US 20060212846A1

a9y United States

a2y Patent Application Publication

O’Farrell et al.

10) Pub. No.: US 2006/0212846 A1
43) Pub. Date: Sep. 21, 2006

(54) DATA MANAGEMENT FOR MOBILE DATA
SYSTEM

(75) Inventors: Robert O’Farrell, Woodinville, WA
(US); Mark Kirstein, Incline, NV (US)

Correspondence Address:

TOWNSEND AND TOWNSEND AND CREW,
LLP

TWO EMBARCADERO CENTER

EIGHTH FLOOR

SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: Dexterra, Inc., Bothell, WA
(21) Appl. No.: 11/277,136
(22) Filed: Mar. 21, 2006

Related U.S. Application Data

(60) Provisional application No. 60/664,121, filed on Mar.
21, 2005. Provisional application No. 60/664,088,

filed on Mar. 21, 2005. Provisional application No.
60/664,122, filed on Mar. 21, 2005. Provisional appli-
cation No. 60/667,816, filed on Apr. 1, 2005.

Publication Classification

(51) Int. CL

GO6F 9/44 (2006.01)
(52) US. Cle oo 717/116
(57) ABSTRACT

A data architecture provides mobile clients with the ability
to gain access to business enterprise data sources through
configurable Views that interface with the data sources
through Data Objects that are defined by Commands, which
in turn communicate with the data sources through Connec-
tors (also referred to as Adapters). Each type of View will
interface to the data sources with a different functionality so
that communications links and other system resources can
be used more efficiently. The View types can include Direct
Views, Derived Views, Delegated Views, and Definition
Views.

US 2006/0212846 Al

Patent Application Publication Sep. 21,2006 Sheet 1 of 19

E E.ﬁ

e,

%ﬁﬁ s * mmmmﬂ Ta@ M

eS|
p |

g |

p 4 \,..N i
stgananil
BLAIRY] H -
Lo qmmu m o |
feieg naml]_| = S
 Wdg] L 0auung e fe 1y
| o wmq%x
= ey $3048G 830 LEE
T B\ L oS00 4
N o Ty T
10jEns u H_ﬁmhmkm_m&m@wh ~ JV0S
| DY b r— N
2LBIYA(N ﬁ a@@m&mﬁk ﬁm@ W A\\ﬁ - Mw
........ -~} 4 - 4
"y Vi 951 FoL
401 vy

Bepy
W8

y

ey L
P .
N))
uogayddy Fd sz
by 988044 %&)
Haomag W
hmmm%ﬁ
geg | wreg
| g xmmﬁ o — ;
semms g j1 P m
=2/ U N ¥
joo e
Py - ,
TR "

ti}st

NI

US 2006/0212846 Al

Patent Application Publication Sep. 21,2006 Sheet 2 of 19

2ot

...... @EE - eSeguieg | | seegeieg |
_ a(0e] ogel | el

.. Fmaﬁ L) .mﬁm_am il _mcﬁsﬁu
_____ 4 &% E@m Lﬁ. L@E J | M wm\
Gmﬁm ssewsngl | 19800 ssageng I 13y

______ Sk [
...... AOH90104 M 1ty
[—— n

US 2006/0212846 Al

Patent Application Publication Sep. 21,2006 Sheet 3 of 19

_S% o1R0N B

et e,

)Y

£34

ABURM

JRUTTIDRI

BUBRISE] |

SLLBAIS L

gig

£ 84

7

AN LER,

s/ J§00/oeb]]

~<{ ki

Attt e

HUHRIDBIG

BLEANSET

E3

g

<4

WIT a360

| d0UBU

o+

BLEHISI

[

%mhmm_

0f 43040

t

JONISS BUSINGE

{ 3T

N

v

WH3

g~

\\

43

i

i3

Patent Application Publication Sep. 21,2006 Sheet 4 of 19

US 2006/0212846 A1
FIG. 4

406

Dexterra
Studio™

430

/

\\ \ \\\\ \\\\\

,/////

408

Patent Application Publication Sep. 21,2006 Sheet 5 of 19

V3

Mobile Client

V1 e

V2

Referential
Data Store

508

FIG.

US 2006/0212846 Al

Siebel

Customer Data

Order History

502

Patent Application Publication Sep. 21,2006 Sheet 6 of 19 US 2006/0212846 A1

wio v wiow

e st e A N
:) k

LY

]
}
t
t
i
i

FE N R

FIG. 6

Patent Application Publication Sep. 21,2006 Sheet 7 of 19 US 2006/0212846 A1

Deaxterra Client Dextarra Servey

<Customer

FIG. 7

Patent Application Publication Sep. 21,2006 Sheet 8 of 19 US 2006/0212846 A1

e e e T e e e e e T T T e e e e e

. 3
Solomon 3
£ Dats Sources 3

: AN o
R e N o S - -]) .
-4 Datascurce Typas 3
e e e 3
3o Tommands 3
e o, Diets Ohjecis :
..i.‘ E"“:‘“ ™

e o Wiewe

N Logout fsdmin

LG

e o o e e o e o o o o o o o o o e o o o o e e

FIG. 8

Patent Application Publication Sep. 21,2006 Sheet 9 of 19

\S‘.\wn1.\1.\\\\\1{\\\\\\1\\1\\\\\1\\1\\\\\ e e D N e e e e \\\\\\\\ .y

US 2006/0212846 Al

B

Refresh
Edif...

Businsgs Rules
S o
3 Securdy
i_fr’gwg

\\\ Lﬁtgﬂm {Egmind
?&m;::ﬁstz

ﬂt:id: Mewy E‘i,:a-t;wmm- Type.,

FIG. 9

Patent Application Publication Sep. 21,2006 Sheet 10 of 19 US 2006/0212846 A1

-mmm\mm\\g}\xm\a\m\\x\x@x\Q\\\\x_\w.\x\x\xxxhx\x\xxh\\:.\x_\\x_\‘ R R R A OO0
o -

= 5 DataAccess

i AR -‘.'-.'-:; :

2 \\\ -N.- LN

NN

% BBl SE.!L Infu:nrmatlcun
oo OmrisSOL DAk
o Oracled Dok
& Spbaze DAM

Dlatazource Types
t“‘?.‘w.

;;---ma OLE DE Adapter for SUL 5
-8 OLE DB Adapter far Oracle
Clarify &dapter |
Reredy &dapter

il
e
f‘z . -

=il
.:?-.:.‘
Bk

i

- T
Ledey,
Fe'd's'e

ey

: Dy e

'l
s
'{oo'
s

FIG. 10

US 2006/0212846 Al

$LEt p
iz W

R e

%

R

N

R
SN

]

¥l

W

&\
- UE Adapteriors

i Adapter
medy Sdepdey

e T
s

3 \:}}\‘\t\
iy

N
s
RN
OLE
%
B

L

R Y
%
;
5

HRENGs

Oataso

2 Digta Sources

FIG. 11

Patent Application Publication Sep. 21,2006 Sheet 11 of 19

S ey

AR
. Q
S

N
N

[
N
R,

N

N
A

)

A

L
sy -.-mc- “

-

T
'
A

¢

L

y

L

g

5

L

%
Z lm““ % .‘.Q\\\\\\ L o A - I .“L -
.u.\.“ : A, R S g
Z n.w.\“\\ i o R WAl PR Pols) uu “.m._m_
1 N | & D
7 . B O 2 o Lo
Nn..._.-w“ m h .|..m...u.. ., N“\k o LI "”_q_ 3
..\.\.0\\\..\. _ I _wnqq.u_h_ “.nrn_ VRERH B ._..m s
. fﬂuu) a
e -
Do
S

i . :b-.._
¥] -

\%ﬁm
WA T
G i
” .
m\\\%...... v 1
7 "
S A : :
\rlnll- g A R B R R R R LR TR B R LS E R L R L L R E R R SR R I E L R B LR E R R LR B R L B E R L R
N e ol el el e

Patent Application Publication Sep. 21,2006 Sheet 12 of 19 US 2006/0212846 A1

A

b \'\ '\\) e '\'\) '\'\ '\'\. ! q
::\\ \ \\\:\\:\}n\}\ﬁ\\n :\n‘q ity St ‘_\..
3 \-\}\\\}\ Ry By
B : a vaed -. - “\} o
-:qm\'\ ______g,_\\\ah' N A N R

\::.
N
Ry
N
‘S\\
3
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
R e
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3
N
N
X
R

i {1: SeEyvers
=N Sofomon
- = F Data dccess
1 Y Diats Sources
g ﬁ Datesource Types
reppe @I Commands
& & Disbs Dbjecis

=1 AW

e Actiondtam
g ustomer
g B

e demue
+"‘§§_@ Business infomsiion

N "
i il
»;._.;.

i+ SN Business Rules

A Seounly

xx
--

Patent Application Publication Sep. 21,2006 Sheet 13 of 19 US 2006/0212846 A1

o
A

FIG. 13

Patent Application Publication Sep. 21,2006 Sheet 14 of 19

US 2006/0212846 Al

E;:km@iﬁﬁ foliowing o connectin 501 Serverdats

$0 Select oy enter 3 sernvErnEmE:

& Erierofosnaiion to g onid the sever

e Uee Windows NT nlegrated Seaumy

£L
.
£

- q
o
g
et
2
&24
o
£
B
Q.
X
£
5
P
pod
2
i

FIG. 14

Patent Application Publication Sep. 21,2006 Sheet 15 of 19 US 2006/0212846 A1

A L A L L R AR L L L L L LY,

i e i —)
= & [Dats Aocress

: : . \"-\" » -
: N W T . by -
W% Dats Sources
' i, BRSNS N
: o a ;
: B R e Sn
: N T T e A
- ATy
2+-:. .
IR S
R

o Edit..
XY Buss |

.

e
r'd
%
e
[
=

o o o e o o e o o a w aa a a o o o S e a3 o e o S e e e o e S e e o a S o o o o S e o o e o o e o o o S sibtatatatatatatatal

R T T R T R R

FIG. 15

Patent Application Publication Sep. 21,2006 Sheet 16 of 19 US 2006/0212846 A1

FIG. 16

Patent Application Publication Sep. 21,2006 Sheet 17 of 19 US 2006/0212846 A1

FIG. 17

Patent Application Publication Sep. 21,2006 Sheet 18 of 19 US 2006/0212846 A1

G

- Tiata Sources

- CustomerSave
438 Cosomertpdate
: usigmerngent
N CustemerDislste
- aga Pateliuery
§¢§ FadsSave

N

- S Paslpdste
o Patalneed
2N Partelislete
- Dota Chiscts
+‘“"$ Business infomation
AN

XN Business Bules
R e T T ™

: | St
Wmfjmmﬁmfmfm{mﬁfﬁ/fff/ff s

FIG. 18

Patent Application Publication Sep. 21,2006 Sheet 19 of 19 US 2006/0212846 A1

START

Receive request from a mobile
client for a data operation on data at
an enterprise datasource.

