lower winding of the line relay R650. When the lower winding of the line relay R650 is thus energized busy tone voltage is induced into the upper winding thereof; whereby busy tone current is returned over the previously traced loop circuit extending between the primary selector 40 and the calling private subscriber substation TP in order to indicate to the subscriber thereat the all-busy condition mentioned. The subscriber at the calling private subscriber substation TP then effects the release of the line switch 30 and the primary selector 40.

More particularly, the subscriber at the calling private subscriber substation TP effects the release of the primary selector 40 by replacing the receiver of the telephone instrument thereat upon its associated switchhook, thereby to interrupt the previously traced loop circuit extending therefrom to the primary selector 40 . When the loop circuit mentioned is interrupted the previously traced circuit for energizing in series the upper windings of the line relay R958, the transfer relay R 660 and the split relay R670 is interrupted; thereby to cause the line relay R 550 to restore, the transfer relay R660 and the split relay R 970 occupying their restored positions at this time. Upon restoring, the line relay R353 interrupts, at the contacts 651, the previously traced circuit for energizing the winding of the hold relay R655, thereby to cause the latter relay to restore shortly thereafter, the hold relay R655 being of the slow-to-release type. Upon restoring, the hold relay R655 completes, at the contacts 657, the previously traced circuit for energizing the release magnet M614, thereby to cause the latter magnet to operate. Upon operating, the release magnet meis effects the release of the wiper set of the switch mechanism 603, whereby the wiper set is returned to its normal rotary and vertical positions. When the wiper set of the switch mechanism 600 is thus released the sets of switch springs S 623 , S 028 , S326, S627, S515, SS16 and S617 are actuated. More particularly, the set of switch springs 5616 is actuated into disengagement, thereby to interrupt the previously traced circuit for energizing the release magnet M014 in order to cause the latter magnet to restore; while the set of switch springs $\$ 626$ is actuated into disengagement, thereby to interrupt the previously traced circuit, including the busy tone conductor C68it, for energizing the lower winding of the line relay R650. Also, the hold relay R655 interrupts, at the contacts 658, the previously traced path for applying ground potential to the control conductor C423 of the trunk 429. At this time, the primary selector 40 is completely released and available for further use.

When ground potential is removed from the control conductor C\&23 of the trunk 420 the previously traced holding circuit for energizing the rotary magnet Mall in the line switch 30 is interrupted, thereby to cause the latter magnet to deenergize and effect the release of the line switch 30. When the line switch 30 is thus released the private subscriber line 401 is marked as idle to the connectors having access thereto.

In view of the foregoing explanation of the mode of operation of the primary selector 40 and the primary register 50 to effect the extension of a call from the calling private subscriber substation TP to the called manual operator position 0, it will be understood that this equip-
ment is operative, in a substantially identical manner, to effect the extension of a call from the calling private subscriber substation TX or from any one of the calling party subscriber substations TS1, TS2, TS3 and TSS to the called manual operator position 0.

Special service calls in exchange 1 zone 38

Assuming that the call extending from the calling private subscriber substation TP to the primary selector 40 and the primary register 50 is to be extended to a special service operator position, such, for example, as the information operator position 113, in exchange 1 zone 38 , the subscriber at the calling private subscriber substation TP proceeds to dial the directory number of the information operator position 113. The directory number of each special service operator position comprises three digits, the first two digits of which are 1 and 1 , the directory number of the information operator position 113 being 113.
Accordingly, the subscriber at the calling priwate subscriber substation TP proceeds to dial the first digit 1, thereby to cause a corresponding number of impulses to be transmitted over the private subscriber line 601 , in the manner previously explained. The operations of the primary register 50 and the primary selector 60 , in response to the first digit 1 , are substantially identical to those previously explained. More particularly, at the conclusion of the first digit 1 , the wipers noted of the first code switch As00 in the primary register 50 engage the first contacts in the associated contact benks; and shortIy thereafter the transfer relay R858 therein restores. Upon restoring, the transfer relay Rong interrupts, at the contacts 862 , the previously traced circuit for energizing the winding of the transfer slave relay R1079, thereby to cause the latter relay to restore. Upon restoring, the transfer slave relay RIOTA prepares, at the contacts 1076 and !e75, respectively, the previously mentioned circuits for energizing the windings of the translate relay R1050 and the release relay R1068. In the present example, the circuit for energizing the winding of the translate relay R1E50 is not completed in view of the fact that the first digit 1 registered in the first code switeh AB6S does not indicate that the first cigit received from the calling private subscriber substation TP is to be translated; while the circuit for energizing the winding of the release relay RI 150 is completed in view of the fact that the first digit 1 registered in the first code switch A690 indicates that no register translator is to be utilized and that the call may be cxtended to its destination directly under the control of the calling device at the calling private subscriber substation TP. More particularly, the circuit for energizing the winding of the release relay R. 1060 extends from ground by way of the contacts 92 , the wiper 801 of the first code switch A800 and the engaged first contact in the associated contact bank, the release conductor C863, the contacts 1075 and the winding of Rive to battery. When thus energized the release relay RHote operates in order to effect the restoration of the cut-in relay Rsss and the transfer relay R360 in the primary selector 40, in the manner previously explained. Upon restoring, the cut-in relay RABe effects the restoration of the send relay Rstis in the primary selector 46 ;
and the latter relay effects the restoration of the line relay R 320 in the primary register 50. Upon restoring, the line relay Rg20 effects the restoration of the hold relay R1040, whereupon the primary register 50 is released, in a manner more fully explained hereinafter.
Considering now the operation of the primary selector 40 during the dialing of the first digit 1 and prior to the release of the cut-in relay R630 and the transfer relay Rge0, it is again pointed out that the line relay R920 in the primary register 50 repeats the impulse of the inrst digit 1 to the line relay 2655 in the primary selector 40. The line relay R650 follows the first digit 1 , thereby to control the vertical magnet MC11, whereby the wiper set of the switch mechanism 600 is driven one step in the vertical direction. When the wiper set of the switch mechanism 5 ge is driven one step in the vertical direction the sets of switch springs S6l5, SE!s, S817 and S620 are again actuated, in the manner previously explained. Subsequent to the restoration of the cut-in relay R638 and the send relay R649 the previously traced loop circuit extending between the calling private subscriber substation TP and the primary selector 40 is again recompleted, whereby the line relay R650 is retained in its operated position; the split yelay RB7 remains in its restored position; and the transfer relay Rs60 restores, in the manner previously explained. Upon restoring, the transfer relay Rs60 effects the previously explained interaction between the step relay R680 and the rotary magnet MS12, whereby the wipers of the wiper set are driven automatically step by step in the rotary direction into engagement with the sixth contact set in the first level terminating the first trunk in the group extending to special service selectors. At this time, the set of switch springs S623 is actuated, in the manner previously explained; whereby the test wiper 683 of the wiper set is operatively connected by way of the previously traced paths including the contacts 825 of the set of switch springs S 823 and the contacts 621 of the set of switch spings S62s to the windings of the switch-through rclay Rese and the step relay R688. Accordingly, the first trunk extending to the group of special service selectors and terminated by the sixth contact set in the first level of the contact bank 100 is tested, in the manner previously described. Subsequent operation of the primary selector de depends upon the idle or busy condition of the selected trunis, whereby the switch mechanism 600 is operated to seize a trunk extending to an idle special service selector.
Assuming that the trunk extending to the special service selector 49 is ide, the switch mechanism 600 is controlled to seize the trunk extending thersto; whereupon the switchthrough relay R 390 operates in order to effect the restoration of the line relay Ro5s and the hold relay R855, in the manner previously explained. At this time, the loop circuit is extended from the calling private subscriber substation TP through the primary selector 40 to the special service selector 49 , in an obvious manner. Ground potential in the special service selector 49 is returned over the seized trunk to the test wiper 603 of the wiper set of the switch mechanism 600, thereby to complete the previously traced holding circuit for energizing the winding of the switch-through relay Re00 in series with the winding of the step relay R B 80 in order to retain the primary selector 40 in its
operated position. Also, the ground potential returned from the special service selector to the test wiper 603 retains the application of ground potential upon the control conductor $\mathbf{8} 43$ of the trunk 420, thereby to retain the line switch 30 in its operated position. Accordingly, at this time, the connection has been extended from the calling private subscriber substation TP to the special service selector 49.

The subscriber at the calling private subscriber substation TP then proceeds to dial the second digit 1 and the third digit 3 into the special service sclector 49. It is again noted that the special service selector 49 is of the drop-back type, whereby the wiper set of the Strowger mechanism therein is operated to its first vertical level in response to the second digit 1 and then dropped back to its normal vertical position. The wiper set of the Strowger mechanism in the special service selector 45 is then operated to its third vertical level in response to the third digit 3 ; and then operates automatically to seize an idle trunk extending to the information operator position 113, thereby to complete a communication connection between the calling private subscriber substation TP and the information operator position 113 when the operator at the lastmentioned position answers the call on the trunk mentioned.

The release of the apparatus involved in the established connction between the calling private subscriber substation TP and the information operator position $1 / 3$ is effected when the subscriber at the calling private subscriber substation TP replaces the receiver of the telephone instrument thereat upon its associated switchhook, in the manner previously explained.

In the foregoing explanation of the mode of operation of the primary sslector 40, it was assumed that there was an idle special service selector in the group mentioned; however, it may occur that there is no idle special service selector in this group at this time. In this event, the step relay R530 and the rotary magnet M612 interact, in the manner previously explained; whereby the wiper set of the switching mechanism 600 is driven in the rotary direction eleven steps away from its normal rotary position in order to cause busy tone current to be returned over the loop circuit to the calling private subscriber substation IP, in the manner previously explained. In this event, the subscriber at the calling private subscriber substation TP effects the release of the line switch 30 and the primary selector 40 , in the manner previously explained, by replacing the receiver of the telephone instrument at the calling private subscriber substation TP upon its associated switchhook.

In view of the above explanation of the extension of a call from the calling private subscriber substation TP to the information operator position 1/3, it will be readily appreciated that a call may be extended, in a substantially identical manner, to the toll operator position 116 or to the miscellaneous operator position 112 , the operations of the primary selector 40 and the primary register 50 being identical in each case. In this connection, it is pointed out that the directory number of the toll operator position 110 is 110 , while the directory number of the miscellaneous operator position 112 is 112 .

In view of the foregoing explanation of the mode of operation of the primary selector 43 and the primary register 50 to effect the extension of a call from the calling private subscriber sub75 station TP to the called information operator
position 113, to the toll operator position 110 or to the miscellaneous operator position 112, it will be understood that this equipment is operative, in a substantially identical manner, to effect the extension of a call from the calling private subscriber substation TX or from any one of the calling party subscriber substations TSI, TS2, TS3, and TS4 to any called one of the operator positions mentioned above.

Local calls in exchange 1 zone 38
Assuming that the call extending from the calling private subscriber substation TP to the primary selector 40 and the primary register 50 is to be extended to the called private subscriber substation TX in exchange I zone 38, the subscriber at the calling private subscriber substation TP proceeds to dial the directory number of the called private subscriber substation TX. The directory number of the called private subscriber substation TX comprises a code portion, including the digits 381 identifying the called zone and exchange, and a numerical portion, including the digits 0901 identifying the line terminal of the private subscriber line 404 extending to the called private subscriber substation TX. Thus, the directory number of the called private subscriber substation $T X$ is 381-0901.
Accordingly, the subscriber at the calling private subscriber substation TP proceeds to dial the first digit 3 , thereby to cause a corresponding number of impulses to be transmitted over the private subscriber line 40!, in a well-known manner. The line relay R 920 in the primary register 50 follows the impulses transmitted over the calling private subscriber line 301 in view of the fact that the circuit for energizing the upper winding thereof includes the previously traced loop circuit extending to the calling private subscriber substation TP: Accordingly, the line relay R920 operates and restores intermittently in accordance with the digit 3. The line relay R928 repeats, at the contacts 824 , the impulses of the first digit 3 by way of the winding of the transfer relay R860 and the wiper 832 of the sequence switch 5830 and the engaged home contact in the associated contact bank to the magnet AM883 of the first code switch A800; and repeats, at the contacts 921. the impulses of the first digit 3 by way of the wiper 831 of the sequence switch S 830 and the engaged home contact in the associated contact bank and the conductor C 314 to the line relay P658 in the primary selector 60 , in the manner previously explained. Thus, the line relay R650 follows the impulses of the first digit 3 and drives the wiper set of the switch mechanism 600 three steps in the vertical direction, in the manner previously explained.
At the conclusion of the first digit 3 , the wipers noted of the first code switch A800 engage the third contacts in the associated contact banks; the line relay R323, the hold relay R1040, the transfer relay R86e and the transfer slave relay RIO70 occupy their operated positions; while the digit cutoff relay Rlllo occupies its partially operated position, as previously explained. Shortly following the conclusion of the first digit 3 the transfer relay Re960 restores as the latter relay is of the slow-to-release type. Upon restoring, the transfer relay R893 interrupts, at the contacts B61, the previously traced circuit for energizing the magnet Sivs3s of the sequence switch S830, thereby to cause the latter magnet to restore and drive the wipers noted of the sequence switch relay RS55, thereby to cause the latter relay to restore shortly thereafter. Upon restoring, the hold relay R655 completes, at the contacts 657 , the previously traced circuit for energizing the release magnet Mo1A, thereby to cause the latter 5 magnet to operate and release the wiper set of

S830 one step in the counterclockwise direction. Also, the transfer relay R860 interrupts, at the contacts 862 , the previously traced circuit for energizing the winding of the transfer slave relay R1010, thereby to cause the latter relay to restore. Upon restoring, the transfer slave relay R1010 interrupts, at the contacts 1074, the previously traced path for short-circuiting the upper winding of the digit cutoff relay RIIIO, thereby to cause the latter relay to operate fully. When the digit cutoff relay RIIl0 operates fully it interrupts, at the contacts IIII, the previously traced circuit, including the dial tone conductor Cil25, for energizing the lower winding of the line relay R920, thereby to interrupt the application of dial tone potential to the previously traced loop circuit extending to the calling private subscriber substation TP.

Also, upon restoring, the transfer slave relay R1070 prepares, at the contacts 1076 and 1075 , respectively, the previously mentioned circuits for energizing the windings of the translate relay R1051 and the release relay RIO60. In the present example, the circuit for energizing the winding of the translate relay R1050 is not completed in view of the fact that the first digit 3 registered in the first code switch A800 does not indicate that this digit received from the calling private subscriber substation TP is to be translated; moreover, the circuit for energizing the winding of the release relay RI060 is not completed in view of the fact that the first digit 3 registered in the first code switch A800 does not indicate that a register translator will not be utilized ultimately. In view of the fact that the release relay Ri060 remains restored, the previously traced path for applying ground potential to the test conductor C516 is retained completed, thereby to retain the cut-in relay R630 in the primary selector 40 in its operated position; and the previously traced path for applying battery potential by way of the resistors 1119 and 1118 to the conductor C512 is retained completed, thereby to retain the transfer relay R660 in the primary selector do in its operated position. At this point, it is noted that, when the wiper set of the switch mechanism 600 is driven in the vertical direction away from its normal vertical position, the set of switch springs S 015 is actuated, whereby the upper winding of the split relay R670 is included in the previously traced circuit in series relation with the upper winding of the transfer relay $R 860$; however, the split relay R670 does not operate at this time due to the high series resistance of the resistor His included in the circuit mentioned.

When the wipers noted of the sequence switch S830 are driven one step in the counterclockwise direction the wiper 831 thereof disengages the home contact in the associated contact bank, thereby to interrupt the previously traced path for applying ground potential to the conductor C514. When ground potential is removed from the control conductor C514 the previously traced circuit for energizing the upper winding of the line relay R 350 in the primary selector 60 is interrupted, thereby to cause the latter relay to restore. Upon restoring, the line relay R650 interrupts, at the contacts 651, the previously traced circuit for energizing the winding of the hold
the switch mechanism 600; whereupon the wiper set is returned to its normal rotary and vertical positions. When the wiper set is thus released the sets of switch springs $56 / 5,5616$ and 5517 are actuated, in the manner previously explained.

The subscriber at the calling private subscriber substation TP proceeds to dial the second digit 8 at this time, whereupon the line relay $\mathrm{R920}$ in the primary register 50 again follows the impulses transmitted over the private subscriber line 401. The impulses of the second digit 8 are not repeated by the line relay R920 in the primary register 50 to the line relay $R 650$ in the primary selector 40 , due to the fact that no path is completed between the ground contacts $92 I$ and the conductor C514 at the present time. Each time the line relay R 920 restores it completes, at the contacts 924 , a circuit for energizing the winding of the transfer relay REGO in series with the magnet BM813 of the second code register B810, this circuit extending from ground by way of the contacts 924 and 1046, the winding of R860, the contacts 1054, the wiper 832 of the sequence switch S830 and the engaged first contact in the associated contact bank, and the magnet BM813 to battery. Accordingly, the transfer relay R830 operates at the beginning of the second digit 8 in order to effect operation of the transfer slave relay R1070, in the manner previously explained. Each time the line relay R 920 reoperates it interrupts, at the contacts 924, the above-traced circuit for energizing in series the winding of the transfer relay R860 and the magnet BM813 of the second code switch 5810 . Accozdingly, the transfer relay R860 remains operated during impulsing. Also, upon operating, the transfer relay R860 recompletes, at the contacts 861 , the previously traced circuit for energizing the magnet SMR34 of the semuence switch S830, thereby to condition the wipers noted of the sequence switch $\mathbf{S 8 3 0}$ to be driven an additional step in the counterclockwise direction.
Each time the magnet BM813 of the second code switch B810 is thus energized and subsequently deenergized the wipers noted of the second cone switch Belf are driven one stem in the clockwise direction. When the wipers noted of the second code switch B9s0 are driven away from their home positions the set of switch springs BS8 15 is actuated.

Upon operating, the transfer slave relay RI070 again interrupts, at the contacts 1076 and 1075 , the previously mentioned circuits for respectively en regizing the windings of the translate relay R1050 and the release relay R1060. Also, the transfer slave relay R1070 completes, at the contacts 1071, an obvious circuit, including the contacts 1112, for energizing the mark mognet MMIIT2 in the mechanical impulse repeater 1110, thereby to cause the latter magnet to operate. Also, during the second digit 8 , each time the line relay R 92 restores it completes. at the contacts 922, an obvious circuit, including the contacts 11!4, for energizing the receive magnet RMII7 in the mechanical impulse repeater 1170 . Accordingly, the impulses of the second digit 8 are repeated by the line relay R328 both to the magnet BM813 of the second code switch B810 and to the receive magnet RMIITI of the mechanical imprlse repeater 1176.

At the conclusion of the second digit 8, the wipers noted of the second code switch B818 engage the eighth contacts in the assosiater contact banks, and the second digit 8 is registered in the mechanical impulse repeater 1170 . Short-
ly following the conclusion of the second digit 8 the transfer relay R860 restores to interrupt, at the contacts 861, the previously traced circuit for energizing the magnet SM834 in order to cause the latter magnet to restore; whereupon the wipers noted of the sequence switch $\mathbf{S 8 3 0}$ are driven into engagement with the second contacts in the associated contact banks. Also, the transfer relay R860 interrupts, at the contacts 852 , the previously traced circuit for energizing the winding of the transfer slave relay R1070, thereby to cause the latter relay to restore. Upon restoring, the transfer slave relay R1070 interrupts, at the contacts 1071, the previously traced circuit for energizing the mark magnet MMII2 in the mechanical impulse repeater 1170, thereby to cause the latter magnet to restore and mark the completion of the second digit 8. Also, the transfer slave relay R1070 prepares, at the contacts 1076 and 1075, respectively, the previously mentioned circuits for energizing the translate relay R 1050 and the release relay R1050. In the present example, the circuit for energizing the winding of the translate relay R1050 is not completed in view of the fact that the first digit 3 registered in the first code switch A850, in combination with the second digit 8 registered in the second code switch B810, does not indicate that the digits mentioned received from the calling private subscriber substation TP are to be translated; moreover, the circuit for energizing the winding of the release relay R 1090 is not completed in view of the fact that the first digit 3 registered in the first code switch A800, in combination with the second digit 8 registered in the second code switch B8I0, does not indicate that a register translator will not be utilized ultimately.
When the wipers noted of the seanence switch S830 are driven into encagement with the second contacts in the associated contact banks an alternative circuit is completed for energizing the upper winding of the line relay $R 650$ in the primary selector 40 . this circuit extending from cround by way of the contarts 921. the wiper 801 of the firct code switch A8OB and the encared third contact in the associated contact bank, the wiper 811 of the second code switch B810 and the engared eighth contact in the associated contact bank, the wiper 831 of the seguence switch S830 and the engaged second contact in the associated contact bank, the contacts 1051, C514, the wiper 504 of the finder switch F500. the contacts 644 and 693 , and the upper winding of R650 to battery. When thus energized the line relay R650 reoperates to complete, at the contacts 651 , the previously traced circuit for energizing the windinc of the hold relay R655, thereby to cause the latter relay to reoperate.

The subscriber at the calling private subscriber substation TP then proceeds to dial the third digit 1 at this time, whereupon the line relay R920 in the primary register 50 again follows the impulse transmitted over the private subscriber line 401. The line relay R 920 repeats the impu'se of the third digit 1 by way of the ground contacts 921 over the previously traced circuit to the line relay R 650 in the primary selector 40 , whereby the line relay P650 contro's the vertical magnet M611 to drive the wiper set of the switch mechanism 600 one step in the vertical direction. Also, the line relay R920 completes and then interrupts, at the contacts 924 , a circuit substantially identical to that previously traced for energizing in series the winding of the transfer relay R860
and the magnet CM822 of the third code switch C820, the last-mentioned circuit including the wiper 832 of the sequence switch S 830 and the engaged second contact in the associated contact bank. When this series circuit is completed the transfer relay R860 operates in order to effect operation of the transfer slave relay R1070, in the manner previously explained. Also, the transfer relay R 360 completes, at the contacts 861, the previously traced circuit for energizing the magnet SM834, thereby to cause the latter magnet to operate and condition the wipers noted of the sequence switch $\mathbf{5 8 3 0}$ to be driven an additional step in the counterclockwise direction. When the magnet CM822 is thus energized and subsequently deenergized the single wiper 821 of the third code switch C820 is driven one step in the counterclockwise direction, and the set of switch springs CS823 is actuated.
Upon operating, the transfer slave relay RI070 again completes, at the contacts 1071, the previously traced circuit for energizing the mark magnet MMII72 in the mechanical impulse repeater 1110, thereby to cause the latter magnet to reoperate. Further, it is noted that the line relay $R 920$ repeats, by way of the ground contacts 922, the third digit 1 to the receive magnet RMII7I in the mechanical impulse repeater 1170. Further, the transfer slave relay R1070 completes, at the contacts 1072, an obvious path, including the contacts 1113, for short-circuiting the resistor 1118; whereby low resistance battery potential is applied by way of the previously traced path to the conductor C512. The appication of low resistance battery potential to the conductor C512 completes a low res stance circuit for energizing in series the upper and lower windings of the transfer relay R660 and the split relay R 670 in the primary selector 40 ; the abovementioned circuit being substantially identical to that previously traced, the sets of switch springs S615, S616 and S617 be:ng actuated at this time. When this low resistance series circuit is completed for energizing the upper windings of the transfer relay R060 and the split relay R670 the transfer relay R 560 is retained in its operated position and the split re'ay R670 operates. Upon operating, the split relay R870 comp'etes, at the contacts 675, an obvous holding circuit, including the contacts 658, for energizing the lower winding thereof. Also, the split relay Rs70 prepares the test wiper 693 of the wiper set of the switch mechanism 600 to test the first five trunks terminated by the first five contact sets in the first level of the associated contact bank 700, in a manner more fully explained hereinafter.

At the conclusion of the third digit 1, the single wiper 821 of the third code switch C820 engages the first contact in the associated contact bank and the third digit 1 is registered in the mechanical impulse repeater 1170 . Shortly following the third digit 1 the transfer relay R368 restores, thereby to effect the restoration of the transfer slave relay RI070, in the manner previously explained. Also, the transfer relay Re50 interrupts, at the contacts 861, the previously traced circuit for energizing the magnet SM833 of the sequence switch $\mathbf{5 8 3 0}$, thereby to cause the latter magnet to restore and drive the wipers noted of the sequence switch $\$ 830$ an additional step in the counterciockwise d'rection.
Upon restoring, the transifer slave relay R1日Ta interrupts, at the contacts 1071, the previously traced circuit for energizing the mark magnet MMIIT2 in the mechanical impulse repeater

1170, thereby to cause the latter magnet to restore and mark the third digit 1 in the mechanical impulse repeater 1170 . Also, the transfer slave relay R1070 interrupts, at the contacts 1672, the previously traced path for short-circuiting the resistor 1118 , which action is without effect at this time. Further, the transfer slave relay R1070 prepares, at the contacts 1075 and 1075 , respectively, the previously mentioned circuits for energizing the windings of the translate relay R1050 and the release relay R1060. In the present example, the circuit for energizing the winding of the translate relay R1050 is not completed in view of the fact that the combination of the first digit 3 registered in the first code switch A800 and the second digit 8 registered in the second code switch B8IO and the third digit 1 registered in the third code switch C820, does not indicate that the digits mentioned received from the calling private subscriber substation TP are to be translated; while the circuit for energizing the winding of the release relay RIOGO is completed in view of the fact that the combination of the first digit 3 registered in the first code switch AB80 and the second digit 3 registered in the second code switch B310 and the third digit 1 registered in the third code switch C829 indicates that no register translator is to be utilized and that the call may be extended to its destination directly under the control of the calling device at the calling private subscriber substation TP. More particulariy, the circuit for energizing the winding of the release relay R1060 extends from the grounded wiper 82! of the third code switch C82s and the engaged first contact in the associated contact bank, by way of the release conductor C863, the contacts 1075 and the winding of Ri0S0 to battery. When thus energized the release relay R1060 operates to complete, at the contacts 1064, the previously traced holding circuit for energizing the winding thereof, and to interrupt, at the contacts 1061 , the previously traced path for applying ground potential to the test conductor C516; thereby to effect the restoration of the cut-in relay $R 333$ and the send relay R680 in the primary selector ety, in the manner previously explained. Also, the release relay R1050 interrupts; at the contacts 1620 the previously traced path for applying resistance battery potential to the conductor C512; thereby to interrupt the previously traced circuit for energizing the upper winding of the transfer relay R660 in series with the upper winding of the Sclit relay RG78 in the primary selector 80 , whereupon the transfer relay $R 600$ restores shortly thereafter, in the manner previously explained.

