PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GOGF 9/45, 17/28 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/15894

16 April 1998 (16.04.98)

(21) International Application Number: PCT/US97/17915

(22) International Filing Date: 9 October 1997 (09.10.97)

(30) Priority Data:

60/028,253 (SN

9 October 1996 (09.10.96)

(71) Applicant (for all designated States except US): AT & T CORP.
[US/US]; 32 Avenue of the Americas, New York, NY
10013-2412 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NAKATANI, Llyod, H.
[-/US]; 730 Shadowlawn Drive, Westfield, NJ 07090 (US).
JONES, Mark, A. [/US]; 32 Delaware Avenue, New
Providence, NJ 07974 (US).

(74) Agents: DWORETSKY, Samuel, H.; AT & T Corp., Room
C174, 180 Park Avenue, Florham Park, NJ 07932 (US) et
al.

(81) Designated States: CA, JP, KR, US, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD TO PRODUCE APPLICATION ORIENTED LANGUAGES

(57) Abstract

Jargons are a family of application oriented
languages well-suited for representing and pro-
cessing complex, hierarchically structured infor-
mation. A system is presented that automates most
of the work of making a jargon, so practically any
programmer can make a simple one in a few days.
Every jargon has the same syntax, is processed
with same ready—made base interpreter, and comes
complete with a suite of "deluxe" features: debug-
ger, error handler, function definition, associative
arrays, variables, incremental loader, among oth-
ers. The system provides a general purpose pro-
gramming language for writing actions that defines
the semantics of a jargon and an interpreter written
in the general purpose language and customized for
the jargon, by integrating the jargon’s actions into
the interpreter. Using jargons, the same informa-
tion document may be reprocessed to generate a
multiplicity of products.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
Cr
CG
CH
CI
CcM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
T
UA
UG
us
UZ
VN
YU
VAL

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/15894 PCT/US97/17915

TITLE: “METHOD TO PRODUCE APPLICATION ORIENTED LANGUAGES”

FIELD OF THE INVENTION:

The invention is directed to the field of computer methods to produce application oriented

languages.

BACKGROUND OF THE INVENTION:

An application-oriented language (AOL) - what Bentley (1089) calls a “little language” - is
a good way to solve many a problem. An AOL “knows™ the nitty gritty details and steps neede.d to
solve problems in an application domain, and applies its knowledge automatically as a document
written in the language is processed. An AOL frees us to deal with a problem at a higher level of

abstraction. and relieves us to the mindiess drudgery that is often the cause of errors.

Unfortunately, it takes a lot of expertise and effort to make an AOL. Although tools such
as lex (Lesk & Schmidt, 1990), yacc (Johnson & Sethi, 1990), and MetaTool (Cleveland & Kintala,
1988) help, they are no panacea and no substitute for expertise in the art and science of designing
and implementiing programming languages. This puts AOLs out of the reach of most domain
experts who h» /e the need for them but lack the skills to make their own. If domain experts could

make little 1z 1 uages easily, more of their potential to enhance productivity-v-ould be realized.

WO 98/15894 PCT/US97/1'7915

To save on the effort of making an ~(JL, certain features are often left out; the result is a
compromised and less effective AOL. For example, a typical AOL doesn’t have a debugger, can’t
be easily extended or customized by its users, lacks scoped variables and data structures, and lacks
parameterized functions. The cost of putting these features into an AOL is usually prohibitive given
the limited use of each individual language. The hidden cost is that, as users, we must suffer an

inadequate AOL over the long haul.

Like many good things in life, too many AOLs may be bad. As they proliferate and our use
is spread thinner and thinner over more an! more AOLs, we find it harder and harder to achieve
mastery of any one, and thend to forget those we use rarely. Their proliferation also creates
appliction “islands” that can’t talk to each other. The AOLSs that fafcilitate problem solving in their
respective domains become barriers for solving large problem spanning multiple domains and
requiring communication and coordination among partial solutions written iin different languages.
Although people can be muitilingual, AOL compilers and interpreters are decidedly monolingual.

So we end up with many AOLs that can’t work together.

