
(19) United States
US 20060212846A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0212846A1
O'Farrell et al. (43) Pub. Date: Sep. 21, 2006

(54) DATA MANAGEMENT FOR MOBILE DATA
SYSTEM

(75) Inventors: Robert O’Farrell, Woodinville, WA
(US); Mark Kirstein, Incline, NV (US)

Correspondence Address:
TOWNSEND AND TOWNSEND AND CREW,
LLP
TWO EMBARCADERO CENTER
EIGHTH FLOOR
SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: Dexterra, Inc., Bothell, WA

(21) Appl. No.: 11/277,136

(22) Filed: Mar. 21, 2006

Related U.S. Application Data

(60) Provisional application No. 60/664,121, filed on Mar.
21, 2005. Provisional application No. 60/664,088,

filed on Mar. 21, 2005. Provisional application No.
60/664,122, filed on Mar. 21, 2005. Provisional appli
cation No. 60/667,816, filed on Apr. 1, 2005.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 717/116

(57) ABSTRACT

A data architecture provides mobile clients with the ability
to gain access to business enterprise data sources through
configurable Views that interface with the data sources
through DataObjects that are defined by Commands, which
in turn communicate with the data sources through Connec
tors (also referred to as Adapters). Each type of View will
interface to the data sources with a different functionality so
that communications links and other system resources can
be used more efficiently. The View types can include Direct
Views, Derived Views, Delegated Views, and Definition
Views.

US 2006/021284.6 A1 Patent Application Publication Sep. 21, 2006 Sheet 1 of 19

~~~~, 

±raraeaeae 

Å 

  

  

  

  



US 2006/021284.6 A1 Patent Application Publication Sep. 21, 2006 Sheet 2 of 19 

@ggaesagaes     

  

  

  



US 2006/021284.6 A1 2006 Sheet 3 of 19 9 

harrrrrrrrryvr 

Patent Application Publication Sep. 21 

$ ${} 

  

  

  

    

  

    

      

  

  

  

  



Patent Application Publication Sep. 21, 2006 Sheet 4 of 19 US 2006/021284.6 A1 

FIG. 4 

Eg: 
- - - - - - - - - Stiglio 430 

S. 

  

  

  

  



Patent Application Publication Sep. 21, 2006 Sheet 5 of 19 US 2006/021284.6 A1 

Siebel 

Customer Data 

Order History 

Referential 
Data Store 

Mobile Client 

502 

FIG. 5 

  



Patent Application Publication Sep. 21, 2006 Sheet 6 of 19 US 2006/021284.6 A1 

police 
st 

f is a set is ree 
8XX 
s 

s 
. . . . . . . . . . . . . . . 

s 

s 
m m m s 

. 
s W 
s 
s 
s 

---. . . . . . . . . . . .------ 

SYYYYYYYYYYYYYYYYYYYYYYYYYY., 

F.G. 6 

          

    

  

  

  

  

  

          

      

  



Patent Application Publication Sep. 21, 2006 Sheet 7 of 19 US 2006/021284.6 A1 

3:x::::: S.S. 3&x83 Sege 

KCustomerDefinition KCustomerSData 

<Customer Request> 

SS 

FIG. 7 

  



Patent Application Publication Sep. 21, 2006 Sheet 8 of 19 US 2006/021284.6 A1 

& 
s 

S 

8 : Saks333; 
- X SS , - '' Š -- 

; : 8 iais S3 stas 
3. Š atasc:Ceisges 
:: *ss assissis 
-- Si 

i: , kata it;excis 
:: S views 

is & 83s:ess riot:338c: ; 
is Š: E. ----- i. i $$$ 8:33rass Riss 

--------- *...*...' 
t-, ''." r . . . . ." is.& Se:83. 
4. . 

FIG. 8 

  

  



Patent Application Publication Sep. 21, 2006 Sheet 9 of 19 US 2006/021284.6 A1 

SS 

'''''''''''''''''''''''''''''''''''''''''''''''''''. 

3-8 iata Sa:Fles 
S&S S. ...SSSSSSS---------8-----------------------. 

&ds:as Baiasis 3's se... 
it. refres: 
... y Edit, 

3. Šs Bis: teete 
. 

E. S. Bississis Rs.8ss 

: as: 

3. Š. 8:8;as 
& 3g23: 33:8: 

FIG. 9 

  



Patent Application Publication Sep. 21, 2006 Sheet 10 of 19 US 2006/021284.6 A1 

prace 
SS 

- Š Ser'wers: 
:: S: Solomon 

- - DataACCe&s 
s 

- . . . 

-$ ABSQL Information 
... $ Omris.SQLDAM 

& ?ale DAM 
--& Sybase DAR 

- S. Data&OLIrce Types s 
is OLE DB Adapter for SQLS 
o: OLE DB Adapter for Oracle 
is Clarity Adapter s 

c. & Remedy Adapter 
**** i . 

N.''''''''''''''''' 

FIG 10 

    

  

  

    

  



Patent Application Publication Sep. 21, 2006 Sheet 11 of 19 US 2006/021284.6 A1 

& Serys's 
S: 3: Si:33& 

... asia &ccess 
3: š ista Sc::ces 
8. S atas: a 'ges 

is Š N 
SS SSS SSSSSSSSSSSS Š Š 

3: E.8 Šdagist of: 
$338 &ia:a: 

'. s: Re:Beds &dagter 
8. sŠ 3333333is 

i & 
R 

L. - . 
it. : & B:38:2ss ::f383:ix: 

3: S Bassess Ries : : 
r Sy, 

    

  



Patent Application Publication Sep. 21, 2006 Sheet 12 of 19 US 2006/021284.6 A1 

S. 

& a:3 &cress 
; : ; staSources 

3. s sias3:ceses 
*::::$ Cornards 
s: , Bats 3bjecis 
is Š 

... ss ::::::ite:33. 

-ss E8338 
is isstie 

  



Patent Application Publication Sep. 21, 2006 Sheet 13 of 19 US 2006/021284.6 A1 

FIG. 13 

  



Patent Application Publication Sep. 21, 2006 Sheet 14 of 19 US 2006/021284.6 A1 

x xx. 

::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::: "ck" 
3:23:83:38:3:33:38: S3:38weisis 

Carcel ; : Seisect:3; eiterasessist:e: 

3. iristicistia:38: 53-383&$3& Seixei. 

tegrated Secay 

S &xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

FIG. 14 

  



Patent Application Publication Sep. 21, 2006 Sheet 15 of 19 

w 

... as 

SNNN NSSNN. 

iais Sat3 as 

in 
S 

Edit., 

Sec 

FIG. 15 

SSSSSSSSSSS....... 

ŠišŠ: 

&gg:g 
: Š it::tiss 
Š 333i: s?:3: 

: Se:33pest 

US 2006/021284.6 A1 

  

  

  

  

  



Patent Application Publication Sep. 21, 2006 Sheet 16 of 19 US 2006/021284.6 A1 

FG 16 

  



Patent Application Publication Sep. 21, 2006 Sheet 17 of 19 US 2006/021284.6 A1 

sy: survivvvvvvvvvvvurvurvusvvvvvvvvvvvvvvvvvvvvvvvvvvvv.v.svvvvvvvvvvvurvurvurvivvvvvvvv.v.v.svvvvvvvvvvvvvvvvvvvvvvvvvvvv.v.v.svvvvvvvvvvvvvvvvvvvvvvvvv. 

FIG. 17 

  



Patent Application Publication Sep. 21, 2006 Sheet 18 of 19 US 2006/021284.6 A1 

. SS 

is Šišiais 3:33:ces 
8 ::s at 3:333s 

. . re- . . . . . . . 
'SS S333 
SS S:SS - š is six33a; giate 
Š: 388:38:::::se: 
- 

- N is:8:338: eats 
: re: afts &es 
is asis Sasa 
is Paristgdate 
- & sits::ser: 
. .N. Parts ests 

3-8 Bi:s:3ess :::8338c: 
SS . Š E::s: ass :::ss. 

SSSSSSSSSSSS 

s 

s: 

S 
& s 

FIG. 18 

  

  

  



Patent Application Publication Sep. 21, 2006 Sheet 19 of 19 US 2006/021284.6 A1 

START 

Receive request from a mobile 
client for a data operation on data at 

an enterprise datasource. 
1902 

Determinev a configurable View 
Object that is adapted to be bound 
to a DataObject for execution of 
specified Command Object data 
actions corresponding to the 
requested data operation. 

1904 

Perform operations on the data as 
specified by the View object utilizing 

a Relational Data Engine. 
1906 

CONTINUE 

FIG. 19 

  



US 2006/021284.6 A1 

DATA MANAGEMENT FOR MOBILE DATA 
SYSTEM 

REFERENCE TO PRIORITY DOCUMENTS 

0001. This application claims benefit of priority of co 
pending U.S. Provisional Patent Application Ser. No. 
60/664,121 entitled “Data Management for Mobile Data 
System”, by Robert O’Farrell et al., filed Mar. 21, 2005; 
co-pending U.S. Provisional Patent Application Ser. No. 
60/664,088 entitled “Modular Applications for Mobile Data 
System', by Robert Loughan, filed Mar. 21, 2005; co 
pending U.S. Provisional Patent Application Ser. No. 
60/664,122 entitled “Adapter Architecture for Mobile Data 
System”, by Robert O’Farrell et al., filed Mar. 21, 2005; and 
co-pending U.S. Provisional Patent Application Ser. No. 
60/667,816 entitled “Modular Applications Management for 
Mobile Data System”, by Robert O’Farrell et al., filed Apr. 
1, 2005. Priority of the respective filing dates is hereby 
claimed, and the disclosures of these Provisional Patent 
Applications are hereby incorporated by reference. 

COPYRIGHT NOTICE 

0002 A portion of the disclosure of this patent document 
contains material which is subject to copyright protection. 
The copyright owner has no objection to the facsimile 
reproduction by anyone of the patent document or patent 
disclosure as it appears in the U.S. Patent and Trademark 
Office patent file or records, but otherwise reserves all 
copyright rights whatsoever. 

BACKGROUND 

0003) 
0004 The present invention relates generally to mobile 
computing systems and, more particularly, to data manage 
ment and data deployment in mobile computing systems. 
0005 2. Description of the Related Art 

1. Field of the Invention 

0006 Sophisticated customer relationship management 
(CRM) and enterprise resource planning (ERP) systems are 
available to improve the automation of back office and front 
office processes. Although many companies have realized 
significant savings and efficiencies from deploying Such 
systems, it is also true that many organizations find the 
systems burdensome to implement and difficult to integrate 
with existing legacy data systems. 