Upon restoring, the cut-in relay Re3s efiects the restoration of the send relay R863, as previously noted, and effects the restoration of the line relay R820 in the primary register 69 , as previously explained. Upon restoring, the line relay R 320 effects the restoration of the hold relay R1040, whereby the primary register 59 is released in a manner more fully explained hereinafter.

Upon restoring, the send relay Regs recompletes, at the contacts 622 and $6 A 5$, the previously traced loop circuit extending between the calling private subscriber substation TP and the primary selector at, this loop circuic including the upper winding of the line relay $R 650$ and the upper windings of the transier relay R6S0 and the split relay R670. At this time,
the line relay R650 is retained in its operated position and the transfer relay R658 restores shortly thereafter, as previously explainec. Upon restoring, the transfer relay R660 initiates the previously described interaction between the step relay R680 and the rotary magnet M612; whereby the first five trunks terminated by the first five contact sets in the first level of the associated contact bank 700 are successively tested by the test wiper 603 of the wiper set of the switch mechanism 600, in a manner substantially identical to that previously explained More particularly, the test circuit mentioned extends from the test wiper 603 of the wiper set by way of the contacts 672 , the contacts 624 of the set of switch springs 5523 , the contacts 621 of the set of switch springs S620, the contacts 696 and 513 , the contacts 619 of the set of switch springs S617, and the winding of the step relay R689 to battery. At this point, it is again noted that the set of switch springs 5620 is actuated when the wiper set of the switch mechanism 600 is moved one step in the vertical direction away from its normal vertical position.

The primary selector 49 operates in order to seize an idle one of the trunks in the group terminated by the first five contact sets in the first level of the associated contact bank 730 and extending to an idle first selector in the first group. Assuming that the primary selector 60 seizes a trunk in the group mentioned, extending to the first selector 41, the latter first selector being idle at this time, further operation of the primary selector 60 is arrested. More particularly, the switch-through relay RS90 operates in order to effect the restoration of the line relay Re50 and the hold relay R655, in the manner previously explained.
When the trunk extending to the first selector 11 is thus seized by the primary selector 40 the first selector 41 operates in order to return ground potential over the seized trunk to the test wiper 603 of the wiper set of the switch mechanism 600 , thereby to complete the previously traced holding circuit for energizing the winding of the switch-through relay R698 in series with the winding of the step relay R680 and to complete an obvious alternative holding circuit for energizing the lower winding of the split relay R670 in order to retain the primary selector 40 in its operated position. Also, at this time, the ground potential returned from the flrst selector 41 over the seized trunk to the test wiper 603 of the wiper set of the switch mechanism 600 is applied to the control conductor C423 of the trunk 420, thereby to retain the line switch 30 in its operated position. At this time, the loop circuit extending from the calling private subscriber substation TP is extended by way of the line switch 30 and the primary selector 80 to the first selector 81 ; and the first selector 41 is conditioned to be responsive to a digit dialed thereinto.

The subscriber at the calling private subscriber substation TP then proceeds to dial the fourth digit 0 , the fifth digit 9 , the sixth digit 0 and the seventh digit 1 , successively, in the usual manner. The operation of the first selector 81, in response to the fourth digit 0 , the operation of the second selector 42, in response to the fifth digit 9 , and the operation of the individual connector 43, in response to the sixth digit 0 and the seventh digit 1 , are entirely conventional; thereby to cause the connection to be forwarded to the private subscriber line 404 ex-
tending to the called private subscriber substation TX. The individual connector 03 operates to cause ringing current to be projected over the private subscriber line 404 to the called private subscriber substation TX, thereby to operate the ringer thereat. When the call is answered at the called private subscriber substation TX an obvious communication connection is completed between the ca'ling private subscriber substation TP and the called private subscriber substation TX.
When the individual connector 43 seizes the private subscriber line 404 extending to the called private subscriber substation TX, apparatus therein operates in order to mark the private subscriber line 404 as busy to the other connectors having access thereto.
It should be noted that the incoming toll lines and incoming trunks, such as 713, terminate in individual incoming first selector switches, similar to first selector 41 , and have their bank contacts multipled together with the bank contacts of the local first selectors 41, so that incoming calls from subscribers in zones 46, 62, 73 and other exchanges in zone 38 may be completed through the local second selectors 42 and connectors, individual or party, to the local subscribers in zone 38, exchange 1 .

The apparatus may be arranged for either calling party or last party release. However, assuming that the apparatus is arranged for calling party release, when the subscriber at the calling private subscriber substation TP replaces the receiver of the telephone instrument thereat upon its associated switchhook the previously traced loop circuit extending between the calling private subscriber substation TP and the individual connector 43 is interrupted, thereby to cause the individual connector 43 to be released. When the individual connector 43 is thus released the private subscriber line 004 extending to the called private subscriber substation TX is marked as idle to the connectors having access thereto, assuming that the subscriber at the called private subscriber substation TX has, at this time, replaced the receiver of the te'ephone instrument thereat upon its associated switchhook. Further, the release of the individual connector 43 effects the release of the second selector 42 and the first selector 41, in a well-known manner, and causes ground potential to be removed from the control conductor of the trunk seized by the wiper set of the switch mechanism 600 in the primary selector 40; whereby ground potential is removed from the test wiper 603 of the wiper set in order to interrupt the previously traced holding circuit for energizing the winding of the switch-through relay R590 in series with the winding of the step relay P660 and the previously traced ho'ding circuit for energizing the lower winding of the split relay R670. The switch-through relay R690 and the split relay R670 then restore in order to effect the release of the primary selector 40 and the line switch 30, in the manner previously explained. When the line switch 30 is released the private subscriber line 401 extending to the calling private subscriber substation TP is marked as idle to the connectors having access thereto. According'y 0 at this time, all of the apparatus utilized in the established connection between the calling private subscriber substation TP and the called private subscriber substation TX is completely released and available for further use.
In the foregoing explanation of the mode of
operation of the primary selector 40 it was assumed that there was an idle first selector in the first grcup, including the first selector 41; however, it may occur that there is no idle first selector in the group mentioned at this time. In this event, the step relay Roso and the rotary magnet M012 interact, in the mannor previously explained; whereby the wiper set of the switch mechanism 600 is driven in the rotary direction to engage the sixth contact sut in the first level in the associated contact bank 700, whereupon the set of switch springs $\$ 623$ is actuated. More particularly, the set of switch springs $\mathbf{S 3 2 3}$ is actuated to complete, at the contacts 625 ther of, a direct ground circuit, including the contacts 614, the contacts 621 of the set of switch springs 5620 , the contacts 695,613 and the contacts 619 of the set of switch springs $\$ 617$ for energizing the winding of the stup relay R680. Accordingly, the step relay R680 and the rotary magnet M612 continue to interact in order to drive the wiper set of the switch mechanism 600 eleven steps in the rotary direction away from its normal rotary position, whereupon the sets of switch springs S626 and S 627 are actuated. The set of switch springs $\mathbf{S 6 2 6}$ is actuated into engagement in order to cause busy tone current to be returnid over the previously traced loop circuit extending between the calling private subscriber substation TP and the primary selector 40 in order to indicate to the subscriber thererat the all-busy condition mentioned. The subscriber at the calling private subscriber substation TP then effects the release of the primary selector 40 and the line switch 30, in the manner previously explained, by replacing the receiver of the telephone instrument at the calling private subscriber substation TP upon its associated switchhook.
In view of the foregoing explanation of the mode of operation of the primary selector 40 and the primary register 50 to effect the extension of a call from the calling private subscriber substation TP to the called private subscriber substation TX, it will be understood that this equipment is cperative, in a substantially identical manner, to effect the extension of a call from the calling private subscriber substation TP to any one of the called party subscriber substations TS1, TS2, TS3 and TS4; or from the calling private subscriber substation TX to the called private subscriber substation TP or to any one of the called party subscriber substations TSI, TS2, TS3 and TS4; or from any one of the calling party subscriber substations TSI, TS2, TS3 or TS4 to the called private subscriber substation TP or TX

Calls to other exchanges in zone 38

Assuming that the call extending from the calling private subscriber substation TP to the primary selector 40 and the primary register 50 is to be extended to a called subscriber substation in exchange 5 zone 38 , the subscriber at the calling private subscriber substation TP proceeds to dial the directry number of the called subscriber substation. The directory numbur of the called subscriber substation comprises a code portion, including the digits 385 , identifying the called zone and exchange, and a numerical portion, including four digits, such, for example, as the digits 1234 , identifying the line terminal of the subscriber line extending thereto.

According!y, the stbscriber at the calling private sulscriber substation TP proceeds to dial the first digit 3, the second figit 8 and the third digit 5 , in the manner previously explained. The line
relay R920 in the register translator 50 follows the first cigit 3, the second digit 8 and the third digit 5 , th reby to cause the respective digits to bs recistored in the first code switch A800, the second code switch B810 and the third code switch C820. The line relay $R 920$ in the primary register 50 repuats the first digit 3 to the line relay R 350 in the primary selector 40 in order to cause the wiper set of the switch mechanism 600 in the primary selector 40 to be driven three steps, in the manner previcusly explained. At the conciusion of the first digit 3 , the wiper 831 of the seruence switch S830 in the primary register 50 disengages the home contact in the associated contact bank, thereby to interrupt the previously traced circuit for energizing the upper winding of the line relay R650, thereby to cause the latter relay to restore and effect the release of the wiper set of the switch mechanism 600 in the primary selector 40 , in the manner previously explained. The line relay R520 in the primary register 50 does not repeat the second digit 8 to the line relay R650 in the primary selector 40 due to the fact that the wiper 831 of the sequence switch 5830 engagus the first contact in the associated contact bank during the second digit 8 . Finally, the line relay R920 in the primary register 50 repeats the third digit 5 to the line relay R 620 in the primary selector 40 due to the fact that the wiper 831 of the sequence switch $\mathbf{S 8 3 0}$ engages the second contact in the associated contact bank during the third digit 5. The circuit for repeating the third digit 5 to the upper winding of the line relay R650 in the primary selector 40 extends from the grounded contacts 921 governed by the line relay R920 by way of the wiper 801 of the first code switch A800 and the engaged third contact in the associated contact bank, the wiper 81I of the second code switch B810 and the engaged eighth contact in the associated contact bank, the wiper 831 of the sequence switch 5830 and the engaged second contact in the associated contact bank, the contacts 1051, C514, the wiper 504 of the finder switch F500, the contacts 648 and 693 and the upper winding of R650 to battery.

At the conclusion of the third digit 5, the wipers noted of the sequence switch $\mathbf{S 8 3 0}$ are driven an additional step in the counterclockwise direction, whereupon the wiper 831 thereof disengages the second contact in the associated contact bank in order to interrupt the previously traced circuit for energizing the upper winding of the line relay R650 in the primary selector 43 ; whereupon the latter relay restores in order to effect the release of the wiper set in the switch mechanism 600 in the primary selector 40 , in the manner previously explained.
Also, at the conclusion of the third digit 5, the wiper 821 of the third code switch C820 engages the fifth contact in the associated contact bank, whereupon a circuit is completed for energizing the winding of the translate relay R1050 incident to the restoration of the transfer slave relay R1070, the latter relay restoring incident to the restoration of the transfer relay R860 following the third digit 5 , in the manner previously explained. The circuit for energizing the winding of the translate relay R1050 extends from the grounded wiper 821 of the third code switch $\mathbf{C 8 2 0}$ and the engaged fifth contact in the associated contact bank, C868, the contacts 1076 and the winding of R1050 to battery. When thus energized the translate relay R1050 operates to complete, at the contacts 1056, an obvious holding circuit, including the contacts 1063 and 1047, for
energizing the winding thereof. Also, the second digit 8 and third digit 5 are registered and stored in the mechanical impulse repeater 1170 in the manner previously explained.

Upon operating, the translate relay R1050 effects operation of the register translator allotter 60 in order to cause an idle one of the register translators in the associated group to be connected to the primary register 50 , in a manner more fully explained hereinafter. For example, the register translator 70 may be connected to the primary register 50 by way of the finder switch FII80. When the register translator 70 is connected to the primary register 50 the send switch U840 operates to transmit the first digit 3 to the register translator 70 to be registered while the mechanical impulse repeater 1170 operates to transmit the second digit 8 and the third digit 5 to the register translator 70 to be registered. The fourth digit 1, the fifth digit 2, the sixth digit 3 and the seventh digit 4 are subsequently received by the primary register 50 , then stored in the mechanical impulse repeater 1170, and finally transmitted therefrom to the register translator 70 to be registered. The three code digits 3, 3 and 5 registered in the register translator 10 effect operation of the latter apparatus to select a route extending from exchange I zone 38 to exchange 5 zone 38, in a manner more fully explained hereinafter. Subsequently, the register translator 70 operates in order to transmit the four numerical digits $1,2,3$ and 4 over the selected route in order to cause the automatic switching apparatus in exchange 5 zone 38 to seize the subscriber line extending to the called subscriber substation, whereby a connection is completed between the calling private subscriber substation TP in exchange 1 zone 38 and the called subscriber sulstation in exchange 5 zone 38.

The exact mode of operation of the primary register 50 and the register translator 10, in order to effect the completion of the established connection mentioned above, is explained more fully hereinafter. Also, the release of this established connection is under the control of the subscriber at the calling private subscriber substation TP and is effected when this subscriber replaces the receiver of the telephone instrument upon its associated switchhook. The detailed operation of the apparatus, incident to the release of this established connection, is described more fully hereinafter.
Toll calls from exchange 1 zone 38 to exchange 4 zone 62

Assuming that the call extending from the calling private subscriber substation TP to the primary selector 40 and the primary register 50 is to be extended to a called subscriber substation in exchange 4 zone 62, the subscriber at the calling private subscriber substation TP proceeds to dial the directory number of the called subscriber: substation. The directory number of the called suiscriber substation comprises a code portion, including the digits 624 identifying the called zone and exchange, and a numerical portion including four digits, such, for example, as the digits 1234 , identifying the line terminal of the subsc:iber line extenaing to the called subscriber substation.
Accordingly, the subscriber at the calling private subscriber substation TP proceeds to dial the first digit 6 , thereby to cause the digit menticned to be registered in the first code switch

A800 in the primary register 50. Also, the wiper set of the switch mechanism 600 is operated to its sixth vertical level in accordance with the first digit 6 , in the manner previously described. In the primaiy register 50, at the conclusion of the first digit 6, the line relay R920, the hold relay R1040, the transfer relay R860 and the transfer slave relay R1070 occupy their operated positions; the digit cutoff relay RIIIO occupies its partially operated pcsition; the wipers noted of the first code switch A800 engage the sixth contacts in the associated contact banks; and the magnet SM834 of the sequence switch S830 occupies its operated position. In the primary selector 40, the cut-in relay R630, the send relay R640, the line relay R650, the hold relay R655, the transfer relay R660 and the step relay R680 occupy their operated positions; while the wiper set of the switch mechanism 600 occupies its sixth vertical level.

Shortly following the conclusion of the first digit 6 the transier relay R860 restores in order to effect the restoration of the transfer slave relay R1010, in the manner previously explained. Also, upon restoring, the transfer relay R860 interrupts, at the contacts 861, the previously traced circuit for energizing the magnet SM834 of the sequence switch S830, thereby to cause the latter magnet to restore in order to drive the wipers noted of the sequence. switch 5830 one step in the counterclockwise direction. When the wipers noted of the sequence switch S330 disengages the home contacts in the associated contact banks the previously traced circuit, including the grounded contact 921 and the wiper 831 of the sequence switch $\$ 830$ and the engaged home contact in the associated contact bank, is interrupted for energizing the winding of the line relay R 650 in the primary selector 40, thereby to cause the latter relay to restore. Upon restoring, the line relay R650 effects the restoration of the hold relay R555, which latter relay effects the operation of the release magnet MSI4; whereby the wiper set of the switch mechanism 600 is returned to its normal vertical position, in the manner previously explained. When the wiper set of the switch mechanism 600 is returned to its normal vertical position the sets of switch springs S615, S616 and S617 are actuated, in the manner previously described.

Upon restoring, the transfer slave relay R1070 interrupts, at the contacts 1014, the previously traced path for short-circuiting the upper winding of the digit cutoff relay Rilio, thereby to cause the latter relay to operate fully, as previously noted. Also the transfer slave relay R1070 prepares, at the contacts 1076 and 1075 , respectively, the previously mentioned circuits for energizing the windings of the translate relay R1050 and the release relay R1060. In the present example, the circuit for energizing the winding of the translate relay R1050 is completed in view of the fact that the first digit 6 registered in the first code switch A800 indicates that the digit mentioned received from the calling private subscriber substation TP is to be translated; while the circult for energizing the winding of the release relay R 1050 is not completed in view of the fact that the first digit 6 registered in the first code switch A800 indicates that a register translator is to be utilized in extending the call from the calling private subscriber substation TP. More particularly, the circuit for energizing the winding of the translate relay R1050 5 extends from ground by way of the contacts 921 ,
the wiper 801 of the first code switch A800 and the engaged sixth contact in the associated contact bank, the translate conductor C864, the contacts 1076 and the winding of R1050 to battery. When thus energized the translate relay RI 1050 operates to complete, at the contacts 1056, an obvious holding circuit, including the contacts 1047 and 1063, for energizing the winding thereof. Also, the translate relay R1050 interrupts, at the contacts 1051, a further point in the previously traced path for applying ground potential to the conductor C514; and prepares, at the contacts 1052, an alternative path for applying ground potential to the conductor C514, for a purpose more fully explained hereinafter. Further, the translate relay R1050 interrupts, at the contacts 1058, an obvious path for applying ground potential to the test conductor C884; and completes, at the contacts 1057, an obvious path for applying battery potential by way of the windings of the cutoff relays R950 and R1080 to the test conductor C984, thereby to mark the primary register 50 as a calling primary register. Also, the translate relay R1050 completes, at the contacts 1059 , an obvious circuit, including the contacts 1065 and 1083 , for energizing the winding of the start relay $R 1150$ in the register translator allotter 60.

When thus energized the start relay Rlleg operates to complete, at the contacts IIE1, a path for applying battery potential by way of the magnet FMIIG2 and the contacts 1163 to the single wiper 1161 of the finder switch Fl 160 . At this point, it is noted that the wiper 1161 of the finder switch F1160 normally engages a contact in the associated contact bank terminating a start conductor extending to one of the register translators in the associated group. In the event the last-mentioned register translator is idle, high resistance ground potential appears upon the associated start conductor; on the other hand, in the event the last-mentioned register translator is busy; direct ground potential appears upon the the associated start conductor. Assuming that the register translator mentioned is busy, direct ground potential appears upon the associated start conductor, thereby to complete a circuit, including the wiper $\|$ isl of the finder switch Fil 160 , for energizing the magnet FMII62. When thus energized the magnet FM1162 operates to condition the wiper 1161 of the finder switch Filso to be driven one step in the clockwise direction; and to interrupt, at the contacts 1163, the previously traced circuit for energizing the magnet FMII82. Accordingly, the magnet FMI 162 restores, thereby to drive the wiper 1101 of the finder switch Fll50 one step in the clockwise direction; and to prepare, at the contacts 1163, the previously traced circuit for energizing the magnet FMM162. Hence, the magnet FM1I82 operates intermittently, thereby to drive the wiper 161 of the finder switch Fil60 step by step in the clockwise direction until it engages a contact in the associated contact bank terminating a start conductor extending to an idle register translator in the associated group.
Assuming that the register translator 70 is the first idle register translator in the associated group, when the wiper llal of the inder switch Fli60 engages the contact in the assoriated contact bank terminating the start conductor C 1152 extending to the register translator 70, further operation of the finder switch FH 168 is arrested. More particularly, when the wiper $\mid 151$ of the finder switch Fll 60 engages the contact in the associated contact bank terminating the start
conductor C1152 extending to the register translator 79, a series circuit is completed for energizing the winding of the start relay R4410 in the register translator 70 and the magnet FMIl62, this circuit extending from ground by way of the winding of R1810, the contacts 1451 and 1582 , the start conductor CH 152 , the wiper 1161 of the finder switch FIISt and the engaged contact in the associated contact bank, the contacts 1163 , the magnet FMII 162 and the contacts 1151 to battery. When this series circuit is completed the start relay RIG10 in the register translator 70 operates; however the masnet $\mathrm{FM} / 192$ of the finder switch 1160 does not operate due to the high series resistance of the winding of the start relay R1810.
Upon operating, the start relay Rifll completes; at the contacts 1411, an obvious circuit for energizing the upper winding of the hold relay R1260, thereby to cause the latter relay to operate. Also, the start relay R1018 completes, at the contacts 1812 and 1013 , a test circuit including the test conductor C1194 extending to the test wiper 1184 of the finder switch Fil80, the winding of the cut-in relay R1363 and the magnet FM1188 of the finder switch Fil88. More particularly, the wipers noted of the finder switch Fliso engage contacts in the associated contact banks terminating a group of conductors to one of the primary registers in the associated group. Accordingly, at this time, ground potential appears upon the test conductor extending from each primary register, which is not a calling primary register at this time, and is applied to the test wiper 1104 of the finder switch Filde by way of the engaged contact in the associated contast bank terminating the test conductor mentioned. The application of ground potential to the test wiper 1188 of the finder switch Fillen completes a path including the test conductor $\mathbf{C 1 1 8 4}$, the contacts $1368,1413,1368$ and 1412 for short-circuiting the winding of the cut-in relay R1363. Also, the application of ground potential to the test wiper 1184 of the finder switch Fil8a completes a circuit, including the test conductor C1194, the contacts 1358 and 1813 , the conductor C 1198 , the contacts 1189 and battery, for energizing the magnet FMII 188. When thus energized the magnet FMI 188 operates to condition the wipers noted of the finder switch Fil89 to be driven one step in the counterclockwise direstion, and to interrupt, at the contacts 1189, the previously traced circuit for energizing the magnet FMII88. Accordingly, the magnet FMills8 restores, thereby to drive the wipers noted of the finder switch Fil 188 one step in the counterclockwise direction, and to reprepare, at the contacts 1189, the previously traced circuit for energizing the magnet FM M1 188. Hence, the magnet FMII 88 operates intermittently in order to drive the wipers noted of the finder switch Fll80 step by step in the counterclockwise direction until the first calling primary register in the associated group is found. Assuming that the calling primary register 50 is the first calling primary register in the associated group, when the wipers noted of the finder switch Fill89 engage the contacts in the associated contact banks terminating the conductors extending to the primary register 50, further operation of the finder switch FII80 is arrested. More particularly, when the test wiper 1184 of the finder switch Flled engages the contact in the associated contact bank terminating the test conductor C334, a series circuit is completed for
energizing the windings of the cutoff relays R950 and R1083 in the primary register 50 and the cut-in relay R1360 in the register translator 70. This series circuit extends from ground by way of the contacts 1412 and 1350, the winding of R1360, the contacts 1413 and 1368 , the test conauctor Cil84, the test wiper 1184 of the finder switch Fli80 and the engaged contact in the associated contact bank, the test conductor C984, the contacts 105% and the windings of R1080 and R959 to battery. When this series circuit is completed the cutoff relays R950 and R1080 in the primary register 50 and the cut-in relay R1369 in the register translator 70 operate. Upon operating, the cutoff relay Rioco in the primary register 50 completes, at the contacts 1082, a holding circuit, including the contacts 1065 and 1059, for energizing the winding thereof in series with the winding of the cutoff relay R950. Also, the cutoff relay R1080 interrupts, at the contacts 1083, the previously traced circuit for energizing the winding of the start relay RII50 in the register translator allotier 60, thereby to cause the latter relay to restore. Further, the cutoff relay R1080 completes, at the contacts 1082, a path including the contacts 1055 , 1050 and 1057 for applying ground potential to the test conductor C984. Upon operating, the cut-in relay R1360 in the register translator 70 interrupts, at the contacts 1360, the previously traced original operating circuit for energizing the winding thereof in series with the windings of the utoff relays R950 and R1080; and completes, at the contacts 1369 , a series holding circuit for energizing the winding thereof and the magnet FMI 188 of the finder switch Fli30. The last-mentioned holding circuit extends from the grounded test conductor C984 by way of the test wiper 1184 of the finder switch Fl 160 and the engaged contact in the associated contact bank, C1194, the contacts 1369 and 1265, the winding of R1360, C1198, the contacts 1189 and the magnet FMII88 to battery. When this series holding circuit is completed the cut-in relay R 1350 is retained in its operated position. However, the magnet FMII 88 of the finder switch Fildo is not operated due to the high series resistance of the winding of the cut-in relay R1360. Also, the cut-in relay R 1360 completes, at the contacts 1367, an obvious holding circuit, including the contacts 1263 , for energizing the lower winding of the hold relay R.260; and completes, at the contacts 1363, an obvious path for applying direct ground potential to the start conductor Cil52, thereby to mark the register translator 70 as busy to the finder switch FI 160 in the register translator allotter 60.
Also, the cut-in relay R1360 prepares, at the contacts 1366, a point in a chain circuit, including the chain conductor Cl365, for applying ground potential by way of the meter M1365 to the all-trunk-busy conductor Cll53 extending to the register translator allotter 60 . It will be understood that, when all of the register translators in the associated group are busy, ground potential is applied by way of the winding of the meter M1365, the chain conductor C1365 and the contacts 1366 to the all-trunk-busy conductor Cll53 extending to the register translator allotter 60. At this time, in the event operation of the finder switch Fll60 in the register translator allotter 60 is initiated, it will operate to seize the all-trunk-busy conductor CII53, thereby to operate the meter Mi365 and to arrest further operation of the finder switch Fil60 until one of the register translators in the associated
group is idle; in an obvious manner. When one of the register translators in the associated group becomes idle, ground potential is removed by way of the meter Mi365 and the chain conductor C1365 from the all-trunk-busy conductor C1153; whereupon further operation of the finder switch F'll60 in the register translator allotter 60 is initiated to hunt for the idle register translator in the associated group, in an obvious manner.
Further, the cut-in relay R1360 interrupts, at the contacts 1362, the previously traced circuit for energizing the winding of the start relay R1410 in the register translator 70 in series with the magnet FMII62 of the finder switch FIl60 in the register translator allotter 60 , whereby the start relay Ri410 restores. Finally, the cut-in relay R1360 prepares, at the contacts 1361', 1302', 1363' and 1364', operative connections by way: of the finder switch F1180 between the register translator 10 and the primary register 50, for purposes more fully explained hereinafter.