1902

Determinev a configurable View
Object that is adapted to be bound
to a Data Object for execution of
specified Command Object data
actions corresponding to the
requested data operation.

1904

Perform operations on the data as
specified by the View object utilizing
a Relational Data Engine.

1906

CONTINUE

FIG. 19

US 2006/0212846 Al

DATA MANAGEMENT FOR MOBILE DATA
SYSTEM

REFERENCE TO PRIORITY DOCUMENTS

[0001] This application claims benefit of priority of: co-
pending U.S. Provisional Patent Application Ser. No.
60/664,121 entitled “Data Management for Mobile Data
System”, by Robert O’Farrell et al., filed Mar. 21, 2005;
co-pending U.S. Provisional Patent Application Ser. No.
60/664,088 entitled “Modular Applications for Mobile Data
System”, by Robert Loughan, filed Mar. 21, 2005; co-
pending U.S. Provisional Patent Application Ser. No.
60/664,122 entitled “Adapter Architecture for Mobile Data
System”, by Robert O’Farrell et al., filed Mar. 21, 2005; and
co-pending U.S. Provisional Patent Application Ser. No.
60/667,816 entitled “Modular Applications Management for
Mobile Data System”, by Robert O’Farrell et al., filed Apr.
1, 2005. Priority of the respective filing dates is hereby
claimed, and the disclosures of these Provisional Patent
Applications are hereby incorporated by reference.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or patent
disclosure as it appears in the U.S. Patent and Trademark
Office patent file or records, but otherwise reserves all
copyright rights whatsoever.

BACKGROUND
[0003]

[0004] The present invention relates generally to mobile
computing systems and, more particularly, to data manage-
ment and data deployment in mobile computing systems.

[0005] 2. Description of the Related Art

1. Field of the Invention

[0006] Sophisticated customer relationship management
(CRM) and enterprise resource planning (ERP) systems are
available to improve the automation of back office and front
office processes. Although many companies have realized
significant savings and efficiencies from deploying such
systems, it is also true that many organizations find the
systems burdensome to implement and difficult to integrate
with existing legacy data systems.

[0007] More recently, business organizations and enter-
prises are deploying CRM and ERP systems to assist mobile
employees, primarily to utilize mobile computing devices
such as pagers and cell phones and also personal digital
assistants (PDAs). One important impediment to greater
adoption of CRM and ERP systems that employ such mobile
devices involve integration with other data in the enterprise.

[0008] Enterprise data integration issues can arise because
mobile applications often come in proprietary, closed archi-
tectures that impede integration with other data systems of
the enterprise. For example, data in the enterprise might be
maintained in four or five different sources. Some of the data
sources include CRM systems, dispatch systems, ERP sys-
tems, and financial records systems. Hach of these data
sources can utilize a different data architecture, format, and
protocol. The data being stored and the configuration of the

Sep. 21, 2006

data and access mechanisms are constantly changing. Many
mobile computing systems create an interim datastore in
which data from the various sources in the enterprise is
collected. In this way, data from the different enterprise data
sources, each with a different data architecture and format,
can be collected in a single common database. The mobile
users can access the enterprise data by accessing the interim
datastore, rather than the actual enterprise data sources. The
interim store, however, creates data update and conflict
issues of its own. Synchronization operations and other
safeguards must be performed frequently, to ensure that the
data in the interim datastore is a faithful copy of the data in
the enterprise data sources.

[0009] Tt is known to provide a data integration solution
that can utilize mobile computing devices that interface to
enterprise data sources through a network server. Such a
system is described in U.S. patent application Ser. No.
10/746,229 filed Dec. 23, 2003 assigned to Dexterra, Inc. of
Bothell, Wash., USA. The contents of this application are
incorporated herein by reference.

[0010] The Dexterra, Inc. patent application describes a
system in which data is utilized between multiple enterprise
data sources to mobile clients in a distributed fashion such
that requests from a mobile client for enterprise data are
received, the appropriate enterprise data sources that contain
the requested data are determined, and the enterprise data is
retrieved from the determined enterprise data sources. When
the enterprise data is retrieved, it is converted into a rela-
tional format, even if the data comes from multiple enter-
prise data sources of different non-relational types (e.g. File
System, email, etc). The converted enterprise data is stored
in a relational datastore in the mobile client. In this way,
mobile applications can be fully integrated with data from
multiple enterprise data sources and data updates and con-
figuration changes can be distributed to and from the mobile
clients in real time, without using interim data storage, and
thereby avoiding complicated synchronization and asyn-
chronous data issues between the enterprise data sources and
the mobile clients. The real time data changes can include
deployment of changes to the mobile application itself, as
well as data updates. The real time changes are further
accommodated with data conflict detection and resolution.

[0011] The Dexterra, Inc. system referenced above is
based on a system architecture in which target enterprise
data sources contain objects or data tables, and each target
data table is mapped to a data object called a View. That is,
a View is defined that corresponds to each data table in the
enterprise data sources from which the application will
obtain data. The Views can be defined by the application
developer, or from another vendor. The data in the Views are
shared among one or more data entities referred to as
Business Objects. A single Business Object can utilize data
from multiple Views, and therefore can utilize data from
multiple enterprise data sources, even from data sources that
have incompatible data formats. In the system, data objects
called Connectors provide a data sharing interface with the
enterprise data sources.

[0012] Once a set of Business Objects is defined, appli-
cation developers can design applications while dealing with
data through their interface to the Business Objects, rather
than get involved in describing and defining the Views and
Connectors. Thus, developers are presented with a format-

US 2006/0212846 Al

free data interface, so that differences in targets are
abstracted out from the developer.

[0013] The system described in the Dexterra, Inc. patent
application referenced above provides a powerful develop-
ment tool for the mobile computing platform that permits
access to a variety of enterprise data sources. Even greater
adaptability in the configuration of the View data, however,
could extend the capabilities of the system and provide
greater flexibility. The present invention provides such
greater View configuration capabilities.

SUMMARY

[0014] In accordance with the invention, mobile clients
gain access to business enterprise data sources through
configurable Views that interface with the data sources
through Data Objects that are defined by Commands, which
in turn communicate with the data sources through Connec-
tors (also referred to as Adapters). Each type of View will
interface to the data sources with a different functionality so
that communications links and other system resources can
be used more efficiently. For example, the View types can
include Direct Views, Derived Views, Delegated Views, and
Definition Views. These new View types can provide greater
control over data interfaces and can be configured for greater
utilization of system resources.

[0015] Direct Views are Views that retrieve data directly
from an enterprise data source. Derived Views request data
from a server that retrieves a base set of associated data at
runtime from the enterprise data sources and then places the
retrieved data into a relational data engine (RDE) that
applies Derived View filter parameters to extract filtered
data and provide it to the requesting Derived View type. The
Delegated View will periodically retrieve data from the
enterprise data sources and will place the retrieved data into
a Relational Data Engine cache from which subsequent
mobile client requests for enterprise data can be filled,
thereby reducing the data traffic between the mobile client
and the data sources. The Definition View permits control
over where retrieved data is maintained, either at the system
server or at the mobile client, thereby extending control over
utilization of system resources.

[0016] Other features and advantages of the present inven-
tion should be apparent from the following description of the
preferred embodiment, which illustrates, by way of
example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a block diagram of a suitable computer
system environment for a mobile enterprise platform con-
structed in accordance with the present invention.

[0018] FIG. 2 is a block diagram of the logical architec-
ture of data in the mobile enterprise platform illustrated in
FIG. 1.

[0019] FIG. 3 is a block diagram that illustrates the
Connector interface between the enterprise data sources and
the mobile client of FIG. 1.

[0020] FIG. 4 is a block diagram of a suitable computer
system environment 400 constructed in accordance with the
present invention.

Sep. 21, 2006

[0021] FIG. 5 is a diagrammatic representation of the
Derived View data flow using the View architecture in
accordance with the present invention.

[0022] FIG. 6 shows a diagrammatic representation of the
data architecture for the mobile platform illustrated in FIG.
1.

[0023] FIG. 7 is a diagrammatic representation of the data
access configuration for the mobile platform constructed in
accordance with the present invention.

[0024] FIG. 8 is a screenshot of a display on a computer
device that is hosting the DAD computer program applica-
tion.

[0025] FIG. 9 shows a tree view and context menu gen-
erated by the DAD program when “Datasource Types” is
selected on the Dexterra Explorer menu.

[0026] FIG. 10 shows selection of the Data Sources menu
item from the FIG. 9 display.

[0027] FIG. 11 shows selection of a particular datasource
type, from which a context menu is generated.

[0028] FIG. 12 shows View types that are available for
selection.
[0029] FIG. 13 shows a Data Sources Properties dialog

box that is generated by utilizing a Data Sources context
menu to create a new type of Data Source.

[0030] FIG. 14 shows an authentication screen for DAD
login information and choose a particular enterprise data-
source target.

[0031] FIG. 15 shows a designer making a Command
selection from the tree view.

[0032] FIG. 16 shows a “New Command” dialog box in
response to selection in FIG. 15.

[0033] FIG. 17 shows the Parameters tab of the Add
Command dialog.

[0034] FIG. 18 shows the tree view with a new Command
called “CustomerQuery” that has been added.

[0035] FIG. 19 is a flow diagram that illustrates opera-
tions of a computer system in accordance with the present
invention.

DETAILED DESCRIPTION

[0036] In a mobile data integration system constructed in
accordance with the invention, mobile clients running an
application interface with enterprise data sources through
configurable View objects that access data through Data
Objects that are defined in terms of Command objects that
interface with the enterprise data sources through Adapters
(also called Connectors). The multiple types of Views that
are supported can provide greater adaptability to thereby
extend the capabilities of the system and provide greater
flexibility. Each type of View will interface to the data
sources with a different functionality so that communica-
tions links and other system resources can be used more
efficiently.

[0037] As described further below, in the illustrated
embodiment, the View types include Direct Views, Derived
Views, Defined Views, and Designated Views. A Direct

US 2006/0212846 Al

View will retrieve data directly from an enterprise data
source via the Data Objects, Commands, and Adapters. A
Derived View will incorporate filter parameters and will
request data from a server that retrieves a base set of
associated data at runtime from the enterprise data sources
and then places the retrieved data into a relational data
engine (RDE) that applies the Derived View filter param-
eters to extract filtered data and provide it to the requesting
Derived View type. The Delegated View will periodically
retrieve data from the enterprise data sources according to
parameters of the Delegated View and will place the
retrieved data into a Relational Data Engine cache. Subse-
quent requests from mobile clients for enterprise data can be
filled by getting the requested data from the RDE cache
rather than directly from the enterprise data sources, thereby
reducing the data traffic between the mobile client and the
data sources. Updated data from mobile clients is returned
directly to the enterprise data sources through the Adapters.
A Definition View permits control over where retrieved data
is maintained, either at the system server or at the mobile
client. The extent of system resources will generally deter-
mine selection between the two configurations.