0007 More recently, business organizations and enter 
prises are deploying CRM and ERP systems to assist mobile 
employees, primarily to utilize mobile computing devices 
Such as pagers and cell phones and also personal digital 
assistants (PDAs). One important impediment to greater 
adoption of CRM and ERP systems that employ such mobile 
devices involve integration with other data in the enterprise. 
0008 Enterprise data integration issues can arise because 
mobile applications often come in proprietary, closed archi 
tectures that impede integration with other data systems of 
the enterprise. For example, data in the enterprise might be 
maintained in four or five different sources. Some of the data 
sources include CRM systems, dispatch systems, ERP sys 
tems, and financial records systems. Each of these data 
Sources can utilize a different data architecture, format, and 
protocol. The data being stored and the configuration of the 

Sep. 21, 2006 

data and access mechanisms are constantly changing. Many 
mobile computing systems create an interim datastore in 
which data from the various sources in the enterprise is 
collected. In this way, data from the different enterprise data 
Sources, each with a different data architecture and format, 
can be collected in a single common database. The mobile 
users can access the enterprise data by accessing the interim 
datastore, rather than the actual enterprise data sources. The 
interim store, however, creates data update and conflict 
issues of its own. Synchronization operations and other 
safeguards must be performed frequently, to ensure that the 
data in the interim datastore is a faithful copy of the data in 
the enterprise data sources. 

0009. It is known to provide a data integration solution 
that can utilize mobile computing devices that interface to 
enterprise data sources through a network server. Such a 
system is described in U.S. patent application Ser. No. 
10/746,229 filed Dec. 23, 2003 assigned to Dexterra, Inc. of 
Bothell, Wash., USA. The contents of this application are 
incorporated herein by reference. 

0010. The Dexterra, Inc. patent application describes a 
system in which data is utilized between multiple enterprise 
data sources to mobile clients in a distributed fashion such 
that requests from a mobile client for enterprise data are 
received, the appropriate enterprise data sources that contain 
the requested data are determined, and the enterprise data is 
retrieved from the determined enterprise data sources. When 
the enterprise data is retrieved, it is converted into a rela 
tional format, even if the data comes from multiple enter 
prise data sources of different non-relational types (e.g. File 
System, email, etc). The converted enterprise data is stored 
in a relational datastore in the mobile client. In this way, 
mobile applications can be fully integrated with data from 
multiple enterprise data sources and data updates and con 
figuration changes can be distributed to and from the mobile 
clients in real time, without using interim data storage, and 
thereby avoiding complicated synchronization and asyn 
chronous data issues between the enterprise data sources and 
the mobile clients. The real time data changes can include 
deployment of changes to the mobile application itself, as 
well as data updates. The real time changes are further 
accommodated with data conflict detection and resolution. 

0011. The Dexterra, Inc. system referenced above is 
based on a system architecture in which target enterprise 
data sources contain objects or data tables, and each target 
data table is mapped to a data object called a View. That is, 
a View is defined that corresponds to each data table in the 
enterprise data sources from which the application will 
obtain data. The Views can be defined by the application 
developer, or from another vendor. The data in the Views are 
shared among one or more data entities referred to as 
Business Objects. A single Business Object can utilize data 
from multiple Views, and therefore can utilize data from 
multiple enterprise data sources, even from data sources that 
have incompatible data formats. In the system, data objects 
called Connectors provide a data sharing interface with the 
enterprise data sources. 

0012. Once a set of Business Objects is defined, appli 
cation developers can design applications while dealing with 
data through their interface to the Business Objects, rather 
than get involved in describing and defining the Views and 
Connectors. Thus, developers are presented with a format 



US 2006/021284.6 A1 

free data interface, so that differences in targets are 
abstracted out from the developer. 

0013 The system described in the Dexterra, Inc. patent 
application referenced above provides a powerful develop 
ment tool for the mobile computing platform that permits 
access to a variety of enterprise data sources. Even greater 
adaptability in the configuration of the View data, however, 
could extend the capabilities of the system and provide 
greater flexibility. The present invention provides such 
greater View configuration capabilities. 

SUMMARY 

0014. In accordance with the invention, mobile clients 
gain access to business enterprise data sources through 
configurable Views that interface with the data sources 
through DataObjects that are defined by Commands, which 
in turn communicate with the data Sources through Connec 
tors (also referred to as Adapters). Each type of View will 
interface to the data sources with a different functionality so 
that communications links and other system resources can 
be used more efficiently. For example, the View types can 
include Direct Views, Derived Views, Delegated Views, and 
Definition Views. These new View types can provide greater 
control over data interfaces and can be configured for greater 
utilization of system resources. 

0015) Direct Views are Views that retrieve data directly 
from an enterprise data source. Derived Views request data 
from a server that retrieves a base set of associated data at 
runtime from the enterprise data sources and then places the 
retrieved data into a relational data engine (RDE) that 
applies Derived View filter parameters to extract filtered 
data and provide it to the requesting Derived View type. The 
Delegated View will periodically retrieve data from the 
enterprise data sources and will place the retrieved data into 
a Relational Data Engine cache from which Subsequent 
mobile client requests for enterprise data can be filled, 
thereby reducing the data traffic between the mobile client 
and the data sources. The Definition View permits control 
over where retrieved data is maintained, either at the system 
server or at the mobile client, thereby extending control over 
utilization of system resources. 
0016 Other features and advantages of the present inven 
tion should be apparent from the following description of the 
preferred embodiment, which illustrates, by way of 
example, the principles of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0017 FIG. 1 is a block diagram of a suitable computer 
system environment for a mobile enterprise platform con 
structed in accordance with the present invention. 

0018 FIG. 2 is a block diagram of the logical architec 
ture of data in the mobile enterprise platform illustrated in 
F.G. 1. 

0019 FIG. 3 is a block diagram that illustrates the 
Connector interface between the enterprise data sources and 
the mobile client of FIG. 1. 

0020 FIG. 4 is a block diagram of a suitable computer 
system environment 400 constructed in accordance with the 
present invention. 

Sep. 21, 2006 

0021 FIG. 5 is a diagrammatic representation of the 
Derived View data flow using the View architecture in 
accordance with the present invention. 
0022 FIG. 6 shows a diagrammatic representation of the 
data architecture for the mobile platform illustrated in FIG. 
1. 

0023 FIG. 7 is a diagrammatic representation of the data 
access configuration for the mobile platform constructed in 
accordance with the present invention. 
0024 FIG. 8 is a screenshot of a display on a computer 
device that is hosting the DAD computer program applica 
tion. 

0025 FIG. 9 shows a tree view and context menu gen 
erated by the DAD program when “Datasource Types” is 
selected on the Dexterra Explorer menu. 
0026 FIG. 10 shows selection of the DataSources menu 
item from the FIG. 9 display. 
0027 FIG. 11 shows selection of a particular datasource 
type, from which a context menu is generated. 
0028 FIG. 12 shows View types that are available for 
selection. 

0029 FIG. 13 shows a Data Sources Properties dialog 
box that is generated by utilizing a Data Sources context 
menu to create a new type of Data Source. 
0030 FIG. 14 shows an authentication screen for DAD 
login information and choose a particular enterprise data 
Source target. 

0031 FIG. 15 shows a designer making a Command 
selection from the tree view. 

0032 FIG. 16 shows a “New Command” dialog box in 
response to selection in FIG. 15. 
0033 FIG. 17 shows the Parameters tab of the Add 
Command dialog. 
0034 FIG. 18 shows the tree view with a new Command 
called “CustomerQuery' that has been added. 
0035 FIG. 19 is a flow diagram that illustrates opera 
tions of a computer system in accordance with the present 
invention. 

DETAILED DESCRIPTION 

0036). In a mobile data integration system constructed in 
accordance with the invention, mobile clients running an 
application interface with enterprise data sources through 
configurable View objects that access data through Data 
Objects that are defined in terms of Command objects that 
interface with the enterprise data sources through Adapters 
(also called Connectors). The multiple types of Views that 
are Supported can provide greater adaptability to thereby 
extend the capabilities of the system and provide greater 
flexibility. Each type of View will interface to the data 
Sources with a different functionality So that communica 
tions links and other system resources can be used more 
efficiently. 

0037. As described further below, in the illustrated 
embodiment, the View types include Direct Views, Derived 
Views, Defined Views, and Designated Views. A Direct 



US 2006/021284.6 A1 

View will retrieve data directly from an enterprise data 
Source via the Data Objects, Commands, and Adapters. A 
Derived View will incorporate filter parameters and will 
request data from a server that retrieves a base set of 
associated data at runtime from the enterprise data sources 
and then places the retrieved data into a relational data 
engine (RDE) that applies the Derived View filter param 
eters to extract filtered data and provide it to the requesting 
Derived View type. The Delegated View will periodically 
retrieve data from the enterprise data sources according to 
parameters of the Delegated View and will place the 
retrieved data into a Relational Data Engine cache. Subse 
quent requests from mobile clients for enterprise data can be 
filled by getting the requested data from the RDE cache 
rather than directly from the enterprise data sources, thereby 
reducing the data traffic between the mobile client and the 
data sources. Updated data from mobile clients is returned 
directly to the enterprise data sources through the Adapters. 
A Definition View permits control over where retrieved data 
is maintained, either at the system server or at the mobile 
client. The extent of system resources will generally deter 
mine selection between the two configurations. 
0038 A base configuration of an exemplary base system 
architecture is described below in connection with FIGS. 1, 
2, and 3. In the preferred embodiment of a mobile client data 
system that incorporates the configurable View objects of 
the present invention, the system utilizes an Adapter-Com 
mand-Data Object architecture. The Adapter-Command 
DataObject is described further below in terms of architec 
tural changes from the system of FIGS. 1, 2, and 3 at “V. 
Adapter Architecture' in conjunction with FIG. 4. The 
configurable View objects are described in greater detail 
below at “VI. View Types” in conjunction with FIG. 5. 
I. System Overview 
0.039 The present invention provides a system in which 
data is utilized from multiple enterprise data sources to 
mobile clients executing mobile applications such that the 
mobile applications are integrated with the multiple enter 
prise data sources, and data updates and configuration 
changes can be distributed to and received from the mobile 
clients in real time, without using interim data storage. The 
elimination of an interim data storage facility avoids com 
plicated synchronization and asynchronous data issues 
between the enterprise data sources and the mobile clients. 
Thus, data updates and system configuration updates for the 
mobile application can be communicated from the enterprise 
to the mobile clients, and from the mobile clients to the 
enterprise, in real time. No special synchronization opera 
tion is needed, as changes can be propagated through the 
system in real time. 
II. System Platform 
0040 FIG. 1 is a block diagram of a suitable computer 
system environment 100 constructed as described in the 
above-referenced Dexterra, Inc. patent application. in accor 
dance with the present invention. FIG. 1 shows a mobile 
client device 102, such as a Personal Digital Assistant (PDA) 
device that operates in conjunction with the Microsoft 
PocketPC or Palm PDA operating systems. The mobile 
client device communicates over a network connection 104 
with an application server 106 to request data from the 
server and receive data updates, provide new data, and 
receive configuration changes. It should be understood that 

Sep. 21, 2006 

multiple mobile clients 102 can communicate with the 
server 106. Only a single client device 102 is shown in FIG. 