Also, upon operating, the cutoff relay R1080 completes, at the contacts 1086, an alternative circuit for energizing the upper winding of the transfer relay R650 in the primary selector 40; and interrupts, at the contacts 1087, the previously traced original circuit for energizing the upper winding of the transfer relay R660. The alternative circuit mentioned extends from ground by way of the set of switch springs S615, the upper winding of R660, the contacts 691 and 641 , the wiper 502 of the finder switch $F 500$, C512, the contacts 1086, C981, the wiper 1181 of the finder switch Fl180, Cl197 and the contacts 1211 to resistance battery. Also, the cutoff relay RI080 completes, at the contacts 1084, an alternative circuit for energizing the upper winding of the line relay R650 in the primary selector 40, this circuit extending from ground by way of the contacts 1423 and 1361', ClI95, the wiper 1185 of the finder switch Fill80, C985, the contacts 1084 and 1052, C5I4, the wiper 504 of the finder switch F500, the contacts 644 and 693 and the upper winding of R650 to battery. When the above-traced circuit is completed the line relay R650 in the primary selector 40 reoperates in order to effect reoperation of the hold relay R655.

Upon operating, the cutoff relay R950 prepares, at the contacts 951 , a test circuit traced hereinafter between the line switch 30 individually associated with the calling private subscriber substation TP and the detector 80. Also, the cutoff relay R950 completes, at the contacts 953 and 955, a circuit for energizing in multiple the upper and lower windings of the pulse relay R930; this circuit extending from ground by way of the multiple in the contact bank associated with the wiper 842 of the send switch U840, the contacts 955 , the wiper 842 of the send switch U840 and the engaged home contact in the associated contact bank, the contacts 953 and 931 and the upper and lower windings of R930 to battery. It is noted that an adjustable condenser 934 is included in the circuit for energizing the lower winding of the pulse relay R930, whereby the rate of operation of the pulse relay R930 may be adjusted. When thus energized the pulse relay R 930 operates to interrupt, at the contacts 931, the previously traced circuit for energizing in multiple the upper and lower windings thereof, whereupon the pulse relay R930 restores. Accordingly, the pulse relay R930 operates and restores intermittently at a pre-
determined rate, approximately twenty times per second in the present example.
Further, the cutoff relay R958 completes, at the contacts 954, a circuit for energizing the winding of the control relay R 970 , this circuit extending from ground by way of the contacts 1053, 972, the contacts 817 of the set of switch springs BS815, the contacts 954 and the winding of R970 to battery. When thus energized the control relay R 970 operates to complete, at the contacts 973 , an obvious holding circuit, including the contacts 1048, for energizing the winding thereof. Also, the control relay R970 interrupts, at the contacts 972 , the previously traced original circuit for energizing the winding thereof; and completes, at the contacts 975, a circuit for energizing the winding of the delay send relay R1030. The last-mentioned circuit extends from ground by way of the wiper 833 of the sequence switch 5830 and the engaged first contact in the associated contact bank, the wiper 812 of the second code switch $\mathrm{B810}$ and the engaged home contact in the associated contact bank, the contacts 975 and the winding of Ri030 to battery. When thus energized the delay send relay R1030 operates to interrupt, at the contacts 1031, a further point in the previously traced circuit for energizing the send magnet SMII73 in the mechanical impulse repeater 1170; thereby positively to prevent operation of the latter magnet in order to delay the sending operation of the mechanical impulse repeater 1170 at this time.
Also, the control relay R970 completes, at the contacts 971, a circu:t for energizing the winding of the send relay R1010, this circuit extending from ground by way of the contacts 1176,1175 and 1171, the winding of R1010 and the contacts 971 to the battery. When thus energized the send relay R1010 operates to complete, at the contacts 1011, an obvious holding circuit for energizing the winding of the send slave relay R1020, thereby to cause the latter relay to operate. Further, the send relay $R 1810$ completes, at the contacts 1012 , a circuit, including the contacts 974 , for energizing the magnet BM818 of the second code switch B8IO, thereby to cause the latter magnet to operate and condition the wipers noted of the second code switch B8i0 to be driven one step in the clockwise direction. Finally, the send relay R1010 completes, at the contacts 1013, a circuit, including the contacts 1081 , C983, the wiper 1186 of the finder switch F1180, C1196 and the contacts 1362^{\prime} and 1455 , for energizing the magnet SM1843 of the register sequence switch S1840 in the register translator 70, thereby to cause the latter masnet to operate in order to condition the wipers noted of the register sequence switch si840 to be driven one step in the counterclockwise direction.

Each time the pulse relay R930 operates and restores it completes and interrupts, at the contacts 932, an obvious circuit for energizing the magnet UM843 of the send switch U8AO, thereby to cause the latter magnet to operate and restore; whereby the wipers noted of the send switch U84J are driven step by step in the clockwise direction. Also, each time the pulse relay R936 operates it completes, at the contacts 333, a circuit for energizing in swies the windings of the mark relay R1340 and the step relay R1350 in the register translator 70. This circuit extends from the grounded send conductor C885 by way of the contacts 933 and 951, C081, the wiper 1181 of the finder switch Fli88, ClI91, the
contacts 1364: and the windings of R1350 and R1344 to battery; resistance ground potential being connected to the send conductor C865 by way of the resistor 351 or direct ground potential being connected to the send conductor C865 by way of the wiper 802 of the first code switch A800 and the wiper 841 of the send switch U 840 , in a manner more fully explained hereinafter. Each time the pulse relay R9Bie restores it interrupts, at the contacts 833, the above-traced circuit for energizing in series the windings of the step relay Ris50 and the mark relay R1340.

When the wipers noted of the send switch U8so are moved one step in the clockwise direction away from their home positions the wiper 862 thereof engages the first contact in the associated contact bank included in the previously mentioned ground muit:ple, whereby an obvious direct circuit substantially identical to that previously traced is completed for energizing in multiple the upper and lower windings of the pulse relay R 930 . In the present example, the wiper 802 of the first code switch A800 engages the sixth contact in the associated contact bank which is directly multipled to the fourth contact in the contact bank associated with the wiper 841 of the send switch U840. Accordingly, the pulse relay R930 operates and restores four times to transmit four high resistance ground impuises by way of the resistor 851 over the send conductor C855; and then operates and restores to send one direct ground impulse by way of the wiper 802 and the engaged sixth contact in the associated contact bank of the first code switch A800 and the wiper 841 of the send switch U840 and the engaged fourth contact in the associated contact bank over the send conductor C865; and then sends a number of additional high resistance impulses by way of the resistor 851 over the send conductor C865.

Each time a high resistance ground impulse or a direct ground impulse is transmitted over the send conductor C865 the step relay R1350 operates; however, the mark relay R1340 operates only when a direct ground impulse is sent over the send conductor C865 in view of the fact that the mark relay R1340 is of the marginal type. Hence, at this time, the step relay R1350 operates and restores four times; then the step relay R1350 and the mark relay R1340 operate and restore once; and then the step relay R1350 operates and restores a plurality of times. Each time the step relay R1350 operates and restores it completes and then interrupts, at the contacts 1351, a circuit for energizing the magnet AMI714 of the first code switch Al710, this circuit extending, when completed, from ground by way of the contacts 1951 and 1512, Cl30 and the magnet AM171 to battary. Accordingly, the magnet AM1714 operates and restores intermittently, thereby to drive the wipers noted of the first code switch A1710 step by step in the counterclockwise direction. Also, each time the step relay R 1358 operates and restores it completes and then interrupts, at the contacts 1352, an obvious circuit for energizing the magnet UMBI 832 of the station switch UB1830, whereby the single wiper of the station switch UBi830 is driven step by step in the counterclockwise direction. Each time the mark relay R 13 SI operates and restores it completes and then interrupts, at the contacts 1341, an obvious path including the wiper 1831 of the station switch UB 1830 .

In the present example, the step relay R1350 operates and restores four times before it re-

51
operates in conjuncticn with the mark relay R1340. Accordingly, when the mark relay R1340 operates the wipers noted of the first code switeh All 10 have been driven four steps in the counterclockwise direction; similarly, the single wirer 1831 of the station switch UB1830 has been driven four steps in the counterclockwise direction. Accordingly, when the mark relay R13C0 cperates it completes, at the contacts 1341 , the previously mentioned marking circuit, including the wiper 1831 of the station switch UB!830 and the engaged fourth contact in the associated contact bank; thereby to complete an obvious circuit including the conductor Cl 3 B for energizing the winding of the first digit relay R1510. When thus energized the first digit relay R1510 operates to complete, at the contacts 1511, an obvious holding circuit, including the grounded hold conductor Ci353, for energizing the winding thereof, ground potential being applied to the hold conductor Cl353 at the contacts 1264 . Also, upon operating, the first digit relay RI510 interrupts, at the contacts 1512, the previously traced circuit for energizing the magnet AMill4, thereby positively to arrest further operation of the first code switch Al713. Accordingly, in the present example, operation of the first code switch Al710 is arrested when the wipers thereof, previously noted, engage the fourth contacts in the associated contact banks. When the wipers 1712 and 1711 of the first code switch Al710 engage the fourth contacts in the associated contact banks the WXYZ marking cenductors C1052 are marked in accordance with the code Y-Z corresponding to the digit 6 which is registered in the first code switch A800 in the primary selector 40. Also, when the wiper 1713 of the first code switch Al7!3 engages the fourth contact in the associated contact bank the fifth wiper 1645 of the wiper set in the composite code switch P1640 is selected and marked with grcund potential, for a purpose more fully explained hereinafter.
In view of the foregoing explanation of the mode of operation of the send switch U8AO in the primary register 50 and the step relay R1350, the mark relay R1340, the first digit relay R!510 and the first code switch All! 10 in the register translator 10, it will be understood that subsequent operation of the step relay R1350 has no effect upsn the setting of the first code switch A1710 due to the operation of the first digit relay RI5:0 following the fourth operation and restoration of the step relay R1353. However, subsequent operation and restoration of the step re!ay $R!350$ cause further operation of the station switch UB!838, in the manner explained above. Upon the eighth operation and restoration of the step relay $R 1350$ the wiper 183! of the station switch UBI 830 is driven into engagement with the eighth contact in the associated contact bank terminating the conductor Cl34, thereby to prepare a circuit for energizing the winding of the extended service relay R1520; however, this circuit is rot completed upon the next operation of the pulse relay R 930 in view of the fact that the extended service conductor C866 terminated by the eighth contact in the contact bank arsociated with the wiper 881 of the send switch U 840 has no ground potential thereon, the extended service relay Resto occupying its restored pesition at this time. Similarly, upon the ninth, tenth and e'eventh operations and restorations of the step relay R.330, the wiper l231 of the station switch UB 1830 is driven into successive engagement with the respective ninth, tenth and eleventh contacts in the
associated contact banks respectively terminating the conductors $\mathrm{C} 133, \mathrm{C} 132$ and C 131 , thereby successively to prepare circuits for respectively energizing the party relays R15\%0, R1540 and R1550; however, these circuits are not completed upon the corresponding operations of the pulse relay R030 in view of the fact that the party conductors C867, C858 and C869 respectively terminated by the ninth, tenth and eleventh contacts in the contact bank associated with the wiper 84! of the send switch U840 have no ground potential thereon, the corresponding party relays R1!20, R1138 and R1140 cccupying their restored positions ${ }^{\mathrm{t}} \mathrm{t}$ this time.

The intermittent operation of the pulse relay R930 in the primary register 50 continues, as exp'ained above, until the wipers noted of the send switch 0840 are driven into engagement with the twenty-fourth contacts in the associated contact banks. More particularly, when the wiper 342 of the send switch U8s0 disengages the twenty-third contact in the associated contact bank the previcusly traced holding circuit for energizing in multiple the upper and lower windings of the pulse relay Re3s is interrupted, thereby to arrest further operation of the latter relay.

The subscriber at the calling private subscriber substation TP then proceeds to dial the second digit 2, thereby to cause the line relay R920 in the primary register 50 to follow the impulses of the digit mentioned. Each time the line relay P920 restores it completes, at the centacts 924 , an alternative circuit for energizing the winding of the transfer relay R860, this circuit extending from ground by way of the contacts 924 and 1096 , the winding of R 300 and the contacts 1055 to resistance battery. When thus energized the transfer relay R850 operates to complete, at the contacts 861 , the previously traced circuit for energizing the magnet SMC34 of the seavence switch S830, thereby to cause the latter magnet to operate and condition the wipers noted of the sequence switch 5838 to be driven an additional step in the counterclockwise direction. Also, the transfer relay Ra60 completes, at the contacts 862, the previously traced circuit for energizing the winding of the transfer slave relay Ri010, thereby to cause the latter relay to operate. Upon operating, the transfer slave relay R1070 completes, at the contacts 1011, the previously traced circuit for energizing the mark magnet MM1172 in the mechanical impulse repeater ! 170 in order to cause the latter magnet to operate. Also, the line relay R 920 repeats, at the grounded contacts 322, the impulses of the second digit 2 to the receive magnet RMII7I in the mechanical impulse repeater 1170; whereby the receive magnst RMIIII operates and restores in crder to register the second digit 2 in the mechanical impulse repeater 1170. When the first impulse of the second digit 2 is registered in the mechanical impulse repeater 1170 the set of switch springs SI!77 is actuated into engagement, thereby to prepare a circuit traced hereinafter for energizing the upper winding of the release hold relay R960.
At the conclusion of the second digit 2, the line relay R 920 reoperates, thereby to cause the restoration of the transfer relay R 868 shortly. thereafter. Upon restoring, the transfer relay R860 interrupts, at the contacts 861 , the previously traced circuit for energizing the magnet SM834 of the sequence switch $\mathbf{S 8 3 0}$, thereby to cause the latter magnet to restore and drive the wipers noted of the sequence switch 5830 an additional ${ }^{5} 5$ step in the counterclockwise direction. When the
wiper 833 of the sequence switeh size disengages the first contact in the associated contact bank the previously traced circuit for energizing the winding of the delay send relay R1030 is interrupted; thereby to cause the latter relay to restore. Also, the transfer relay R860 interrupts, at the contacts 062; the previously traced circuit for energizing the winding of the transfer slave relay R 1070 , thereby to cause the latter relay to restore. Upon restoring, the transfer slave relay R1070 interrupts, at the contacts 1071, the previously traced circuit for energizing the mark magnet MM1 172 in the mechanical impulse repeater 1170; thereby to cause the latter magnet to restore and mark the digit 2 as registered in the mechanical impulse repeater 1170.

Upon restoring, the delay send relay R 1030 completes, at the contacts 1031, an obvious circuit, including the contacts 1021 , for energizing the send magnet SM1173 in the mechanical impulse repeater 110; thereby to cause the latter magnet to operate and interrupt, at the contacts 1174, the previously traced circuit for energizing the winding of the send relay R1010, whereupon the latter relay restores: Upon restoring; the send relay R 1010 interrupts, at the contacts 1012 , the previously traced circuit for energizing the magnet Bivsis of the second code switch B810, thereby to cause the latter magnet to restore and drive the wipers noted of the second code switch Belt one step in the clockwise direction. When the wiper 812 of the second code switch B810 is driven one step in the clockwise direction into engagement with the first contact in the associated contact bank, the previously traced circuit for energizing the winding of the delay send relay R1030 is again completed, this circuit including the grounded wiper 833 of the sequence switch 5830 and the engaged second contact in the associated contact bank: When this energized the delay send relay R1030 reoperates to interrupt; at the contacts 1031, the previously traced circuit for energizing the send magnet SMIll3 in the mechanical impulse repeater 1170 , thereby to cause the latter magnet to restore in order to recomplete, at the contacts 1174, the previously traced circuit for energizing the winding of the send relay R1010; whereupon the latter relay reoperates. Also, when the send relay Riolo restores, prior to the reoperation thereof described above, it interrupts, at the contacts 1013, the previously traced circuit for energizing the magnet SM1863 of the register sequence switch S1840; thereby to cause the latter magnet to restore and drive the wipers noted of the register sequence switch sis 80 one step in the counterclockwise direction.

Upon reoperating; the send relay R1010 recompletes, at the contacts 1012; the previously traced circuit for energizing the magnet BM8 13 of the second code switch $B 810$, thereby to cause the latter magnet to operate in order to condition the wipers noted of the second code switch B8IO to be driven an additional step in the clockwise direction. Also; upon reoperating, the send relay R1010 recompletes, at the contacts 1013 , the previously traced circuit for energizing the magnet SM1843; thereby to cause the latter magnet to operate in order to condition the wipers noted of the register sequence switch S1840 to be driven an additional step in the counterclockwise direction.
At this time, the mechanical impulse repeater 1170 proceeds to transmit the second digit 2 registered therein by way of the set of impulse
spungs Sll7s. More particulary, the second digit 2 is transmitted by way of the set of impulse springs SII78 in the mechanical impulse repeater 1170 to the magnet BMI723 of the second code switch B1720; the circuit extending. when completed, from ground by way of the set of impulse springs 51178 , the contacts 1085, C986, the wiper 1183 of the finder switch Fil180, Cl193; the contacts 1363°, the wiper 1841 of the register sequence switch si840 and the engaged first contact in the associated contact bank Cl28 and the winding of BMII23 to battery. Each time the-above-traced circuit is completed and then interrupted the magnet BM1723 operates and restores, thereby to drive the wipers noted of the second code switch B1720 one step in the counterclockwise direction; and to complete and then interrupt, at the contacts $\mathbf{1 7 2 5}$, an obvious circuit, including the contacts 1252, for energizing the vertical magnet PM1650 of the composite code switch P1640. When the vertical magnet PM1650 is thus energized and subsequently deenergized it operates and then restores, thereby to drive the wiper set of the composite code switch P1640 one step in the vertical direction.

Honce, the mechanical impulse repeater 1170 transmits the second digit 2 by way of the set of impulse springs Sl478 to the magnet BM1723 of the second sode switch Bitic; and the latter magnet repeats to the vertical magnet PMIG:C of the composite code switch Pisif. After the second dirit 2 has been transmitted from the mechanical impulse repeater 1170 the wipers noted of the second code switeh B1720 engages the seeond contacts in the associated contact bariks and the wiper set of the composite code switch Pi640 occupies its second vertical position. When the wipers noted of the second code switch 1120 engage the second contacts in the associated contact banks the W and Y conductors in the associated set of WX marked with grcuind potential, the marking of the set of marting conductors 1953 mentioned corresponding to the digit 2 .
The subscriber at the calling private subscriber substation TP then proceeds to dial the third digit 4, thereby to cause the line relay P 920 in the pritmary register to tollow the impulses of the digit mentioned. The line relay Rg29 effects re operation of the transier relay Revo; and the latter relay efiects reoperation of the transfer" slave relay R 107 D , in the manner previously explained. Also, the line relay RS20 repeats the impulses of the third digit 4 to the receive magnet RMII7, whereby the third digit 4 is registered in the mechanical impulse repeater $1 / 16$, in the manner previously explained. At the conclusion of the third digit 4 , the line relay R.920 remains reoperated, thereby to effect restoration of the transfer relay RB60 and the consequent restoration of the transfer slave relay R1070. The transfer relay R860 causes the wipers mentioned of the seguence switch Sy 00 to be driven an aditional step in the countercleckwise direction, in the manner previously explained; whereupon the delay send relay RISAB restores in order to effect reoperation of the send magnet SMIIT3 in the mechanical impulse repeater 1178. The send magnet SM1713 effects restoration of the send relay R1016, whereupon the wipers noted of the second code switch B810 are driven an additional step in the clockwise direction, thereby to effect reoperation of the delay send relay R1030, in the manner previously explained. Also, the send relay R1010 causes tie wipers noted of the register sequence
switch Si8io in the register translator 70 to be driven an additional step in the counterclockwise direction, in the manner previously explained. Upon reoperating, the delay send relay R1030 effects the restoration of the send magnet SM1173 in the mechanical impulse repeater 1170, whereby the send relay $R 1010$ is reoperated, in the manner described above.
At this time, the mechanical impulse repeater 1110 transmits the third digit 4 registered therein by way of the set of impulse springs S1178 to the magnet CM1734 of the third code switch Cil30. The circuit for energizing the magnet CMI734 extends, when completed, from ground by way of the set of impulse springs S 1178 in the mechanicalimpulse repeater 1110, the contacts 1085, C986, the wiper 1183 of the finder switch F1180, C1193, the contacts 1303 ', the wiper 13 g! of the register sequence switch 51840 and the engaged second contact in the asscciated contact bank, C127, and the magnet CMI 134 to battery. Hence, the marnet CM1734 is operated and restored four times, whereby the wipers noted of the third code switch Cili30 are driven four steps in the counterclockwise direction. Also, the magnet CM1734 completes and interrupts four times, at the contacts 1735, an obvious circuit, including the contacts 1251, for energizing the rotary magnet PM155! of the composite code switch PlG60. The consequent operation and restoration of the rotary magnet PMi65I, four times, causes the wiper set of the composite code switch P1640 to be driven four steps in the rotary direction. At this time, the wipers noted of the third code switch C1730 engage the fourth contacts in the associated contact banks, thereby to mark the X and Y conductors in the associated set of marking conductors 1954 with ground potential, the marking mentioned of the set of marking conductors 1954 corresponding to the third digit 4.
The subscriber at the calling private subscriber substation TP then proceeds to dial successively the digits $1,2,3$ and 4 constituting the numerical portion of the directory number; whereby the apparatus in the primary register 50 and the register translator 70 operates, in the manner previously explained, in order to cause the fourth, fifth, sixth and seventh digits mentioned to be registered first in the mechanical impulse repeater 1170 and then to be transmitted therefrom to the register translator 70. The fourth, fifth, sixth and seventh digits are respectively registered in the first numerical switch D1740, the second numerical switch Ell50, the third numerical switch FI8IO and the fourth numerical switch G1825 in the register translator 78 , in a manner substantially identical to that previously explained. At the conclusion of the dialing of the digits mentioned at the calling private subscriber substation TP, the wipers noted of the first numerical switch D1740 engage the first contacts in the associated contact banks, thereby to mark with ground potential the W and \mathbf{X} conductors in the associated group of WXYZ marking conductors 1955, the marking mentioned corresponding to the digit 1; the wipers noted of the second numerical switch El750 engage the second contacts in the associated contact banks, thereby to mark with ground potential the W and Y conductors in the associated group of WXYZ marking conductors 1956, the marking mentioned corresponding to the digit 2; the wipers noted of the third numerical switch Fi810 engage the third contacts in the associated contact banks, thereby to mark with
ground potential the W and Z conductors in the associated group of WXYZ marking conductors 1851, the marking mentioned corresponding to the digit 3 ; and the wipers noted of the fourth numerical switch G1820 engage the fourth contacts in the associated contact banks, thereby to mark with ground potential the X and Y conductors in the associated group of WXYZ marking conductors 1958, the marking mentioned corresponding to the digit 4. At this point, it is noted that, when the wipers noted of the second code register B1720 and the third code register C!730 are respectively moved away from their home positions, the sets of switch springs BS1726 and CS1737 are respectively actuated; similarly, when the wipers noted of the first numerical switch Di740, the second numerical switch E1750, the third numerical switch FI810 and the fourth numerical switch G1820 are respectively moved away from their home positions, the sets of switch springs DSi747, ESI756, FSI816 and GSI825 are respectively actuated.

Considering now the operation of the register translator 70 in greater detail, it is pointed out that, after the third digit 4 has been transmitted from the mechanical impulse repeater 1170 in the primary register 50 to the register translator 70 , the first digit 6 is registered in the first code switch Al710, the second digit 2 is registered in the second code switch BI720 and the third digit 4 is registered in the third code switch C1730. The wiper 1713 of the first code switch Al7io engages the fourth contact in the associated contact bank, thereby to select the fifth wiper 1645 of the wiper set of the composite code switch PIG80; and the wiper set of the composite code switch P1640 occupies its second vertical position and its fourth rotary position. Also, at the conclusion of the third digit 4, the wipers noted of the register sequence switch Si840 are moved to engage the third contacts in the associated contact banks, in the manner previously described. When the wiper 1842 of the sequence switch SI840 engages the third contact in the associated contact bank a circuit is completed for energizing in multiple the upper and lower windings of the pulse relay R1310, this circuit extending from ground by way of the wiper 1842 of the register sequence switch SI840 and the engaged third contact in the associated contact bank, C1471, the contacts 1313 and the windings of R1310 to battery. It is noted that the lower winding of the pulse relay R1310 includes an adjustable condenser 1315 whereby the rate of operation of the pulse relay R. 1310 may be adjusted. Accordingly, the pulse relay R1310 operates intermittently, approximately twenty times per second in the present example, for a purpose more fully explained hereinafter.