[0038] A base configuration of an exemplary base system
architecture is described below in connection with FIGS. 1,
2, and 3. In the preferred embodiment of a mobile client data
system that incorporates the configurable View objects of
the present invention, the system utilizes an Adapter-Com-
mand-Data Object architecture. The Adapter-Command-
Data Object is described further below in terms of architec-
tural changes from the system of FIGS. 1, 2, and 3 at “V.
Adapter Architecture” in conjunction with FIG. 4. The
configurable View objects are described in greater detail
below at “VI. View Types” in conjunction with FIG. 5.

1. System Overview

[0039] The present invention provides a system in which
data is utilized from multiple enterprise data sources to
mobile clients executing mobile applications such that the
mobile applications are integrated with the multiple enter-
prise data sources, and data updates and configuration
changes can be distributed to and received from the mobile
clients in real time, without using interim data storage. The
elimination of an interim data storage facility avoids com-
plicated synchronization and asynchronous data issues
between the enterprise data sources and the mobile clients.
Thus, data updates and system configuration updates for the
mobile application can be communicated from the enterprise
to the mobile clients, and from the mobile clients to the
enterprise, in real time. No special synchronization opera-
tion is needed, as changes can be propagated through the
system in real time.

II. System Platform

[0040] FIG. 1 is a block diagram of a suitable computer
system environment 100 constructed as described in the
above-referenced Dexterra, Inc. patent application. in accor-
dance with the present invention. FIG. 1 shows a mobile
client device 102, such as a Personal Digital Assistant (PDA)
device that operates in conjunction with the Microsoft
PocketPC or Palm PDA operating systems. The mobile
client device communicates over a network connection 104
with an application server 106 to request data from the
server and receive data updates, provide new data, and
receive configuration changes. It should be understood that

Sep. 21, 2006

multiple mobile clients 102 can communicate with the
server 106. Only a single client device 102 is shown in FIG.
1 for the sake of drawing simplicity.

[0041] The mobile clients 102 consume the server-side
connector web services for real time data retrieval from
multiple enterprise data stores. Additionally, the mobile
clients consume the server-side data manager web services
for the management of real-time client-side data updates,
server side data updates and system configuration updates.

[0042] The application server 106 communicates with
enterprise data sources 108, such as CRM data sources, ERP
sources, financial system resources, legacy data stores, and
the like. The exemplary enterprise data sources illustrated in
FIG. 1 include data including “Siebel” software from Siebel
Systems, Inc. of San Mateo, Calif., USA; “Oracle” software
from Oracle Corporation of Redwood Shores, Calif., USA;
“SAP” software from SAP AG of Walldorf, Germany; and
legacy software. The administrator application 110 and a
developer application 112 communicate with the application
server 106, which also stores metadata 114 for the system,
as described further below.

[0043] The application server 106 provides data manager,
configuration, and data connector web services for data
interchange and updating, user authentication, security, and
logging services. The application server also handles busi-
ness process management in the form of business informa-
tion and rules.

[0044] The mobile client 102 also includes a datastore 116
that includes a relational data base 118 that stores business
data 120 and also a relational database that stores metadata
122 for application execution on the mobile client. An
application 124 that is installed at the mobile client 102
includes various software components that perform suitable
functions. For example, the application might comprise a
field service application that informs field service personnel
as to a location at which service has been requested, explains
the nature of the service request, and provides for logging
the service visit and settling the account. The application
124 may include multiple applications that process the data
requested by the mobile client 102.

[0045] The administrator application 110 and developer
application 112 together comprise a “Studio” component
130. In the illustrated embodiment, the administrator and
developer are provided as two separate applications, and
provide a means to configure the system, including the
metadata data and application interfaces.

[0046] The system 100 comprises a mobile enterprise
platform that supports the service application 124. The
system provides a set of Web services that effectively deploy
and manage mobilized software solutions to enhance mobile
business processes. Common examples include integrating
to CRM or ERP, sales force automation (SFA), and customer
support and help desk functions for an enterprise. Such
enterprise applications depend on cross-application interac-
tion, in that data from one function or system is often used
by a different function or system. When executed on the
mobile client, the existing application functionality and
enterprise information is utilized among multiple enterprise
software applications, legacy data systems, and mobile
workers. In this way, a significant return on investment can
be achieved for these applications and for the mobile enter-
prise platform.

US 2006/0212846 Al

[0047] The mobile enterprise platform 100 provides Web
services that simplify the use of mobile clients and associ-
ated portable devices in the field. These Web services
include a data manager function, a configuration function,
and a connector function. These will be described in greater
detail below. The applications 124 that are installed on the
mobile clients 102 can be fully functional in any connected
or disconnected state, after they have been properly initiated
by the application server 106.

III. Logical Architecture

[0048] Any client application that makes use of the Mobile
Enterprise Platform illustrated in FIG. 1 will utilize the
system components illustrated in the block diagram of FIG.
2. These components include:

[0049] Business Objects—programmable objects based
on business concepts, combining fields and relating
information from different enterprise data sources. (e.g.
data sources such as Customer, Contacts, Assets, Tasks,
etc.).

[0050] Business Rules—custom logic to enforce busi-
ness processes utilizing business constants with checks
applied against business data from the enterprise data
sources.

[0051] Business Constants—A user-configurable vari-
able for use throughout the client applications, and
client and server-side business rules (e.g. Business
Rules, Warning Messages, and the like).

[0052] Datasource Connectors—data source connectors
designed to seamlessly provide access to a wide variety
of enterprise data sources (e.g. databases such as those
formatted according to Oracle and SQL Server, mes-
saging systems such as MQ Series or MSMQ, CRM
applications such as Siebel or Peoplesoft, generic web
services, and so forth).

[0053] Business Process—metaphors, such as a “Force
Flow” process of Dexterra, Inc. of Bothell, Wash.,
U.S.A., that defines a form-to-form navigation para-
digm for modeling business processes.

[0054] Forms—a combination of standard visual dis-
play screens (e.g., View, Edit, Find, and the like) with
event driven logic that are designed to show informa-
tion, gather information, and direct the user through a
given business process, referred to herein as either a
“ForceFlow” or a “FieldFlow”.

[0055] Views—A modifiable representation of the data
identified from an enterprise datasource or application
that is utilized by one or more Business Objects.

[0056] Filters—A Filter that can be applied to a View to
modify the data available to a Business Object.

[0057] These components can be used to specify the
configuration (logical architecture) of any client application
that is constructed utilizing a technology framework such as
the Microsoft Corporation “.NET” and tools such as
Microsoft Corporation’s “Visual Studio .NET”. Those
skilled in the art will be familiar with such programming
tools to specify an application and its associated data
objects.

Sep. 21, 2006

[0058] The Mobile Enterprise Platform illustrated in FIG.
1 is implemented as a metadata driven framework. The
framework provides integrated client and server web ser-
vices, enabling the connection, configuration, and data man-
agement services necessary to deploy fail-safe, mission-
critical mobile enterprise solutions.

[0059] FIG. 2 illustrates that, in the mobile enterprise
platform of FIG. 1, the structure of relational database tables
and external application business objects are mapped to
views as metadata. One or more views are consumed by
Business Objects, also defined in metadata, which are in turn
utilized by the mobile application. The mobile application
utilizes a client framework, referred to as the “Dexterra
Smartclient”, which manages the instantiation of the Busi-
ness Objects, Local Data Access to the underlying physical
database that resides on the mobile client device, Device
integration, as well as the client-server data communication
via the data manager and/or connector web services. Within
the platform, specifications for all logical layers (e.g., Busi-
ness Objects, Views, Filters, and Connectors) are defined
and maintained within the metadata.

[0060] The mobile enterprise platform is architected as a
logical stack, designed to insulate layers in the logical
architecture from all but non-adjacent members. At the
bottom of the logical stack, the Target layer, is data that
resides in back-end, enterprise data sources. The platform
works with the source data in place, and does not require
information within the back-end system of record to be
replicated to a middle-tier replication database. That is, no
interim datastore is needed. This provides flexibility in
design, as well as real time data access and can help reduce
total cost of ownership of the platform and applications, and
assists simplification of data management processes.

[0061] The next layer up in the logical stack is the Con-
nector layer. The Connector layer provides a programmatic
construct that describes the back-end datastore to the appli-
cation server in a relational format. The information regard-
ing how to connect to an enterprise data source, as well as
the security settings (such as authentication methods and
user and group definitions) are stored within metadata, and
are maintained using the Administrator component.

[0062] The next layer in the stack is the View layer, which
comprises objects that provide a one-to-one mapping to an
object or table in a back-end, enterprise data source. For
example, if a back-end system has a table called CUS-
T_ADDR (customer address), and data from that table is
required for use in an application, then a View will be
created in the Administrator component. The Administrator
View might be called, for example, CUSTOMER_AD-
DRESS, to represent that data in the environment of the
mobile enterprise platform, outside of the enterprise data
sources. It should be understood that a View has properties
that correspond to the properties or columns of the data
object in the back-end system. However, it is not required
that all properties in the back end data source are required as
properties in the View. Indeed, the properties required are
defined in the administrative component and stored as
metadata In the example just provided, the properties might
include fields such as ID, STREET_ADDR, CITY, STATE,
and ZIP_CODE.

[0063] Additionally, the user can define the data types of
the properties within the View, and these data types can be

US 2006/0212846 Al

independent of the data types of the corresponding proper-
ties in the enterprise data source. Other options of the view
properties that can be identified are unique identifier, read
only, indexing, required property and length. All the above
information is stored as metadata.

[0064] The View layer also provides an indication of data
conflicts, and provides a means for resolving such conflicts.
Data conflicts can occur, for example, whenever there are
data changes between what is being uploaded from the
mobile client and what exists at the server. Resolution of
such conflicts can be performed at the View layer, enforcing
business rules such as permitting the most recent data
change to always take precedence, or permitting data
changes from a particular source (e.g., either the mobile
client or an enterprise data source) to take precedence
depending on the data type (e.g. field data or customer
account data). This is described further below, in conjunc-
tion with the Data Manager Web Service.

[0065] As illustrated in FIG. 2, the Views can be defined
against multiple objects in multiple datastores, thus provid-
ing flexibility in application deployment and in the use of
in-place systems, without the burden of data replication. As
with the Connectors, the definitions of Views are stored in
metadata, and are managed with the Administrator. Those
skilled in the art will understand details of data definitions in
metadata, without further explanation. As noted above,
Filters can be applied to the Views, to modify the data that
is passed to the next layer. The Administrator provides View
management features, including a Views Wizard that auto-
matically creates Views based upon the object interface or
table definition of the back-end datastore objects (from the
enterprise data sources).

[0066] The next layer up in the FIG. 2 diagram includes
the Business Objects, which are mapped, or associated with,
one or more Views. A Business Object of the platform is the
programmatic entity with which a developer will interface
with when building customizing mobile applications. The
Business Objects include multiple properties, each of which
can be of a simple data type, or can be another Business
Object. Because the Business Objects of the platform can be
mapped to multiple Views, developers can work with a
single entity that represents data sourced from multiple,
heterogeneous data sources. Thus, a single Business Object
defined in accordance with the mobile enterprise platform of
the invention can include data from multiple, potentially
incompatible enterprise data sources, such as from different
proprietary formats.