1 for the sake of drawing simplicity. 
0041. The mobile clients 102 consume the server-side 
connector web services for real time data retrieval from 
multiple enterprise data stores. Additionally, the mobile 
clients consume the server-side data manager web services 
for the management of real-time client-side data updates, 
server side data updates and system configuration updates. 
0042. The application server 106 communicates with 
enterprise data sources 108, such as CRM data sources, ERP 
Sources, financial system resources, legacy data stores, and 
the like. The exemplary enterprise data sources illustrated in 
FIG. 1 include data including “Siebel software from Siebel 
Systems, Inc. of San Mateo, Calif., USA; "Oracle” software 
from Oracle Corporation of Redwood Shores, Calif., USA; 
“SAP software from SAP AG of Walldorf, Germany; and 
legacy Software. The administrator application 110 and a 
developer application 112 communicate with the application 
server 106, which also stores metadata 114 for the system, 
as described further below. 

0043. The application server 106 provides data manager, 
configuration, and data connector web services for data 
interchange and updating, user authentication, security, and 
logging services. The application server also handles busi 
ness process management in the form of business informa 
tion and rules. 

0044) The mobile client 102 also includes a datastore 116 
that includes a relational database 118 that stores business 
data 120 and also a relational database that stores metadata 
122 for application execution on the mobile client. An 
application 124 that is installed at the mobile client 102 
includes various software components that perform Suitable 
functions. For example, the application might comprise a 
field service application that informs field service personnel 
as to a location at which service has been requested, explains 
the nature of the service request, and provides for logging 
the service visit and settling the account. The application 
124 may include multiple applications that process the data 
requested by the mobile client 102. 
0045. The administrator application 110 and developer 
application 112 together comprise a “Studio' component 
130. In the illustrated embodiment, the administrator and 
developer are provided as two separate applications, and 
provide a means to configure the system, including the 
metadata data and application interfaces. 
0046) The system 100 comprises a mobile enterprise 
platform that supports the service application 124. The 
system provides a set of Web services that effectively deploy 
and manage mobilized software solutions to enhance mobile 
business processes. Common examples include integrating 
to CRM or ERP sales force automation (SFA), and customer 
Support and help desk functions for an enterprise. Such 
enterprise applications depend on cross-application interac 
tion, in that data from one function or system is often used 
by a different function or system. When executed on the 
mobile client, the existing application functionality and 
enterprise information is utilized among multiple enterprise 
Software applications, legacy data systems, and mobile 
workers. In this way, a significant return on investment can 
be achieved for these applications and for the mobile enter 
prise platform. 



US 2006/021284.6 A1 

0047. The mobile enterprise platform 100 provides Web 
services that simplify the use of mobile clients and associ 
ated portable devices in the field. These Web services 
include a data manager function, a configuration function, 
and a connector function. These will be described in greater 
detail below. The applications 124 that are installed on the 
mobile clients 102 can be fully functional in any connected 
or disconnected state, after they have been properly initiated 
by the application server 106. 

III. Logical Architecture 

0.048 Any client application that makes use of the Mobile 
Enterprise Platform illustrated in FIG. 1 will utilize the 
system components illustrated in the block diagram of FIG. 
2. These components include: 

0049 Business Objects programmable objects based 
on business concepts, combining fields and relating 
information from different enterprise data sources. (e.g. 
data sources Such as Customer, Contacts, Assets, Tasks, 
etc.). 

0050 Business Rules—custom logic to enforce busi 
ness processes utilizing business constants with checks 
applied against business data from the enterprise data 
SOUCS. 

0051 Business Constants—A user-configurable vari 
able for use throughout the client applications, and 
client and server-side business rules (e.g. Business 
Rules, Warning Messages, and the like). 

0052 Datasource Connectors—data source connectors 
designed to seamlessly provide access to a wide variety 
of enterprise data sources (e.g. databases such as those 
formatted according to Oracle and SQL Server, mes 
saging systems such as MQ Series or MSMO, CRM 
applications such as Siebel or Peoplesoft, generic web 
services, and so forth). 

0053 Business Process—metaphors, such as a “Force 
Flow” process of Dexterra, Inc. of Bothell, Wash., 
U.S.A., that defines a form-to-form navigation para 
digm for modeling business processes. 

0054 Forms—a combination of standard visual dis 
play screens (e.g., View, Edit, Find, and the like) with 
event driven logic that are designed to show informa 
tion, gather information, and direct the user through a 
given business process, referred to herein as either a 
“ForceFlow’ or a “FieldFlow’. 

0055 Views—A modifiable representation of the data 
identified from an enterprise dataSource or application 
that is utilized by one or more Business Objects. 

0056 Filters—A Filter that can be applied to a View to 
modify the data available to a Business Object. 

0057 These components can be used to specify the 
configuration (logical architecture) of any client application 
that is constructed utilizing a technology framework Such as 
the Microsoft Corporation “.NET and tools such as 
Microsoft Corporation’s “Visual Studio .NET. Those 
skilled in the art will be familiar with such programming 
tools to specify an application and its associated data 
objects. 

Sep. 21, 2006 

0.058. The Mobile Enterprise Platform illustrated in FIG. 
1 is implemented as a metadata driven framework. The 
framework provides integrated client and server web ser 
vices, enabling the connection, configuration, and data man 
agement services necessary to deploy fail-safe, mission 
critical mobile enterprise Solutions. 
0059 FIG. 2 illustrates that, in the mobile enterprise 
platform of FIG. 1, the structure of relational database tables 
and external application business objects are mapped to 
views as metadata. One or more views are consumed by 
Business Objects, also defined in metadata, which are in turn 
utilized by the mobile application. The mobile application 
utilizes a client framework, referred to as the “Dexterra 
Smartclient’, which manages the instantiation of the Busi 
ness Objects, Local Data Access to the underlying physical 
database that resides on the mobile client device, Device 
integration, as well as the client-server data communication 
via the data manager and/or connector web services. Within 
the platform, specifications for all logical layers (e.g., Busi 
ness Objects, Views, Filters, and Connectors) are defined 
and maintained within the metadata. 

0060. The mobile enterprise platform is architected as a 
logical stack, designed to insulate layers in the logical 
architecture from all but non-adjacent members. At the 
bottom of the logical stack, the Target layer, is data that 
resides in back-end, enterprise data sources. The platform 
works with the Source data in place, and does not require 
information within the back-end system of record to be 
replicated to a middle-tier replication database. That is, no 
interim datastore is needed. This provides flexibility in 
design, as well as real time data access and can help reduce 
total cost of ownership of the platform and applications, and 
assists simplification of data management processes. 
0061 The next layer up in the logical stack is the Con 
nector layer. The Connector layer provides a programmatic 
construct that describes the back-end datastore to the appli 
cation server in a relational format. The information regard 
ing how to connect to an enterprise data source, as well as 
the security settings (such as authentication methods and 
user and group definitions) are stored within metadata, and 
are maintained using the Administrator component. 
0062) The next layer in the stack is the View layer, which 
comprises objects that provide a one-to-one mapping to an 
object or table in a back-end, enterprise data source. For 
example, if a back-end system has a table called CUS 
T ADDR (customer address), and data from that table is 
required for use in an application, then a View will be 
created in the Administrator component. The Administrator 
View might be called, for example, CUSTOMER AD 
DRESS, to represent that data in the environment of the 
mobile enterprise platform, outside of the enterprise data 
sources. It should be understood that a View has properties 
that correspond to the properties or columns of the data 
object in the back-end system. However, it is not required 
that all properties in the back end data source are required as 
properties in the View. Indeed, the properties required are 
defined in the administrative component and stored as 
metadata In the example just provided, the properties might 
include fields such as ID, STREET ADDR, CITY, STATE, 
and ZIP CODE. 

0063 Additionally, the user can define the data types of 
the properties within the View, and these data types can be 



US 2006/021284.6 A1 

independent of the data types of the corresponding proper 
ties in the enterprise data source. Other options of the view 
properties that can be identified are unique identifier, read 
only, indexing, required property and length. All the above 
information is stored as metadata. 

0064. The View layer also provides an indication of data 
conflicts, and provides a means for resolving Such conflicts. 
Data conflicts can occur, for example, whenever there are 
data changes between what is being uploaded from the 
mobile client and what exists at the server. Resolution of 
such conflicts can be performed at the View layer, enforcing 
business rules such as permitting the most recent data 
change to always take precedence, or permitting data 
changes from a particular source (e.g., either the mobile 
client or an enterprise data source) to take precedence 
depending on the data type (e.g. field data or customer 
account data). This is described further below, in conjunc 
tion with the Data Manager Web Service. 

0065. As illustrated in FIG. 2, the Views can be defined 
against multiple objects in multiple datastores, thus provid 
ing flexibility in application deployment and in the use of 
in-place systems, without the burden of data replication. As 
with the Connectors, the definitions of Views are stored in 
metadata, and are managed with the Administrator. Those 
skilled in the art will understand details of data definitions in 
metadata, without further explanation. As noted above, 
Filters can be applied to the Views, to modify the data that 
is passed to the next layer. The Administrator provides View 
management features, including a Views Wizard that auto 
matically creates Views based upon the object interface or 
table definition of the back-end datastore objects (from the 
enterprise data sources). 

0.066 The next layer up in the FIG. 2 diagram includes 
the Business Objects, which are mapped, or associated with, 
one or more Views. A Business Object of the platform is the 
programmatic entity with which a developer will interface 
with when building customizing mobile applications. The 
Business Objects include multiple properties, each of which 
can be of a simple data type, or can be another Business 
Object. Because the Business Objects of the platform can be 
mapped to multiple Views, developers can work with a 
single entity that represents data sourced from multiple, 
heterogeneous data sources. Thus, a single Business Object 
defined in accordance with the mobile enterprise platform of 
the invention can include data from multiple, potentially 
incompatible enterprise data sources, such as from different 
proprietary formats. 

0067. In creating or modifying applications for the 
mobile applications and mobile client devices, developers 
can interact solely with the Business Object layer. This 
insulates the developers from any requirement to understand 
or interact directly with the back-end systems (enterprise 
data sources) for the source data. In this way, the Business 
Object layer provides an object-based interface for applica 
tion developers, abstracting the details of persistence and 
retrieval of data. There is no need for the developer to 
directly interact with the local datastore on the mobile 
device. In addition, due to the nature of disconnected data, 
the mobile client, through the Business Object interface, 
automatically manages the processing of data changes, by 
storing data changes locally in the client that will be passed 

Sep. 21, 2006 

to the application server during an Update process. This 
further insulates developers from this rote programming 
task. 

0068 The Business Objects exist on the mobile client 
device as metadata, and are also managed using the Admin 
istrator (FIG. 1). The use of metadata throughout the mobile 
enterprise platform provides an environment in which the 
attributes and behavior of most data entities can be config 
ured through a graphical user interface rather than coded. 
0069. The metadata-driven nature of the mobile enter 
prise platform enables performing business processes on the 
mobile client through a stateless server architecture. 
Through the metadata, the mobile application can be con 
figured and customized. The metadata defines the structure 
of the business objects referencing the business enterprise 
data to the mobile device and defines the events that trigger 
business rules that govern the business processes. 