We propose here a way to reap the benefits of AOLs without incurring many of their costs.
The proposal is that AOLs be realized as jargons. Jargons are a family of AOLs that share many
features in common, and are distinguished only by the expressions they contain, just like jargons of
a natural language like English. The synu.x, execution semantics, and other features that jargons
share make tl.em easy to learn and remem..+, and also make it possible to combine different jargons

into a new, hybrid jargon capable of solviii bigger problems.

22

WO 98/15894 PCT/US97/17915

We also present the infocentric paradigm and its realization by the .« Wiz system as an easy
way to make a jargon. The infocentric paradigm enables someone with no expertise in programming
language design and implementation to prototype a jargon in a day and finish it in a week. The
infocentric paradigm represents a sea change in how we go about representing and processing
information. The change comes about because InfoWiz makes it so easy to solve a problem
indirectly by first making a jaragon, and then using the jargon to represent the solution. This
approach is called the infocentric paradigm, because it is centered on information modeling as the
key to problem solving, in contrast to the conventional algocentric paradigm that is centered on

modeling algorithms or procedurees.

The infocentric paradigm makes information reuse practical. Iniformation reuse is realized
when an AOL document (i.e., “program”) is kept fixed, but the semantics of the expressions of the
jargon are changed on each processing of the document in érder to generate different products. This
aspect of the infocentric paradigm shows tnat an InfoWiz document is really a program, but not of
the familiar kind. Unlike conventional programs whose free parameters are vairables that take on
different data values, the free parémeters of an InfoWiz document are expressions that take on

different semantics with each distinct reuse.

The original inspiration for InfoWiz was Sharon Murrel’s monk text formatting system
(Murrel & Kowalski, 1984). Monk introduced the important idza of using a high-level

programming language for writing actions that was different from the hase language.

WO 98/15894 PCT/US97/17915

following is a bibliography of prior aork in the field of the invenion:

Anonymous, MetaTool Specification-Driven-Tool Builder. North Andover, MA: AT&T Bell Laboratories, 1990.

Bentley, J.L. Little Languages for Pictures in Awk. AT&T Technical journal, July-August 1989,,p..

Cleveland, J.C. & Kintala, C. Tools for Building Application Generators. AT&T Technical Journal, July-August
1988,.p..

Devanbu, P. GENOA - 4 Customizable, Language- and Front-End Independent Code Analyzer. AT&TBd
Laboratories Memorandum 11262-910816-22TM, August 16, 1991.

Emerson, S.L. & Paulsell, K. TroffTypsetting tor Unix System. Englewood Cliffs: Prentice Hall, 1987.

Goldfarb, C.F. The SGML Handbook. Oxford, Engiand: Clarendon Press, 1990.

Greer, R. & Belanger, D.G. backtalk: A Text Generator, Tree Manipulator and Macro Processor. AT&T Bell
Laboratories Memorandum 112687-931115-18TMS, November 15, 1993.

Johnson, S.C. & Sethi, R. yacc: A Parser Generator. Anonymous (Ed.) Unix Research System Papers. Tenth

Edition.
Murray Hill, NJ: AT&T Bell Laboratories, 1990.

Knuth, D.E. Ti.» TEXbook. Reading, MA: Addison-Wesley, 1984.

Ladd, D.A. & Ramming, J.C. A*: a Language for Implementing Language Processors. AT&T Bell Laboratories
Memorandum BL0112650-930924-17TM, September 24, 1993.

Lesk, M.E. & Schmidt, E. Lex - A Lexical Anaiyzer Generator. Anonymous (Ed.) Unix Research System Papers,

Tenth Edition. Murray Hill, NJ: AT&T Bell Laboratories 1990.

Murrel, S.L. & Kowalski, T.J. Overview of Monk 0.2: Typographical Database. AT&T Bell Laboratories

Memorandum 11229-841210-12TMS, December 10, 1984,

Nakatani, L.H. & Ruedisueli, L.W. FIT Programming Language. Murray Hill, NJ: AT&T Bell

Laboratories, 1991.