[0067] In creating or modifying applications for the
mobile applications and mobile client devices, developers
can interact solely with the Business Object layer. This
insulates the developers from any requirement to understand
or interact directly with the back-end systems (enterprise
data sources) for the source data. In this way, the Business
Object layer provides an object-based interface for applica-
tion developers, abstracting the details of persistence and
retrieval of data. There is no need for the developer to
directly interact with the local datastore on the mobile
device. In addition, due to the nature of disconnected data,
the mobile client, through the Business Object interface,
automatically manages the processing of data changes, by
storing data changes locally in the client that will be passed

Sep. 21, 2006

to the application server during an Update process. This
further insulates developers from this rote programming
task.

[0068] The Business Objects exist on the mobile client
device as metadata, and are also managed using the Admin-
istrator (FIG. 1). The use of metadata throughout the mobile
enterprise platform provides an environment in which the
attributes and behavior of most data entities can be config-
ured through a graphical user interface rather than coded.

[0069] The metadata-driven nature of the mobile enter-
prise platform enables performing business processes on the
mobile client through a stateless server architecture.
Through the metadata, the mobile application can be con-
figured and customized. The metadata defines the structure
of the business objects referencing the business enterprise
data to the mobile device and defines the events that trigger
business rules that govern the business processes.

[0070] The metadata database contains the reference of the
cross-functional, cross-application back-end business infor-
mation that is exposed through the Connectors to configure
a business object. This process is accomplished through the
Studio component (FIG. 1) to configure and reference the
connecting enterprise data source business information with
the Business Objects. This provides the path to the specific
data for the mobile applications, ensuring that no business
data from an enterprise data source is stored in its native data
format on the application server or on any other interim
datastore of the system for data updates. This non-invasive
and real time synchronous approach using the metadata
permits the mobile enterprise platform to effectively connect
to back-end systems with a minimum amount of disruption
while maximizing cross-functional data access, data consis-
tency, and data integrity.

IV. Mobile Enterprise Platform Components
[0071] A. Mobile Applications

[0072] As noted above, the mobile client 102 (FIG. 1) can
include installed applications 124 that implement business
processes of the enterprise. The application can leverage the
mobile enterprise platform described above, and demon-
strates how the application instantiates the business objects
which drive the business process configured in metadata.

[0073] For example, Task or Work Order information
would be provided to the mobile application through views
and would be accessed via a business object. In retrieval of
the business data via the view definition, using the data
manager web service, the business object can deliver the
business data to the mobile application to describe the tasks.
This data is stored on a local relational database on the
mobile device. When an update to the task data is committed
to the task business object in a request from the application,
the Smartclient application will persist the changes to the
view defined datastore on the mobile client, then the Smart-
client manages the data updates back to the original data
source via the data manager web service, ensuring data
integrity and consistency.

[0074] By utilizing the depth, breadth, and power of web
services (e.g., connection, configuration, and data manager
services) that are available in the mobile enterprise platform
described herein, a large suite of mobile applications can
easily be constructed, including applications such as sales

US 2006/0212846 Al

force productivity, customer service, and support solutions.
Such applications can be integrated with a broad set of
vertical applications including oil/gas, healthcare/medical
and financial service industry solutions.

[0075] B. Server Components

[0076] The application server is a type of metadata-driven
platform application and provides information, applications,
and business processes to the mobile client, and ensures
managed data integrity between the mobile enterprise plat-
form and a host of back-end enterprise data sources. The
application server is a process-based, high performance
solution built on the “NET” technology from Microsoft
Corporation of Redmond, Wash., U.S.A. Using the “NET”
technology, the mobile enterprise solution is a framework
that is Web Services native through the use of XML and
SOAP for data exchange and transport. The application
server provides three core Web Services, as shown in the
functional architecture diagram of FIG. 1:

[0077] Connector Web Service

[0078] The Connector Web Service delivers non-inva-
sive integration of the existing enterprise applications
infrastructure while maintaining control of the Data-
integrity Conditions between the mobile clients and the
discrete enterprise data sources.

[0079] Configuration Web Service

[0080] The Configuration Web Service manages the
metadata defining the business data, business objects,
business rules, business constants, and system configu-
ration such as authentication, logging, security, and
roles that encompass the mobile applications that are
passed to the mobile client—the component application
that is resident on the mobile device.

[0081] Data Manager Web Service

[0082] The Data Manager Web Service orchestrates the
update interactions between the mobile client applica-
tion, the application server, and the third-party enter-
prise data sources. Additionally the Data Manager Web
Service provides the ability to directly communicate
with the connector layer for real-time queries. The Data
Manager Web Service delivers flexibility in the manner
that manages the various conditions concerning mul-
tiple updates by multiple users to the multiple enter-
prise data sources to enforce the integrity of the data.
The Data Manager Web Service can do this via the
application server or direct to any API and/or third-
party published Web Service.

[0083] In this way, the Data Manager Web Service can
manage deployment of application updates and data
changes throughout the mobile clients of the system.

[0084] Each of these components will next be described in
greater detail.

[0085] 1. Connector Web Service

[0086] The Connector Web Service is designed to support
communication with any ODBC-compliant data source or
Web Service APl. The Connector Web Service allows a
customer to define and build views based on data stored in
one or more third-party systems. The Connector Web Ser-

Sep. 21, 2006

vice has a published interface that allows for standard bulk
updates as well as real-time data access from a mobile client.

[0087] The Connector Web Service provides the physical
layer connection between the application server meta-appli-
cation and the specific interface of the enterprise data
sources. The connectors support database dispute manage-
ment and notification services, transaction management, and
error handling. In a default customer configuration, the
mobile enterprise platform system is deployed to customers
with an ODBC or Web Service connector. Those skilled in
the art will be able to produce connectors to the most
common enterprise systems, such as Siebel, SAP, People-
Soft, Oracle, SQL Server, and the like.

[0088] For example, an “Oracle” applications connector
allows a customer to make calls to Oracle support services,
either through the closest data constructs the customer has to
APIs (such as PL/SQL procedures) or directly to the enter-
prise database itself via ODBC. As with all of the ODBC
connectors the dynamically interrogation of the RDBMS
schema is automatically executed, exposing the specific
physical design of the database. This gives the customer a
hierarchical view of the actual interfaces into that system.

[0089] FIG. 3 shows an example of how the Connectors
interface the enterprise data sources to the mobile enterprise
platform. On the left side of FIG. 3 are representations of
multiple enterprise data sources, including an ERP data
source 302, a CRM data source 304, an HR/Finance data
source 306, a Legacy/ODBC data source 308, and can
include other Web Services or other sources (not shown). In
the middle portion of FIG. 3 is a representation of the
metadata 312 that specifies to the application server 314 how
data from the different enterprise data sources will be stored
and related in the mobile client 316, which is represented at
the right side of FIG. 3.

[0090] Thus, in this example, data identified as ORDE-
R_ID exists in the ERP data source. Data identified as
F_NAME and L NAME exists in the CRM data source.
Data identified as CRED_LIM exists on the HR/Finance
data source, and data identified as WARRANTY is stored in
the Legacy/ODBC data source. All of these identified data
are stored in enterprise data sources, such as at back-end
office systems.

[0091] In the metadata 312, the data definition from the
enterprise data sources is mapped to views that are used to
create the data store on the client and store the relevant
business data on the mobile client from the enterprise data
sources in a relational database. Access to this business data
is performed via a the business object layer defined and
stored in metadata on the mobile client. As shown in FIG.
3, the ORDER_ID from the ERP data source is mapped to
a business object property called OrderID, whose relational
definition is stored in metadata 318 on the mobile client 316
and utilized by one or more the mobile applications also
defined in metadata. The F_ NAME data from the CRM
enterprise data source is mapped to (stored into) the First-
Name business object property definition stored in the
mobile client database, and the [,_NAME data is mapped to
the LastName business object property. Similarly, the
CRED_LIM data from the HR/Finance data source is
mapped to the CreditLimit business object property, and the
WARRANTY data from the Legacy/ODBC data source is
mapped to the Warranty business object property. Thus, data

US 2006/0212846 Al

from the potentially dissimilar and incompatible disparate
enterprise data sources 302, 304, 306, 308, 310 are delivered
to the mobile client through the Data Manager Web Services
to the local data store (represented by the lines from the
enterprise data sources to the application server 314) in the
proper format for access using one of the business objects on
the mobile client (indicated in the mobile client 316 with
actual values).

[0092] Connector Types

[0093] The connectors that are supported by the Connector
Web Service include the following three connector types:

[0094] 1. The Web Services connector is used when the
mobile platform is connecting to a third-party system
(a) that is either non ODBC-compliant, or (b) does not
allow ODBC/RDBMS connectivity, or (¢c) whose inter-
face is defined by a standard API and can be wrapped
and defined by Web Service Descriptor Language
(WSDL).

[0095] 2. The ODBC/RDBMS connector is used when
connecting the mobile platform to a third-party system
(a) that is ODBC compliant and (b) allows for direct
ODBC/RDBMS access and (¢) whose data is located
physically within the same LAN environment or acces-
sible via a communication protocol supportive of the
transport (such as RPC, TCP, etc.).

[0096] 3. The API connector is similar to the Web
Services Connector but (a) requires the API to be
accessible via non internet protocols such as RPC and

(b) is used if the Web Services Interface is not avail-
able.

[0097] Reading schema, via the ODBC/RDBMS connec-
tor, information is accomplished through the use of the
Studio portion 130 (FIG. 1) of the mobile enterprise plat-
form, using the Administrator application. The Studio por-
tion is used to configure the View definition mapping to the
backend data source and map the definition of one or more
Views to one or more Business Objects. When defining the
View definition or mapping the Views to Business Objects,
using the administrator, the information is stored as meta-
data. During an update process with the application server
and enterprise data source, the metadata is read to determine
how to read, persist and remove the data (select/insert/
update/delete functions) while managing and enforcing the
data integrity using such functions as conflict detection/
resolution, transactions both inherent and compensating
where appropriate.

[0098] Using the ODBC/RDBMS connector, data is read,
persisted and/or removed via ANSI SQL statements and/or
stored procedures in the case of Microsoft Corporations SQL
Server or Oracle’s RDBMS (81, 91, etc.). Using the Web
Services/API connector, data is read, persisted and/or
removed by calling the appropriate API function or method
for the transaction.

[0099] 2. Configuration Web Service

[0100] The Configuration Web Service consumed by the
Dexterra Studio provides an easy interoperable way for
administrators, business analysts and developers to imple-
ment, configure, and administer the Dexterra Mobile Enter-
prise solution. The Configuration Web Service allows for
easy manipulation of the metadata used to configure and

Sep. 21, 2006

customize the data and process definitions of Mobile appli-
cations. This service will be better understood with reference
to the features of the Administrator component, which is
described in greater detail below.