0070 The metadata database contains the reference of the 
cross-functional, cross-application back-end business infor 
mation that is exposed through the Connectors to configure 
a business object. This process is accomplished through the 
Studio component (FIG. 1) to configure and reference the 
connecting enterprise data source business information with 
the Business Objects. This provides the path to the specific 
data for the mobile applications, ensuring that no business 
data from an enterprise data source is stored in its native data 
format on the application server or on any other interim 
datastore of the system for data updates. This non-invasive 
and real time synchronous approach using the metadata 
permits the mobile enterprise platform to effectively connect 
to back-end systems with a minimum amount of disruption 
while maximizing cross-functional data access, data consis 
tency, and data integrity. 
IV. Mobile Enterprise Platform Components 
0071 A. Mobile Applications 

0072. As noted above, the mobile client 102 (FIG. 1) can 
include installed applications 124 that implement business 
processes of the enterprise. The application can leverage the 
mobile enterprise platform described above, and demon 
strates how the application instantiates the business objects 
which drive the business process configured in metadata. 
0.073 For example, Task or Work Order information 
would be provided to the mobile application through views 
and would be accessed via a business object. In retrieval of 
the business data via the view definition, using the data 
manager web service, the business object can deliver the 
business data to the mobile application to describe the tasks. 
This data is stored on a local relational database on the 
mobile device. When an update to the task data is committed 
to the task business object in a request from the application, 
the Smartclient application will persist the changes to the 
view defined datastore on the mobile client, then the Smart 
client manages the data updates back to the original data 
Source via the data manager web service, ensuring data 
integrity and consistency. 

0074 By utilizing the depth, breadth, and power of web 
Services (e.g., connection, configuration, and data manager 
services) that are available in the mobile enterprise platform 
described herein, a large Suite of mobile applications can 
easily be constructed, including applications such as sales 



US 2006/021284.6 A1 

force productivity, customer service, and Support Solutions. 
Such applications can be integrated with a broad set of 
vertical applications including oil/gas, healthcare/medical 
and financial service industry solutions. 
0075 B. Server Components 
0.076 The application server is a type of metadata-driven 
platform application and provides information, applications, 
and business processes to the mobile client, and ensures 
managed data integrity between the mobile enterprise plat 
form and a host of back-end enterprise data sources. The 
application server is a process-based, high performance 
solution built on the “..NET technology from Microsoft 
Corporation of Redmond, Wash., U.S.A. Using the “..NET 
technology, the mobile enterprise Solution is a framework 
that is Web Services native through the use of XML and 
SOAP for data exchange and transport. The application 
server provides three core Web Services, as shown in the 
functional architecture diagram of FIG. 1: 
0077 Connector Web Service 

0078. The Connector Web Service delivers non-inva 
sive integration of the existing enterprise applications 
infrastructure while maintaining control of the Data 
integrity Conditions between the mobile clients and the 
discrete enterprise data sources. 

0079 Configuration Web Service 

0080. The Configuration Web Service manages the 
metadata defining the business data, business objects, 
business rules, business constants, and system configu 
ration Such as authentication, logging, security, and 
roles that encompass the mobile applications that are 
passed to the mobile client—the component application 
that is resident on the mobile device. 

0081) Data Manager Web Service 

0082) The Data Manager Web Service orchestrates the 
update interactions between the mobile client applica 
tion, the application server, and the third-party enter 
prise data sources. Additionally the Data Manager Web 
Service provides the ability to directly communicate 
with the connector layer for real-time queries. The Data 
Manager Web Service delivers flexibility in the manner 
that manages the various conditions concerning mul 
tiple updates by multiple users to the multiple enter 
prise data sources to enforce the integrity of the data. 
The Data Manager Web Service can do this via the 
application server or direct to any API and/or third 
party published Web Service. 

0083. In this way, the Data Manager Web Service can 
manage deployment of application updates and data 
changes throughout the mobile clients of the system. 

0084 Each of these components will next be described in 
greater detail. 

0085 1. Connector Web Service 
0.086 The Connector Web Service is designed to support 
communication with any ODBC-compliant data source or 
Web Service API. The Connector Web Service allows a 
customer to define and build views based on data stored in 
one or more third-party systems. The Connector Web Ser 

Sep. 21, 2006 

vice has a published interface that allows for standard bulk 
updates as well as real-time data access from a mobile client. 
0087. The Connector Web Service provides the physical 
layer connection between the application server meta-appli 
cation and the specific interface of the enterprise data 
Sources. The connectors Support database dispute manage 
ment and notification services, transaction management, and 
error handling. In a default customer configuration, the 
mobile enterprise platform system is deployed to customers 
with an ODBC or Web Service connector. Those skilled in 
the art will be able to produce connectors to the most 
common enterprise systems, such as Siebel, SAP. People 
Soft, Oracle, SQL Server, and the like. 
0088 For example, an "Oracle” applications connector 
allows a customer to make calls to Oracle Support services, 
either through the closest data constructs the customer has to 
APIs (such as PL/SQL procedures) or directly to the enter 
prise database itself via ODBC. As with all of the ODBC 
connectors the dynamically interrogation of the RDBMS 
schema is automatically executed, exposing the specific 
physical design of the database. This gives the customer a 
hierarchical view of the actual interfaces into that system. 
0089 FIG. 3 shows an example of how the Connectors 
interface the enterprise data sources to the mobile enterprise 
platform. On the left side of FIG. 3 are representations of 
multiple enterprise data sources, including an ERP data 
source 302, a CRM data source 304, an HR/Finance data 
source 306, a Legacy/ODBC data source 308, and can 
include other Web Services or other sources (not shown). In 
the middle portion of FIG. 3 is a representation of the 
metadata 312 that specifies to the application server 314 how 
data from the different enterprise data sources will be stored 
and related in the mobile client 316, which is represented at 
the right side of FIG. 3. 
0090 Thus, in this example, data identified as ORDE 
RID exists in the ERP data source. Data identified as 
F NAME and L. NAME exists in the CRM data source. 
Data identified as CRED LIM exists on the HR/Finance 
data source, and data identified as WARRANTY is stored in 
the Legacy/ODBC data source. All of these identified data 
are stored in enterprise data sources, such as at back-end 
office systems. 

0091. In the metadata 312, the data definition from the 
enterprise data sources is mapped to views that are used to 
create the data store on the client and store the relevant 
business data on the mobile client from the enterprise data 
Sources in a relational database. Access to this business data 
is performed via a the business object layer defined and 
stored in metadata on the mobile client. As shown in FIG. 
3, the ORDER ID from the ERP data source is mapped to 
a business object property called OrderID, whose relational 
definition is stored in metadata 318 on the mobile client 316 
and utilized by one or more the mobile applications also 
defined in metadata. The F NAME data from the CRM 
enterprise data source is mapped to (stored into) the First 
Name business object property definition stored in the 
mobile client database, and the L NAME data is mapped to 
the LastName business object property. Similarly, the 
CRED LIM data from the HR/Finance data source is 
mapped to the Credit limit business object property, and the 
WARRANTY data from the Legacy/ODBC data source is 
mapped to the Warranty business object property. Thus, data 



US 2006/021284.6 A1 

from the potentially dissimilar and incompatible disparate 
enterprise data sources 302,304,306,308,310 are delivered 
to the mobile client through the Data Manager Web Services 
to the local data store (represented by the lines from the 
enterprise data sources to the application server 314) in the 
proper format for access using one of the business objects on 
the mobile client (indicated in the mobile client 316 with 
actual values). 
0092 Connector Types 
0093. The connectors that are supported by the Connector 
Web Service include the following three connector types: 

0094) 1. The Web Services connector is used when the 
mobile platform is connecting to a third-party system 
(a) that is either non ODBC-compliant, or (b) does not 
allow ODBC/RDBMS connectivity, or (c) whose inter 
face is defined by a standard API and can be wrapped 
and defined by Web Service Descriptor Language 
(WSDL). 

0.095 2. The ODBC/RDBMS connector is used when 
connecting the mobile platform to a third-party system 
(a) that is ODBC compliant and (b) allows for direct 
ODBC/RDBMS access and (c) whose data is located 
physically within the same LAN environment or acces 
sible via a communication protocol Supportive of the 
transport (such as RPC, TCP, etc.). 

0096) 3. The API connector is similar to the Web 
Services Connector but (a) requires the API to be 
accessible via non internet protocols such as RPC and 
(b) is used if the Web Services Interface is not avail 
able. 

0097. Reading schema, via the ODBC/RDBMS connec 
tor, information is accomplished through the use of the 
Studio portion 130 (FIG. 1) of the mobile enterprise plat 
form, using the Administrator application. The Studio por 
tion is used to configure the View definition mapping to the 
backend data source and map the definition of one or more 
Views to one or more Business Objects. When defining the 
View definition or mapping the Views to Business Objects, 
using the administrator, the information is stored as meta 
data. During an update process with the application server 
and enterprise data source, the metadata is read to determine 
how to read, persist and remove the data (select/insert/ 
update/delete functions) while managing and enforcing the 
data integrity using Such functions as conflict detection/ 
resolution, transactions both inherent and compensating 
where appropriate. 
0098. Using the ODBC/RDBMS connector, data is read, 
persisted and/or removed via ANSI SQL statements and/or 
stored procedures in the case of Microsoft Corporations SQL 
Server or Oracle's RDBMS (8i, 9i, etc.). Using the Web 
Services/API connector, data is read, persisted and/or 
removed by calling the appropriate API function or method 
for the transaction. 

0099 2. Configuration Web Service 
0100. The Configuration Web Service consumed by the 
Dexterra Studio provides an easy interoperable way for 
administrators, business analysts and developers to imple 
ment, configure, and administer the Dexterra Mobile Enter 
prise solution. The Configuration Web Service allows for 
easy manipulation of the metadata used to configure and 

Sep. 21, 2006 

customize the data and process definitions of Mobile appli 
cations. This service will be better understood with reference 
to the features of the Administrator component, which is 
described in greater detail below. 

0101 3. Data Manager Web Service 

0102) Update Process Model 

0103) An update process model is utilized in the system, 
in which mobile applications update their locally held data 
(either the application or its business objects) with the 
backend enterprise database using a set of core Net compo 
nents that are exposed as Web Services for easy interoper 
ability. 

0.104) The Data Manager Web Service updates the mobile 
application and all its associated business objects defined 
data. The Update process model enables two-way data 
transfer between the enterprise datasources via the Dexterra 
application server and the mobile client, allowing updates to 
be made while the mobile client is connected to the network, 
merging the updates between clients when they are con 
nected. When in the disconnected State, updates are man 
aged in the client environment, until a time at which a 
connected State is attained and the update request can be 
initiated. 

0105 The update process model takes the “all or noth 
ing approach. If a failure occurs before the entire stream is 
downloaded from the application server onto the mobile 
client (or before the entire stream is uploaded from the client 
to the server), then the Data Manager Web Service on the 
application server does not receive a confirmation on the 
download transaction (or upload). As a result, the server 
carries the intelligence to manage the client state as to 
whether it requires a roll back of data or simply a retry. 