Also, at this time, ground potential is applied by way of the wiper 1713 of the first code switch All10 and the engaged fourth contact in the associated contact bank to the fifth wiper 1645 of the wiper set in the composite code switch PIG40; while the fifth wiper Pig45 mentioned engages the 2 up 4 in contact in the associated contact bank, which contact is connected to a predetermined contact in the contact bank associated with the wiper 1628 of the wiper set in the rate and route switch RI620 by way of the jumper 1672. More specifically, for purpose of illustration, the 2 up 4 in contact in the contact bank associated with the fifth wiper 1645 of the

57
wiper set in the composite code switeh PI640 is connected to the 9 up 4 in contact in the contact bank associated with the wiper 1828 of the wiper set in the rate and route switch Ri620. The 9 up 4 in contact in the contact bank associated with the wiper 1628 corresponds to a routing for the present call via exchange 1 zone 73, the exchange in zone 46 and exchange 1 zone 62 to exchange zone 62 , which route comprises four routing digits. The particular four routing digits required do not bear any relationship whatever with respect to the first digit 6 , the second digit 2 and the third digit 4 dialed; "but are designated in conformity with the trunking plan utilized, which is assumed to be via the route specified above. More specifically, the routing digits required in order to route the call via the route specified comprise the four digits 2462. Hence, the first, second and third digits 6,2 and 4 dialed at the calling private subscriber substation TP must be converted into the "four routing digits 2, 4, 6 and 2 , which routing digits correspond to the rout specified in conformity with the established trunking plan.

Accordingly, the rate and route switch R1620 is operated to its-ninth vertical position and its fourth rotary position in order to cause the wipers noted of the wiper set therein to seize the respective 9 up 4 in contacts in the associated contact banks. In order to accomplish this end, the contacts in each level of the contact bank associated with the wiper 1628 of the wiper set in the rate and route switch RI620 are connected by way of individual resistors; each having a high resistance, to the numerically corresponding control contact in the vertical control contact bank associated with the vertical control wiper 1629. For example, each contact in the first level of the contact bank associated with the wiper 1628 of the wiper set in the rate and route switch R1620 is connected by way of an individual resistor 1679 to the first contact in the vertical control contact bank associated with the vertical control wiper 1629.

As previously explained, when the wipers noted of the register sequence switch S 1840 engage the third contacts in the associated contact banks, the pulse relay RI310 is set into operation. Each time the pulse relay R 1310 operates at this time a circuit is completed for energizing the vertical magnet RMCS30 of the rate and route switch R1620, this circuit extending from ground by way of the contacts 1311, 1222 and 1232 and the vertical magnet RM1630 to battery; and each time the pulse relay RI310 restores it interrupts, at the contacts 1311, the previously traced circuit for energizing the vertical magnet RMI630. Accordingly, the vertical magnet RNI 630 operates intermittently, thereby to drive the wiper set in the rate and route switch R1620 step by step in the vertical direction. When the vertical control wiper 1.629 of the wiper sset in the rate and route switch Ri620 engages the ninth contact in the associated vertical control contact bank, resistance ground potential is applied thereto by wiay of the previously traced path, including the jumper 1672 , from the grounded wiper 1713 of the first, code switch Al710. This application of ground potential to the vertical control wiper 1629 of the wiper set in the rate and route switch R 1620 completes a circuit for energizing the upper winding of the transfer relay R1220 in series with the vertical magnet RM1630, this circuit extending from the grounded vertical control
wiper 1628 of the wiper set mentioned by way of the upper winding of R1230 and the vertical magnet RMIG30 to battery. At this point, it is noted that the above-traced circuit for energizing the upper winding of the transfer relay R1230 is completed when the pulse relay R13io restores following the ninth impulse, as ground potential is applied by way of the contacts 1311 , 1222 and 1232 to the terminal of the upper winding of the transfer relay R 1230 prior to the restoration of the pulse relay R 1310.

When thus energized the transfer relay R1230 operates to complete, at the contacts 1234 , an obvious holding circuit, including the grounded hold conductor C1353, for energizing the lower winding thereof. Further, the transfer relay R1230 interrupts, at the contacts 1232, the previously traced original circuit for energizing the pertical magnet-RNIG39 of the rate and route switch R1620; and prepares, at the contacts 1233, a circuit for energizing the rotary magnet RMIS3I of the rate and route switch RIG20. The circuit for energizing the rotary magnet RMis30 extends, when completed, from ground by way of the contacts 1311,1222 and 1233 and the rotary magnet RMIE3I to battery. Accordingly, the intermittent operation of the pulse relay R1310 causes the rotary magnet RMI63I to operate intermittently, thereby to drive the wiper set in the rate and route switch R1620 step by step in the rotary direction.

When the wiper 1628 of the wiper set in the rate and route switch R 1620 engages the 9 up 4 in contact in the associated contact bank, direct ground potential is applied thereto by way of the jumper 1672 from the grounded wiper 1713 of the first code switch Al710, thereby to complete a circuit for energizing the lower winding of the stop relay R1220 in series with the rotary magnet RMIG30, this circuit extending from the grounded wiper 1628 of the wiper set in the rate and route switch $R 1629$ by way of the lower winding of R1229 and the rotary megnet RMIS31 to bettery. It is noted that the above-traced circuit for energizing the lower winding of the stop relay R 1220 is completed upon the restoration of the pulse relay R1310 following the fourth impulse as direct ground potential is applied by way of the contacts 1311,1222 and 1233 to one terminal of the lower winding of the stop relay R120t prior to the restoration of the pulse relay R1310. Further, it is noted that the stop relay R1226 is of the marginal type and will operate only when direct ground potential is encountered by the wiper 1623 of the wiper set in the rate and route switch R1620. When thus energized the stop relay R122 operates to complete. at the contacts 1224, an obvious holding circuit, including the grounded hold conductor Cl353, for energizing the upper winding thereof; and to interrupt, at the contacts 1212 , the previously traced original circuit for energizing the rotary magnet RMI 891 of the rate and route switch R1628. Accordingly, at this time, the wiper set in the rate and route switch n 1620 occupies its ninth vertical and its fourth rotary positions.

It is noted that, when the wiper set in the composite code switch PIGA多 is moved away from its normal vertical position, the set of switch springs ESi652 is actuated; similarly, when the wiper set in the rate and route switch 1629 is moved away from its normal vertical position the set of switch springs RSIG32 is actuated. When the set of switch springs R, 1632 is thus actuated: a holding circuit for energizing the windings of
the pulse relay R1310 is completed, this circuit extending from ground by way of the contacts 1225, the contacts 1635 of the set of switch springs RSI632, C1471, the contacts 1313 and the windings of R1310 to battery. Accordingly, when the stop relay R1220 operates it also interrupts, at the contacts 1225, the above-traced holding circuit for energizing the windings of the pulse relay R1310, thereby to arrest further operation of the latter relay at this time.
Considering now the jumper arrangement among the contacts in the contact banks in the rate and route switch R1620, it is noted that the respective 9 up 4 in contacts in the contact banks respectively associated with the wipers 1625, 1624, 1623 and 1622 of the wiper set in the rate and route switch RI62s are respectively connected by way of the jumper 1675 to the second, fourth, sixth and second marking conductors in the marking cable 1881; while the 9 up 4 in contact in the contact bank associated with the wiper 1021 of the wiper set in the rate and route switch R1620 is connected by way of the jumper 1674 to the control conductor Clis.
The operations of the rate and route switch R1620 described above, in response to the operation of the composite code switch P1640, take place in an extremely short interval of time at the conclusion of the third digit 4; and in the meanwhile the subscriber at the calling private subscriber substation TP continues to dial the fourth digit 1, the fifth digit 2 , the sixth digit 3 and the seventh digit 4 in order to cause the digits mentioned to be registered in the respective first numerical switch DI740, the second numerical switch E1750, the third numerical switch Fi813 and the fourth numerical switch Gl320, in the manner previously explained.
Continuing now with the operation of the register translator 70, upon operating, the stop relay Ri220 completes, at the contacts 1221, an cibvious circuit, including the contacts 1421, for rnergizing in multiple the upper and lower windngs of the pulse relay R1420. It is noted that the upper winding of the pulse relay R1020 includes an adjustable condenser 1324, whereby the rate of operation thereof may be adjusted. In the present instance, the pulse relay R1420 is adjusted to approximately ten impulses per sricond. Also, the stop relay R1220 completes, at the contacts 1226, a circuit for energizing the winding of the digit spacer relay R1440, this circuit extending from ground by way of the contacts 1226 , the wiper 1611 of the digit sequence switch Nifio and the engaged home contact in the associated contact bank, C120, the contacts 1462 and 1453 and the winding of R1440 to resistance battery. At this point, it is noted that the above-traced circuit for energizing the winding of the digit spacer relay P1440 must be initially completed when the pulse relay Ri420 occupies its restored position in view of the fact that a path is completed for short-circuiting the winding of the digit spacer relay R1440 prior to the operation thereof and while the pulse relay R1420 occupies its operated position. The path mentioned extends from one terminal of the winding of R1440 by way of the contacts 1422 and lsof to the other terminal of the winding of R1940.
When thus energized the digit spacer relay RI440 operates to interrupt, at the contacts 1444 , a point in the previously traced path for shortcircuiting the winding thereof; and to prepare, at the contacts 1443, a circuit traced hereinafter
for energizing the magnet KMI 924 of the sender switch K1920. The above-mentioned circuit for energizing the magnet KM/924 is completed upon the next operation of the pulse relay R1420 and extends from ground by way of the contacts 1226, the wiper 1611 of the digit sequence switch N1610 and the engaged home contact in the associated contact bank, C120, the contacts 1462, 1453, 1422 and 1443 and the magnet KMI 924 to battery. When thus energized the magnet KM1924 operates, thereby to condition the wipers noted of the sender switch K1920 to be driven one step in the counterclockwise direction. When the pulse relay R1420 next restores it interrupts, at the contacts 1422, the previously traced circuit for energizing the magnet KM1924, thereby to cause the latter magnet to restore and drive the wipers noted of the sender switch K 1920 one step in the counterclockwise direction. Thus, the pulse relay R1420 causes the wipers noted of the sender switch K1928 to be driven step by step in the counterclockwise direction.

At this point, it is noted that the circuit for energizing the upper winding of the line relay R650 in the primary selector 40 and including the conductor Cll95 comprises two branches; the first branch including the grounded contact 1423 of the pulse relay R1420 and the second branch including the wiper 1922 of the sender switch KI920 and the engaged grounded home and first contacts in the associated contact bank. Accordingly, upon operating, the pulse relay R1420 interrupts, at the contacts 1423, the first branch in the circuit for energizing the upper winding of the line relay $R 650$ in the primary selector 40. However, the circuit for energizing the upper winding of the line relay R650 is not interrupted at this time due to the completed second branch therein, including the wiper 1922 of the sender switch K1920 and the engaged home contact in the associated contact bank. Hence, when the wiper 1922 of the sender switch K1920 is driven two steps in the counterclockwise direction it disengages the first contact in the associated contact bank, thereby to interrupt the second branch in the previously traced circuit for energizing the upper winding of the line relay R650 in the primary selector 40 . Accordingly, after the wipers noted of the sender switch K1920 engage the second contacts in the associated contact banks, further operation of the pulse relay R1420 is effective intermittently to interrupt, at the contacts 1423, the first branch in the previously traced circuit for energizing the upper winding of the line relay R650 in the primary selector 40, whereby the line relay R650 follows subsequent impulsing of the pulse relay R1420. The line relay R650 in the primary selector 40 operates intermittently in order to drive the wiper set in the switch mechanism $6 B 0$ step by step in the vertical direction.
The operation of the pulse relay R1420, described above, continues until the wiper 1923 of the sender switch K1920 engages a mark contact in the associated contact bank; the fourth contact in the contact bank associated with the wiper 1923 being marked in the present instance as this contact terminates the second marking conductor in the marking cable 1881, whereby a circuit is completed for energizing the winding of the digit stop relay R1469. This circuit extends from ground by way of the contacts 1262, the wiper 1613 of the digit sequence switch NI610 and the engaged home contact in the associated contact bank. the wiper 1625 of the wiper set in the rate and route switch R. 1620 and the engaged 9 up 4
in contact in the associated contact bank, the jumper 1675, the second marking conductor in the marking cable 1881 , the wiper 1923 of the sender switch K1920 and the engaged fourth contact in the associated contact bank, and the winding of Rthe to battery. When thus energized the digit stop relay RI460 operates, for a purpose more fully explained heremafter. At this point, it is noted that, upon operating, the digit spacer relay Rtese completes, at the contacts 1441 a circuit for energizing the magnet NM161/ of the digit sequence switch Nislo, this circuit extending from ground by way of the contacts
 When thus energized the magnet NM1G14 operates, thereby to condition the wipers noted of the digit sequence switch N 1610 to be driven one step in the counterclockwise direction

Upon operating, the dicit stop relay R1460 completes, at the contacts 1436, a holding circuit for energizing the winding thereof, this circuit extending from ground by way of the set of switch springs KSI 926 , the contacts 1466 and the winding of R 1460 to battery. At this point, it is noted that the set of switch springs KS 1926 is actuated into engagement when the wipers noted of the sender switch K1920 are driven one step in the counterclockwise direction. Also, the digit stop relay R1460 interrupts, at the contacts 1451, the previously traced circuit for energizing the magnet NMIG14, thereby to cause the latter magnet to restore and drive the wipers noted of the digit sequence switch N 1610 one step in the counterclockwise direction. Further, the digit stop relay R1460 completes, at the contacts 1435, an obvious path in multiple to the contacts 1423 controlled by the pulse relay R1420, and consequently a holding circuit substantially identical to that previously traced for energizing the upper winding of the line relay R850 in the primary selector 40. Hence, further operation of the line relay R650 in the primary selector 40 is arrested at this time, thereby positively to arrest further movement of the wiper set in the switch mechanism 600; whereby the wiper set in the switch mechanism 600 is arrested in the second vertical position corresponding to the first routing digit 2 Also, the digit stop relay R1400 interrupts, at the contacts 1462, the previously traced circuit for energizing the winding of the digit spacer relay Ri440, thereby to cause the latter relay to restore. Upon restoring, the digit spacer relay R1440 completes, at the contacts 1042, an alternative circuit for energizing the magnet KMI924 of the sender switch x 1920, this circuit extending from ground by way of the wiper 1921 of the sender switch K1920 and the engaged contact in the associated contact bank, the contacts 1942 and 1925 and the magnet KM192n to battery. Accordingly, the magnet KMI 824 operates intermittently at this time in order to drive the wipers noted of the sender switch K1920 step by step in the counterclockwise direction until the wiper 1921 thereof disengages the twelfth contact and engages the thirteenth contact in the associated contact:bank, thereby to interrupt, at the twelith contact mentioned, the previously traced circuit for energizing the magnet KN1 1824 and to complete, at the thirteenth contact mentioned, an alternative circuit for energizing the winding of the digit spacer relay R1449. The last-mentioned circuit extends from ground by way of the wiper 1821 of the sender switech K 920 and the engaged thirteenth contact in the associated
contact bank, the contacts l463 and the winaing of R/440 to resistance battery.

When thus energized the digit spacer relay R1440 reoperates, thereby to recomplete, atithe contacts 1443, an alternative circuit for energizing the magnet KM1924 of the sender aswiteh K1920. The last-mentioned circuit extends from ground by way of the wiper 1921 of the sender switch K1920 and the engaged thirteenthecontact in the associated contact bank, the contacts 1463, the contacts 1422, assuming that the pulse relay R1420 is operated at this time, the contacts 1443 and the magnet KM1924 to battery. When the magnet KM1924 is energized it operates, thereby to condition the wipers noted of the senderswitch K1920 to be driven an additional step in the counterclockwise direction. Accordingly, at this time, the pulse relay R1420 completes intermittently, at the contacts 1422 , the above-traced circuit for energizing the magnet KM1924, thereby to cause the magnetmentioned to operate intermittently; whereupon the wipers noted of the sender switch K1920 are driven additional steps in the counterclockwise direction until the wiper 1921 thereof disengages the seventeenth contact in the associated contact bank and engages the eighteenth contact therein, thereby to interrupt the previously traced alternative circuit for energizing the winding of the digit spacer relay R1440 and the previously traced alternative circuit for intermittently energizing the magnet KMI924. When the previously traced alternative circuit for errergizing the winding of the digitspacer relay R1440 is interrupted, the latter relay restores, thereby to complete, at the contacts 1442, the previously traced circuit including the contacts 1925 for energizing the magnet KM1924, thereby to cause the : latter magnet again to be energized intermittently; whereupon the wipers noted of the sender switch K1820 are driven step by step in the counterclockwise direction until the wiper 1921 thereof disengages the twenty-fourth contact in the associated contact bank and reengages the home contact therein, thereby to interrupt the above-traced circuit for energizing the magnet KM1924. When the wipers noted of the sender switch K1920 are thus returned to their home positions the set of switch springs EES1926 is actuated, thereby to interrupt the previously traced holding circuit for energizing the winding of the digit stop relay R1450, ' whereupon the latter relay restores. When the digit stop relay R1460 restores the cycle of operation of the sender switch cis 1920 is completed
It is pointed out that the wipers noted in the sender switch K1920 are first driven step by step in the counterclockwise direction away from their home positions:at a relatively low speed, thereby to insure thiat the imptilses transmitted to the upper winding of the line relay R650 in the primary selector 40 are at a proper impuising rate. Upon operation of the digit:stop relay: R1460 the wipers noted of the sender switch Kf920 are driven at a reletively high speed into engagement with the thirteenth contacts in the associated contact banks; and thereafter the wipers noted of the sender switch 环 1920 are driven at a relatively low speed until they engage the "eigh"teenth contacts in the associated contact banks, thereby to insure a proper time interval or space between successive digits "transmitted to the primary selector 40. Finally, the wipers noted of the senderswitch K $K 920$ are driven at a rèlatively 5 htghspeed after they engage the eighteenth con-
tacts in the associated contact banks back into their home positions.
Accordingly, at this time, the first routing digit 2 registered in the rate and route switch R1620 has been transmitted by the sender switch K1920 to the primary selector 40 ; the wipers noted of the sender switch K1920 have been returned to their home positions in readiness to transmit the second routing digit 4; and the wipers noted of the digit sequence switch NIG10 engage the first contacts in the associated contact banks, thereby to render the control of the sender switch K 1920 in accordance with the second routing digit 4 registered in the rate and route switch R 1620 . Also, at this time, an alternative circuit for energizing the winding of the digit spacer relay R1469 is completed, this circuit extending from ground by way of the contacts 1266 , the wiper 1611 of the digit sequence switch NiE10 and the engaged first contact in the associated contact bank, C120, the contacts 1862 and 1453 and the winding of R1480 to resistance battery. Accordingly, the digit spacer relay R1480 reoperates, thereby to cause the second routing digit 4 registered in the rate and route switch R1620 to be transmitted by the sender switch K1920, in the manner explained above.

In view of the foregoing explanation of the cycle of operation of the sender switch K1920 to transmit the first routing digit 2 to the primary selector 40 , it will be readily understood that the second routing digit 4 , the third routing digit 6 and the fourth routing digit 2 will be sequentially transmitted to the primary selector 40; in an identical manner; the first routing digit 2 , the second routing digit 4, the third routing digit 6 and the fourth routing digit 2 being registered in the contact banks respectively associated with the wipers 1625,1624 , 1623 and 1622 of the wiper set in the rate and route switch R1620, in the manner previously explained.

At this point, it is noted that the rate and route switch R1620 is adapted to register as many as five routing digits; the actual number of routing digits required for a given call being determined by the trunking plan of the system, four digits being utilized in the present example. In the event all five routing digits are not utilized, the present example, the contacts in the associated contact banks engaged by corresponding ones of the wipers 1525 to 1621 , inclusive, are connected by the jumper 1674 to the control conductor Clis. Accordingly, in the present case, the 9 up 4 in contact in the contact bank associated with the wiper 1021 of the wiper set in the rate and route switch R1020 is connected by way of the jumper 1674 to the control conductor Clis. Hence, at the conclusion of the fourth routing digit 2, when the wiper 1613 of the digit sequence switch N 1610 engages the fourth contact in the associated contact bank an alternative circuit is completed for energizing the magnet NM1614, this circuit extending from ground by way of the contacts 1252, the wiper 1613 of the digit sequence switch NIG10 and the engaged fourth contact in the associated contact bank, the wiper 1621 of the wiper set mentioned and the engaged 9 up 4 in contact in the associated contact bank, the jumper 1674, the control conductor Cli3, the contacts 1615 and the magnet NM1614 to battery. When thus energized the magnet NMig14 operates, thereby to interrupt, at the contacts 1615 , the previously traced alternative circuit for energizing the magnet mentioned. Hence, the magnet NMIG14 operates and restores immediately, thereby to drive
the wipers noted of the sequence switch N1610 an additional step in the counterclockwise direction and into engagement with the fifth contacts in the associated contact banks.

In the event the subscriber at the calling private subscriber substation TP has completed the dialing of the fourth digit 1 at this time and has at least started to dial the fifth digit 2, the first numerical switch DI7SO has registered therein the fourth digit 1 and the wipers noted of the second numerical switch $E 1750$ have been moved away from their home positions. Accordingly, at this time, both of the sets of switch springs DS: 747 and ES1756 have been actuated. When the set of switch springs ESI750 is actuated there is completed, at the contacts 1759 thereof, an alternative circuit for energizing the winding of the digit spacer relay R1449, this circuit extending from the contacts 1759 of the set of switch springs Esilfa, by way of Cli6, the wiper 1611 of the digit sequence switch N1510 and the engaged fifth contact in the associated contact bank, C128, the contacts 1462 and 1453, and the winding of R1440 to resistance battery. Upon operating, the digit spacer relay R1440 recycles the sender switch Ki920, thereby to cause the latter switch to transmit directly the fourth digit 1 stored in the first numerical switch D1740. At this point, it is noted that the circuit for energizing the winding of the digit stop relay R1460, after the fourth digit 1 stored in the first numerical switch DI760 has been transmitted by the seader switch K1920 to the primary selector 40 , extends from ground by way of the contacts 1262, the wiper 1613 of the digit sequence switch N 1610 and the engaged fifth contact in the associated contact bank, C105, the contacts 1243, Ci10, the wiper 1741 of the first numerical switch DI740 and the engaged first contact in the associated contact bank, the first marking conductor in the marking cable 1831, the wiper 1023 of the sender switch K1920 and the engaged third contact in the associated contact bank, and the winding of R!450 to battery. Accordingly, the sender switch K1923 is operative at this time to trancmit to the primary selector 45 the fourth digit 1 stored in the first numerical switch DI740.
In view of the above description of the operation of the second numerical switch EI750 to cause the sender switch K1920 to transmit the fourth digit 1 stored in the first numerical switch D1740 to the primary selector 43, it will be understood that the operation of the third numerical switch F1810 is effective to cause the sender switch Kl920 to transmit the fifth digit 2 stored in the second numerical switch El750 to the primary selector 40. In this case, the altrinative circuit for energizing the winding of the digit spacer relay RIA49 is substantially identical to that previously traced and includes the contacts 1817 of the set of switch springs FSI 816 and the wiper 161! of the digit sequence switch NIG10 and the engaged sixth contact in the associated contact bank; while the alternative circuit for energizing the winding of the digit stop relay R1400 is substantially identical to that previously traced and includes the wiper 1013 of the digit sequence switch N!S10 and the engaged sixth contact in the associated contact bank, the wiper 1751 of the second numerical switch EI750 and the engaged second contact in the associated contact bank and the wiper 1923 of the sender switch KK1926 and the engaged fourth contact in the associated contact bank.
Similarly, the operation of the fourth numeri-
cal switch G1820 is effective to cause the sender switch K1928 to transmit the sixth digit 3 stored in the third numerical switch Fislo to the primary selector 40. In this case, the alternative circuit for energizing the winding of the digit spacer relay RlASO is substantially identical to that previously traced and includes the contacts 1829 of the set of switch springs GS1825, the wiper 1611 of the digit secuence switch N1G10 and the engaged seventh contact in the associated contact bank; while the alternative circuit for energizing the winding of the digit stop relay R1460 is substantially identical to that previously traced and includes the wiper $\{613$ of the digit sequence switch N16i0 and the engaged seventh contact in the associated contact bank, the wiper 1811 of the third numerical switch Fis10 and the engaged third contact in the associated contact bank, and the wiper 1923 of the sender switch K1920 and the engaged nifth contact in the associated contact bank.

Finally, the operation of the fourth numerical switch G!625 is effective to cause the sender switch K< 820 to transmit the seventh digit 4 stored in the fourth numerical switch Gi82. to the primary sflector 40 . In this case, the alternative circuit for energizing the winding of the digit spacer relay R1403 is substantially identical to that previously traced and includes the contacts 1329 of the set of switch springs GS1825 and the wiper 18 ! 1 of the digit sequence switch N1518 and the engaged eighth contact in the associated contact bank; while the alternative circuit for energizing the winding of the digit stop relay R1460 is substantially identical to that oreviorsly traced and includes the wiper 1013 of the digit soquence switch N q6to and the engaged eighth contact in the associated contact bank, the wiper 1821 of the fourth numerical switch G!820 and the ensaged fourth contact in the associated contact bonk, and the wiper 4923 of the sender switch Klo2s and the engaged sixth contact in the associated contact bank.

Prior to considering further operation of the register translator 70 and the operation of the primary selector in in response to the various digits transmitted thereto, the operation of the detector $6 n$ to detect the line terminal of the private subscriber line 0 al and, consequently, the numerical portion of the direntory number of the calling private subscriber substation TP is described below.