[0101] 3. Data Manager Web Service
[0102] Update Process Model

[0103] An update process model is utilized in the system,
in which mobile applications update their locally held data
(either the application or its business objects) with the
backend enterprise database using a set of core Net compo-
nents that are exposed as Web Services for easy interoper-
ability.

[0104] The Data Manager Web Service updates the mobile
application and all its associated business objects defined
data. The Update process model enables two-way data
transfer between the enterprise datasources via the Dexterra
application server and the mobile client, allowing updates to
be made while the mobile client is connected to the network,
merging the updates between clients when they are con-
nected. When in the disconnected state, updates are man-
aged in the client environment, until a time at which a
connected state is attained and the update request can be
initiated.

[0105] The update process model takes the “all or noth-
ing” approach. If a failure occurs before the entire stream is
downloaded from the application server onto the mobile
client (or before the entire stream is uploaded from the client
to the server), then the Data Manager Web Service on the
application server does not receive a confirmation on the
download transaction (or upload). As a result, the server
carries the intelligence to manage the client state as to
whether it requires a roll back of data or simply a retry.
When the mobile client performs an update process opera-
tion the second time, the application server takes into
account the original information state and may either deliver
the results if the application server has processed or process
again in the event all the required information was never
received by the application server thus enforcing the reliable
deliver of information once and only once between the
mobile client and application server. This, in event, enforces
the integrity of the data as it moves from mobile client to one
or more back end data sources.

[0106] Update Process Breakdown
[0107] Two types of update processing are supported:

[0108] 1: Get Latest: In this update type, the mobile
client makes a request to get the latest information from
the enterprise data sources via the Dexterra application
server. The Dexterra application server process the
request and retrieves the business information from the
multiple data sources using the Dexterra Connector
Web Service and delivers the business information to
the mobile client.

[0109] 2: Update (2-way update): In this update type,
records on both the client and server end are inter-
changed enforcing the integrity of the data on both the
mobile client and the back end enterprise data sources
using Dexterra Conflict Resolution configured param-
eters.

US 2006/0212846 Al

[0110] Conflict Detection/Resolution

[0111] Conflict resolution describes the rules used to arbi-
trate on data conflicts caused by changes made between a
mobile client and one or more back end enterprise data
sources. This is performed first by identifying the conflict
(Detecting) and then resolving (Resolution) the conflict in
one or more various ways.

[0112] The Dexterra application server can detect conflicts
in one of three ways: Revision, Date/Time Stamp or Manual
as well as identify a conflict situation by row or column
level.

[0113] Revision is a setting where a specific field or
property is identified in a single record source as revisioned
and the Dexterra application Server will use this to deter-
mine whether data has been changed on either the back end
data source or the mobile client.

[0114] Date/Time Stamp

[0115] Date/Time Stamp is a setting where a specific field
or property is identified in a single record source as date/time
stamp and updated upon any insert/update or delete and the
Dexterra application Server will use this to determine
whether data has been changed on either the back end data
source or the mobile client.

[0116] Manual is a setting where there is no specific field
or property to identify a conflict situation in a single record
source therefore the Dexterra application Server compares
all the field or property data to define uniqueness and detect
whether data has been changed on either the back end data
source or the mobile client.

[0117] Depending on configuration of the Dexterra appli-
cation Server, Conflicts are resolved in one of four ways:
First Update Wins, Last Update Wins, Admin Resolution or
Server-side Rule

[0118] First Update Wins

[0119] Under the First Update model the application
server will only accept changes of any record that is the first
one to make an update. If a record is first updated by the back
end data source and a conflict is detected by the Update Web
Service, instead of returning an error, the Data Manager Web
Service will drop the version provided by the client and
return a copy of the latest version of the record from the back
end enterprise data source to the mobile client.

[0120] Last Update Wins

[0121] Under the Last Update Wins model, the server need
not detect conflicts. Instead, it simply persists the changes
from the mobile client to the back end enterprise data source
overwriting the current record in the back end enterprise
data source.

[0122] Admin (or Manual) Resolution

[0123] When configured for Admin/Manual resolution,
the server will treat all conflicts as requiring manual inter-
vention to resolve and will return a copy of the current
record from the back end enterprise data source and option-
ally notify via any notification service (SMS, Emai, etc.) that
a conflict situation has arisen and allow for resolution via the
Dexterra Administrator. Doing so allows for column level

Sep. 21, 2006

conflict resolution since the Administrator determines the
values to reapply back to the back end enterprise data source
selectively.

[0124] Server Side Rules

[0125] Customizable Server Side Rules can be created to
determine more programmatically and specifically how cer-
tain conflict situations should be resolved. For example, a
conflict may be resolved based on the values of data in a
record. This flexibility allows for complete control over the
specific actions surrounding a conflict resolution scenario.

[0126] Client Deployment from the Server

[0127] The application server contains the definition of
one or more mobile field applications that are to be down-
loaded to the mobile client, including the Forms/screens
represented as tasks (referred to as “FormFlows”), data-
interactions (referred to as a “FieldFlow™), and groups of
FormFlows and FieldFlows constructed into a Business
Process/Workflow (called a “ForceFlow”). The FormFlows,
FieldFlows, and ForceFlows are described further below.
The application definition also includes the configured meta-
data associated to an application such as View, Business
Object, Business Constants definition. Also included in the
deployment is the specific business data from one or more
back end enterprise data sources required to run the mobile
client in an “occasionally” connected state.

[0128] The application server provides the foundation on
which to deliver and manage applications and to connect to
existing enterprise data sources and systems. The mobile
enterprise platform applications are distributed and managed
to the mobile devices, such as Pocket PC and Tablet PC
devices, by the application server, providing a highly man-
ageable administration of all user interfaces in the field.

[0129] C. Administrator Component

[0130] As noted above, the Administrator component
(FIG. 1) allows system administrators to perform changes
that are relatively regular or frequent. The Administrator
component provides access to decision variables, drop-down
list content, and other information in a format appropriate
for business analysts or administrators to manage. This
approach to administration allows system administrators to
extend many functions down to the Administrator level
without compromising system integrity.

[0131] Forexample, data comprising business information
that is used to define the business processes of the enterprise
can be received through a Business Objects definition form.
The Configuration Web Service provides access to this
aspect of the Administrator component.

[0132] D. Client Component

[0133] As noted above, the client 102 (FIG. 1) in the
enterprise platform architecture provides a framework in
which the mobile application allows the use of role-based
business processes using techniques referred to as “Force-
Flow”, “FieldFlow”, and “FormFlow”, and using Web Ser-
vices, thus enabling communications between the mobile
client and the Dexterra application Server and the enterprise
data sources over a LAN/WAN network, such as the Inter-
net, via wired and wireless connections. The mobile appli-
cation running on the client devices functions in a manner

US 2006/0212846 Al

that is optimized for small form-factor devices providing an
exception, easy to learn user experience.

[0134] In the illustrated system, the client is an object
framework that is built utilizing the “.NET Compact Frame-
work™ of Microsoft Corporation that is metadata aware. The
client component enables delivery of enterprise-class appli-
cation functionality on the mobile devices, which preferably
operate according to the “PocketPC” operating system or
Microsoft Tablet PC operation system from Microsoft Cor-
poration. The client component also integrates with existing
“PocketPC” functionality to provide seamless integration
with Calendar, Task, and Today screen functionality of the
PocketPC interface. It thereby provides a stable, effective
environment in which to work.

[0135] FormFlows, FieldFlows, ForceFlows

[0136] Any business process tasks or steps or operations in
the form of display screens are called “FormFlows”. The
FormFlows are used to initiate process interactions called
“FieldFlows” that allow the initiation of business processes,
which are referred to as “ForceFlows”. The FieldFlows
allow launching of “out of band” ForceFlows to bring
real-world elasticity to the business processes.

[0137] The FormFlows are broken into three categories:
(1) Information; (2) Activity; and (3) Update. An Informa-
tion FormFlow is a screen that shows information needed by
a mobile user to fulfill the next logical task in the business
process. An Activity FormFlow is a screen that shows
something the user may need to do or perform. An Update
FormFlow is a screen that is displayed when a mobile user
is prompted to enter data that will be returned to the host
applications (the enterprise data sources).

[0138] A FieldFlow may be required, for example, when a
part might have failed and a search of inventory databases
might need to be performed to see if any matching parts or
similar problems with solutions exist and are available,
called a lookup, or a FieldFlow may be required when a part
might need to be ordered or assigned or scheduled for
delivery to the client, a FieldFlow called an update.

[0139] A ForceFlow is a business process, and therefore is
a collection of FormFlows and FieldFlows. An example of
a ForceFlow would be time, travel, and expense recording
that is associated with a job or dispatch event.

[0140] Referring back to FIG. 2, this block diagram shows
how the relationships between columns and fields in the
target application are related to information In the “Form-
Flows” (steps in the business process represented as ‘Forms”
in the application) and are then associated into the Force-
Flow (the business process). There can be many Business
Objects in one FormFlow and potentially more than one
FormFlow in any business process.

[0141] Filters allow characteristics and conditions to be
placed onto the data when referenced in the mobile appli-
cation. For example, data type (e.g., Date), valid types (e.g.,
only Monday through Friday), and any conflict conditions
may be detected. Other filter characteristics and conditions
can be configured.

[0142] Views define the data and storage location for use
in one or more Business Objects, and the Business Object
can be based on one or more Views. This allows additional
characteristics to be associated. For example, a Business

Sep. 21, 2006

Object may be referred to as “Customer”, which may
Include standard customer details; location, contacts, inven-
tory, and also SLA and other attributes that the application
would like to classify as Customer but not held in the same
Target table or even Target application.

V. Adapter Architecture

[0143] The adapter architecture in accordance with the
present invention is illustrated in FIG. 4. Some of the
components illustrated in FIG. 4 are analogous to compo-
nents illustrated in FIG. 1. Components in FIG. 4 that
perform functions for which a corresponding component is
provided in the FIG. 1 system will be identified in FIG. 4
with the same reference numeral, except for beginning with
“4” rather than “1”.

[0144] FIG. 4 is a block diagram of a suitable computer
system environment 400 constructed in accordance with the
present invention. FIG. 4 shows a mobile client device 402,
such as a Personal Digital Assistant (PDA) device that
operates in conjunction with the Microsoft PocketPC or
Palm PDA operating systems. The client device 402 includes
the same components as described in connection with the
client device 102 of FIG. 1, but are not illustrated in FIG.
4 for simplicity of illustration. The mobile client device 402
communicates over a network connection 404 with an
application server 406 to request data from the server and
receive data updates, provide new data, and receive con-
figuration changes. It should be understood that multiple
mobile clients 402 can communicate with the server 406.
Only a single client device 402 is shown in FIG. 4 for the
sake of drawing simplicity.

[0145] The mobile clients 402 consume the server-side
connector web services for real time data retrieval from
multiple enterprise data stores. Additionally, the mobile
clients consume the server-side data manager web services
for the management of real-time client-side data updates,
server side data updates and system configuration updates.