When the mobile client performs an update process opera 
tion the second time, the application server takes into 
account the original information state and may either deliver 
the results if the application server has processed or process 
again in the event all the required information was never 
received by the application server thus enforcing the reliable 
deliver of information once and only once between the 
mobile client and application server. This, in event, enforces 
the integrity of the data as it moves from mobile client to one 
or more back end data sources. 

0106 Update Process Breakdown 
0.107 Two types of update processing are supported: 

0108) 1: Get Latest: In this update type, the mobile 
client makes a request to get the latest information from 
the enterprise data sources via the Dexterra application 
server. The Dexterra application server process the 
request and retrieves the business information from the 
multiple data Sources using the Dexterra Connector 
Web Service and delivers the business information to 
the mobile client. 

0.109 2: Update (2-way update): In this update type, 
records on both the client and server end are inter 
changed enforcing the integrity of the data on both the 
mobile client and the back end enterprise data sources 
using Dexterra Conflict Resolution configured param 
eters. 



US 2006/021284.6 A1 

0110 Conflict Detection/Resolution 
0111 Conflict resolution describes the rules used to arbi 
trate on data conflicts caused by changes made between a 
mobile client and one or more back end enterprise data 
sources. This is performed first by identifying the conflict 
(Detecting) and then resolving (Resolution) the conflict in 
one or more various ways. 

0112 The Dexterra application server can detect conflicts 
in one of three ways: Revision, Date/Time Stamp or Manual 
as well as identify a conflict situation by row or column 
level. 

0113 Revision is a setting where a specific field or 
property is identified in a single record Source as revisioned 
and the Dexterra application Server will use this to deter 
mine whether data has been changed on either the back end 
data source or the mobile client. 

0114) Date/Time Stamp 
0115 Date/Time Stamp is a setting where a specific field 
or property is identified in a single record source as date/time 
stamp and updated upon any insert/update or delete and the 
Dexterra application Server will use this to determine 
whether data has been changed on either the back end data 
source or the mobile client. 

0116 Manual is a setting where there is no specific field 
or property to identify a conflict situation in a single record 
source therefore the Dexterra application Server compares 
all the field or property data to define uniqueness and detect 
whether data has been changed on either the back end data 
source or the mobile client. 

0117 Depending on configuration of the Dexterra appli 
cation Server, Conflicts are resolved in one of four ways: 
First Update Wins, Last Update Wins, Admin Resolution or 
Server-side Rule 

0118 First Update Wins 
0119) Under the First Update model the application 
server will only accept changes of any record that is the first 
one to make an update. If a record is first updated by the back 
end data source and a conflict is detected by the Update Web 
Service, instead of returning an error, the Data Manager Web 
Service will drop the version provided by the client and 
return a copy of the latest version of the record from the back 
end enterprise data source to the mobile client. 

0120 Last Update Wins 

0121 Under the Last Update Wins model, the server need 
not detect conflicts. Instead, it simply persists the changes 
from the mobile client to the back end enterprise data source 
overwriting the current record in the back end enterprise 
data source. 

0122) Admin (or Manual) Resolution 
0123. When configured for Admin/Manual resolution, 
the server will treat all conflicts as requiring manual inter 
vention to resolve and will return a copy of the current 
record from the back end enterprise data source and option 
ally notify via any notification service (SMS, Emai, etc.) that 
a conflict situation has arisen and allow for resolution via the 
Dexterra Administrator. Doing so allows for column level 

Sep. 21, 2006 

conflict resolution since the Administrator determines the 
values to reapply back to the back end enterprise data source 
selectively. 

0.124 Server Side Rules 
0.125 Customizable Server Side Rules can be created to 
determine more programmatically and specifically how cer 
tain conflict situations should be resolved. For example, a 
conflict may be resolved based on the values of data in a 
record. This flexibility allows for complete control over the 
specific actions Surrounding a conflict resolution scenario. 

0126 Client Deployment from the Server 

0127. The application server contains the definition of 
one or more mobile field applications that are to be down 
loaded to the mobile client, including the Forms/screens 
represented as tasks (referred to as “Formflows'), data 
interactions (referred to as a “FieldFlow'), and groups of 
Formflows and FieldFlows constructed into a Business 
Process/Workflow (called a “ForceFlow”). The FormFlows, 
FieldFlows, and ForceFlows are described further below. 
The application definition also includes the configured meta 
data associated to an application Such as View, Business 
Object, Business Constants definition. Also included in the 
deployment is the specific business data from one or more 
back end enterprise data sources required to run the mobile 
client in an "occasionally connected State. 

0128. The application server provides the foundation on 
which to deliver and manage applications and to connect to 
existing enterprise data sources and systems. The mobile 
enterprise platform applications are distributed and managed 
to the mobile devices, such as Pocket PC and Tablet PC 
devices, by the application server, providing a highly man 
ageable administration of all user interfaces in the field. 
0129. C. Administrator Component 

0.130. As noted above, the Administrator component 
(FIG. 1) allows system administrators to perform changes 
that are relatively regular or frequent. The Administrator 
component provides access to decision variables, drop-down 
list content, and other information in a format appropriate 
for business analysts or administrators to manage. This 
approach to administration allows system administrators to 
extend many functions down to the Administrator level 
without compromising system integrity. 

0131 For example, data comprising business information 
that is used to define the business processes of the enterprise 
can be received through a Business Objects definition form. 
The Configuration Web Service provides access to this 
aspect of the Administrator component. 

0132) D. Client Component 

0133) As noted above, the client 102 (FIG. 1) in the 
enterprise platform architecture provides a framework in 
which the mobile application allows the use of role-based 
business processes using techniques referred to as “Force 
Flow”, “FieldFlow”, and “FormFlow”, and using Web Ser 
vices, thus enabling communications between the mobile 
client and the Dexterra application Server and the enterprise 
data sources over a LAN/WAN network, such as the Inter 
net, via wired and wireless connections. The mobile appli 
cation running on the client devices functions in a manner 



US 2006/021284.6 A1 

that is optimized for Small form-factor devices providing an 
exception, easy to learn user experience. 
0134. In the illustrated system, the client is an object 
framework that is built utilizing the “..NET Compact Frame 
work” of Microsoft Corporation that is metadata aware. The 
client component enables delivery of enterprise-class appli 
cation functionality on the mobile devices, which preferably 
operate according to the “PocketPC operating system or 
Microsoft Tablet PC operation system from Microsoft Cor 
poration. The client component also integrates with existing 
“PocketPC functionality to provide seamless integration 
with Calendar, Task, and Today screen functionality of the 
PocketPC interface. It thereby provides a stable, effective 
environment in which to work. 

0135). FormFlows, FieldFlows, ForceFlows 
0.136 Any business process tasks or steps or operations in 
the form of display screens are called “FormFlows’. The 
Formflows are used to initiate process interactions called 
“FieldFlows that allow the initiation of business processes, 
which are referred to as “ForceFlows’. The FieldFlows 
allow launching of “out of band ForceFlows to bring 
real-world elasticity to the business processes. 
0137 The FormFlows are broken into three categories: 
(1) Information; (2) Activity; and (3) Update. An Informa 
tion FormFlow is a screen that shows information needed by 
a mobile user to fulfill the next logical task in the business 
process. An Activity FormFlow is a screen that shows 
Something the user may need to do or perform. An Update 
Formflow is a screen that is displayed when a mobile user 
is prompted to enter data that will be returned to the host 
applications (the enterprise data sources). 
0138 A FieldFlow may be required, for example, when a 
part might have failed and a search of inventory databases 
might need to be performed to see if any matching parts or 
similar problems with solutions exist and are available, 
called a lookup, or a FieldFlow may be required when a part 
might need to be ordered or assigned or scheduled for 
delivery to the client, a FieldFlow called an update. 
0139 A ForceFlow is a business process, and therefore is 
a collection of FormFlows and FieldFlows. An example of 
a ForceFlow would be time, travel, and expense recording 
that is associated with a job or dispatch event. 
0140 Referring back to FIG. 2, this block diagram shows 
how the relationships between columns and fields in the 
target application are related to information. In the “Form 
Flows' (steps in the business process represented as Forms' 
in the application) and are then associated into the Force 
Flow (the business process). There can be many Business 
Objects in one FormFlow and potentially more than one 
FormFlow in any business process. 

0141 Filters allow characteristics and conditions to be 
placed onto the data when referenced in the mobile appli 
cation. For example, data type (e.g., Date), valid types (e.g., 
only Monday through Friday), and any conflict conditions 
may be detected. Other filter characteristics and conditions 
can be configured. 

0142 Views define the data and storage location for use 
in one or more Business Objects, and the Business Object 
can be based on one or more Views. This allows additional 
characteristics to be associated. For example, a Business 

Sep. 21, 2006 

Object may be referred to as “Customer', which may 
Include standard customer details; location, contacts, inven 
tory, and also SLA and other attributes that the application 
would like to classify as Customer but not held in the same 
Target table or even Target application. 
V. Adapter Architecture 
0.143. The adapter architecture in accordance with the 
present invention is illustrated in FIG. 4. Some of the 
components illustrated in FIG. 4 are analogous to compo 
nents illustrated in FIG. 1. Components in FIG. 4 that 
perform functions for which a corresponding component is 
provided in the FIG. 1 system will be identified in FIG. 4 
with the same reference numeral, except for beginning with 
“4” rather than “1”. 

014.4 FIG. 4 is a block diagram of a suitable computer 
system environment 400 constructed in accordance with the 
present invention. FIG. 4 shows a mobile client device 402. 
such as a Personal Digital Assistant (PDA) device that 
operates in conjunction with the Microsoft PocketPC or 
Palm PDA operating systems. The client device 402 includes 
the same components as described in connection with the 
client device 102 of FIG. 1, but are not illustrated in FIG. 
4 for simplicity of illustration. The mobile client device 402 
communicates over a network connection 404 with an 
application server 406 to request data from the server and 
receive data updates, provide new data, and receive con 
figuration changes. It should be understood that multiple 
mobile clients 402 can communicate with the server 406. 
Only a single client device 402 is shown in FIG. 4 for the 
sake of drawing simplicity. 

0145 The mobile clients 402 consume the server-side 
connector web services for real time data retrieval from 
multiple enterprise data stores. Additionally, the mobile 
clients consume the server-side data manager web services 
for the management of real-time client-side data updates, 
server side data updates and system configuration updates. 

0146 The application server 406 communicates with 
enterprise data sources 408, such as CRM data sources, ERP 
Sources, financial system resources, legacy data stores, and 
the like. 

0147 A “Dexterra Studio' component 430 communi 
cates with the server 406 and includes an administrator 
application and a developer application (not illustrated in 
FIG. 4). More particularly, the Studio component interfaces 
with the Configurator of the server 406, and a data server 
DDS interfaces with the server and the Adapter Framework 
of the server 406, which communicates with the enterprise 
data sources 408. 

0.148. The Adapter Framework provides an interface that 
will enforce specific inputs and outputs required in moving 
data between the server 406 and any other enterprise data 
source. The Data Manager of the server 406 will request and 
respond to any properly defined connector component to 
communicate with the enterprise data sources 408 through 
the Adapter Framework. Thus, the server 406 uses the 
definition of the Connection Objects, Command Objects, 
DataObjects, and Views to determine how and what data to 
retrieve or persist to a back end enterprise data source. 