Operation of the detector

In the register translator 70, after the third digit 4 is registered in the third code switch Cl738, operation of the rate and route switch Rycs is initiated in the manner previously explained. More particularly, when the wiper set in the rate and route switch R1929 is driven nine stens in the vertical direction, the transfer relay R!23s operates in order to cause the wiper set in the last-mentioned switch to be driven step by step in the rotary direction, in the manner previously exnlained. Also upon operating, the transfer relay $R 1230$ completes, at the contacts 1235, an obvicus path, including the contacts 1823, for apolving ground notential to the stant conductor C1871 extending to the detector 80. 1323. For aphing rroven potentiol the start conductor C1371 completes an obvious circuit for energizing the winding of the start relay R2225 in the detector 30 , thereby to cause the latter relay to operate. Upon operating, the start relay R3220 completes, at the contacts

2221, a circuit for energizing the magnet FM2212 of the finder switch F2210, assuming that the detector 80 is idle at this time. The circuit for energizing the magnet FM2212 extends from ground by way of the contacts 2293, 2221 and 2213 and the magnet FMO212 to battery. When thus energized the magnet FM2212 operates to condition the single wiper 2211 of the finder switch F2210 to be driven one step in the counterclockwise direction, and to interrupt, at the contacts 2213, the previously traced circuit for energizing the magnet FM2212. Accordingly, the magnet FM2212 operates intermittently, thereby to drive the wiper 2211 of the finder switch F2210 step by step in the counterclockwise direction until it engages a contact in the associated contact bank terminating a test conductor having battery potential thereon identifying a calling register translator. In the present example, battery potential is applied by way of the storage relay R1330 in the register translator 70 and the contacts 1321 and 1231 to the test conductor C1274, thereby identifying the lastmentioned register translator as a calling register translator. Hence, when the wiper 2211 of the finder switch F2218 engages the contact in the associated contact bank terminating the test conductor C1271, a circuit is completed for energizing in series the winding of the hold relay $\mathrm{R2} 290$ in the detector 80 and the winding of the storage relay R!330 in the register translator 78 ; this circuit extending from ground by way of the winding of R229D, the wiper 2211 of the finder switch F2210 and the engaged contact in the associated contact bank, C1271, the contacts 1231 and 1321 and the winding of R1330 to battery. When this series circuit is completed the hold relay R2390 and the storage relay R1338 operated. Upon operating, the hold relay R2299 interrupts, at the contacts 2293, the previously traced circuit for energizing the magnet FM2212 of the finder switch F22io, thereby positively to prevent further operation of the finder srritch F22/n at this time. Also, the hold relay Rez90 completes, at the contacts 2292, an obvious circuit, including the contacts 2287, for enorizing the winding of the test hold relay R2270, thereby to cause the latter relay to operate; and completes, at the contacts 2292, an obvious circuit, including the contacts 2253, for energizing the winding of the release relay R2den, thereby to cause the latter relay to onerate. Upon operating, the test hold relay R2270 completes, at the contacts 2275 , an obvious circuit for energizing the winding of the test hold relay $R 2260$, thereby to cause the latter relay to operate.
In the register translator 70, upon operating, the storace relay Ri33n completes. at the contocts 1331. an obvious circuit for eneroizing the winding of the storave slave relay R!900, thereby to cause the latter relay to operate. Also, prior to this time, ground notential was applied to the hold conductor C1353, thereby to complete 5 an obvious circuit, including the contacts 1937, for energizing the master marnet. SUM 1935 of the mechanical storage unit sulg3n. When thus energized, the master magnet SUMIS35 operated to complete, at the contacts 1936, an obvious 0 holding circuit including the resistor 1938 and the grounded hold conductor Cl353 for energizing the last-mentioned magnet. Also, upon opexating, the master magnet SUMil935 released the mechanical interlock restraining the indi5 vidual unit or WYYZ magnets in the various
code storage devices S1931, S1932, S1933 and SIO34 against operation. Upon operating, the storage slave relay R1990 prepares, at the contacts 1947, 1948, 1949 and 1940, etc., circuits for energizing the various WXYZ magnets in the code storage devices Si931, etc. More particularly, the storage slave relay R1940 prepares circuits for energizing the WXYZ magnets in the respective code storage devices SI931, S1932, S1933 and SI934 by way of the respective grouns of WXYZ marking conductors 1970, 1979, 1978 and 1977. Further, the storage slave relay R1940 prepares, at the contacts 1942, a circuit traced hereinafter for energizing the winding of the cutoff relay RI320; and completes, at the contacts 1941, a connection between the S lead S43I extending to the line switch 30 individually associated with the private subscriber line 601 and the detector 80 . This connection extends from the S lead 5431 by way of the line switch 30 , the control conductor C 423 of the trunk 029 , the contacts 647, the wiper 593 of the finder switch F500, C515, the contacts 951, C982, the wiper l182 of the finder switch FI!8n. C1192, the contacts 1361 and 1981, and Cis7i to one terminal of the winding $22 n 4$ of the transformer 2202 in the detector 80 . Finally, the storace slave relay R 1940 prepares, at the contacts 1943, 1944, 1945 and 1946, paths for applving ground notential to the respective hold conductors C1973, C1974, C1975 and C1976 extending to the detector 80 . In the present example, no ground potential is apmied to the second, third and fourth hold conductors Ci974, C1975, and C!976, respectively, due to the fact that each of the narty relavs R1530, R1540 and R1550 in the register translator 10 occuries its restored position: however, ground potential is applied to the first hold conductor C1973 due to the fact that each of the party relavs RI530, R15A3 and R1550 occupies its restored nosition. The path for applying oround potential to the first hold conductor Cl 913 extending to the detector 80 includes the contacts 1532, 1542 and 1552 and the conductor Cl .

Returning now to the operation of the detector 80, it is pointed out that the S lead S431 also extends directly to the detector 80, the S lead S43I appearing before the tenth A relav in the tenth group, the A relay mentioned being 00A, as previously noted.

Also, upon operating, the hold relav R2299 completes, at the contacts 2291, an obvious multiple circuit, including the contacts 2282 and C2205, for energizing the windings of the ten \mathbf{C} relays OC to 9C, inclusive, thereby to cause the latter relays to operate. Upon operating, the respective C relays 0 C to 9 C , inclusive, connect the corresponding 100 test leads in the associated ten groups to corresponding ones of the test conductors C2500 to C2509, inclusive, in the group of ten, the ten test conductors mentioned evtending to the respective ten amplifiers DAMP to 9AMP, inclusive, as previously noted. Upon operating, the test hold relay R 2260 completes, at the contacts 2262, an obvious path, including the contacts 2273, for applving ground rotential to the hold conductor C2297; and completes, at the contacts 2264, an obvious circuit, including the contacts 2286 and 2232, for energizing in multiple the windings of the pulse relay R2230. When thus energized the pulse relay R2230 operates to interrunt at the contacts 2232. the previousy traced circuit for energizing the upper and lower windings thereof, thereby to cause the latter relay to step relay 2 K ; and prepares, at the contacts KB2 a point in a circuit substantia'ly identical to that previously traced for energizing the winding of the third step relay $3 K$. Upon restoring, the cycle relay KA prepares, at the contacts KAI, a is point in the previously mentioned holding circuit
for energizing the winding of the cycle relay KC.
In view of the above description of the cycle of operation of the step relays $1 \mathrm{~K}, 3 \mathrm{~K}$, etc., it will be understood that the step relays IK to OKK, inclusive, and the cycle relays KA, KB and XC are operated in the following order:

Number of Operations and Restorations of the Pulse Relay R2230	Operated Step and Cycle Relays
2	1 K and KA
3	2 K and KB
4	3K and KC
5	4K and KA
6	6 K and KB
7	7 K and KA
8	8 K and KB
9	9 K and KC
10	0 K and KA

Also, upon operating, the first step relay IK completes, at the contacts IK2, an obvious path, including the contacts 2216 and C2219, for applying ground potential to the first marking conductor in the cable 2601, thereby to complete a circuit for energizing the winding of the first B relay $1 B$, not shown, in the associated group of ten in order to cause the latter relay to operate, whereby the first group of 1000 S leads is tested, in a manner more fully explained hereinafter; similarly, the second step relay 2K completes, at the contacts 2 K 2 , an obvious path, including the contacts 2274 and C2219, for applying ground potential to the second marking conductor in the cable 2.001, thereby to complete a circuit for energizing the winding of the second B relay 2 B , not shown, in the associated group of ten in order to cause the latter relay to operate, whereby the second group of 1000 S leads is tested; etc. Finally, the tenth step relay 0K completes, at the contacts 6K2, an obvious path, including the contacts 2274 and C2219, for applying ground potential to the tenth marking conductor C2300 in the cable 2601, thereby to complete an obvicus circuit for energizing the winding of the tenth B relay 8 B in the associated group of ten in order to cause the latter relay to operate; whereby the tenth group of 1000 S leads is tested.
More particularly, upon operating, the tenth B relay OB prepares, at the contacts $3 B 8$ to OBS, inclusive, circuits for energizing the windings of the ten A relays in the associated group, the A relays 00A to 09A, inclusive. At this point, it is again noted that only the ones of the A relays 019 to 89A, inclusive, which are connected to the first hold conductor C1973 are operated at this time in view of the fact that only the first hold conductor Cl073 has ground potential thereon, in the present example. Accordingly, at this time, the A relays 08A, 01A, 05A, etc., and 09A are operated while the A relays $82 \mathrm{~A}, 83 \mathrm{~A}$ and 04 A are not operated, the A relays 02A, 03A and 04A being respectively connected to the second, third and fourth conductors C1974, C1975 and Cl978, respectively. Accordingly, the tenth B relay $0 B$ is operative to effect the testing of the 1000 s leads in the tenth group, in an extremely rapid manner, in view of the fact that 300 of the S leads in the 0 thousand group are eliminated immediately due to the failure of the A relays 02A, 88 A and 04A to operate. The circuits for energizing the windings of the various A relays 08A, 01A, etc., associated with the tenth B relay OB respec-

70
tively include the contacts OBQ, OBI, etc., and the grounded first hold conductor C1973.
When thus energized the tenth A relay 00A operates to connect the tenth group of 100 S leads in the 0 thousand group of s leads to the corresponding tenth group of 100 test leads; the first A relay 01A operates to connect the first group of 100 S leads in the 0 thousand group of S leads to the corresponding first group of 100 test leads; etc. Accordingly, at this time, the tenth group of 100 S leads in the 0 thousand group of S leads is connected by the tenth A relay DOA to the tenth group of 100 test leads, and therefrom by the tenth C relay 0 C to the tenth test conductor C2500; the first group of 100 S leads in the 0 thousand group of S leads is connected by the first A relay 01 A to the first group of 100 test leads, and therefrom by the first C relay 10 to the first test conductor C2581; etc. The tenth test conductor C2500 is connected by way of the tenth amplifier OAMP to the common conductor C22s5; the first test conductor C2501 is connected by way of the first amplifier IAMP to the common conductor C2205; etc. Finally, the common conductor $\mathbf{C 2 2 0 5}$ is connected to the other terminal of the winding 2204 of the transformer 2202.
At this time, the tone generator 2201 is operating, the circuit for operating the tone generator 2201 being completed at the contacts 2290 Que to the operated position of the hold relay R2290. The tone generator 2201 produces a 2000 cycle current which traverses the winding 2233 of the transformer 2202 and induces a corresponding voltage in the winding 2204 of the transformer 2203. The voltage induced in the winding 2200 of the transformer 2202 is connected by way of one terminal thereof, the conductor C197! and the previously traced path, including the register translator $\mathbf{1 0}$, the primary register 50 , the primary selector 40 and the line switch 30 to the S lead Si31; which latter lead is connected by way of the previously traced path, including the tenth amplifier OAMP, and the common conductor C2205 to the other terminal of the winding 2204 of the transformer 2212; the above-traced circuit being completed in view of the fact that the \mathbf{S} lead $\mathbf{S 4 3 1}$ extends to the line switch 30 individually associated with the private subscriber line 401, the numerical portion of the directory number of the private subscriber line 481 being 0099, as previously noted. However, the other circuits via the other nine amplifiers are not completed, for the reasons noted above.
Hence, at this time, the tenth amplifier BAMP operates in order to complete an obvious circuit for energizing the winding of the tenth test stop relay 0R. When thus energized the tenth test stop relay $8 R$ operates to complete, at the contacts ORI, an obvious circuit, including the contacts 2271, C2208 and C2600, for energizing the left-hand winding of the tenth test lock relay ©S, thereby to cause the latter relay to operate. Upon operating, the tenth test lock relay os completes, at the contacts OSI, an obvious holding circuit, including the contacts 2295 and C2214, for energizing the right-hand winding thereof in series with the winding of the test relay R2200, When this series circuit is completed the tenth test lock relay 0S is retained in its operated position and the test relay $R 2280$ operates. Upon operating, the test relay R2280 interrupts, at the contacts 2286, the previously

71
traced circuit for energizing the windings of the pulse relay R2230, thereby to cause the latter relay to restore and arrest further cyclic operation of the step relays 0 K to 9 K , inclusive. Also, the test relay R2280 completes, at the contacts 2289, a holding circuit, including the conductor C2216, the contacts 0S5, C2710 and the contacts 00AI, for energizing the winding of the tenth A relay 00 A , thereby to retain the latter relay in its operated position. Further, the test relay R2280 interrupts, at the contacts 2282, the previously traced multiple circuits for energizing the windings of the ten C relays $\mathbf{D C}$ to 9 C , inclusive, thereby to cause the latter relay to restore. When the tenth C relay ©C restores it interrupts, at the associated contacts, the previously traced circuit, including the tenth test.conductor C2500, for operating the tenth amplifier ©AMP, thereby to cause the latter amplifier to restore in order to effect the restoration of the tenth stop relay OR.

Further, the test relay R2280 completes, at the contacts 2281, an obvious path, including the contacts 2272, for applying ground potential to the marking conductor C2255; and completes, at the contacts 2280 , an obvious path, including the contacts 2279 , for applying ground potential to the marking conductor C2215. The application of ground potential to the marking conductor C2255 is effective to complete a path for applying ground potential to certain of the WXYZ conductors in the first group of marking conductors 1970, depending upon the particular operated one of the step relays 0 K to 9 K inclusive, at this time. In the present example, the tenth step relay OK occupies its operated position, a holding circuit being completed for energizing the winding of the tenth step relay OK and the cycle relay KA at this time. The tenth step relay OK occupies its operated position in view of the fact that one of the ten amplifiers OAMP to GAMP, inclusive, was operated incident to the operation of the tenth B relay $0 B$, the tenth B relay $0 B$ being operated incident to operation of the tenth step relay $0 K$ as previously explained. Hence, in the present example, the ground potential appearing upon the marking conductor C2255 is applied by way of the contacts 0K5 and 2312 to the Z conductor in the first group of marking conductors 1970 The application of ground potential to the Z conductor in the first group of marking conductors 1970 completes an obvious circuit for energizing the Z magnet in the first storage device Sis31 in the mechanical storage unit SUl930 in the register translator 70; whereby the latter magnet operates in order to effect a mechanical locking of its associated armature under the control of the master magnet SUMI935, whereby ground potential is applied to the Z conductor in the group of WXYZ marking conductors 1960 in the register translator 70, for a purpose more fully explained hereinafter. The marking of the Z conductor in the first group of marking conductors 1970 corresponds to the digit 0 , whereby the digit 0 is registered in the first storage device S1931 in the mechanical storage unit SU1930 in the register translator 10. The application of ground potential to the marking conductor $\mathbf{C 2 2 1 5}$ is effective to complete a path for applying ground potential to certain of the WXYZ conductors in the second group of marking conductors 1979, depending upon the particular operated one of the test lock relays oS to 9S, inclusive, at this time; which, in turn,
the test hold relay R2250, thereby to cause the
latter relay to restore shortly thereafter, the
test hold relay R 2263 being of the slow-to-re- lease type.
Upon restoring, the test hold relay R2260 completes, at the contacts 2261, an obvious alternative path, including the contacts 2284, for apply75 ing ground potential to the hold conductor

C2297; and completes, at the contacts 2263, an alternative circuit, including the contacts 8285 , 2252 and 2232, for energizing the windings of the puise relay R2230, whereby the latter relay again operates and restores intermittently. Further, the test hold relay R2200 completes, at the contacts 2267, a circuit, including the contacts $22: 6$ and 2294 , for energizing the winding of the switch relay R2310, thereoy to cause the latter relay to operate in order to prepare, at the contacts 2311 , etc., paths for appiying ground potential to the various WXYZ conductors in the third group of marking conductors 19:8. Each time the pulse relay 22230 operates and restores at this time, ground potential is again applied and removed from the pulse conductor C2298; whereby the step relays $1 \mathrm{~K}, 8 \mathrm{~K}$, etc., are operated sequentially and locked in series with the cycle relays KA, KB, etc., in the manner previously expiained.
Upon operating, the first step relay IK completes, at the contacts IK1, an obvious path, including the contacts 2255 and C2818, for applying ground potential to the first conductor in the cable 2101 , thereby to complete a circuit for energizing the winding of the first E relay IE, not shown, in the associated group of ten in order to cause the latter relay to operate, whereby the first group of ten conductors in the riser cable 2500 is tested; the group mentioned comprising one of ten groups in the riser cable 2508 which are connected by way of the operated tenth D relay 0D to the tenth group of 100 test leads; which tenth group of 105 test leads is connected by way of the operated tenth A relay OOA to the tenth group of 100 S leads in the 0 thousand group; the tenth group of 100 S leads in the 0 thousand group, including the S lead $\mathbf{S} 431$ extending to the line switch 30 individually associated with the private subscriber line 401, as previously noted. Similarly, upon operating, the second step relay 2 K completes, at the contacts 2 Ki , an obvious path, including the contacts 2265 and C2218, for applying ground potential to the second conductor in the cable 2101, thereby to complete a circuit for energizing the winding of the second E relay 2E, not shown, in the associated group of ten in order to cause the latter relay to operate; whereby the second group of ten conductors in the riser cable 2500 is tested, in the manner explained above. Finally, the ninth step relay 9K completes, at the contacts 9 KI , an obvious path, including the contacts 2265 and C2218, for applying ground potential to the ninth conductor C2319 in the cable 2101, thereby to complete an obvious circuit for energizing the winding of the ninth E relay 9 E in the associated group of ten in order to cause the latter relay to operate; whereby the ninth group of ten conductors in the riser cable 2500 is tested.

More particularly, upon operating, the ninth E relay 9 E completes, at the associated contacts, connections between the ten conductors in the ninth group in the riser cable 8500 and the respective ten test conductors C2503 to C2509, inclusive. At this time, the tenth group of 100 S leads in the 0 thousand group is connected by way of the operated tenth a relay but to the corresponding tenth group of 100 test conductors; and the ten groups of test leads in the tenth group of test leads are connected by the operated tenth D relay $O D$ to the ten groups of conductors in the riser cable 2500; and the ten step relay 9 K and the cycle relay KC at this time. The ninth step relay 9K occupies its operated position in view of the fact that one of the ten amplifiers GAMP to GAMP, inclusive, operated incident to the operation of the ninth E relay $9 E$, the ninth E relay $9 E$ being operated incident to operation of the ninth step relay 9 K , as previously explained. In the present example, the ground potential appearing upon the marking conductor C2255 is applied by way of the contacts 9K5 and 2313 to the Y conductor in the third group of marking conductors 1978. The application of ground potential to the Y conductor in the third group of marking conductors 1878 corresponding to the digit 9 causes the digit 9 to be registered in the third storage device S1933 in the mechanical storage unit SUl930 in the register translator 70 , in the manner previously explained. The application of ground potential to the marking conductor C2209 is effective to complete a path for applying ground potential to certain of the WXYZ conductors in the fourth group of marking conductors 1977, depending upon the particular operated one of the test mark relays 0T to 9T, inclusive, at this time; which in turn depends upon which of the ten amplifiers SAMP to SAMP, inclusive, was operated during the prior test, as previously explained. In the present example, the ninth test mark relay 9T occupies its operated position, a circuit 75 being completed for energizing the winding
thereof in series with the winding of the test relay $R 2250$ at this time. Hence, in the present example, the ground potential appearing upon the marking conductor C2209 is applied by way of the contacts 9 Tl to the Y conductor in the fourth group of marking conductors 1971. The application of ground potential to the Y conductor in the fourth group of marking conductors 1911 corresponding to the digit 9 is effective to cause the digit 9 to be registered in the fourth storage device Si934 in the mechanical storage unit SU1930 in the register translator 70, in the manner described above.
Finally, the test relay R2255 interrupts, at the contacts 2253, the previously traced circuit for energizing the winding of the release relay R2240, thereby to cause the latter relay to restore shortly thereafter, the release relay R2240 being of the slow-to-release type. Upon restoring, the release relay R2249 completes, at the contrets 22Al, a circuit for energizing the winding of the cutoff relay R1320 in the register translator 7 , this circuit extending from ground by way of the contacts 2283 and 2261, C1912, the contacts 1942, and the winding of R1320 to battery. When thus energized the cutoff relay RI328 operates to complete, at the contacts 1324, an obvious holding circuit, including the grounded hold conductor Cl353, for energizing the winding thereof. Also, the cutoff relay R132e interrupts, at the contacts 1323 , the previously traced path for applying ground potential to the start conductor C/311, thereby to interrupt the previously traced circuit for energizing the winding of the start relay R 2220 in the detector 80 , whereupon the latter relay restores. Also, the cutof relay R132? interrupts, at the contacts 1321, the previously traced holding circuit for energizing the winding of the storage relay R1330 in the register translator 70 in series with the winding of the hold relay R2290 in the detector 30, thereby to cause the latter relays to restore. Upon restoring, the storage relay R1325 interrupts, at the contacts 1331, the previously traced circuit for energizing the winding of the storage slave relay Riomo, thereby to cause the latter relay to restore. Upon restoring, the storage slave relay R19A0 interrupts, at the contacts 19A1, the previously traced connection extending between the winding 2204 of the transformer 2232 in the detector 83 and the 5 lead 533 ! extending to the line switch 30. Also, the storage slave relay Rught interrupts, at the contacts 1997, etc., the previously prepared circuits for energizing the various WXYZ magnets in the storage devices in the mechanical storage unit SUlo30. Finally, the storage slave relay RISAO interrupts, at the contacts 1093, etc., the previously prepared connections to the four hold conductors C1973, C1974, C1975 and C1976 extending to the detector 80.

At this time, the detector 80 has operated to detect the numerical portion of the directory number of the private subscriber line Afs extending to the calling private subscriber substation TP and has effected the registration of the detected numerical portion of the directory number mentioned in the mechanical storage unit SUl930 in the register translator 70. Move particularly, at this time, the four digits $0,0,9$ and 9 representing the numerical portion of the directory number of the private subscriber line 401 are respectively registered in the first, second, third and fourth code storage devices Sl031, S1982, S1933 and S1934 in the mechanical storage unit SU1930 in the register translator 70.

Incident to the restoration of the hold relay R 2290 in the detector 30 the release of this detector is effective. More particularly, upon restoring, the hold relay $R 2290$ interrupts, at the contacts 2295, the previously traced hoiding circuit for energizing the winding of the test relay R2280 in series with the right-hand winding of the test lock relay CS, thereby to cause the latter relays to restore. Also, the hold relay R2290 interrupis, at the contacts 2234 , the previously traced circuit for energizing the winding of the switch relay R2310, thereby to cause the latter relay to restore; and interrupts, at the contacts 2293, the previously traced circuit for operating the tone generator 2231. Upon restoring, the test relay R2280 interrupts, at the contacts 2201 , the previously traced path for applying ground potential to the marking conductor C2255; interrupts, at the contacts 2283, the previously traced original circuit for energizing the winding of the cutoif relay R1320 in the register translator 70; and interrupts, at the contacts 2204, the previously traced holding circuit for energizing the winding of the cycle relay KC in series with the winding of the ninth step relay 9 K , thereby to cause the latter relays to restore. Further, the test relay R2280 interrupts, at the contacts 2288, the previously traced circuit for energizing the winding of the test relay R2250 in series with the winding of the ninth test marking relay 9T, thereisy to cause the latter relays to restore. Further, the test relay R2200 interrupts, at the contacts 2289, the previously traced holding circuit for energizing the winding of the tenth A relay BOA, thereby to cause the latter relay to restore. Finally, the test relay R2280 interrupts, at the contacts 2280 , the previously traced pati for applying ground potential to the marking conductor C2215. Upon restoring, the ninth step relay 9K interrupts, at the contacts 9 KI , the previously traced circuit for energizing the winding of the ninth I relay 9포, thereby to cause the latter relay to restore. At this time, the detector 80 is completely released and available for further use.

5 Extension of the call by the register translator

Incident to the setting up of the present call the register trans:ator 70 first transmits the four routing digits 2462 to the primary selector 40, in the manner previously explained. More particularly, the four routing digits are transmitted by way of the grounded contacts 1423 of the pulse relay R1420, the contacts 1361^{\prime}, Cl195, the wiper 1185 of the finder switch Fil80, C985, the contacts 1084 and 1052, C514 and the wiper 504 of the finder switch F 500 to the primary selector 40; whereby the line relay R650 follows the first routing digit 2 in order to cause the wiper set of the switch mechanism 600 to be driven two steps in the vertical direction, in the manner previously explained. When the first routing digit 2 is completely transmitted from the register translator 10 the digit stop relay Ril460 operates, as previously explained, in order to complete, at the contacts 1465, a holding circuit substantially identical to that traced above for energizing the upper winding of the line relay R650, thereby positively to prevent further operation of the wiper set of the switch mechanism 600 in the primary selector 40 in the vertical direction. Also, the digit stop relay R1460 completes, at the contacts 1467, an obvious circuit for energizing the winding of the control relay R1210 in the register translator 70. When thus energized the control relay R1210 operates to
complete, at the contacts 1213, an obvious holding circuit, including the grounded hold conductor C653, for energizing the winding thereof.
Also, the control relay R1210 interrupts, at the contacts 1211 , the previously traced holding circuit for energizing the upper winding of the transfer relay R560 in series with the upper winding of the split relay R670 in the primary selector 40 , thereby to cause the transfer relay R660 to restore shortly thereafter, the latter relay being of the slow-to-release type. Upon restoring, the transfer relay R660 interrupts, at the contacts 661, the previously traced circuit for energizing the winding of the step relay R680, thereby to cause the latter relay to restore. Upon restoring, the step relay R680 causes operation of the rotary magnet M612, whereby the rotary magnet M612 and the step relay R680 interact, in the manner previously explained, in order to cause the wiper set of the switch mechanism 600 to be driven step by step in the rotary direction to hunt for an idle trunk in the associated group terminated in the second level in the contact bank 100. In this case, the test circuit for energizing the winding of the step relay R680, when the test wiper 603 of the wiper set in the switch mechanism 600 engages a busy contact, extends from the grounded test wiper 603 by way of the contacts 622 of the set of switch springs $\mathbf{S 6 2 0}$, the contacts 696 and 613, the contacts 619 of the set of switch springs $\mathbf{S 6 1 7}$, and the winding of R680 to battery. Assuming that the trunk extending to the toll ticket repeater 90 is the first idle trunk in the group terminated in the second level oî the contact bank $\mathbf{1 0 0}$ of the switch mechanism 600, the switch mechanism $600 \mathrm{op-}$ erates in order to cause the wiper set thereof to seize the trunk mentioned; whereby a circuit is completed for energizing the winding of the switch-through relay R690, in the manner previously explained. When thus energized the switch-through relay R690 operates to interrupt, at the contacts 691, a further point in the previously traced holding circuit for energizing the upper winding of the transfer relay R660 in series with the upper winding of the split relay R670; and to interrupt, at the contacts 693, the previously traced holding circuit for energizing the upper winding of the line relay R650, thereby to cause the latter relay to restore and effect restoration of the hold relay R 655 , in the manner previously explained. Further, the switchthrough relay $R 690$ completes, at the contacts 692 and 694 , switch-through connections between the line wipers 601 and 602 of the wiper set of the switch mechanism 600 and the register translator 70.