[0146] The application server 406 communicates with
enterprise data sources 408, such as CRM data sources, ERP
sources, financial system resources, legacy data stores, and
the like.

[0147] A “Dexterra Studio” component 430 communi-
cates with the server 406 and includes an administrator
application and a developer application (not illustrated in
FIG. 4). More particularly, the Studio component interfaces
with the Configurator of the server 406, and a data server
DDS interfaces with the server and the Adapter Framework
of the server 406, which communicates with the enterprise
data sources 408.

[0148] The Adapter Framework provides an interface that
will enforce specific inputs and outputs required in moving
data between the server 406 and any other enterprise data
source. The Data Manager of the server 406 will request and
respond to any properly defined connector component to
communicate with the enterprise data sources 408 through
the Adapter Framework. Thus, the server 406 uses the
definition of the Connection Objects, Command Objects,
Data Objects, and Views to determine how and what data to
retrieve or persist to a back end enterprise data source.

[0149] A design tool kit (“Dexterra Adapter Designer”, or
DAD) is supplied with the Studio 430 to permit developers

US 2006/0212846 Al

to specify the components of the Adapter Framework. That
is, the DAD 430 provides a developer with the means to
connect and construct Adapter Framework data components
to any Dexterra Supported Adapter utilizing the Dexterra
Studio VS.NET plug-in. Components include Connection
Objects, Command Objects, Data Objects, and Views.

[0150] Using the DAD 430, a developer will create a
Connection Object to a back end data source using a
Dexterra Supported Adapter. This Connection Object will
expose (either using Discovery/Intraspection or Description)
the data interface object(s) available through the Adapter as
either a Table, Stored Procedure, Script or Object (EAL etc.)
Using the Dexterra Adapter Designer, a developer will then
create a series of Command Objects that perform specific
actions through an Adapter such as Select, Insert, Update
and/or Delete. A developer then defines a Data Object in
which they will select the appropriate Select Command,
Insert Command, Update Command, and/or Delete Com-
mand. A View is then bound to the Data Object for its
request/respond actions. Using this tool and architecture, a
developer can request and persist data from one or more
back end enterprise data sources mapped to a single defined
data object within the Dexterra Server 406, thus providing a
layer of abstraction to the physical data structure and inter-
face capabilities.

[0151] A. Command Objects

[0152] The Command Object of the Adapter Framework
defines an action to be performed through an Adapter (i.e.,
Connector) to retrieve or persist data. For example, a “Save-
Customer” command might be defined to save a Customer
data object to an enterprise data source through an Adapter.
Command types or formats will be determined by the
Adapters according to the enterprise data sources with which
they interface and therefore must support. For example,
potential Command types for a mobile data system might
include Table, Procedure, SQL, Script, and Object.

[0153] The Command Objects will specify an action that
will be performed. In accordance with the invention, the
Command action types include five defined actions: (1)
READ, (2) ADD, (3) UPDATE, (4) REMOVE, and (5)
READ for EDIT. These Command actions are described
further below in conjunction with the Data Object discus-
sion. Command Objects can specify filters, which will
operate when a Command is executed. Each filter will
operate on data in accordance with the data type of its
corresponding Command type. A Command will include a
Column attribute, which comprises the columns of data that
are returned when the Command is executed. Lastly, a
Command includes parameters that specify values necessary
for proper execution of the Command.

[0154] B. Data Objects

[0155] The Data Object associates Command Objects to
retrieve or persist data, logically grouping them into a single
object (e.g. a Customer object). A Data Object is defined by
(that is, it is the result of) Commands that are executed on
enterprise data sources, through the Adapters. As noted
above, Commands include READ, ADD, UPDATE,
REMOVE, and READ for EDIT. The READ Command is
a Command object that will retrieve data, define which data
columns are returned and what their attributes are, and will
override Data Types for casting from Adapter to the “.NET”

Sep. 21, 2006

paradigm. The ADD Command is a Command object that
will persist new instances of data through an Adapter to
insert new data instances back into the corresponding enter-
prise data source. The UPDATE Command is a Command
object that will persist changes to existing data items
through an Adapter back to the corresponding enterprise
data source. The REMOVE Command is a Command object
that will remove data from an enterprise data source through
an Adapter. The READ for EDIT Command is a Command
object that will retrieve a single record with a RowLock
through an Adapter.

[0156] The Data Objects will map the return elements of
the READ Command to the parameters of the ADD,
UPDATE, REMOVE, and READ for EDIT Commands. A
single Data Object can retrieve and persist data through
different Commands to potentially different Adapters.

[0157] C. Connections

[0158] As before, the Connections will interface to the
enterprise data sources to provide data access by the mobile
client application. In the Adapter Framework 430 described
in connection with the present invention, the Connections
will not communicate directly with Views, but will instead
interface directly with the Command Objects, which will
eventually exchange data with the Data Objects and Views.

[0159] D. Views

[0160] In the Adapter Framework in the Server 430 of the
FIG. 4 configuration, a View is not bound to a single data
table, as was the case in the FIG. 1 configuration. Rather, a
View is bound to a Data Object with defined Commands for
READ, ADD, UPDATE, REMOVE, and READ for EDIT.
Thus, a much more versatile data interface is provided. The
structure of a View is defined by the selected data columns
specified in the READ command for the Data Object. In
addition, filters are no longer created at a View object, but
are created at a Command Object.

[0161] As described further below in the next section, the
View types of the FIG. 4 system include Direct Views,
Derived Views, Delegated Views, and Definition Views. The
configuration of the View Objects in the server 430 enables
abstraction of View CRUD (Create, Read, Update, Delete)
operations to the enterprise data sources, and enables CRUD
to be defined instead of hard coded.

V1. View Types

[0162] As noted above, mobile clients gain access to
business enterprise data sources through configurable Views
that interface with the data sources through Data Objects
that are defined by Commands, which in turn communicate
with the data sources through Connectors (also referred to as
Adapters). Each type of View will interface to the data
sources with a different functionality so that communica-
tions links and other system resources can be used more
efficiently.

[0163] In the system illustrated in FIG. 4, the View types
include Direct Views, Derived Views, Delegated Views, and
Definition Views. As described further below, these new
View types provide greater control over data interfaces and
can be configured for greater utilization of system resources.

US 2006/0212846 Al

[0164] A. Direct Views

[0165] A Direct View will retrieve data directly from an
enterprise data source via the Data Objects, Commands, and
Adapters. A Direct View is a type of View that is defined for
the mobile client only. Most View types retrieve their
requested data by resorting to a local client relational data
store (cache) called SQLCE. In contrast, the Direct View
type requests data directly from the enterprise data sources
instead of going to the local client data store cache. In the
event of a failed connection to the enterprise data sources,
the FIG. 4 system provides an optional FailOver operation
that can retrieve data from the SQLCE if the enterprise data
sources are not available. This permits a Client/Server-like
operation of a Mobile Application where control over what
data is persisted locally, as compared to what data is required
in real-time (such as inventory data), can be configured.

[0166] When the mobile application for the system (FIG.
1) is planned and designed, the application developer can
select a View (defined in terms of Data Objects) to be a
Direct View. Such design decisions can be specified through
system development tools, which will be referred to as
“Dexterra Unified Development Environment Tool” or as
the “Dexterra Adapter Designer” (DAD) tool. Typically, use
of a Direct View by a mobile client is best implemented as
part of the View Filter conditions for client variables so as
to limit the results returned from the backend datasource to
be user specific.

[0167] When the application is running on the mobile
client, the mobile client will request data from a View during
a Business Object Request (called a FindSet operation). The
mobile client will see that the View is a Direct View, and will
therefore make the data request of the View directly to the
Dexterra Server using the Data Manager and passing any
Environment or User Defined variables for the View Filter.
The Data Manager will retrieve the data for the View from
the backend enterprise datasource (which could be a Default,
Derived, or Delegated View Type) and will return the data
to the client, which will then return the results of the data
retrieval to the Business Object.

[0168] B. Derived Views

[0169] A Derived View provides the ability to derive
(abstract) a definition of data from one or more defined
Views within the data server of the system. This enables a
data item to be defined based on one or more data structures
that are predefined as a View. A Derived View will incor-
porate filter parameters and will request data from a server
that retrieves a base set of associated data at runtime from
the enterprise datasources and then places the retrieved data
into a relational data engine (RDE) that applies the Derived
View filter parameters to extract filtered data and provide it
to the requesting Derived View type. Thus, Derived Views
can filter data from one or more other Views from different
enterprise data sources (such as Siebel, Oracle, etc.) using
common ANSI SQL operations, thus utilizing the power of
a relational engine such as SQL Server or Oracle.

[0170] Derived Views are defined in system metadata and
are constructed at runtime within the Dexterra Server (which
is stateless) to provide for the data abstraction rather than
predefining the structure as a table or defined object, giving
true flexibility towards change in the enterprise.

[0171] Using the Dexterra Unified Development Environ-
ment Tool, a developer first creates one or more base Views

Sep. 21, 2006

of type Default, Delegated, or Defined and configures filter
conditions, permissions, and the like. A Default type can be
set to be one of the remaining View types, as desired. After
the base View is created, a Derived View can be created by
selecting one or more Views and defining the attributes of
the View (such as the fields) to map and the filter condition
to apply to the data returned from the base Views.

[0172] At runtime, the Dexterra Server will respond to a
Derived View request by first retrieving the data from the
base Views of the Derived View and then will put the
retrieved data into a relational engine such as SQL Server or
Oracle, and then apply the Derived View Filter Condition (as
SQL) against the data and return the data for delivery to the
Data Manager for comparison and for preparation of deliv-
ery to the mobile client.

[0173] The Derived View is illustrated in FIG. 5, which
illustrates operation of a system 502 with a Derived View
(indicated as “V3” in FIG. 5) that is based on a “V1” View
and a “V2” View, such that the V1 View retrieves Customer
data from a Siebel database 504 and the V2 View retrieves
History data from the Siebel database. The V3 View speci-
fies only a subset of History data for retrieval, which is
accomplished through filter conditions of V3. The data
subset is then returned to the mobile client 506. The V2 View
is a type of Defined View, in that only a subset of the order
history is called for by the V2 View. The referential data
store 508 contains metadata from which the specified data
can be retrieved; it does not contain raw data of the order
history. Thus, the data that must be retrieved from the
database 504 and returned over the communications links
will be reduced, because only the data of interest is actually
pulled from the database and sent to the Derived View V3.

[0174] C. Delegated Views

[0175] The Delegated View provides the ability to del-
egate, or cache, data from one or more backend enterprise
data sources on the Dexterra Server and configure the
Dexterra Server to retrieve and update its cache based on a
predefined set of rules, such as a timer interval (every hour,
etc.) or a predetermined event (referred to as server side rule
triggering). Thus, a Delegated View will periodically
retrieve data from the enterprise data sources according to
parameters of the Delegated View and will place the
retrieved data into a Relational Data Engine cache.