0149. A design toolkit (“Dexterra Adapter Designer', or 
DAD) is supplied with the Studio 430 to permit developers 



US 2006/021284.6 A1 

to specify the components of the Adapter Framework. That 
is, the DAD 430 provides a developer with the means to 
connect and construct Adapter Framework data components 
to any Dexterra Supported Adapter utilizing the Dexterra 
Studio VS.NET plug-in. Components include Connection 
Objects, Command Objects, Data Objects, and Views. 

0150. Using the DAD 430, a developer will create a 
Connection Object to a back end data Source using a 
Dexterra Supported Adapter. This Connection Object will 
expose (either using Discovery/Intraspection or Description) 
the data interface object(s) available through the Adapter as 
either a Table, Stored Procedure, Script or Object (EAI, etc.) 
Using the Dexterra Adapter Designer, a developer will then 
create a series of Command Objects that perform specific 
actions through an Adapter Such as Select, Insert, Update 
and/or Delete. A developer then defines a Data Object in 
which they will select the appropriate Select Command, 
Insert Command, Update Command, and/or Delete Com 
mand. A View is then bound to the Data Object for its 
request/respond actions. Using this tool and architecture, a 
developer can request and persist data from one or more 
back end enterprise data sources mapped to a single defined 
data object within the Dexterra Server 406, thus providing a 
layer of abstraction to the physical data structure and inter 
face capabilities. 

0151. A. Command Objects 
0152 The Command Object of the Adapter Framework 
defines an action to be performed through an Adapter (i.e., 
Connector) to retrieve or persist data. For example, a “Save 
Customer command might be defined to save a Customer 
data object to an enterprise data source through an Adapter. 
Command types or formats will be determined by the 
Adapters according to the enterprise data sources with which 
they interface and therefore must Support. For example, 
potential Command types for a mobile data system might 
include Table, Procedure, SQL, Script, and Object. 
0153. The Command Objects will specify an action that 
will be performed. In accordance with the invention, the 
Command action types include five defined actions: (1) 
READ, (2) ADD, (3) UPDATE, (4) REMOVE, and (5) 
READ for EDIT. These Command actions are described 
further below in conjunction with the Data Object discus 
sion. Command Objects can specify filters, which will 
operate when a Command is executed. Each filter will 
operate on data in accordance with the data type of its 
corresponding Command type. A Command will include a 
Column attribute, which comprises the columns of data that 
are returned when the Command is executed. Lastly, a 
Command includes parameters that specify values necessary 
for proper execution of the Command. 
0154 B. Data Objects 
0155 The Data Object associates Command Objects to 
retrieve or persist data, logically grouping them into a single 
object (e.g. a Customer object). A DataObject is defined by 
(that is, it is the result of) Commands that are executed on 
enterprise data sources, through the Adapters. As noted 
above, Commands include READ, ADD, UPDATE, 
REMOVE, and READ for EDIT. The READ Command is 
a Command object that will retrieve data, define which data 
columns are returned and what their attributes are, and will 
override Data Types for casting from Adapter to the “..NET 

Sep. 21, 2006 

paradigm. The ADD Command is a Command object that 
will persist new instances of data through an Adapter to 
insert new data instances back into the corresponding enter 
prise data source. The UPDATE Command is a Command 
object that will persist changes to existing data items 
through an Adapter back to the corresponding enterprise 
data source. The REMOVE Command is a Command object 
that will remove data from an enterprise data source through 
an Adapter. The READ for EDIT Command is a Command 
object that will retrieve a single record with a RowIlock 
through an Adapter. 

0156 The Data Objects will map the return elements of 
the READ Command to the parameters of the ADD, 
UPDATE, REMOVE, and READ for EDIT Commands. A 
single Data Object can retrieve and persist data through 
different Commands to potentially different Adapters. 

O157 C. Connections 

0158 As before, the Connections will interface to the 
enterprise data sources to provide data access by the mobile 
client application. In the Adapter Framework 430 described 
in connection with the present invention, the Connections 
will not communicate directly with Views, but will instead 
interface directly with the Command Objects, which will 
eventually exchange data with the DataObjects and Views. 

0159) D. Views 

0160. In the Adapter Framework in the Server 430 of the 
FIG. 4 configuration, a View is not bound to a single data 
table, as was the case in the FIG. 1 configuration. Rather, a 
View is bound to a DataObject with defined Commands for 
READ, ADD, UPDATE, REMOVE, and READ for EDIT. 
Thus, a much more versatile data interface is provided. The 
structure of a View is defined by the selected data columns 
specified in the READ command for the Data Object. In 
addition, filters are no longer created at a View object, but 
are created at a Command Object. 

0.161. As described further below in the next section, the 
View types of the FIG. 4 system include Direct Views, 
Derived Views, Delegated Views, and Definition Views. The 
configuration of the View Objects in the server 430 enables 
abstraction of View CRUD (Create, Read, Update, Delete) 
operations to the enterprise data sources, and enables CRUD 
to be defined instead of hard coded. 

VI. View Types 

0162. As noted above, mobile clients gain access to 
business enterprise data sources through configurable Views 
that interface with the data sources through Data Objects 
that are defined by Commands, which in turn communicate 
with the data sources through Connectors (also referred to as 
Adapters). Each type of View will interface to the data 
Sources with a different functionality So that communica 
tions links and other system resources can be used more 
efficiently. 

0163. In the system illustrated in FIG. 4, the View types 
include Direct Views, Derived Views, Delegated Views, and 
Definition Views. As described further below, these new 
View types provide greater control over data interfaces and 
can be configured for greater utilization of system resources. 



US 2006/021284.6 A1 

0164 A. Direct Views 
0165 A Direct View will retrieve data directly from an 
enterprise data source via the DataObjects, Commands, and 
Adapters. A Direct View is a type of View that is defined for 
the mobile client only. Most View types retrieve their 
requested data by resorting to a local client relational data 
store (cache) called SQLCE. In contrast, the Direct View 
type requests data directly from the enterprise data sources 
instead of going to the local client data store cache. In the 
event of a failed connection to the enterprise data sources, 
the FIG. 4 system provides an optional FailOver operation 
that can retrieve data from the SQLCE if the enterprise data 
sources are not available. This permits a Client/Server-like 
operation of a Mobile Application where control over what 
data is persisted locally, as compared to what data is required 
in real-time (such as inventory data), can be configured. 
0166 When the mobile application for the system (FIG. 
1) is planned and designed, the application developer can 
select a View (defined in terms of Data Objects) to be a 
Direct View. Such design decisions can be specified through 
system development tools, which will be referred to as 
“Dexterra Unified Development Environment Tool” or as 
the “Dexterra Adapter Designer” (DAD) tool. Typically, use 
of a Direct View by a mobile client is best implemented as 
part of the View Filter conditions for client variables so as 
to limit the results returned from the backend datasource to 
be user specific. 
0167. When the application is running on the mobile 
client, the mobile client will request data from a View during 
a Business Object Request (called a FindSet operation). The 
mobile client will see that the View is a Direct View, and will 
therefore make the data request of the View directly to the 
Dexterra Server using the Data Manager and passing any 
Environment or User Defined variables for the View Filter. 
The Data Manager will retrieve the data for the View from 
the backend enterprise datasource (which could be a Default, 
Derived, or Delegated View Type) and will return the data 
to the client, which will then return the results of the data 
retrieval to the Business Object. 
0168 B. Derived Views 
0169. A Derived View provides the ability to derive 
(abstract) a definition of data from one or more defined 
Views within the data server of the system. This enables a 
data item to be defined based on one or more data structures 
that are predefined as a View. A Derived View will incor 
porate filter parameters and will request data from a server 
that retrieves a base set of associated data at runtime from 
the enterprise dataSources and then places the retrieved data 
into a relational data engine (RDE) that applies the Derived 
View filter parameters to extract filtered data and provide it 
to the requesting Derived View type. Thus, Derived Views 
can filter data from one or more other Views from different 
enterprise data sources (such as Siebel, Oracle, etc.) using 
common ANSI SQL operations, thus utilizing the power of 
a relational engine such as SQL Server or Oracle. 
0170 Derived Views are defined in system metadata and 
are constructed at runtime within the Dexterra Server (which 
is stateless) to provide for the data abstraction rather than 
predefining the structure as a table or defined object, giving 
true flexibility towards change in the enterprise. 
0171 Using the Dexterra Unified Development Environ 
ment Tool, a developer first creates one or more base Views 

Sep. 21, 2006 

of type Default, Delegated, or Defined and configures filter 
conditions, permissions, and the like. A Default type can be 
set to be one of the remaining View types, as desired. After 
the base View is created, a Derived View can be created by 
selecting one or more Views and defining the attributes of 
the View (such as the fields) to map and the filter condition 
to apply to the data returned from the base Views. 
0172 At runtime, the Dexterra Server will respond to a 
Derived View request by first retrieving the data from the 
base Views of the Derived View and then will put the 
retrieved data into a relational engine such as SQL Server or 
Oracle, and then apply the Derived View Filter Condition (as 
SQL) against the data and return the data for delivery to the 
Data Manager for comparison and for preparation of deliv 
ery to the mobile client. 
0173 The Derived View is illustrated in FIG. 5, which 
illustrates operation of a system 502 with a Derived View 
(indicated as “V3” in FIG. 5) that is based on a “V1' View 
and a “V2 View, such that the V1 View retrieves Customer 
data from a Siebel database 504 and the V2 View retrieves 
History data from the Siebel database. The V3 View speci 
fies only a subset of History data for retrieval, which is 
accomplished through filter conditions of V3. The data 
Subset is then returned to the mobile client 506. The V2 View 
is a type of Defined View, in that only a subset of the order 
history is called for by the V2 View. The referential data 
store 508 contains metadata from which the specified data 
can be retrieved; it does not contain raw data of the order 
history. Thus, the data that must be retrieved from the 
database 504 and returned over the communications links 
will be reduced, because only the data of interest is actually 
pulled from the database and sent to the Derived View V3. 
0.174 C. Delegated Views 
0.175. The Delegated View provides the ability to del 
egate, or cache, data from one or more backend enterprise 
data sources on the Dexterra Server and configure the 
Dexterra Server to retrieve and update its cache based on a 
predefined set of rules, such as a timer interval (every hour, 
etc.) or a predetermined event (referred to as server side rule 
triggering). Thus, a Delegated View will periodically 
retrieve data from the enterprise data sources according to 
parameters of the Delegated View and will place the 
retrieved data into a Relational Data Engine cache. 
0176). Using the Dexterra Unified Development Environ 
ment Tool, a developer creates a View based on a specific 
Adapter-supported object type, such as Table, Object, Stored 
Procedure, Script, or the like. The developer then configures 
the filter conditions, permissions, and associated object 
parameters and then marks the View as a Delegated View 
and configures the update functions of the filter, such as filter 
time interval, event rules, and so forth. Thereafter, at runt 
ime, the Data Manager of the Dexterra Server will auto 
matically request data for the View from the defined Adapter 
at the set time interval or server side event and will cache the 
data in the local RDE. 

0177. In response to a mobile client request, the Data 
Manager of the Dexterra Server will retrieve the data from 
the local RDE instead of requesting the data defined by the 
View from the Adapter that is connected to the enterprise 
data source. A filter condition can apply to the local RDE 
Source, thereby increasing the performance of the request 
and offloading the dependent back end data source for that 
defined set of data. 