When the primary selector 40 thus operates to seize the trunk extending to the toll ticket repeater 90 the toll ticket repeater 90 is conditioned to respond to the second routing digit 4, the third routing digit 6 and the fourth routing digit 2, and to repeat the routing digits mentioned over the outgoing toll line 712 extending to exchange 1 zone 13. More particularly, at this time, ground potential is applied by way of the contacts 1423 and 1361', Cl195, the wiper 1185 of the finder switch F1180, C985, the contacts 1084 and 1052, C514, the wiper 504 of the finder switch F500, the contact; 644 and 694 to the negative line wiper 602 of the wiper set in the switch mechanism 690; and therefrom by way of the negative line conductor of the seized trunk to an impulse relay in the toll ticket repeater 90 .
In view of the above description, it will be contact bank, thereby to prepare a point in an alternative circuit traced hereinafter for energizing the upper and lower windings of the pulse relay R1310; when the second routing digit 4 has been 75 transmitted from the register translator 70 the
wher 1612 of the digit sequence switch Nisio engages the second contact in the associated contact bank, thereby to prepare another point in the previously mentioned alternative circuit for energizing the upper and lower windings of the pulse relay R1310; and when the cutoff relay R1320 operates, incident to the complete operation of the detector 80, it prepares, at the contacts 1322, a further point in the previously mentioned alternative circuit for energizing the upper and lower whangs of the pulse relay R1310. At this time, after the sixth digit 3 has been dialed at the calling private subscriber substation TP, after the second routing digit 4 has been transmitted from the register translator 70, and after the numerical portion of the directory number of the calling private subscriber substation TP has been registered in the code storage devices S1931 to S1934, inclusive, in the mechanical code storage unit SUI930, the previously mentioned alternative circuit for energizing the upper and lower windings of the pulse relay Ri310 is completed. This circuit extends from the grounded wiper 1842 of the register sequence switch si840 and the engaged sixth contact in the associated contact bank, the contacts 1322, the wiper 1612 of the digit sequence switch N1610 and the engaged second contact in the associated contact bank, C147, the contacts 1313 and the upper and lower windings of R1310 to battery. Accordingly, the pulse relay Ri3io again operates intermittently, in the manner previously explained.

Upon operating, the pulse relay R1315 completes, at the contacts 1314, an obvious circuit, including the contacts 1223, for energizing the magnet UMI915 of the storage transfer switch U1910. When thus energized the masnet UMtsis operates, thereby to condition the wipers noted of the storage transfer switch U1910 to be criven one step in the clockwise direction. Upon restoring, the pulse relay R1318 intermpts, at the contacts 1312, the premiously mentioned cincuit for energizing the magnet UMID 15 , theroby to cause the latter magnet to restore and drive the wipers noted of the storage transfer switch UIS10 one step in the clockwise direction, whereupon the set of switch springs USI 917 is actuated. When the set of switch springs UST917 is thus actuated there is completed, at the contacts 1012^{\prime} thereof, an obvious holding circuit, including the contacts 1435, C1471 and the contacts 1313 , for energizing the upper and lower windings of the pulse relay R-1319.
Also, upon operating, the pulse relay R13is completes, at the contacts $13!2$, a paith for applying ground potentisi, either direet groand potential by way of the wipers $\{612,1913$ or 1814 of the storage transfer switch $\mathrm{U} / 310$, or resistance ground potential by way of the resistor 1414 to the conductor Clis7. The path for applying resistance ground potential to the conductor Clifi extends from ground by way of the resistor 1414 and the contacts 1364,1312 and 1212 to the conductor Cl1.37; while the path for applying direct ground potential to the conductor Cl197 extends from the ungrounded terminal of the resistor 14 dia by way of the previousiy traced path to the conductor Cil97; and from the ungrounded terminal of the resistor latia by way of the contacts 1301 to the wipers 1912 and $19!3$ of the storage transfer switch U1010 or from thie ungrounded terminal of the resistor 14 f 施 way of the contacts 1432 to the wiper 1814 of the storage transfer switch U1910.

Accordingly, each time the pulse relay R 1310 switch RIS20 mark the associated WXYZ leads in the group of marking leads 1951 in accordarre with the digit 6 , the Y and Z leads in the group of marking leads $195!$ being marked. Also, the first code digit 6 , the second code digit 2 and the third code digit 4 are respectively registered in the first code switch A1710, the second 75 code switch B1720 and the third code switch

Cl190, thereby to cause the WXYZ leads in the groups of marking leads 1952, 1855 and 1954 to be marked, respectively, in accordance with the digits 2, 6 and 4; similarly, the first numerical digit 1, the second numerical digit 2, the third numerical digit 3 and the fourth numerical digit 4 are respectively registered in the first numerical switch D1740, the second numerical switch El750, the third numerical switch FI840 and the fourth numerical switch G1820, thereby to cause the WXYZ leads in the groups of marking leads 1958, 1955 and 1955 to be marked, respectively, in accordance with the digits $1,2,3$ and 4 . The extended service relay R 1920 does not occupy its operated position in the present example. Accordingly, there is no marking of the WXYZ leads in the group of marking leads 1953. Finally, the digits $0,0,9$ and 9 are respectively registered in the code storage devices S1931, S1932, S1033 and S.1934 in the mechanical storage unit SUI930, thereby to cause the WXYZ leads in the groups of marking leads 1960, 1951, 1983 and 1963 to be marked, respectively, in accordance with the digits $0,0,9$ and 9 .

In the storage transier switch U1910 the wiper 19.12 first successively engages the contacts in the associated contact bank; then the wiper 1913 successively engages the contacts in the associattd contact bank; and finally the wiper 1910 successively engages the contacts in the associated contact bank. When the wipers noted of the storage transfer switch U1910 are driven one step in the clockwise direction the set of switch springs USi917 is actuated, as previously noted; whereupon there is completed, at the contacts 1911', a circuit, including the contacts 1433, for energizing the upper winding of the wiper switch relay R1g30. When the upper winding of the wiper switch relay Ri430 is thus energized this relay operates partially, thereby to complete, at the contacts 1434, an obvious path for short-circuiting the lower winding thereof. After the wipers noted of the storage transfer Switch U1910 have been driven one complete revolution back into their home positions the set of switch springs USIG17 is again actuated, thereby to interrupt, at the contacts 1911^{\prime} thereof, the previously mentioned path for short-circuiting the lower winding of the wiper switch relay RI430, whereupon the latter relay operates fully. Upon operating fully, the wiper switch relay R1430 interrupts, at the contacts 1433 , a further point in the previously traced original operating circuit for energizing the upper wind-
ing thereof, and to transfer, at the contacts 1431 and 432, the previously traced direct ground path from the wipers 4912 and 1913 of the storage transfer switch U1910 to the wiper 1914 of the storage transfer switch U1910, for a purpose more fully explained hereinafter.

At this time, either direct ground potential or resistance ground potential is applied by way of one of the previously traced paths to the conductor CAM97, and therefrom by way of the wiper 1187 of the finder switch F480, Ce87, the contacts 1086, C312, the wiper 502 of the finder switch F530, the contacts 641 and 692 and the positive line wiper 601 of the wiper set in the switch mechanism 600 to the positive line conductor of the trumk extending to the toll ticket repeater 98; a step relay and a code relay in the toll ticket repeater being connected between the positive line conductor of the trunk extending thereto and battery. It is noted that the code relay in the toll ticket repeater 98 is of the marginal type. Accordingly, in the toll ticket repeater 98 , the step relay operates each time either direct ground potential or resistance grewnd potential is applied to the conductor CH97 and, consequently, to the positive line conductor of the trunk extending ther:to; while the code relay operates only each time direct ground potential is applied to the conductor Clig7 and, consequently, to the positive line conductor of the trunk extending thereto.
Also, the toll ticket repeater 90 comprises a register switch and a mechanical code storage unit; the pulse relay R1310 being operative to operate the storage transfer switch U1019 in the register translator 73 and the storage register switch in the toll ticket repeater 90 in synchronism. Accordingly, the code markings corresponding to different digits appearing upon the WXYZ leads in the various groups of marking leads assaciated with the storage transfer switch U1910 are transferred by way of the storage register switch in the toll ticket repeater 90 to corresponding ones of the code storage devices in the toll ticket repeater 98 .
At the conclusion of the cycle of operation of the storage transfer switch U1910 in the register translator 70 and the storage register switch in the toll ticket repeater 90 , the various items of record information stored in the register translator 70 have been transferred to the various code storage devices in the mechanical code storage unit in the toll ticket repeater and represent the following information, as indicated below:

Switch in Register Translator 70 Transferred from-	Code Storage Device in Toll Ticket Repeater 90 Transferred to	Nature of the Record Information
Rate and route switch R1620.- First code switch A1710	First	The rate factor applicable to the toll call between the calling private subscriber substation TP in exchange 1 zone 38 and the called subscriber substation in exchange 4 zone 62 , the digit 6 .
Second code switch B1720.	Third	The respective first, second and third digits of the code portion of the directory
Third code switch C1730-----	Fourth	thereof, the digits 6,2 and 4.
First numerical register D1740	Fifth	The respective first, second, third and fourth digits of the numerical portion of
Third numerical register F1810--	Sevent	the directory number of the called subscriber substation identifying the
Fourth numerical register G1820	Eighth	subscriber line terminal thereof, the digits $1,2,3$ and 4.
Blank	Ninth	Blank.
Estended service relay R1520	Ten	The extended service digit 9 in the event the calling private subscriber sub-
Code storage device ;1931	Elevent	he respertize fist seod thid d
Code storage device S1932-	Twirth	-
Code storage device S1934.-.	Fourteen	fying the subseriber line terminal thereof, the digits $0,0,9$ and 9 .

83

It is noted that the resistance ground and direct ground impulses transmitted by the pulse relay Ri3iv over the positive line conductor of the trunk extending to the toll ticket repeater 90 are transmitted simultaneously with the transmission of impuises by the pulse relay R1420 over the negative line conductor of the trunk extending to the to. ticket repeater 90 . The impulses tiansmitted over the positive line conductor of the trunk extending to the toll ticket repeater 90 constitute code digits corresponding to record information digits; while the impulses transmitted over the negative line conductor of the trunk extending to the toll ticket repeater 90 constitute numerical digits corresponding to switch control digits. However, in view of the fact that the pulse relay R1310 operates considerably faster than the pulse relay R1420, the code digits are completely transmitted from the legister translator 70 prior to the complete transmission of the numerical digits from the register translator 10.

It is pointed out that, after the wipers noted of the storage transfer switch U1910 in the register translator 70 have been driven one complete revolution in the clockwise direction, the wiper switch relay R1430 operates, as previously explaned. Also, upon operating, the wiper switch relay Rl433 completes, at the contacts 1437, an aiternative circuit for energizing the upper and lower windings of the pulse relay R1310, this circuit extending from ground by way of the contacts 1437, the wiper 1911 of the storage transfer switch U1919 and the engaged home contact in the associated contact bank, the contacts 1435 , C1471, the contacts 1313 and the windings of R1313 to battery. After the wipers noted of the storage transfer switch U1910 have been driven one complete revolution in the clockwise direction and six additional steps away from their home positions, all of the record information stored in the register translator 70 has been transferred to the various code storage devices in the mechanical storage unit in the toll ticket repeater 90, in the manner previously explained. Accordingly, when the wiper 1911 of the storage transfer switch UI910 disengages the fifth contact and engages the sixth contact in the associated contact bank, the previously traced alternative circuit for energizing the windings of the puise relay R1310 is interrupted, thereby to arrest further operation of the latter relay at this time.

After the seventh digit 4 dialed at the calling private subscriber substation TP and registered in the fourth numerical switch Gl820 in the registered translator 70 has been transmitted therefrom to the toll ticket repeater 90 , the wipers noted of the digit sequence switch NIG10 are driven an additional step in the counterclockwise direction; whereupon the wiper 1813 of the lastmentioned switch engages the ninth contact in the associated contact bank, thereby to complete an alternative circuit for energizing the magnet INMIG14 of the digit sequence switch Niglo. The last-mentioned circuit extends from ground by way of the contacts 1282, the wiper 1813 of the digit sequence switch Nisi8 and the engaged ninth contact in the associated contact bank, Cl13, the contacts 1615 and the magnet NM1614 to battery. When thus energized the magnet NMIG14 operates, thereby to interrupt, at the contacts 1615 , the previously traced circuit for energizing the magnet NMIG14, whereupon the latter magnet restores. Upon operating and re-
storing, the magnet NM1614 drives the wipers noted of the digit sequence switch NIG10 an additional step in the counterclockwise direction; whereupon the wiper 1612 thereof engages the tenth contact in the associated contact bank in order to complete a further circuit for energizing the upper and lower windings of the pulse reay R1310. This circuit extends from ground by way of the contacts 1437, the wiper 19/1 of the storage transfer switch U1910 and the engaged sixth contact in the associated contact bank, CII5 the wiper 1612 of the digit sequence switch Ni610 and the engaged tenth contact in the associated contact bank, C1471, the contacts 1313 and the windings of R1310 to battery. When this circuit is completed the pulse relay R1310 operates and restores, thereby to complete and interrupt, at the contacts 1312 , the previously traced path for applying resistance ground potential by way of the resistor 1814 to the conductor Cil97 and, consequently, to the positive line conductor of the trunk extending to the toll ticket repeater 90. Also, the pulse relay R1310 completes and interrupts, at the contacts 1314, the previously traced circuit for energizing the magnet UM1915 of the storage transfer switch U1910, thereby to cause the wipers noted of the last-mentioned switch to be driven an additional step in the c.ockwise direction; whereupon the w.per 1911 thereof engages the seventh contact in the associated contact banik, for a purpose more fully explained hereinafter
When this additional resistance ground impulse is transmitted over the conductor Cll97 and consequently the positive line conductor of the trunk extending to the tool ticket repeater 90 , the toll ticket repeater 90 switches through, thereby to complete a talking connection between the calling private subscriber substation TP in exchange 1 zone 38 and the called subscriber substation in exchange 4 zone 62.
When the wiper 1911 of the storage transfer switch U1910 engages the seventh contact in the associated contact bank an obvious circuit, including the contacts 1431 and C114, is completed for energizing the upper winding of the release relay R1450, thereby to cause the latter relay to operate. Upon operating, the release relay R1450 interrupts, at the contacts 1451 , a further point in the previously traced circuit for energizing the winding of the start relay R1410, the latter relay occupying its restored position at this time. Also, the release relay R1450 prepares, at the contacts 1452, an alternative path for applying ground potential to the start conductor Cli52. Further, the release relay R1450 interrupts, at the contacts 1455, the previously traced circuit for energizing the magnet SMI843, thereby to cause the latter magnet to restore and drive the wipers noted of the register sequence switch SI840 an additional step in the counterclockwise direction. Further, the release relay R 1450 completes, at the contacts 1454, a circuit including the conductor Cl198', the wiper 1188 of the finder switch Fll80 and the conductor C988 for energizing the winding of the release relay R1060 in the primary register 50, thereby to cause the latter relay to operate and effect the release of the primary register 50 and the register trans70 lator 70.

Release of the primary register and the register translator

In the primary register 53, upon operating, the release relay R10G0 completes, at the con-
tacts 106f, the previously traced holding circuit for energizing the winding thereof. Also, the release relay R1050 interrupts, at the contacts 1851, the previously traced holding circuit for energizing the winding of the cut-in relay R630 in the primary selector 80 in series with the magnet FM501 of the finder switch F500, thereby to cause the cut-in relay R 630 to restore. In the primary selector 48 , upon restoring, the cut-in relay R630 interrupts, at the contacts 631 and 032, the previously traced series circuit for energizing the upper and lower windings of the party line relay $R 913$ and the upper winding of the line relay R920 in the primary register 59 , thereby to cause the line relay R923 to restore. Further, the cut-in relay $R S 30$ interrupts, at the contacts 633, the previously traced holding circuit for energizing the winding of the send relay RS40 in the primary selector 60 , thereby to cause the latter relay to restore. Upon restoring, the send relay R896 completes, at the contacts 682 and 685 , the previously traced connection between the trunk 223 and the wiper set of the switch mechanism ธิ⿵ิิ. Accordingly, at this time, a connection is completed between the calling private subscriber substation TP and the toll line 719 by way of the private subscriber line 801, the line switch 30 , the trunk 820 , the primary selector 80 and the toll ticket repeater 90; and therefrom by way of the automatic switching apparatus in exchange I zone 73, the exchange in zone 05 , exchange 1 zone 62 and exchange f zone 62 to the subscriber line extending to the called subscriber substation.

In the primary register 50, upon restoring the line relay $R 828$ interrupts, at the contacts 923. the previously traced circuit for energiz'ng the winding of the hold relay R1040, thereby to cause the latter relay to restore shortly thereafter, the hold relay R1048 being of the slow-to-release typs. Also, upon operating, the release relay R1068 interrupts, at the contacts 1665 , the previously traced holding circuit for energizing in series the windings of the cutofi relays R103s and R930, thereby to cause the latter relays to restore. Upon restoring, the hold relay R 1 BEO interrupts, at the contacts 1047, the previously traced holding circuit for energizing in series the upper and lower windings of the digit cutoff relay Rille, thereby to cause the latter relay to restore. Further, the hold relay R10f8 completes, at the contacts 1033 , a release circuit for energizing the lower winding of the release hold relay R360 in series with the magnet of one of the var:ous switches. At this time, a circuit is completed for energizing the lower winding of the release hold relay R 960 in series with the magnet SMI83s of the sequence switch S839, the lastmentioned circuit extending from ground by way of the contacts 1043, the lower winding of R960, the contacts 837 of the set of switch springs SS836, the contacts 835 and the magnet SM83 battery. When this series circuit is completed the release hold relay RSSO operates, thereby to complete, at the contacts 961 , an alternative holding circuit for energizing the winding of the send relay R1010, thereby to cause the latter relay to remain in its operated position at this time. Also, when the hold relay RIoed restores it interrupts, at the contacts 1088, the previously traced holding circuit for energ:zing the winding of the control relay R976, thereby to cause the latter relay to restore. Upon restoring, the control relay R970 interrupts, at the contacts 975 , the previously traced circuit for energizing the
winding of the delay send relay R1038, thereby to cause the latter relay to restore. Further, the control relay R970 interrupts, at the contacts 974, the previously traced circuit for energizing the magnet BNI813 of the second code switch B810, thereby to cause the latter magnet to restore and drive the wipers noted an additional step in the clockwise direction.

When the above-traced circuit for energizing the lower winding of the release hold relay R960 in series with the magnet SNI 834 of the sequence switch S880 is completed, the magnet SM834 operates intermittently, thereby to drive the wipers noted of the sequence switch 5830 step by step in the counterciockwise direction back into their home positions. When the sequence switch s 830 is thus released the set of switch springs SS336 is actuated, whereupon a circuit substantially identical to that previously traced is completed for energizing the lower winding of the release hold relay R860 in series with the magnet AM803 of the first code switch A850. The last-mentioned circuit extends from ground by way of the previously traced path, the contacts 83 名 of the set of switch springs SS83G, the contacts 806 of the set of switch springs AS805, the contacts 808 and the magnet ANDOU to battery. When the magnet AM803 is thus energized it operates intermittently, thereby to drive the wipers noted of the first code switch As00 step by step in the counterclockwise direction back into their home positions.
When the first code switch A800 is thus released the set of switch springs AS835 is actuated, whereupon a circuit substantially identical to that previously traced is completed for energizing the lower winding of the release hold re'ay R930 in series with the magnet CM822 of the third code switch C020. The last-mentioned circuit extends from ground by way of the previously traced path, the contacts 807 of the set of switch springs AS805, the contacts 824 of the set of switch springs CEB23, the contacts 823 and the magnet CM822 to battery.

When the magnet CME2? is thus energized it operates intermittently, thereby to drive the single wiper of the third code switch C820 step by step in the counterclockwise direction back into its home position. When the third code switch C820 is thus released the set of switch springs CS823 is actuated, whereby a circuit substantially identical to that previously traced is completed for energizing the lower winding of the release hold relay Re60 in series with the magnet BM813 of the second code switch BSIO. The last-mentioned circuit extends from ground by way of the previously traced path, the contacts 325 of the set of switch springs CS323, the contacts 816 of the set of switch springs BS815, the contacts 818 and the magnet BM8!8 to battery. When thus energized the magnet BM813 operates intermittently, thereby to drive the wipers noted of the second code switch B810 step by step in the countarclockwise direction back into their home positions. When the second code switch B810 is thus released the set of switch springs BS815 is actuated, thereby to interrupt, at the contacts 810, the previously traced circuit for energizing the lower winding of the release hold relay R960, whereupon the latter relay restores shortly thereafter. It is noted that, while the release hold relay R960 occupies its operated position, it completes, at the contacts 962, a path, including the contacts 1073 and 1094, for applying ground potential to the test conductor C516,
thereby to mark the primary register 50 as busy to the finder switches F500, etc., having access thereto.

Upon restoring, the cutoff relay R950 completes, at the contacts 952 and 950 , a circuit for energizing the magnet UM843 of the send switch U8f0. The last-mentioned circuit extends from the grounded multiple in the contact bank associated with the wiper 842 by way of the contacts 956 , the wiper 842 and the engaged twenty-fourth contact in the associated contact bank, the contacts 952 and 694 and the magnet UM843 to battery. When thus energized the magnet UMB4S operates and restores, thereby to drive the wipers noted of the send switch U840 an additional step in the clockwise direction back into their home positions. When the send switch U8dO is thus released the wiper 842 thereof disengages the twenty-fourth contact in the associated contact bank, thereby to interrupt the above-traced circuit for energizing the magnet UM843.
When the third code switch C828 is thus released the previously traced operating circuit for energizing the winding of the translate relay R1050 is interrupted, the previously traced holding circuit for energizing the winding of the translate relay R1050 being previously interrupted. Accordingly, the translate relay R1050 restores at this time. At this point, it is noted that, until the mechanical impulse repeater 1170 completely repeats the seventh digit 4 to the register translator 70 , the set of switch springs SII17 occupies its actuated position, thereby to prepare an obvious holding circuit, including the contacts 1042, for energizing the upper winding of the release hold relay R960. However, at this time, the mechanical impulse repeater 1170 is completely released and the set of switch springs Slli7 is actuated into disengagement. Accordingly, the release hold relay R960 restores shortly after the previously traced circuit for energizing the lower winding thereof is interrupted, as previously explained. Upon restoring, the release hold relay R950 interrupts, at the contacts 961, the previously traced alternative circuit for energizing the winding of the send relay R1010, thereby to cause the latter relay to restore. Further, the release hold relay R960 interrupts, at the contacts 962, the previously traced path for applying ground potential to the test conductor C516, thereby to mark the primary register 50 as idle to the finder switches F500, etc., having access thereto. At this time, the primary register 50 is completely released and available for further use.

At this point, it is noted that, in the event one of the party relays RII20, Rll30 or RII40 in the primary register 50 has previously occupied its operated position, the operated party relay would be restored incident to the restoration of the hold relay R1040. Similarly, in the event the extended service relay R9a3 in the primary register 50 had been operated, the latter relay would have been released incident to the restoration of the send relay R650 in the primary selector 40 , in the manner previously explained.

When the primary register 50 is released, as explained above, ground potential is removed from the test conductor Cl194 incident to the operation of the release relay Rlose in the primary register 50. When ground potential is removed from the test conductor Cll94 the previously traced holding circuit for energizing the winding of the cut-in relay Rl350 in the register translator 10 and the magnet FMII88
of the finder switch FII80 is interrupted, thereby to cause the cut-in relay R1360 to restore. Upon restoring, the cut-in relay R1360 completes, at the contacts 1362, the previously mentioned alternative path, including the contacts 1452, for applying ground potential to the start conductor C1152, thereby to mark the register translator 10 as busy to the register translator allotter 60. Also, the cut-in relay R1350 interrupts, at the contacts 1361, the previously traced holding circuit for energizing the lower winding of the hold relay $\mathrm{R} \mathbf{2 6 0}$, thereby to cause the latter relay to restore. Upon restoring, the hold relay R1260 interrupts, at the contacts 1264, the previously mentioned path for applying ground potential to the hold conductor Cl 353 . When ground potential is removed from the hold conductor Cl 353 the previously traced holding circuit for energizing the winding of the control relay RI2IO, for energizing the upper winding of the stop relay R1220, for energizing the lower winding of the transfer relay R1230, for energizing the winding of the cutoff relay R1320, for energizing the upper and lower windings of the wiper switch relay Rl430, and for energizing the winding of the first digit relay R/510, are interrupted, thereby to cause the relays mentioned to restore. Also, when ground potential is removed from the hold conductor C1353 the previously traced holding circuit for energizing the master magnet SUM 1935 of the mechanical storage unit SU 1930 is interrupted, thereby to cause the latter magnet to restore in order to release each of the storage devices Si931, SI932, SI933 and S1934. Further, when ground potential is removed from the hold conductor C1353, the slip relay R1240, the extended service relay R1520 and the various party relays RI530, R1540 and R1550 restore, in the event any one of the relays mentioned occupies its operated position at this time.