[0176] Using the Dexterra Unified Development Environ-
ment Tool, a developer creates a View based on a specific
Adapter-supported object type, such as Table, Object, Stored
Procedure, Script, or the like. The developer then configures
the filter conditions, permissions, and associated object
parameters and then marks the View as a Delegated View
and configures the update functions of the filter, such as filter
time interval, event rules, and so forth. Thereafter, at runt-
ime, the Data Manager of the Dexterra Server will auto-
matically request data for the View from the defined Adapter
at the set time interval or server side event and will cache the
data in the local RDE.

[0177] In response to a mobile client request, the Data
Manager of the Dexterra Server will retrieve the data from
the local RDE instead of requesting the data defined by the
View from the Adapter that is connected to the enterprise
data source. A filter condition can apply to the local RDE
source, thereby increasing the performance of the request
and offloading the dependent back end data source for that
defined set of data.

US 2006/0212846 Al

[0178] Thus, after the server executes automatic data
retrievals based on the specified update functions, subse-
quent requests from mobile clients for enterprise data can be
filled by getting the requested data from the RDE cache
rather than directly from the enterprise data sources, thereby
reducing the data traffic between the mobile client and the
data sources. Updated data from mobile clients is returned
directly to the enterprise data sources through the Adapters.

[0179] D. Definition Views

[0180] A Definition View provides the ability to create a
user-defined View in the situation where there is no backend
data store in the enterprise to retrieve or persist the data. This
ability can be commonly used to either augment a backend
system for functionality required in the mobile offering that
is not part of the enterprise system. Another use might be to
enable the enterprise to relate data from the mobile appli-
cation to data in the backend enterprise data sources without
modifying the backend enterprise system. A user-defined
View (Definition View) will have an option for “Serv-
erOnly” or “ClientOnly”. The ServerOnly option can be
used to store data for purposes of augmenting a backend data
process but not required for the mobile application. The
ClientOnly option can be used to store additional data
elements to be used in the mobile application such as pick
lists, constants, enumerators, and so forth.

[0181] A Definition View permits control over where
retrieved data is maintained, either at the system server or at
the mobile client. The extent of system resources will
generally determine selection between the two configura-
tions.

[0182] To utilize Definition Views, a developer uses the
Dexterra Unified Development Environment Tool to create
a View by defining the data structure, including field names,
data types, and default values that will store the business
data. Then the developer can create a filter as well as a
permissions set for controlling access. The ServerOnly
option can be selected, which would not create the View
definition on a mobile device. The ServerOnly definition
would be a worker View used for other operations, such as
a Derived View. The ClientOnly definition would create the
View on the Client device only. If this option is selected, the
user would be able to enter seed data manually, import data
from a delimited source or XML file, and export the data to
an XML file.

[0183] The Dexterra Server will use the Defined View
structure in the RDE as its backend datasource. In the case
of the ServerOnly option, the View definition will not be
created on the Mobile client data cache (SQLCE). In the
case of the Default or ClientOnly option, the View Defini-
tion will be created as a table in the local client cache
(SQLCE). If ClientOnly, it will be seeded with the data
configured on the server (user entered or imported).

[0184] E. Relational Data Engine

[0185] In conjunction with the configurable Views, the
system also includes a Relational Data Engine (RDE) within
the framework at the server 406 (see FIG. 4). Alternatively,
the RDE could be located at other computers of the platform
system that can communicate with the server. The RDE uses
a standard syntax such as ANSI SQL in the real-time
communication of data from one or more backend enterprise
data sources 408 to one or more mobile client devices 402

Sep. 21, 2006

in a stateless way. As described above, the RDE is useful for
Derived Views, Delegated Views, Defined Views, and is also
utilized for complex filter conditions, state modeling of
mobile clients, comparisons of client data, and the like. That
is, the RDE is utilized in accordance with the specific View
types, as set forth above.

[0186] As the Dexterra Server moves data from one or
more backend enterprise datasources to one or more mobile
clients, it utilizes the power of the RDE to store the data in
real time without the need for a static definition of a data
model mapping to the definition of the data. The RDE is
used to take advantage of the power of a standard use syntax
such as ANSI SQL to promote the correlating of data in filter
conditions or data abstraction.

[0187] F. Metadata Business Objects

[0188] To utilize the configurable Views and RDE, the
system utilizes metadata business objects that provide the
ability to create and define a Business Object in meta data
that is bound to one or more Views from one or more
backend enterprise data sources that can be used by one or
more mobile client applications utilizing the Dexterra Studio
VS.NET plug-in. This provides the ability to create rela-
tionships to one or more other Business Objects for a true
object oriented application component architecture utilizing
the Dexterra Studio VS.NET plug-in.

[0189] Use of the RDE is achieved using the Dexterra
Unified Development Environment Tool to configure the
definition of a Business Object including Properties, Default
Values, Relationships, Filter Conditions, Permissions, Asso-
ciated Applications and Business Rules. At runtime, the
mobile client, upon request from a Business Object, creates
an object instance based on the metadata definition. This
enables the client application to then execute operations
such as Find, FindSet, Save, and Delete. The mobile client
will perform these operations against the defined View
attributes for the Business Object. This may retrieve or
update data on the local device, for example.

VII. Configuration and User Interface

[0190] In the Adapter Framework in the Server 430 of the
FIG. 4 configuration, a View is not bound to a single data
table, as would be the case in a system without the present
invention (and as indicated in FIG. 2). Rather, a View is
bound to a Data Object with defined Commands for READ,
ADD, UPDATE, REMOVE, and READ for EDIT. Thus, a
much more versatile data interface is provided. The structure
of'a View is defined by the selected data columns specified
in the READ command for the Data Object.

[0191] In the system that utilizes the View object configu-
ration of the present invention, filters are created at a
Command Object, rather than at a View object. The con-
figuration of the View Objects in the server 430 enables
abstraction of View CRUD (Create, Read, Update, Delete)
operations to the enterprise data sources, and enables CRUD
to be defined instead of hard coded. Other than the changed
View configuration and concomitant changes such as for
creation of filters, the remaining components illustrated in
FIG. 1 can be utilized for a mobile platform system con-
structed in accordance with the present invention.

[0192] FIG. 6 shows a diagrammatic representation of the
data architecture for the mobile platform illustrated in FIG.

US 2006/0212846 Al

1 and comprising an embodiment of the present invention.
FIG. 6 shows that a View object of the data system has a
ViewlD and is bound to a defined Data Object. FIG. 6 shows
that the Data Object can include one or more commands
from among a READ command, an ADD command, an
UPDATE command, a REMOVE command, and a READ
for EDIT command.

[0193] FIG. 6 shows that Command objects also are
bound to the Data Objects, and also are bound to Connection
objects, which are in turn bound to Adapter objects. FIG. 6
shows that the Adapter objects interface with a metadata
store that interfaces with the enterprise datasources to
retrieve data for the mobile platform, as described above.

[0194] FIG. 7 is a diagrammatic representation of the data
access configuration for the mobile platform constructed in
accordance with the present invention. FIG. 7 shows that a
mobile client (indicated as “Dexterra Client” in FIG. 7)
communicates with the application server (“Dexterra
Server” in FIG. 7) through a View object at the server,
where the View object interfaces with a Data Object to act
through Command objects to access Adapter objects that
ultimately interface directly with enterprise datastores (e.g.,
Microsoft SQL Server and Siebel data servers in FIG. 7). At
the client device, the mobile application communicates data
requests through a smart client to metadata stores and
business data stores to the View objects at the application
server.

[0195] FIG. 8 illustrates how access to the DAD features
of the mobile platform system is gained through a file
explorer type of graphical user interface. FIG. 8 is a
screenshot of a display on a computer device that is hosting
the DAD computer program application. In FIG. 8, the
display is a window-type display titled “Dexterra Explorer”
and shows a workspace with a file tree view. The tree view
shows a hierarchy of “Servers” with server names indicated
as Solomon, Tempest, Ultrium, and Thunder. It should be
apparent that server names may be arbitrary selected.

[0196] In accordance with the DAD program, a variety of
actions can be taken with respect to a selected server. FIG.
8 shows that the “Solomon™ server has been selected, with
the Data Access menu item being highlighted to show that
data access options can be investigated. Beneath the Data
Access menu item, submenus are shown, comprising Data
Sources, Datasource Types, Commands, Data Objects, and
Views. Using the DAD program and the explorer menu, a
mobile application designer can specify new datasources
and can interface with corresponding Adapters to gain
access to enterprise datasources for the mobile clients that
will use the developed application.

[0197] FIG. 9 shows a designer having selected “Data-
source Types” on the Dexterra Explorer menu and FIG. 9
shows that a context menu is generated, providing the
designer with options to add a new datasource type, or
refresh the view, or edit a datasource type, or delete a
datasource type. Thus, selecting a Dexterra Explorer menu
item can generate a context menu that provides a menu of
additional operations on the selected menu item. FIG. 10
shows selection of the Data Sources menu item from FIG.
9, illustrating exemplary data sources available in the system
under design. FIG. 11 shows selection of a particular
datasource type, from which a context menu may be gen-
erated for editing operations on the selected datasource type.

Sep. 21, 2006

FIG. 12 shows View types that are available for selection.
As with the other Dexterra Explorer menu items, selecting
the View menu item will generate a context menu that allows
a designer to perform editing operations on View types,
including create, edit, and delete.

[0198] As noted above, if the “Data Sources” node on the
Dexterra Explorer menu is selected, a new Data Source can
be specified via a context menu that is generated by the
Explorer program. FIG. 13 shows a Data Sources Properties
dialog box that is generated by utilizing a Data Sources
context menu to create a new type of Data Source. FIG. 13
shows that the designer is presented with a screen that
permits selection of a data adapter, based on the data types
available to the designer. In FIG. 13, the available adapter
types are shown as OLE DB for SQL Server, OLE DB for
Oracle, Clarify Adapter, and Remedy Adapter. These adapter
types are shown for purposes of illustration only; it should
be understood that additional and different adapter types
could be provided in accordance with the teachings of the
invention. FIG. 13 shows that the designer also can specify
a Connection type. After selecting an Adapter, the designer
would select the Connection display button to specify the
connection parameters.

[0199] FIG. 14 shows an authentication screen for the
designer to provide login information and choose a particu-
lar enterprise datasource target. Once the designer is autho-
rized, the display will be changed in accordance with the
selected adapter. After a new datasource is defined, using the
DAD interface, a new datasource type node will appear in
the Dexterra Explorer tree view (FIG. 11), in accordance
with the designer’s newly defined datasource type.

[0200] Other nodes can be created, added, edited, and
deleted from the Dexterra Explorer tree view. FIG. 15 shows
a designer making a Command selection from the tree view.
Selection of “Add New Command” in FIG. 14 generates the
“New Command” dialog box of FIG. 16.

[0201] FIG. 16 shows that a name can be entered for the
new command, along with parameters to specify datasource,
action, data type, and source, and also space for entry of a
SQL statement. FIG. 17 shows that the Parameters tab of the
Add Command dialog accepts additional command specifi-
cations.