US 2006/021284.6 A1 

0178 Thus, after the server executes automatic data 
retrievals based on the specified update functions, Subse 
quent requests from mobile clients for enterprise data can be 
filled by getting the requested data from the RDE cache 
rather than directly from the enterprise data sources, thereby 
reducing the data traffic between the mobile client and the 
data sources. Updated data from mobile clients is returned 
directly to the enterprise data sources through the Adapters. 
0179 D. Definition Views 
0180 A Definition View provides the ability to create a 
user-defined View in the situation where there is no backend 
data store in the enterprise to retrieve or persist the data. This 
ability can be commonly used to either augment a backend 
system for functionality required in the mobile offering that 
is not part of the enterprise system. Another use might be to 
enable the enterprise to relate data from the mobile appli 
cation to data in the backend enterprise data sources without 
modifying the backend enterprise system. A user-defined 
View (Definition View) will have an option for “Serv 
erOnly” or “ClientOnly”. The ServerOnly option can be 
used to store data for purposes of augmenting a backend data 
process but not required for the mobile application. The 
ClientOnly option can be used to store additional data 
elements to be used in the mobile application Such as pick 
lists, constants, enumerators, and so forth. 
0181 A Definition View permits control over where 
retrieved data is maintained, either at the system server or at 
the mobile client. The extent of system resources will 
generally determine selection between the two configura 
tions. 

0182 To utilize Definition Views, a developer uses the 
Dexterra Unified Development Environment Tool to create 
a View by defining the data structure, including field names, 
data types, and default values that will store the business 
data. Then the developer can create a filter as well as a 
permissions set for controlling access. The ServerOnly 
option can be selected, which would not create the View 
definition on a mobile device. The ServerOnly definition 
would be a worker View used for other operations, such as 
a Derived View. The ClientOnly definition would create the 
View on the Client device only. If this option is selected, the 
user would be able to enter seed data manually, import data 
from a delimited source or XML file, and export the data to 
an XML file. 

0183) The Dexterra Server will use the Defined View 
structure in the RDE as its backend datasource. In the case 
of the ServerOnly option, the View definition will not be 
created on the Mobile client data cache (SQLCE). In the 
case of the Default or ClientOnly option, the View Defini 
tion will be created as a table in the local client cache 
(SQLCE). If ClientOnly, it will be seeded with the data 
configured on the server (user entered or imported). 
0184 E. Relational Data Engine 
0185. In conjunction with the configurable Views, the 
system also includes a Relational Data Engine (RDE) within 
the framework at the server 406 (see FIG. 4). Alternatively, 
the RDE could be located at other computers of the platform 
system that can communicate with the server. The RDE uses 
a standard syntax such as ANSI SQL in the real-time 
communication of data from one or more backend enterprise 
data sources 408 to one or more mobile client devices 402 

Sep. 21, 2006 

in a stateless way. As described above, the RDE is useful for 
Derived Views, Delegated Views, Defined Views, and is also 
utilized for complex filter conditions, state modeling of 
mobile clients, comparisons of client data, and the like. That 
is, the RDE is utilized in accordance with the specific View 
types, as set forth above. 
0186. As the Dexterra Server moves data from one or 
more backend enterprise dataSources to one or more mobile 
clients, it utilizes the power of the RDE to store the data in 
real time without the need for a static definition of a data 
model mapping to the definition of the data. The RDE is 
used to take advantage of the power of a standard use syntax 
such as ANSI SQL to promote the correlating of data in filter 
conditions or data abstraction. 

0187 F. Metadata Business Objects 
0188 To utilize the configurable Views and RDE, the 
system utilizes metadata business objects that provide the 
ability to create and define a Business Object in meta data 
that is bound to one or more Views from one or more 
backend enterprise data sources that can be used by one or 
more mobile client applications utilizing the Dexterra Studio 
VS.NET plug-in. This provides the ability to create rela 
tionships to one or more other Business Objects for a true 
object oriented application component architecture utilizing 
the Dexterra Studio VS.NET plug-in. 
0189 Use of the RDE is achieved using the Dexterra 
Unified Development Environment Tool to configure the 
definition of a Business Object including Properties, Default 
Values, Relationships, Filter Conditions, Permissions, Asso 
ciated Applications and Business Rules. At runtime, the 
mobile client, upon request from a Business Object, creates 
an object instance based on the metadata definition. This 
enables the client application to then execute operations 
such as Find, FindSet, Save, and Delete. The mobile client 
will perform these operations against the defined View 
attributes for the Business Object. This may retrieve or 
update data on the local device, for example. 
VII. Configuration and User Interface 

0190. In the Adapter Framework in the Server 430 of the 
FIG. 4 configuration, a View is not bound to a single data 
table, as would be the case in a system without the present 
invention (and as indicated in FIG. 2). Rather, a View is 
bound to a DataObject with defined Commands for READ, 
ADD, UPDATE, REMOVE, and READ for EDIT. Thus, a 
much more versatile data interface is provided. The structure 
of a View is defined by the selected data columns specified 
in the READ command for the Data Object. 
0191 In the system that utilizes the View object configu 
ration of the present invention, filters are created at a 
Command Object, rather than at a View object. The con 
figuration of the View Objects in the server 430 enables 
abstraction of View CRUD (Create, Read, Update, Delete) 
operations to the enterprise data sources, and enables CRUD 
to be defined instead of hard coded. Other than the changed 
View configuration and concomitant changes such as for 
creation of filters, the remaining components illustrated in 
FIG. 1 can be utilized for a mobile platform system con 
structed in accordance with the present invention. 
0.192 FIG. 6 shows a diagrammatic representation of the 
data architecture for the mobile platform illustrated in FIG. 



US 2006/021284.6 A1 

1 and comprising an embodiment of the present invention. 
FIG. 6 shows that a View object of the data system has a 
View ID and is bound to a defined DataObject. FIG. 6 shows 
that the Data Object can include one or more commands 
from among a READ command, an ADD command, an 
UPDATE command, a REMOVE command, and a READ 
for EDIT command. 

0193 FIG. 6 shows that Command objects also are 
bound to the DataObjects, and also are bound to Connection 
objects, which are in turn bound to Adapter objects. FIG. 6 
shows that the Adapter objects interface with a metadata 
store that interfaces with the enterprise datasources to 
retrieve data for the mobile platform, as described above. 
0194 FIG. 7 is a diagrammatic representation of the data 
access configuration for the mobile platform constructed in 
accordance with the present invention. FIG. 7 shows that a 
mobile client (indicated as “Dexterra Client” in FIG. 7) 
communicates with the application server (“Dexterra 
Server” in FIG. 7) through a View object at the server, 
where the View object interfaces with a Data Object to act 
through Command objects to access Adapter objects that 
ultimately interface directly with enterprise datastores (e.g., 
Microsoft SQL Server and Siebel data servers in FIG. 7). At 
the client device, the mobile application communicates data 
requests through a Smart client to metadata stores and 
business data stores to the View objects at the application 
SeVe. 

0195 FIG. 8 illustrates how access to the DAD features 
of the mobile platform system is gained through a file 
explorer type of graphical user interface. FIG. 8 is a 
screenshot of a display on a computer device that is hosting 
the DAD computer program application. In FIG. 8, the 
display is a window-type display titled “Dexterra Explorer' 
and shows a workspace with a file tree view. The tree view 
shows a hierarchy of “Servers' with server names indicated 
as Solomon, Tempest, Ultrium, and Thunder. It should be 
apparent that server names may be arbitrary selected. 
0196. In accordance with the DAD program, a variety of 
actions can be taken with respect to a selected server. FIG. 
8 shows that the “Solomon' server has been selected, with 
the Data Access menu item being highlighted to show that 
data access options can be investigated. Beneath the Data 
Access menu item, Submenus are shown, comprising Data 
Sources, DataSource Types, Commands, Data Objects, and 
Views. Using the DAD program and the explorer menu, a 
mobile application designer can specify new dataSources 
and can interface with corresponding Adapters to gain 
access to enterprise dataSources for the mobile clients that 
will use the developed application. 

0.197 FIG. 9 shows a designer having selected “Data 
source Types on the Dexterra Explorer menu and FIG. 9 
shows that a context menu is generated, providing the 
designer with options to add a new dataSource type, or 
refresh the view, or edit a datasource type, or delete a 
dataSource type. Thus, selecting a Dexterra Explorer menu 
item can generate a context menu that provides a menu of 
additional operations on the selected menu item. FIG. 10 
shows selection of the Data Sources menu item from FIG. 
9, illustrating exemplary data sources available in the system 
under design. FIG. 11 shows selection of a particular 
dataSource type, from which a context menu may be gen 
erated for editing operations on the selected dataSource type. 

Sep. 21, 2006 

FIG. 12 shows View types that are available for selection. 
As with the other Dexterra Explorer menu items, selecting 
the View menu item will generate a context menu that allows 
a designer to perform editing operations on View types, 
including create, edit, and delete. 
0198 As noted above, if the “DataSources' node on the 
Dexterra Explorer menu is selected, a new DataSource can 
be specified via a context menu that is generated by the 
Explorer program. FIG. 13 shows a DataSources Properties 
dialog box that is generated by utilizing a Data Sources 
context menu to create a new type of Data Source. FIG. 13 
shows that the designer is presented with a screen that 
permits selection of a data adapter, based on the data types 
available to the designer. In FIG. 13, the available adapter 
types are shown as OLE DB for SQL Server, OLE DB for 
Oracle, Clarify Adapter, and Remedy Adapter. These adapter 
types are shown for purposes of illustration only; it should 
be understood that additional and different adapter types 
could be provided in accordance with the teachings of the 
invention. FIG. 13 shows that the designer also can specify 
a Connection type. After selecting an Adapter, the designer 
would select the Connection display button to specify the 
connection parameters. 
0199 FIG. 14 shows an authentication screen for the 
designer to provide login information and choose a particu 
lar enterprise dataSource target. Once the designer is autho 
rized, the display will be changed in accordance with the 
selected adapter. After a new dataSource is defined, using the 
DAD interface, a new dataSource type node will appear in 
the Dexterra Explorer tree view (FIG. 11), in accordance 
with the designer's newly defined dataSource type. 
0200 Other nodes can be created, added, edited, and 
deleted from the Dexterra Explorer tree view. FIG.15 shows 
a designer making a Command selection from the tree view. 
Selection of “Add New Command” in FIG. 14 generates the 
“New Command” dialog box of FIG. 16. 
0201 FIG. 16 shows that a name can be entered for the 
new command, along with parameters to specify dataSource, 
action, data type, and Source, and also space for entry of a 
SQL statement. FIG. 17 shows that the Parameters tab of the 
Add Command dialog accepts additional command specifi 
cations. 

0202 Among the control parameters for the Add New 
Command dialog box of FIG. 16 are: 
0203 Command Name Textbox The DAD user enters a 
name to uniquely identify the command. On “save there is 
a validation that the Command Name is unique. 
0204 DataSourse This is a drop-down list of data 
sources that have been defined. This information is discov 
ered from metadata. Every command is required to have a 
corresponding dataSource. 