Also, upon restoring, the hold relay Ri260 completes, at the contacts 1201, a holding circuit for energizing the lower winding of the release magnet $R 1450$ in series with the winding of the release slave relay PI250 and the magnet of one of the various switches. At this time, a circuit is completed for energizing in series the lower winding of the release relay R1450, the winding of the release slave relay R1250 and the magnet NMIGI4 of the digit sequence switch NIGIO, this circuit extending from the grounded wiper 1921 of the sender switch K1920 and the engaged home contact in the associated contact bank, the lower winding of R1450, the contacts 1281, the winding of R1250, the contacts 1618 of the set of switch springs NS 1616 , the contacts 1615 and the magnet NMIG14 to battery. When this series circuit is completed the release relay R1450 is retained in its operated position; the release slave relay R1250 operates and the magnet NMIGI4 operates and restores, thereby to drive the wipers noted of the digit sequence switch NI§IO an additional step in the counterclockwise direction back into their home positions. When the digit sequence switch NIG10 is thus released the set of switch springs NSIGIG is actuated, thereby to complete a circuit substantially identical to that previously traced for energizing in series the lower winding of the release relay R1850, the winding of the slave relay R1259 and the rotary magnet RM1631 of the rate and route switch R1620. The last-mentioned circuit extends from ground by way of the previously traced path, the contacts 1517 of the 75 set of switch springs NSi616, the contacts 1633
of the set of switch springs RS1032, the contacts 1631 ' and the rotary magnet RMI 531 to battery. When this series circuit is completed the rotary magnet RMI63) operates intermittently, thereby to drive the wiper set of the rate and route switch R1620 step by step in the rotary direction until it is driven eleven steps in the rotary direction away from its normal rotary position; whereupon the wiper set is returned to its normal vertical and rotary positions, in a well-known manner. When the rate and route switch R1s20 is thus released the set of switch springs RStSe32 is actuated, thereby to complete a circuit substantially identical to that previously traced for energizing in series the lower winding of the release relay R1G50, the winding of the release slave relay R1256 and the rotary magnet PMIS51 of the composite code switch P1640. This series circuit extends from ground by way of the previously traced path, the contarts 1634 of the set of switch springs RSI892, the contacts 1958 of the set of switch springs PS1652, the contacts 1552 and the magnet PMIC5I to battery. When this series circuit is completed the rotary magnet PMI651 operates intermittently, thereby to drive the wiper set of the composite code switch P13A8 step by step in the rotary direction eleven steps away from its normal rotary position, whereupon the wiper set of the composite code switch P1596 is returned to its normal vertical and rotary positions.
When the composite code switch Pi640 is thus released the set of switch springs PSIS52 is actuated, thereby to complete a circuit substantially identical to that previously traced for energizing in series the lower winding of the release relay Rlfent the winding of the release slave relay R1250 and the magnet GMiser of the fourth numerical switch Gle2t. This series circuit extends from ground by way of the previousiy traced path, the contacts 1653 of the set of switch springs PSi652, C 121 , the contacts 1823 of the set of switch springs GS1825, the contacts 1826 and the magnet GMIS2 to battery. When thus energized the magnet CMI 32 d operates intermittently, thereby to drive the wipers noted of the fourth numerical switch Gl822 step by stey in the counterclockwise direction back into their home positions. When the fcurth numerical switch Gl820 is thus released the set of switch springs GS1825 is actuated, thereby to complete a circuit substantially identieal to that previously traced for energizing in series the lower winding of the release relay R450, the winding of the slave relay R1250 and the magnet FMMBIA of the third numerical switch Fieri. This series circuit extends from ground by way of the previously traced path, the contacts. 1827 of the set of switch springs GSI625, the contacts fgrg of the set of switch springs FSIBlS, the coatects 18.5 and the magnet FMuete. When thus energized the magnet FM1814 operates intermittently, thereby to drive the winers noted of the third numerical switch Frisio step by step. in the counterclockwise direction back into their home positions.

When the third numerical switch Fl8/0 is thus released the set of switrh springs FiSl815 is actuated, thereby to complete a circuit substantially idention to that previously traced for energizing in series the lower winding of the release relay R(456, the winding of the release slave relay Rlatid and the magnet EMITEG of the second numerical switch E1750. This series circuit exfends from growad by way of the previously traced path, the contacts 4818 of the set of switch springs switch springs. ASI7IG, the contacts 1715 and the magnet ANITIA to battery. When thus energized the magnet AMITIA operates intermittently, thereby to drive the wipers noted of the first code switch Al713 step by step in the counterclockwise 75 direction back into their home positions.

91

When the first code switch AITIO is thus released the set of switch springs ASI716 is actuated, thereby to complete a circuit substantially identical to that previously traced for energizing in series the lower winding of the release relay RI450, the winding of the release slave relay R1250, and the magnet UMi915 of the storage transfer switch U1910. This series circuit extends from ground by way of the previously traced path, the contacts 1718 of the set of switch springs AS1716, C129, the contacts 1918 of the set of switch springs US 1917, the contacts 1916, and the magnet UMi915 to battery. When thus energized the magnet UM 1915 operates intermittently, thereby to drive the wipers noted of the storage transfer switch U1910 step by step in the clockwise direction back into their home positions. When the storage transfer switch U1910 is thus released the set of switch springs US! 917 is actuated, thereby to complete a circuit substantially identical to that previously traced for energizing in series the lower winding of the release relay Ri450, the winding of the release slave relay R1250, and the magnet UMBI832 of the station switch UB1830. This circuit extends from ground by way of the previously traced path, the contacts igis of the set of switch springs USI917, CI36, the contacts 1836 of the set of switch springs UBSI834, the contacts 1833 and the magnet UBMI 832 to battery. When thus energized the magnet UBMI 232 operates intermittently, thereby to drive the single wiper of the station switch UB1830 step by step in the counterclockwise direction back into its home position. When the station switch UBI838 is thus released the set of switch springs UBSI834 is actuated, thereby to complete a circuit substantially identical to that previously traced for energizing in series the lower winding of the release relay R1450, the winding of the release s.ave relay R1250, and the magnet SM1843 of the register sequence switch s1840. This series circuit extends from ground by way of the previously traced path, the contacts 1835 of the set of switch springs UBSI834, the contacts of the set of switch springs SS1845, the contacts 1844, and the magnet SM1843 to battery. When thus energized the magnet SMI 843 operates intermittently, thereby to drive the wipers noted of the register sequence switch S 1840 step by step in the counterclockwise direction back into their home positions. When the reaister sequence switch $\mathbf{S 1 8 4 0}$ is thus released the set of switch springs SS1845 is actuated, thereby to interrupt the previously traced holding circuit for energizing in series the lower winding of the release relay RIS50 and the winding of the release slave relay R1250; whereupon the latter relays restore shortly thereafter, the release relay R1453 and the release slave re'ay R1250 being of the slow-to-release type.

Upon restoring, the release relay R1450 recompletes, at the contacts 1451, the previously traced path for applying ground potential by way of the winding of the start relay R1410 to the start conductor Cll 52 , thereby to mark the register translator 10 as idle to the register translator allotter 60. At this time, the register translator 10 is completely released and available for further use.

Additional operation of the toll ticket repeater

Again considering the operation of the toll ticket repeater 90, a connection has been established between the calling private subscriber substation TP and the subscriber line extending to
the called subscriber substation. In the event the called subscriber substation is busy at this time, busy tone current is returned from the automatic switching apparatus in exchange 4 zone 62 over the previously traced connection to the toll line 712; and therefrom by way of the toll ticket repeater 90 , the primary selector 40 , the line switch 30 and the private subscriber line 401 to the calling private subscriber substation TP, thereby to indicate that the called subscriber substation is busy in accordance with conventional practice. On the other hand, in the event the called subscriber substation is idle at this time, ringing current is projected over the subscriber line extending thereto and ring-back tone current is returned over the previously traced connection to the calling private subscriber substation TP, thereby to operate the ringer thereat in order to give the subscriber at the calling private subscriber substation TP supervision.

When the subscriber at the called subscriber substation in exchange 4 zone 62 answers the call extending thereto an operative communication connected is completed between the calling private subscriber substation TP in exchange I zone 38 and the called subscriber substation in exchange 4 zone 62; and an answer relay in the toll ticket repeater 90 operates, thereby to initiate a timing operation in the toll ticket repeater 90 , whereby the duration of the call is registered in the toll ticket repeater 90. More particularly, the timing apparatus in the toll ticket repeater 90 operates progressively to register both the ten minute and the unit minute time intervals of the established connection, a minimum time interval of three minutes being automatically established shortly following the completion of the established connection. Also, it is noted that the toll ticket repeater 90 comprises an alarm apparatus which is operative in the event the established connection is maintained a time interval of 99 minutes.
It is pointed out that the charge for a toll call is normally assessed against the calling subscriber substation; however, facility is provided in the toll ticket repeater 90 for assessing the charge for the toll call against the called subscriber substation, thereby effecting a reversal of charges for the toll connection. In the present example, in the event the charge for the toll call extending between the calling private subscriber substation TP in exchange 1 zons 38 and the called subscriber substation in exchange 4 zone 62 is to be reversed and assessed against the called subscriber substation in exchange 4 zone 62, the subscriber at the called subscriber substation in exchange 4 zone 62 dials the sincle digit 0 over the established connection without either the subscriber at the calling private subscriber substation TP in exchange I zone 38 or the subscriber at the called subscriber substation in exchange 4 zone 62 replacing the receiver of the telephone instrument thereat upon its associated switchhook.

Operation of the toll ticketing apparatus

In the present example, assuming that the established connection between the calling private subscriber substation TP in exchange 1 zone 38 70 and the called subscriber substation in exchange 4 zone 62 is maintained for thirty-two minutes and that, after the elapse of the time interval mentioned, the subscriber at the calling private subscriber substation TP in exchange I zone 38 70 replaces the receiver of the telephone instrument
thereat upon its associated switchhook, when this is done the previously traced connection between the calling private subscriber substation TP in exchange 1 zone 38 and the toll ticket repeater 90 is interrupted; whereupon the toll ticket repeater 90 operates in order to effect the release of the automatic switching apparatus in exchange I zone 73, the exchange in zone 16, exchange 1 zone 62 and exchange 4 zone 62, and the subscriber line extending to the called subscriber substation in exchange $\&$ zone 62 is marked as idle to the connectors having access thereto assuming that the subscriber thereat has replaced the receiver of the telephone instrument upon its associated switchhook at this time.
Further, the toll ticket repeater 90 operates to interrupt the application of ground potential to the control conductor of the trunk extending thereto and, consequentiy, to the test wiper 603 of the wiper set in the switch mechanism 600, thereby to effect the release of the primary selector 40 and the line switch 30 . When the line switch 30 is thus released the private subscriber line 401 extending to the colling private subscriber substation TP is marked as idle to the individual connectors having access thereto.
Also, the toll tickst repeater 90 effects operation of the printer controller allotter 9 ; whereupon the finder switch Frol seizes an idle printer controller, such, for example, as the printer controller 92 . When the printer controller 92 is thus seized the finder switch $\$ 703$ operates in order to seize the calling toll ticket repeater 90 . The printer controller 92 initiates overation of the dat and time unit 94 , whereby the date and time unit 98 transmits to the printer controller 9? the month, day, hour and minite of the seizure thereof, both in ten and unit digits. Also, the toll ticket rebeater 90 transmits to the printer controller 92 the information stored therein, this information comprising not only that previously exnlain ${ }^{d}$. which was transferred thereto from the recister translator 70 , but also the digit 0 indicating the special service pertaining to the reversal of charge for the ectabliched connection and the ten and unit digits of the time duration of the established connection. When the rate factor applicable to the established connection, together with the ten and unit digits of the time duration of the established connection, is transferred to the printer controller 9? the printer controller 92 operates to calculate the charge for the established connection in monebary values, specifically in dollars and cents.

When all of the items of record information in the toll ticket repeater 9 have been transferred to the printer controller 92 the toll ticket repeater 00 is automatically released, thereby to mark the trunk incoming thereto and accessible to the primary selectors 40 , etc, as itele.

Also, when all of the items of record information stored in the toll ticket repeater 03 have been transferred to the printer controller 92 the printer controller 92 operates in order to initiate operation of the printer allotter $\vartheta 3$, whereupon the finder switch Fred seizes the calling printer controller 92. When the finder switch $\overline{W T O A}$ seizes the calling printer controller 92 operation of the finder switch ${ }^{\prime} 765$ is initiated to seize an ide one of the toll ticket printers in the associated group, such; for example, as the toll tieket printer 95. When the toll ticket printer 95 is thus seized the printer controller 92 operates to transfer the items of record information stored thereins to the
toll ticket printer 95; whereupon the latter toll thenct printer operates to print the items of record information upon a toll ticket, thereby producing a toll ticket identical to that shown in Fig. 29 in the present example. After the toll ticket has been printed by the toll ticket printer 95 the printer controller 92 and the toll ticket printer 95 are released and rendered available for further use.
In view of the foregoing explanation of the mede of operation of the primary selector 40, the primary register 5 te and the register translator ted to extend a call from the calling private subScriber sulbstation TP in exchange I zone 38 to a called subscriber substation in exchange 4 zone 62, it will be understood that this apparatus is operative, in a substantially identical manner, to extend calls to called subscriber sukstations in other exchanges in other of the zones in the area served by the telephone system.

Toll calls from exchange 1 zone 38 to the exchange

 in:zone 46Assuming that the call extending from the calling private subscriber substation TP to the primary selector 00 and the primary register 50 is to be extended to a called subscriber substation in the exchange in zone 46, the subscriber at the calling private subscriber substation TP proceeds to dial the directory number of the called subscriber substation. The directory number of the called subscriber substation comprises a code portion, including the digits 46, identifying the called zone and exchange and a numerical portion, including four digits, such, for example, as the digits 1234 , identifying the line terminal of the subscriber line extending to the called subscriber substation.

Accordingly, the subscriber at the calling private subscriber substation TP proceeds to dial the first digit 4, thereby to cause the last-mentioned digit to be registered in the first code switch Aseo, in the manner previously explained. The wiper set of the switch mechanism 600 in the primary selector 40 is operated to its fourth vertical position in accordance with the firsi digit 4 and is then released at the conclusion of the last-mentioned digit, in the manner previousiy explained. Also, when the wiper 801 of the first code switch A800 engages the fourth contact in the associated contact bank the previously traced circuit for energizing the winding of the translate relay RHOES is compicted, thereby to cause the lattor relay to operate; whereupon operation of the register translator allotter 60 is initiated, in the manner previcusly explained. Again assuming that the register translator allotter 68 assigns the register translator 70 to the use of the calling primaty register 50, the finder switch Fil80 operates to seize the calling primary register 50 , in the manner previously explained. When the register translator 70 is thus connected to the primory register 50 the sead switch שath in the primary register 50 operates to transmit the first digit 4 to the register translator 70; whereupon the lest-mentioned digit is registered in the first code switch A1710 in the register translator 70, in the manner previously explained.
The sulbscriber at the calling private subscriber substation TP then proceeds to dial the second digit 6, thereby to cause the mechanical impulse repeater 1170 to operate and repeat the last-mentioned digit to the register translator Thy; 5 whereupon the second digit 6 is registered in the
second code switch B1720 in the register translator 70. The wiper set of the switch mechanism 600 in the primary selector 40 is not operated in accordance with the second digit 6, as previously explained.
The subscriber at the calling private subscriber substation TP then proceeds to dial the third digit 1, thereby to cause the mechanical impulse repeater 1170 in the primary register 50 to repeat the last-mentioned digit to the register translator 10; whereupon the third digit 1 is registered in the third code switch Ci730 in the register translator 70. The wiper set of the switch mechanism 600 in the primary selector 40 is not operated in accordance with the third digit 1, is previously explained.

Accordingly. at this time, the first digit 4 is registered in the first code switch A1710; the second digit 6 is registered in the second code switch B1720; and the third digit 1 is registered in the third code switch C1730; the wiper 1713 of the first code switch A1710 engages the second contact in the associated contact bank, thereby to select the third wiper 1643 of the wiper set in the composite code switch P1640; and the wiper set in the composite code switch P16S0 occupies its sixth vertical level and its first rotary position. Also, at the conclusion of the third digit 1, the wipers noted of the register sequence switch Sl840 engage the third contacts in the associated contact banks, thereby to initiate intermittent operation of the pulse relay R1310, in the manner previously explained.

At this point. it is noted that the first digit 4 and the second digit 6 respectively registered in the first code switch A1710 and the second code switch Bi720 comprise the code portion of the directory number of the called subscriber substation in the exchange in zone 46; while the third digit 1 registered in the third code register C1730 comprises the first digit of the numerical portion of the directcry number of the called subscriber substation in the exchange in zone 45. rather than the third digit of the code portion of the directory number of the called subscriber substation in the exchange in zone 46. This situation is presented due to the fact that the code portion of the directory number of the called subscriber substation in the exchange zone 46 comprises two digits instead of three digits. Thus, it will be understood that the routing of the call by the composite code switch P!640 from exchange : zone 38 to the exchange in zone 46 must in fact be determined by the first digit 4 and the second digit 6 irrespective of the actual value of the third digit 1. In order to accomplish this end, a special multiple is provided in the contact bank asseciated with the third wiper 1683 of the wiper set in the composite code switch P1640. More particularly, the contacts in the sixth vertical level of contacts in the contact bank associated with the third wiper 1843 of the wiper set in the composite code switch PIGAO are connected together; and are connected by way of the jumper 1672 to the corresponding 4 up 6 in contact in the contact bank associated with the control wiper 1628 of the wiper set in the rate and route switch R1620. Thus, it will be understood that the operation of the pulse relay R1310 is effective to cause the wiper set in the rate and route switch R1620 to be operated to its 4 up 6 in position when the wiper set in the composite code switch Plg40 occupies its 6 up 1 in, 6 up 2 in, 6 up 3 in. etc., positions; and the third wiper 1643 of the wiper set in the composite code switch P!640 is selected due to
the registration of the first digit 4 in the first code switch Al7lo.

Accordingly, at this time, the operating pulse relay R13iocauses the wiper set in the rate and route switch Rig20 to be operated to its 4 up 6 in position, thereby to select the routing for the present call from exchange I zone 38 to the exchange in zone 45 via exchange ! zone 73, which routing requires two routing digits.
Considering now the jumper arrangement among the contacts in the contact banks in the rate and route switch R1620, it is noted that the 4 up 6 in contacts in the contact banks respectively associated with the wipers 1625 and 1624 of the wiper set in the rate and route switch RI620 are respectively connected by the jumper 1615 to two of the marking conductors in the marking cable 188! corresponding to the two routing digits required; the 4 up 6 in contact in the contact bank associated with the wiper 1623 of the wiper set in the rate and route switch RI 820 is connected by way of the jumper 1673 to the slip conductor CII9; while the 4 up 6 in contacts in the contact banks respectively associated with the wipers 1622 and 1621 of the wiper set in the rate and route switch RI620 are connected by way of the jumper 1674 to the control conductor Clis.
The operation of the rate and route switch RI620, described, above in response to the operation of the composite code switch P1040, takes place in an extremely short interval of time at the conclusion of the third digit 1, whereupen the stop relay R1220 is operated. Upon operating, the stop relay R!220 initiates intermittent operation of the pulse relay Rl420, in the manner previously explained, thereby to cause the digit sequence switch N1610 and the sender switch Ki 920 to operate, in the manner previously explained, in order to transmit the digits registered in the register translator 70 to the primary selector 40. More particularly, the wipers noted of the digit sequence switch N16IO engage the home contacts and then the first contacts in the associated contact banks, thereby to cause the sender switch K 1920 to transmit the first routing digit and then the second routing digit to the primary selector 40 in order to cause operation of the primary selector 80 and the automatic switching apparatus in exchange I zone 73, in the manner previously explained.
At the conclusion of the second routing digit transmitted from the register translator 70 to the primary selector 40 , the wipers noted of the digit sequence switch Ni610 are moved into engagement with the second contacts in the associated contact banks, thereby to complete a path for applying ground potential to the slip conductor Cl19; this path extending from ground by way of the contacts 1262 , the wiper 1613 of the digit sequense switch N1610 and the engaged second contact in the associated contact bank, the wiper 1623 of the wiper set in the rate and route switch R1620 and the engaged 4 up 6 in contact in the associated contact bank and the jumper 1673 to the slip conductor C1IS. This application of ground potential to the slip conductor C1 19 completes an obvious circuit, including the contacts 1242', for energizing the winding of the slip relay R1240, thereby to cause the latter relay to operate. Upon operating, the slip relay R 1200 completes, at the contacts 1241, an obvious holding circuit, including the grounded hold conductor Cl353, for energizing the winding thereof; and 5 completes, at the contacts 1241', a circuit for
energizing the magnet NMIG14 of the digit sequence switch Ni610. The last-mentioned circuit extends from the grounded slip conductor Cl19 by way of the contacts 1241', C113, the contacts $\mathbf{1 6 1 5}$, and the magnet NMi614 to battery. When thus energized the magnet NMIG14 operates and restores, thereby to drive the wipers noted of the digit sequence switch N1610 one step in the counterclockwise direction into engagement with the third contacts in the associated contact banks. When the wiper 1613 of the digit sequence switch N1B10 engages the third contact in the associated contact bank the previously traced circuit for energizing the magnet NM1614 by way of the control conductor Cll3 is completed, thereby to cause the magnet NMI 6 18 to operate and restore in order to drive the wipers noted of the dirit sequence switeh into engagement with the fourth contacts in the associated contact banks. When the wiper 1613 of the digit sequence swith N 1510 engages the fourth contact in the associated contact bank the previously traced circuit for energizing the magnet NM16/4 by way of the control conductor C113 is again completed, thereby to couse the magnet NMIG14 to oporate and restore in order to drive the wipers noted of the digit, sequence switch N1610 into engagement with the fifth contacts in the associated contact banks, the conductor Cl05 being terminated by the fifth contant in the contact bank associated with the wipar 1613 of the digit seouence switch N1610.
The operated slip relay RI2S8 completes. at the contacts 12a2, 1246, 1246 and 1248, obvious connections between the conductors Cl05, Cl04, ClS3 and C1月2, respectively, and the condurtors C111, C110, C109 and C108, respectively, extending to the third code switch C1730, to the first numerical witch DI740, to the serond nיmerical switch E\{75? and to the third nimerical switch Fiblo. At this time the third digit 1, the fourth digit 2, the fifth digit 3 and the sixth digit 4 are respectively registered in the third code switch Ci738, the first numerical switch Di740, the second numerical switsh El750 and the third numerical $\mathrm{S}^{\text {ritch }} \mathrm{F} 1818$; no digit boing registered in the fourth numerical switch G1820.
Accordingly, the dirit sequenre switch Ni6!0 then successively engages the fifth, sixth, seventh and eighth contacts in the associated contact bank, thereby to carse the third digit 1 reqistered in the third code switch C1730, the fourth digit 2 reaistered in the first, numerical switch D17 ${ }^{0}$, the fifth dirit 3 registered in the second numerical switch E1750 and the sixth dirit 4 registered in the third numerinal switch Fi8!0 to be transmittrd successively to the primary selector 40, thereby to cause the automatic switching apparatus in the exchange in zone 46 to seize the line terminal of the subscriber line extending to the ca'led subscriber substation therein, in the manner previously explained.
Subsequently, the wiper 1613 of the digit sequence switch NiGiO engages the ninth contact in the associated contact bank, thereby to complete the previous'y traced alternative rircuit for energizing the magnet NMiG14. When thus energized the magnet NMs61s operates and restores, thereby to drive the wipers noted of the digit sequence switch N1510 an additional step in the counterclockwise direction. At this time the register translator 70 and the primary register 50 are released, in the manner previously explained, thereby to cause the primary selector 40 to operate and complete an established con-
nection between the calling private subscriber substation TP in exchange I zone 38 and the called subscriber substation in the exchange in zone 46. The operation of the toll ticketing apparatus, in order to cause a toll ticket individual to the toll call between the calling private subscriber substation TP in exchange 1 zone 38 and the called subscriber substation in the exchange in zone 46, and the subsequent release of the apparatus involved in the established connection are the same as those previously explained.

In view of the foregoing explanation of the mode of operation of the primary selector 40, the primary register 50 and the register translator 70 to extend the call from the calling private subscriber substation TP in exchange I zone 38 to the called subscriber substation in the exchange in zone 40 , it will be understood that this apparatus is operative, in a substantially identical manner, to extend cails from other calling subscriber substations in exchange 1 zone 38 to a called subscriber substation in the exchange in zone 46.
Toil calls from a private subscriber substation rendered extended service
The extension of a toll call from a private subscriber substation rendered extended service, such, for example, as the private subscriber suipstation TX, is initiated at the calling private supscriber substation TX and extended therefrom under the control of the calling device thereat, in the manner previously explained; however, the apparatus in the primary register and in the register translator and in the toll ticketing apparatus operate in a slightly different manner, as explained more fully below.

Assume that a call has been initiated at the calling private subscriber substation TX, that the associated line switch 31 has seized the trunk 420 extending to the primary selector 43 , and that the fiader switch $F 500$ has seized the primary register 50 , in the manner previously explained. In this case, a circuit is completed for energizing the winding of the extended service relay $R 948$ in the primary register 58 which is effective to cause the latter relay to operate. The last-mentioned circuit extends from ground by way of the winding of P 943 , $\mathbf{C 5 1 5}$, the wiper 505 of the finder switch F500, the contacts 647, the controi conductor C423 of the trunk 420, the control wiper of the switching mechanism in the line switch 31 and the magnet M4I2 and the resistor 413 in multiple to battery. 'This series circuit is of considerably lower resistance than that previously traced due to the shunting action of the resistor 413 upon the magnet M12; accordingly, in this case, the winding of the extended service relay R9A in the primary register 50 is adequately energized in order to cause the latter relay to operate, the extended service relay R 943 being of the marginal type, as previously noted.
The subscriber at the calling private subscriber substation TX then proceeds to dial the directory number of the called subscriber substation, thereby to cause the first code digit to be registered in the first code switch A800 in the primary register 50, the second code digit to be registered in the second code switch B610 in the primary register 50 in the event this is necessary, in the manner previously explained. When the first code digit is registered in the first code switch A800, the second code digit is registered in the second code switch B310, or the third code
digit is registered in the third code switch C820, as the case may be, the previously traced circuit for energizing the winding of the translate relay R1050 is completed, in the manner previously explained; whereby operation of the register translator allotter 60 is initiated. Again assuming that the register translator allotter 60 assigns the register translator 70 to the use of the calling primary register 50 , the finder switch Fil 80 operates to seize the primary register 50, in the manner previously explained.