[0202] Among the control parameters for the Add New
Command dialog box of FIG. 16 are:

[0203] Command Name Textbox—The DAD user enters a
name to uniquely identify the command. On “save” there is
a validation that the Command Name is unique.

[0204] Datasourse—This is a drop-down list of data-
sources that have been defined. This information is discov-
ered from metadata. Every command is required to have a
corresponding datasource.

[0205] Command Type (Action)—This is a drop-down list
of the different types of commands available. Every com-
mand is required to have a command type.

[0206] Data Group box—This group box includes tabs for
“Main” and “Parameters”, and contains the controls to
define the actions of the command. This box will be different
depending on the chosen datasource. For example, the
illustrated display in FIG. 16 is for a RDBMS such as SQL
Server. Those skilled in the art will appreciate that a system

US 2006/0212846 Al

such as an Oracle/Siebel system probably would not have
the “SQL Statement” text box.

[0207] Source Type radio button—Selecting this radio
button enables the two corresponding combo boxes (Data-
source and Source Type) and disables the SQL Statement
textbox. This radio button indicates the designer is using the
enterprise objects available by the enterprise data system.

[0208] Source Type box—is a list indicating the types of
Enterprise Objects available from the enterprise system. An
example of source types includes tables, views, or stored
procedures in SQL.

[0209] Source box—a drop-down list of the available
enterprise objects for the user to select based on the filtering

by type.

[0210] SQL Statement radio button—Selecting this radio
button enables the corresponding textbox and disables the
SourceType and Source combo boxes. This radio button
indicates the designer is going to specify the SQL Statement
that this command shall execute.

[0211] SQL Statement text box—The designer enters a
SQL statement to be executed by the command.

[0212] Among the parameters for the Add New Com-
mand—Parameters dialog box of FIG. 17 are:

[0213] Parameters list box—Contains a list of parameters
for the selected Enterprise Object, if they pertain. FIG. 17
shows parameters of Return Value and CustomerFirstName.

[0214] Parameter Properties group box—shows a group-
ing of controls that describe the properties of the selected
parameter.

[0215] Name text box—The name of the selected param-
eter. In FIG. 17, this textbox is grayed out to indicate it is
disabled because the parameter name cannot be edited.

[0216] Direction box—This contains a drop-down list of
the direction types a parameter can have, such as Input,
Output, and Input/Output.

[0217] Data Type box—This contains a drop-down list of
the datatypes available for the parameter, if applicable.

[0218] Required box—Contains the Boolean values True
or False and thereby indicates whether or not the parameter
is required.

[0219] Value text box—This text box is available if a
value for the parameter is to be forced.

[0220] After the editing process is completed, the tree
view in the Dexterra Explorer will be updated to reflect any
added items. For example, FIG. 18 shows that a new
Command called “CustomerQuery” has been added to the
tree view. Thus, the name command will be available to any
subsequent developer who uses DAD to interface to the
Solomon server. It should be noted that the new Customer-
Query command also could be manipulated (copied, moved,
edited and moved, etc.) to another node of the tree view,
using the Dexterra Explorer graphical user interface and
editing commands.

[0221] Thus, the View Object configuration described
herein supports multiple View types for increased flexibility
in the operation of the mobile data platform. The new View
Object configuration supports View types including Derived

Sep. 21, 2006

View, Delegated View, Direct View, and Defined View. Each
View type will interface to the enterprise datasources with a
different functionality, so communications links and system
resources can be used with greater convenience, flexibility,
and efficiency.

[0222] Thus, the Dexterra Explorer tool provides the abil-
ity to create custom enterprise connectivity to disparate
backend datasources, and provides the ability to separate the
connectivity to any backend enterprise system with the
configuration and adaptation to the specific instance of an
implementation. This allows the communications between
the .NET interface and a backend system to be developed
separately from the configuration of the information
required from the backend system, thus creating an abstrac-
tion layer and allowing for a configuration tool to manage
the adaptation, as described herein. In this way, the disclosed
tool implements a specific Dexterra Adapter Interface that
will bind to the Dexterra DataManager and enforce specific
inputs and outputs required in moving data between the
Dexterra Server and any of the enterprise datasources.

[0223] FIG. 19 is a flow diagram that illustrates operation
of the mobile data platform system as described above. In
the first operation, represented in the flow diagram box
numbered 1902, the method of processing data that is shared
between multiple enterprise datasources and a mobile client
that communicates with an application server begins with
receiving a request from a mobile client for a data operation
on data at one of the enterprise datasources. In the next
operation, represented by box 1904, a configurable View
Object is determined, wherein the View Object is adapted to
be bound to a Data Object for execution of specified
Command Object data actions corresponding to the
requested data operation. In the last operation at box 1906,
the operations on the data are performed as specified by the
View Object, utilizing a Relational Data Engine.

[0224] The computer program tool referred to above as
“DAD” for use by designers of mobile applications is
provided to create custom enterprise connectivity to dispar-
ate enterprise datasources of the mobile data platform sys-
tem. The DAD application program tool provides these
features through the user interface illustrated in the draw-
ings. Thus, the DAD application program tool provides a
means for specifying application processing of data that is
shared between the multiple enterprise datasources and
mobile clients.

[0225] The computer program comprising the DAD tool
can be installed on a computer apparatus or system, such as
a desktop computer, notebook computer, or the like, so long
as the DAD tool program can receive user input to carry out
the connection adapter specifying process and can verify
datasources, bindings, and the like. The configured adapters
and Connection Objects can be included within a mobile
data platform system and installed at an application server of
the mobile platform such as described above, so that the
operational features of the adapters can be utilized at the
mobile clients for operations with the enterprise datasources.

[0226] As described above, the DAD tool provides a
means for configuring a View Object that provides desired
data operations on data objects stored at a back end enter-
prise datasource. When the configured View Object is incor-
porated into the mobile data platform, the mobile data
platform carries out its operations on data requested by

US 2006/0212846 Al

mobile clients in accordance with the specified View Object.
In this way, the computer system provides a configurable
View Object that is adapted to be bound to a Data Object in
the computer system for execution of specified Command
Object data actions in accordance with the View Object.

[0227] The present invention has been described above in
terms of a presently preferred embodiment so that an under-
standing of the present invention can be conveyed. There
are, however, many configurations for mobile enterprise
data systems not specifically described herein but with
which the present invention is applicable. The present inven-
tion should therefore not be seen as limited to the particular
embodiments described herein, but rather, it should be
understood that the present invention has wide applicability
with respect to mobile enterprise data systems generally. All
modifications, variations, or equivalent arrangements and
implementations that are within the scope of the attached
claims should therefore be considered within the scope of
the invention.

We claim:

1. A computer system data architecture framework for use
in a mobile data platform system for processing of data that
is shared between multiple enterprise datasources and a
mobile client that communicates with an application server,
the data architecture framework comprising:

a configurable View Object in the computer system that is
adapted to be bound to a Data Object in the computer
system for execution of specified Command Object
data actions in accordance with the View Object; and

a Relational Data Engine that performs operations on data

as specified by the View Object.

2. A computer system as defined in claim 1, wherein the
View Object is a Derived View type in which a data
definition for requested data is derived from one or more
View Objects at the application server.

3. A computer system as defined in claim 1, wherein the
View Object is a Delegated View type in which requested
data is retrieved from a delegated cache store at the appli-
cation server.

4. A computer system as defined in claim 3, wherein the
delegated cache store provides data to which a predefined
processing rule has been applied.

5. A computer system as defined in claim 1, wherein the
View Object is a Definition View type in which requested
data is provided in accordance with a data definition of the
Definition View type.

6. A computer system as defined in claim 1, wherein the
View Object is a Direct View type in which requested data
is retrieved directly from one of the enterprise datasources.

7. A computer system as defined in claim 1, further
comprising:

a Connection Object that provides an interface to a back
end enterprise data source and exposes a data interface
object available through the Connection Object as
either a Table, Stored Procedure, Script, or Object;

a Command Object that performs specific data actions;

a Data Object that permits a mobile data client to specify
one of the Command Object data actions to be per-
formed on the data interface object; and

Sep. 21, 2006

a View Object that is adapted to be bound to the Data
Object for execution of the specified Command Object
data actions.

8. A computer system as defined in claim 1, wherein the
data actions include at least one action from among data
actions comprising Select, Insert, Update, and Delete.

9. A method of processing data that is shared between
multiple enterprise datasources and a mobile client that
communicates with an application server, the method com-
prising:

receiving a request from a mobile client for a data
operation on data at one of the enterprise datasources;

determining a configurable View Object that is adapted to
be bound to a Data Object for execution of specified
Command Object data actions corresponding to the
requested data operation; and

performing operations on the data as specified by the
View object utilizing a Relational Data Engine.

10. A method as defined in claim 9, wherein the deter-
mined View Object is a Derived View type in which a data
definition for requested data is derived from one or more
View Objects at the application server.

11. A method as defined in claim 9, wherein the deter-
mined View Object is a Delegated View type in which
requested data is retrieved from a delegated cache store at
the application server.

12. A method as defined in claim 11, wherein the del-
egated cache store provides data to which a predefined
processing rule has been applied.

13. A method as defined in claim 9, wherein the deter-
mined View Object is a Definition View type in which
requested data is provided in accordance with a data defi-
nition of the Definition View type.

14. A method as defined in claim 9, wherein the deter-
mined View Object is a Direct View type in which requested
data is retrieved directly from one of the enterprise data-
sources.

15. A method as defined in claim 9, further comprising:

determining a Connection Object that provides an inter-
face to a back end enterprise datasource and exposes a
data interface object available through the Connection
Object as either a Table, Stored Procedure, Script, or
Object in accordance with the determined View Object;

determining a Command Object that performs specific
data actions in accordance with the determined View
Object;

determining a Data Object that permits a mobile data
client to specify one of the Command Object data
actions to be performed on the data interface object.

16. A method as defined in claim 9, wherein the data
actions include at least one action from among data Select,
Insert, Update, and Delete.

17. A computer system including a data architecture
framework for use in a mobile data platform system for
processing of data that is shared between multiple enterprise
datasources and a mobile client that communicates with an
application server, the computer system comprising:

means for determining a configurable View Object in the
computer system that is adapted to be bound to a Data
Object in the computer system for execution of speci-
fied Command Object data actions in accordance with

US 2006/0212846 Al Sep. 21, 2006

16
the View Object, wherein the data actions include at communicates with a Command Object that performs
least one action from among data actions comprising specific data actions, communicates with a Data Object
Select, Insert, Update, and Delete; that permits a mobile data client to specify one of the
means for performing operations on data as specified by Command Object data actions to be performed on the
the View Object; and data interface object, and communicates with a View

Object that is adapted to be bound to the Data Object
for execution of the specified Command Object data
actions.

wherein the means for determining communicates with a
Connection Object that provides an interface to a back
end enterprise data source and exposes a data interface
object available through the Connection Object as
either a Table, Stored Procedure, Script, or Object, ® ok ok ok