0205 Command Type (Action) This is a drop-down list 
of the different types of commands available. Every com 
mand is required to have a command type. 
0206 Data Group box This group box includes tabs for 
“Main’ and "Parameters', and contains the controls to 
define the actions of the command. This box will be different 
depending on the chosen dataSource. For example, the 
illustrated display in FIG. 16 is for a RDBMS such as SQL 
Server. Those skilled in the art will appreciate that a system 



US 2006/021284.6 A1 

such as an Oracle/Siebel system probably would not have 
the “SQL Statement” text box. 
0207 Source Type radio button—Selecting this radio 
button enables the two corresponding combo boxes (Data 
source and Source Type) and disables the SQL Statement 
textbox. This radio button indicates the designer is using the 
enterprise objects available by the enterprise data system. 
0208 Source Type box is a list indicating the types of 
Enterprise Objects available from the enterprise system. An 
example of Source types includes tables, views, or stored 
procedures in SQL. 
0209 Source box—a drop-down list of the available 
enterprise objects for the user to select based on the filtering 
by type. 

0210 SQL Statement radio button Selecting this radio 
button enables the corresponding textbox and disables the 
SourceType and Source combo boxes. This radio button 
indicates the designer is going to specify the SQL Statement 
that this command shall execute. 

0211 SQL Statement text box The designer enters a 
SQL statement to be executed by the command. 
0212 Among the parameters for the Add New Com 
mand Parameters dialog box of FIG. 17 are: 
0213 Parameters list box Contains a list of parameters 
for the selected Enterprise Object, if they pertain. FIG. 17 
shows parameters of Return Value and CustomerFirstName. 
0214) Parameter Properties group box shows a group 
ing of controls that describe the properties of the selected 
parameter. 

0215 Name text box The name of the selected param 
eter. In FIG. 17, this textbox is grayed out to indicate it is 
disabled because the parameter name cannot be edited. 
0216) Direction box. This contains a drop-down list of 
the direction types a parameter can have. Such as Input, 
Output, and Input/Output. 
0217. Data Type box. This contains a drop-down list of 
the datatypes available for the parameter, if applicable. 
0218. Required box Contains the Boolean values True 
or False and thereby indicates whether or not the parameter 
is required. 

0219) Value text box This text box is available if a 
value for the parameter is to be forced. 
0220. After the editing process is completed, the tree 
view in the Dexterra Explorer will be updated to reflect any 
added items. For example, FIG. 18 shows that a new 
Command called “CustomerQuery' has been added to the 
tree view. Thus, the name command will be available to any 
subsequent developer who uses DAD to interface to the 
Solomon server. It should be noted that the new Customer 
Query command also could be manipulated (copied, moved, 
edited and moved, etc.) to another node of the tree view, 
using the Dexterra Explorer graphical user interface and 
editing commands. 
0221) Thus, the View Object configuration described 
herein supports multiple View types for increased flexibility 
in the operation of the mobile data platform. The new View 
Object configuration supports View types including Derived 

Sep. 21, 2006 

View, Delegated View, Direct View, and Defined View. Each 
View type will interface to the enterprise datasources with a 
different functionality, so communications links and system 
resources can be used with greater convenience, flexibility, 
and efficiency. 
0222. Thus, the Dexterra Explorer tool provides the abil 
ity to create custom enterprise connectivity to disparate 
backend dataSources, and provides the ability to separate the 
connectivity to any backend enterprise system with the 
configuration and adaptation to the specific instance of an 
implementation. This allows the communications between 
the .NET interface and a backend system to be developed 
separately from the configuration of the information 
required from the backend system, thus creating an abstrac 
tion layer and allowing for a configuration tool to manage 
the adaptation, as described herein. In this way, the disclosed 
tool implements a specific Dexterra Adapter Interface that 
will bind to the Dexterra DataManager and enforce specific 
inputs and outputs required in moving data between the 
Dexterra Server and any of the enterprise datasources. 
0223 FIG. 19 is a flow diagram that illustrates operation 
of the mobile data platform system as described above. In 
the first operation, represented in the flow diagram box 
numbered 1902, the method of processing data that is shared 
between multiple enterprise datasources and a mobile client 
that communicates with an application server begins with 
receiving a request from a mobile client for a data operation 
on data at one of the enterprise dataSources. In the next 
operation, represented by box 1904, a configurable View 
Object is determined, wherein the View Object is adapted to 
be bound to a Data Object for execution of specified 
Command Object data actions corresponding to the 
requested data operation. In the last operation at box 1906, 
the operations on the data are performed as specified by the 
View Object, utilizing a Relational Data Engine. 
0224. The computer program tool referred to above as 
“DAD” for use by designers of mobile applications is 
provided to create custom enterprise connectivity to dispar 
ate enterprise dataSources of the mobile data platform sys 
tem. The DAD application program tool provides these 
features through the user interface illustrated in the draw 
ings. Thus, the DAD application program tool provides a 
means for specifying application processing of data that is 
shared between the multiple enterprise dataSources and 
mobile clients. 

0225. The computer program comprising the DAD tool 
can be installed on a computer apparatus or system, such as 
a desktop computer, notebook computer, or the like, so long 
as the DAD tool program can receive user input to carry out 
the connection adapter specifying process and can verify 
dataSources, bindings, and the like. The configured adapters 
and Connection Objects can be included within a mobile 
data platform system and installed at an application server of 
the mobile platform such as described above, so that the 
operational features of the adapters can be utilized at the 
mobile clients for operations with the enterprise datasources. 
0226. As described above, the DAD tool provides a 
means for configuring a View Object that provides desired 
data operations on data objects stored at a back end enter 
prise datasource. When the configured View Object is incor 
porated into the mobile data platform, the mobile data 
platform carries out its operations on data requested by 



US 2006/021284.6 A1 

mobile clients in accordance with the specified View Object. 
In this way, the computer system provides a configurable 
View Object that is adapted to be bound to a DataObject in 
the computer system for execution of specified Command 
Object data actions in accordance with the View Object. 
0227. The present invention has been described above in 
terms of a presently preferred embodiment so that an under 
standing of the present invention can be conveyed. There 
are, however, many configurations for mobile enterprise 
data systems not specifically described herein but with 
which the present invention is applicable. The present inven 
tion should therefore not be seen as limited to the particular 
embodiments described herein, but rather, it should be 
understood that the present invention has wide applicability 
with respect to mobile enterprise data systems generally. All 
modifications, variations, or equivalent arrangements and 
implementations that are within the scope of the attached 
claims should therefore be considered within the scope of 
the invention. 

We claim: 
1. A computer system data architecture framework for use 

in a mobile data platform system for processing of data that 
is shared between multiple enterprise dataSources and a 
mobile client that communicates with an application server, 
the data architecture framework comprising: 

a configurable View Object in the computer system that is 
adapted to be bound to a DataObject in the computer 
system for execution of specified Command Object 
data actions in accordance with the View Object; and 

a Relational Data Engine that performs operations on data 
as specified by the View Object. 

2. A computer system as defined in claim 1, wherein the 
View Object is a Derived View type in which a data 
definition for requested data is derived from one or more 
View Objects at the application server. 

3. A computer system as defined in claim 1, wherein the 
View Object is a Delegated View type in which requested 
data is retrieved from a delegated cache Store at the appli 
cation server. 

4. A computer system as defined in claim 3, wherein the 
delegated cache store provides data to which a predefined 
processing rule has been applied. 

5. A computer system as defined in claim 1, wherein the 
View Object is a Definition View type in which requested 
data is provided in accordance with a data definition of the 
Definition View type. 

6. A computer system as defined in claim 1, wherein the 
View Object is a Direct View type in which requested data 
is retrieved directly from one of the enterprise datasources. 

7. A computer system as defined in claim 1, further 
comprising: 

a Connection Object that provides an interface to a back 
end enterprise data source and exposes a data interface 
object available through the Connection Object as 
either a Table, Stored Procedure, Script, or Object; 

a Command Object that performs specific data actions; 
a DataObject that permits a mobile data client to specify 

one of the Command Object data actions to be per 
formed on the data interface object; and 

Sep. 21, 2006 

a View Object that is adapted to be bound to the Data 
Object for execution of the specified Command Object 
data actions. 

8. A computer system as defined in claim 1, wherein the 
data actions include at least one action from among data 
actions comprising Select, Insert, Update, and Delete. 

9. A method of processing data that is shared between 
multiple enterprise dataSources and a mobile client that 
communicates with an application server, the method com 
prising: 

receiving a request from a mobile client for a data 
operation on data at one of the enterprise dataSources; 

determining a configurable View Object that is adapted to 
be bound to a Data Object for execution of specified 
Command Object data actions corresponding to the 
requested data operation; and 

performing operations on the data as specified by the 
View object utilizing a Relational Data Engine. 

10. A method as defined in claim 9, wherein the deter 
mined View Object is a Derived View type in which a data 
definition for requested data is derived from one or more 
View Objects at the application server. 

11. A method as defined in claim 9, wherein the deter 
mined View Object is a Delegated View type in which 
requested data is retrieved from a delegated cache store at 
the application server. 

12. A method as defined in claim 11, wherein the del 
egated cache store provides data to which a predefined 
processing rule has been applied. 

13. A method as defined in claim 9, wherein the deter 
mined View Object is a Definition View type in which 
requested data is provided in accordance with a data defi 
nition of the Definition View type. 

14. A method as defined in claim 9, wherein the deter 
mined View Object is a Direct View type in which requested 
data is retrieved directly from one of the enterprise data 
SOUCS. 

15. A method as defined in claim 9, further comprising: 
determining a Connection Object that provides an inter 

face to a back end enterprise dataSource and exposes a 
data interface object available through the Connection 
Object as either a Table, Stored Procedure, Script, or 
Object in accordance with the determined View Object; 

determining a Command Object that performs specific 
data actions in accordance with the determined View 
Object; 

determining a Data Object that permits a mobile data 
client to specify one of the Command Object data 
actions to be performed on the data interface object. 

16. A method as defined in claim 9, wherein the data 
actions include at least one action from among data Select, 
Insert, Update, and Delete. 

17. A computer system including a data architecture 
framework for use in a mobile data platform system for 
processing of data that is shared between multiple enterprise 
dataSources and a mobile client that communicates with an 
application server, the computer system comprising: 
means for determining a configurable View Object in the 

computer system that is adapted to be bound to a Data 
Object in the computer system for execution of speci 
fied Command Object data actions in accordance with 



US 2006/021284.6 A1 Sep. 21, 2006 
16 

the View Object, wherein the data actions include at communicates with a Command Object that performs 
least one action from among data actions comprising specific data actions, communicates with a DataObject 
Select, Insert, Update, and Delete; that permits a mobile data client to specify one of the 

means for performing operations on data as specified by Command Object data actions to be performed on the 
the View Object; and data interface object, and communicates with a View 

Object that is adapted to be bound to the Data Object 
for execution of the specified Command Object data 
actions. 

wherein the means for determining communicates with a 
Connection Object that provides an interface to a back 
end enterprise data source and exposes a data interface 
object available through the Connection Object as 
either a Table, Stored Procedure, Script, or Object, k . . . . 