When the register translator 70 is thus connected to the primary register 50 , operation of the send switch U848 is initiated, in the manner previously explained. In the primary register 50 , the wiper 802 of the first code switch A830 engages one of the contacts in the associated contact bank, thereby to mark the first code disit to the contact bank associated with the wiper 84 it of the send switch U840, in the manner previously explained. Also, the operated extended service relay $R 940$ completes, at the contacts $94!$, an obvious path for applying ground potential to the extended service conductor C866 terminated by the eighth contact in the contact bank associated with the wiper 841 of the send switch U840. Fence, during the operation of the send switch US40, the first cơde digit registered in the first code switch A800 is transmitted to the first code switch AIT10 in the register translator 70, in the manner previousiy explained. Also, when the wiper 841 of the send switch U840 engages the eighth contact in the associated contact bank terminating the grounded extended service conductor C806, direct ground potential is applied to the send conductor C865, thereby to compete a direct ground circuit for energizing in series the winding of the step relay R1350 and the winding of the mark relay R1340 in the register translator 70, thereby to cause both of the tast-mentioned relays to operate. More particularly, the mark relay Ri340 in the register translator 70 operates at a time when the wiper 1831 of the station switch UB 1830 engages the eighth contact in the associated contact bank terminating the conductor Cl34 extending to the winding of the extended service relay R1520; whereby an obvious circuit, including the contacts 1341, the wiper 1831 of the station switch UB1830 and the engaged eighth contact in the associated contact bank and the conductor CI34, is completed for energizing the winding of the extended service relay R1520. When thus energized the extended service re'ay Ri52m operates to complete, at the contacts (521, an obvious holding circuit, including the grounded hold conductor C1353, for energizing the winding thereof. Also, the extended service relay RI520 completes, at the contacts 1522, an obvious path for applying ground potential to the Y conductor in the group of WXYZ marking conductors 1959.
Subsequently, thie storage transfer switch U1910 in the register translator 70 operates to transfer the items of record information stored in the register translator 70 to the code storage devices in the associated one of the toll ticket repeaters, such, for example, as the toll ticket repeater 90 , in the manner previousiy explained. During this operation of the storage transfer switch U1910 the wiper 1913 thereof is effective to transfer the marking of the Y conductor in the group of WXYZ marking conductors 1959 to the tenth code storage device in the mechanical storage unit in the toll ticket repeater 90 , the marking in the group of WXYZ marking con-
ductors 1959 corresponding to the digit 9 , as previously explained.

Subsequently, during the operation of the toll ticketing apparatus to produce a toll ticket for the present toll call at the termination of the established connection, the digit 9 stored in the tenth code storage device in the toll ticket repeater 90 is transferred to an appropriate one of the code storage devices in the associated printer controller, such as, for example, as the printer controller 92. The printer controller s? then governs the associated toll ticket printer, such, for example, as the toll ticket printer 35 , to cause the toll ticket printer 95 to print the digit 9 stored in the code storage device mentioned upon the toll ticket being produced at a position thereon following the fourth digit of the nümerical portion of the directory number of the calling private subscriber substation rendered extended service. Accordingly, in the present example, the toll ticket produced will bear the following indicia under the heading:

Calling
 Zone Ex. 381-09019.

This indicia on the toll ticket indicates not only the zone and exchange (381) and the line terminal (0901) of the directory number of the calling private subscriber súbstation TX, but also the fact that the calling private subscriber substation TX is rendered extended service due to the presence of the digit 9 following the numerical portion of the directory number thereof.
At this point, it is again noted that private subscriber substations which are rendered extended service pay a higher fat rate service charge than ordinary private 'subscriber substations, which entitles them to certain preferences pertaining to billing for services. More particularly, a private subscriber substation which is rendered extended seivice may call remote exchanges in the zones thereof without charge, and is entitled to a predetermined rebate in connection with toll cahls. Preferably, the toll tideets produced for a private subscriber substation rendered extended service are recalculated manually upon a bulk unit basis and billed accordingly.

Tolls calls from party subscriber substations
The extension of a toll call from a party subscriber substation, such, for example, as one of the paity subscriber substations TS1, TS2, TS3 or TS4 connected to the party subscriber line 407, is initiated at the calling party suinscriber substation and extended therefrom under the control of the calling device thereat, in the manner previously explained; however, the apparatus in the priniary register and in the register translator operate in a slightly different manner, as explained more fully below.

Assume that a call has been initiatéd at one of the party subscriber substations TS1, TS2, TS3, or TS4, that the associated line switch 32 has seized the trunk 420 extending to the primary selector 40, and that the finder switch F500 has seized the primary register 50 , in the manner previously explained. In the present example, in the event the call is initiated at the first party subscriber substation TSI, no ground impulses are transmitted from the calling device thereat over the positive line conductor C409 of 'the party subscriber line 407 Incident to the dialling of the first code digit; in the event the call
is initiated at the second party subscriber substation TS2, one ground impulse is transmitted from the cam springs 485 in the calling device thereat over the positive line conductor csog of the party subscriber line 407 incident to the dialing of the first code digit; in the event the call is initiated at the third party subscriber substation TS3, two ground impulses are transmitted from the cam springs 347 in the calling device thereat over the positive line conductor C409 of the party subscriber line 607 incident to the dialing of the first code digit; finally, in the event the call is initiated at the fourth party subscriber substation TSA, three ground impulses are transmitted from the cam springs 449 in the calling device thereat over the positive line conductor Cl0s of the party subscriber line 407 incident to the dialing of the first code digit.
By way of example, it is pointed out that the calling device at the fourth party subscriber substation TS\& is operative to transmit, by way of the set of cam springs 449, the first ground impulse over the positive line conductor C409 of the party subscriber line 407, while the set of impulse springs 448 is closed; then to transmit, by way of the impulse springs 448 , the first impulse of the first code digit over the line conductors C408 and C 409 of the party subscriber line 407, while the set of cam springs 489 is open; then to transmit, by way of the set of cam springs 449, the second ground impulse over the positive line conductor C\&09 of the party subscriber line 407, while the set of impulse springs 448 is closed, etc. The calling devices at the second party subscriber substation TS2 and at the third party subscriber substation TS3 are operative in a similar manner.
Each time a ground impulse is transmitted over the positive line conductor CA09 of the party subscriber line 807 a path is completed for shortcircuiting the lower winding of the party line relay R910 in the primary register 50; this path extending from ground by way of the lower winding of R910, C511, the wiper 501 of the finder switch F500, the contacts 631, the line conductor C421 of the trunk 420 and the line switch 32 to the grounded positive line conductor C409 of the party subscriber line 407. When the lower winding of the party line relay R910 is thus short-circuited the latter relay operates as the upper winding thereof is energized in series with the upper winding of the line relay R920, the party line relay R910 being of the differential type. Each time ground potential is removed from the line conductor C409 of the party subscriber line 407 the above-traced path for short-circuiting the lower winding of the party line relay R910 is interrupted; whereby the upper and lower windings thereof are energized in series circuit relation with the upper winding of the line relay R920 in order to cause the party line relay R910 to restore, the latter relay being of the differential type, as noted above. The application of ground potential to the positive line conductor C409 of the party subscriber line 407 has no effect upon the energization of the upper winding of the line relay R920. Each time the loop circuit, including the party subscriber line 407, is interrupted the line relay R920 restores and the party line relay R910 remains restored as both the upper and lower windings thereof are deenergized. Accordingly, the line relay R920 follows the loop impulses transmitted by the set of impulse springs in the calling device at the calling party subscriber substation on the party subscriber line

407; and the party line relay Rg 10 follows the ground impulses transmitted by the set of cam springs in the calling device at the calling party subscriber substation on the party subscriber line 407.

The first time the party line relay R910 operates it completes, at the contacts 911, an obvious circuit, including the contacts 1117 and 1123 , for energizing the lower winding of the party relay RII20. When thus energized the party relay RII20 operates partially, thereby to complete, at the contacts 1121, an obvious path, including the contacts 1047, for short-circuiting the upper winding thereof. The first time the party line relay R910 restores it interrupts, at the contacts 91I, the previously mentioned path for short-circuiting the upper winding of the party relay RII20; whereupon an obvious series circuit, including the contacts 1041 and 1121 , is completed for energizing the upper and lower windings of the party relay RII20. When thus energized the party relay RII20 operates fully, thereby to interrupt, at the contacts 1123, a further point in the previously mentioned path for short-circuiting the upper winding thereof, and to prepare, at the contacts 1122, a circuit traced hereinafter for energizing the lower winding of the party relay RII30. The second time the party line relay R910 operates and restores an obvious circuit substantially identical to that previously traced is completed and then interrupted for energizing the lower winding of the party relay R1130, whereby the latter relay operates first partially and then fully in the manner explained above. Finally, in the event the party line relay $\mathrm{R910}$ is operated and restored a third time, a circuit substantially identical to that previously traced is completed and then interrupted for energizing the winding of the party relay R1/40; thereby to cause the latter relay to operate and complete, at the contacts 1141 , an obvious holding circuit for energizing the winding thereof.
In view of the foregoing explanation of the mode of operation of the party relays RII20, RII30 and RI140, in conjunction with the call:ng devices at the various party subscriber substations TSI, TS2, TS3 and TS4 connected to the party subscriber line 407, it will be understood that, in the event the call is initiated at the first party subscriber substation TSI, none of the party relays RII20, RII30 and RII40 w'll be operated incident to the dialing of the first code digit; in the event the call is initiated at the second party subscriber substation TS2, the first party relay RII20 will be operated incident to the dialing of the first code d'git; in the event the call is initiated at the third party subscriber substation TS3, the first party relay R1I20 and the second party relay R1l30 will be operated incident to the dialing of the first code digit; finally, in the event the call is in tiated at the fourth party subscriber substation TSA, the first party relay RII20, the second party relay RII3? and the third party relay R 1140 will be operated incident to the dialing of the first code digit.
At the conclusion of the first code digit registered in the first code sw tch A800 in the primary register 50 , the digit cutoff relay RIIl0 operates, as previously explained, whereby a common point 0 in the operating circuits for energizing the lower windings of the party relays RII20 and R1/30 and the winding of the party relay R1140 is interrupted. This arrangement positively prevents the operation of the party line relay R910 incident to the dialing of the second code digit, the

103
third code digit, etc., from causing further operation of the party relays R1120, R1130 and R1140 It will be understood that the party line relay R9:10 is operated, in the manner explained above, as each successive code digit and each successive numerical digit is dialed at the calling party subscriber substation connected to the party subscriber I ne 407; however, the operation of the party line relay R910, subsequent to the dialing of the first code digit, is without effect due to the operated position of the digit cutoff relay Rillo, as explained above. Upon operating, the party relays R1120, R1130 and R1140 respectively complete, at the contacts 1124,1134 and 1442 , obvious paths for respectively applying ground potent al to the three party conductors C861, C868 and C869, respectively terminated by the ninth, tenth and eleventh contacts in the contact bank associated with the wiper 841 of the send switch U840, for a purpose more fully explained hereinafter.

As noted above, the subscriber at the calling party subscriber substation TSI, TS2, TS3 or TS4 proceeds to dial the directory number of the called subscriber substation, thereby to cause the first code d git to be registered in the first code switch A800 in the primary register 50 ; the second code digit to be registered in the second code switch B810 in the primary register 59, in the event this is necessary, in the manner previously explained. When the first code dgit is registered in the first code switch A800, the second code digit is registered in the second code switch B810, or the third code digit is registered in the third code switch C820, as the case may be, the previously traced crcuit for energizing the winding of the translate relay R1050 is completed; in the manner previously explained; whereby operation of the register translator allotter 60 is initiated. Again assuming that the register translator allotter 60 assigns tie register translator 10 to the use of the calling pr mary register 53, the finder switch Fil83 operates to seize the primary register 50, in the manner previously explained.

When the register translator 70 is thus connected to the primary register 50, operation of the send switch U890 is initiated, in the manner previously explained. In the primary register 50, the wiper 802 of the first code switch A880 engages one of the contacts in the associated contact bank, thereby to mark the first code digit to the contact bank associated with the wiper 841 of the send sw tch U843, in the manner previously explained. Also, in the event one or more of the party relays Rili20, R!130 and Rillu are operated, one or more of the paths for applying ground potential respectively to the party marking conductors C867, C868 and C389 are completed, the last-mentioned marking conductors being respectively terminated by the ninth, tenth and eleventh contacts in the contact bank associated with the wiper 84! of the send switch U840. Hence, during the operat on of the send switch U840, the first code digit registered in the first code switch A800 is transmitted to the first code switch A1710 in the register translator 10, in the manner previously explained. Also, when the wiper 841 of the send switch U840 successively engages the ninth, tenth and eleventh contacts in the associated contact bank respectively terminating the party marking conductors C867, C868 and C869, direct ground potential is applied to the send conductor C865 in the event the respective party relays Ril20, RII30 and

R1140 occupy their operated positions; thereby to complete direct ground circu ts for energizing in series the winding of the step relay R1350 and the winding of the mark relay R. 1340 in the register translator 10, thereby to cause both of the last-mentioned relays to operate. More particularly, the mark relay R1340 in the register translator 70 operates at a time when the wiper 1831 of the station switch UB1830 engages the n nth contact in the associated contact bank terminating the conductor Cl33, in the event the party relay R1120 in the primary register 50 occupies its operated position; the mark relay R1340 reoperates at a time when the wiper 1831 of the station switch UBI830 engages the tenth contact in the associated contact bank terminating the conductor C132, in the event the party relay R1/30 in the primary register 50 occupies its operated position; and the mark relay R1340 reoperates at a time when the wiper 183.1 of the station switch UBI830 engages the eleventh contact in the associated contact bank terminating the conductor Ci31, in the event the party relay R1/40 in the pr mary register 50 occupies its operated position. The successive application of ground potential to the conductors Ct33, Ct32 and Cl3I respectively completes obvious circuits for energizing the windings of the party relays R:530, R1540 and R1550, whereby each of the reiays mentioned operates. Upon operating, the party relays R1530, R1540 and R1550 respectively complete, at the contacts 1533, 1543, and 1553 , obv ous holding circuits, including the grounded hold conductor C1553, for respectively energizing the vindings thereof.

In view of the foregoing explanation of the mode of operation of the party relays R1120, R1130 and R1140 in the primary register 50 and the party relays R1530, R1540 and R1550 in the register translator 70 , it will be understood that, when a call is initiated at the first party subscriber substation TSI, none of the party relays R1530, R1540 and R1550 is operated; when a call is initiated at the second party subscriber substation TS2 the first party relay R1530 is operated; when a call is initiated at the third party subscriber substation TS3 the first party relay R1530 and the second party relay R1540 are operated; and when a call is initiated at the fourth party subscriber substation TS4 the first party relay R1530, the second party relay R1540 and the third party relay R 1550 are operated. When none of the party relays R1530, R1540 and RI550 occupies its operated position an obvious path, including the contacts 1532, 1542 and 1552, is completed for applying ground potential to the first hold conductor Cl; when the first party relay R1530 occupies its operated position an obvious path, including the contacts 1531, 1544 and 1555, is completed for applying ground potential to the second hold conductor C2; when the first and second party relays R1530 and R1540 occupy their operated positions an obvious path, including the contacts 1541 and 1556 , is completed for applying ground potential to the third hold conductor C3; and when the first, second and third party relays RI530, R1540 and RI550 occupy their operated positions an obvious path, including the contacts 1551 , is completed for applying ground potential to the fourth hold conductor C4. Also, the three party relays R1530, R1540 and R1550 control the paths for applying ground potential to the four hold conductors CI, C2, C3 and C4 so that ground potential is only
applied to one of the hold conductors mentioned at any time.

Subsequently, when the detector 80 is connected to the register translator 70 the storage slave relay R1940 in the register translator 10 operates in order to connect the hold conductors C1, C2, C3 and C4, respectively, to the hold conductors C1973, C1974, C1975 and C1976 extending to the detector 80 ; whereby ground potential is applied to one of the last-mentioned hold conductors, depending upon the various positions of the party relays RI530, R1540 and R1550 in the register translator 10, as explained above.

In view of the foregoing explanation of the mode of operation of the party relays RI530, RI540 and R1550 in the register translator 10, it will be understood that, when the detector 80 is connected to the register translator 70 , ground potential will be applied to the hold conductor Cl973 in the event the call was initiated at the first party subscriber substation TSI, whereupon the detector 80 will operate in order to detect the directory number of the connector terminal having access to the first party subscriber substation TSI, the directory number of the terminal mentioned being 0100; when the detector 80 is connected to the register translator 70, ground potential will be applied to the hold conductor Cl974 in the event the call was initiated at the second party subscriber substation TS2, whereupon the detector 80 will operate in order to detect the directory number of the connector terminal having access to the second party subscriber substation TS2, the directory number of the terminal mentioned being 0200; when the detector 80 is connected to the register translator 70, ground potential will be applied to the hold conductor C1975 in the event the call was initiated at the third party subscriber substation TS3, whereupon the detector 80 will operate in order to detect the directory number of the connector terminal having access to the third party subscriber substation TS3, the directory number of the terminal mentioned being 0300; and, final$l y$, when the detector 80 is connected to the register translator $\mathbf{7 0}$, ground potential will be applied to the hold conductor Cl976 in the event the call was initiated at the fourth party subscriber substation TS4, whereupon the detector 80 will operate in order to detect the directory number of the connector terminal having access to the fourth party subscriber substation TS4, the directory number of the terminal mentioned being 0400.

The subsequent operation of the toll ticketing apparatus, to produce a toll ticket individual to the call, and the subsequent release of the established connection are the same as those previously described.

Conclusions

From the foregoing it is apparent that an automatic telephone system is provided, which comprises automatic recording apparatus operative to record, without the aid of an operator, given particulars of certain calls in the system for which special charges are made, regardless of whether the calls are orginated at private or party subscriber substations, and improved switching apparatus for setting up the calls and for collecting the items of record information to be recorded.
While one embodiment of the invention has been disclosed, it will be understood that various modifications may be made therein which are
within the true spirit and scope of the invention. What is claimed is:

1. In a telephone system including a plurality of stations of first and second classes in which the charges for connections are billed to calling stations of said first class on a first basis and to calling stations of said second class on a second basis, switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automat:c means for registering certain items of record information pertaining to said connection and including a first item indicating that the charge for said connection is to be billed to said calling station calculated on said first basis or a second item indicating that the charge for said connection is to be billed to said calling station calculated on said second basis, and means governed by the class of said calling station for selectively controlling said automatic register means.
2. In a telephone system including a plurality: of stations of first and second classes in which the charges for connections are billed to calling stations of said first class on a monetary basis and to calling stations of said second class on a bulk unit basis, switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automatic means for registering certain items of record information pertaining to said connection and including a first item indicating that the charge for said connection is to be billed to said calling sta-tion calculated on said monetary basis or a second item indicating that the charge for said connection is to be billed to said calling station calculated on said bulk unit basis, and means governed by the class of said calling station for selectively controlling said automatic register means.
3. In a telephone system including a plurality of stations of first and second classes in which the charges for connections are billed to calling stations of said first class on a monetary basis and to calling stations of said second class on a bulk unit basis, switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automatic means for registering certain items of record information pertaining to said connection and including a first item indicating that the charge for said connection is to be billed to said calling station calculated on said monetary basis or a second item indicating that the charge for said connection is to be billed to said calling station calculated on said bulk unit basis, means governed by the class of said calling station for selectively controlling said automatic reaister means, and means controlled incident to the termination of said connection for recording said registered items in conjunction with said connection.
4. In a telephone system including a plurality of stations of first and second classes in which the charges for connections are normally billed to calling stations of said first class on a first basis and to calling stations of said second class on a second basis, switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automatic means for registering certain items of record information pertaining to said connection and including a first item indicating that the charge for said connection normally is to be billed to said calling station calculated on said first basis or a second item indicating that the charge for
said connection normally is to be billed to said: calling station calculated on said second basis, means: governed by the class of saidi calling station for selectively controling said automatic register means, and means controllable from said called station for registering an overriding item indicating that the charge for said connection is to be billed to said called station on a basis consistent with the class thereof.
5. In a telephone system including a plurality: of stations of first and second classes in which the charges for connections are biled to stations of: said first class on a first basis and to stations of said second class on a second basis, switching apparatus for setting: up a connection from a calling one of said stations to a called one of said stations, automatic means for rexistering certain items of recordinformation pertaining to said connection including an item indicating the established charge for said crnnection ca!culated on said first basis, and additional means governed in the event the station to be billed is of said second class for registering another item indicating that the established charge for said connection should be recalculated on said second basis.
6. In a telephone system including a plurality of stations of first and: second classes in which the charges for connections are billed to calling: stations of said first class on a first rasis and to calling stations of said second class on a second basis; switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automatic means for registering certain itoms of record information pertaining to said connoction including an item indirating the established charge for said connection calculated on said first basis, and arditional autrmatic means enntrolled in the event said calling station is of said second class for registering another item indinating that the established charge for said connection should be recalculated on said second basis.
7. In a telephone'system including a plurality of stations of first and second classes in which the charges for conrections are biled to calling stations of the first class on a monetary basis and to calling stations of the second class on a bulk unit basis, switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automatic means for registering certain. items of record information pertaining to said connestion including an item indicating the established charge for said connection calculated on said monetary basis, and additional means controlled in the event said calling station is of said second class for registering: another item indicating that the established, charge for said connection should be recalculated on said bulk unit basis.
8. In a telephone system including a plurality of stations of first and second classes in which the charges for connections are biled to: calling stations of said first class on a first basis and to calling stations of said second class on a second basis, switching apparatus for setting up a connection from a calling one of said stations to a called one of said stations, automatic means controlled incident to the setting up of said connection for registering certain items of record information pertaining thereto, means controlled incident to the release of said connection for establishing and registering a charge item for said: call dependent upon both the location of said stations with respect to each other and the
time duration of said connection, said established charge being calculated on said first basis, and additional means controlled incident to the setting up of said connection for registering another item indicating that the established charge for said connection should be recalculated on said second basis.

9: In a: telephone system including a plurality of. stations of first and second classes in which the charges for connections are billed to calling stations of said first class on a first basis and to calling- stations: of said second class on a second basis, register mechanism including a class register, means for associating a calling one of said stations with said register mechanism, means contro'led when said calling station is associated with said register mechanism for selectively operating said class register in accordance with the class of said calling station, switching apparatus, means including said register mechanism controllable from said calling station for operating said switching apparatus to set up a connection from said calling station to a ca'led one of said stations, automatic means selectively operative to. register certain items of record information pertaining to seid connection and including a first item indicating that the charge for said connection is to be billed to said calling station calculated on said first basis or a second item indicating that the charge for said connection is to be billed to said caling station calculated on said second basis, and means governed by said class register for selectively controlling the operation of said automatic means.
10. In a telephone svstem including a plurality of stations of first and second classes in which the charges for connections are biled to calling. stations of said first class on a first basis and to calling stations of said second class on a second basis, register mechanism including, a c’ass register, means for associatin a calling one of said stations with said register mechanism, means controlled when sajd calling station is associated with said register mechanism for selective ${ }^{\prime} v$ operating said class register in accordance with the class of said calling station. switching apparatus, means includins said resistor mechanism controllable from said calling station for operating said switching apraratus to set up a connection from said calling station to a cal'ed one of said stations. automatic means for reristering certain items of record information pertaining to. said connection including an item indirating the established charge for sa'd connection calculated on said first basis, and add'tional means governed by said class recister in the event said calling station is of said second class for reristering another itom indicating that the established charge for said connertion should be recalculated on said second basis.
11. In a telephone system including a plurality of stations of first and second classes in which the charges for connections are normally billed to calling stations of said first class on a first basis and to calling stations of said second class on a second basis, register mechanism including a class register, means for associating a calling one of said stations with said register mechanism, means controlled when said calling station is associated with said rerister mechanism for selectively operating said class register in accordance with the class of said cal'ing station, switching apparatus, means including said register mechanism controllable from said calling station for operating said switching apparatus to set up a

109

connection from said calling station to a called one of said stations, automatic means selectively operative to register certain items of record information pertaining to said connection and including a first item indicating that the charge for said connection normally is to be billed to said calling station calculated on said first basis or a second item indicating that the charge for said connection normally is to be billed to said calling station calculated on said second basis, means governed by said class register for selectively controlling the operation of said automatic means, and means controllable from said called station for registering an overriding item indicating that the established charge for said connection should be billed to said called station and that the calculated basis for said established charge should be consistent with the class of said called station.
12. In a telephone system including a plurality of stations of first and second classes in which the charges for connections are normally billed to calling stations of said first class on a first basis and to calling stations of said second class on a second basis, switching apparatus for setting up a connection from a calling one of said sta-

20 The following references are of record in the file of this patent:

UNITED STATES PATENTS for said connection calculated on said first basis, additional automatic means controlled in the event said calling station is of said second class for registering another item indicating that normally the established charge for said connection should be recalculated on said second basis, and means controliable from said called station for registering an overriding item indicating that the established charge for said connection should be billed to said called station and that the calculated basis for said established charge must be consistent with the class of said called station.

JOHN E. OSTLINE.

REFERENCES CITED

1,435,333

Name
Goodrum
Polinkowsky June 18, 1918
tions to a called one of said stations, automatic means for registering certain items of record information pertaining to said connection including an item indicating the established charge