Nakatsn:.. L.H. & Ruedisueli, L.W. FIT Programming Language Primer. AT&T Bell Laboratories Memorandum:
11264-920301-03TMS, March 1, 1992,

Ousterhout, J.K. Tcl and the Tk Toolkit. Reading, MA: Addison-Wesley, 1994.

-4 -

WO 98/15894 PCT/US97/17915

Reid, B.K. A High-Level Approach to Cc:u.»ier Document Formatting. In Proceedings of Seventh Annual ACM

Conference on Principles of Programming Languages. New York: ACM, 1980.

SUMMARY OF THE INVENTION:

Jargons are a family of application-oriented languages well-suited for representing a
processing complex, hierarchically structured information. A system is presented that automates
most of the work of making a jargon, so practically any programmer can make a simple one in a few
days. Every jargon has the same syntax, is processed with same ready-made base interpreter, and
comes complete with a suite of “deluxe” features: debugger, error Landler, function definition,
associative arrays, varibles, incremental loader, among others. The application-oriented and
declarative niature of jargons make them usable by domain experts who are no programmers. The
commonalities among all jargons, especially their syntax, make them easy to learn and remember,
and make it possible to combine different jargons to solve bigger problems. Jargons facilitate

information reuse, whereby the same information document is repocessed to generate a multiplocity

of products.

One aspect of the invention is a method for automatically producing an application-oriented
language for processing hierarchically structured information. The method comprises the steps

of:

providing a general-purpos. information language for writing expressions associated with

a domain of application;

WO 98/15894 PCT/US97/17915

providing a general-purpose programming language for -7 :ting actions to be executed on
said expressions;

providing an interpreter written in said general-purpose programming language for
interpreting documents written with said expressions and actions; and

making an application oriented language that is a member of a family of programming
languages that share a common syntax, but differs in its expressions and actions, depending on the

domain of application.

DESCRIPTION OF THE FIGURES

Fig. 1 shows the simplest processing of a jargon document. Interpreter I integrates wizer
W to process document D to produce product P.

Fig. 2 shows the collaboration (teamwork) among different jargons. Interpreter I integrates
wizers W(1) through W(n) to process document D written in jargons J[1] through JInj to produce

product P.

Fig. 3 shows information reuse, in which a multiplicity of products are produced from a
single document. Interpreter I integrates wizer W[1] to proce: = document D to produce product
P[1], another instance of interpreter I integrates wizer W{2] .- process document D to produce

product P[2], and so for other products.

WO 98/15894 PCT/US97/17915

Fig. 4 shows a processing chain with intermediate results passed as documents. Interp; ¢t
I integrates wizer W[1] to process document D[1] to produce document D[2]. Another insiance
of interpreter I subsequently integrates wizer W([2] to process document D[2] to produce a
document, and so on. Finally, yet another instance of interpreter I integrates wizer Win] to

process document D{n] in the last step of the chain to produce product P.

Fig. 5 shows an internal representation of a document in InfoWiz.

D1SCUSSION OF THE PREFERRED EMBODIMENT:

Many kinds of jargons can be made with the invention. We show two examples: the first
is a conventional procedural programming jargon for representing procedures or algorithms, and
the second is a declarative markup jargon for representing the structure of a letter. The first has

a procedural flavor, while the second has a declarative flavor.

None of the expressions in the examples to follow are intrinsic to the jargons made with
InfoWiz. That is the essence of InfoWiz: the freedom and obligation to decide for yourself the
jargon's expressions and their semantics. InfoWiz prescribes only the syntax of the expressions.
You make a jargon by coining expressions appropriate for representing problems in the jargon's
anmain, and writing actions that define the semantics of those expressions. Actions are fun:..ons

written in a high-level programming language. In practice, the words of a natural jargor ior a

WO 98/15894 PCT/US97/17915

domain are inspirations for th. <.pressions of an artificial jargon. The correspondence between

the two explains why a well-designed artificial jargon seems like a "natural" for a domain. ***X

Procedural Jargon

A jargon for representing a procedure resembles a procedural programming language.
Here's a program for a simple game written in a procedural jargon that looks like C with
statements that begin instead of end with ; (the markup jargon to follow will make clear the need
for the ; prefix). The program has variables, does input and output, loops with a while
expression, and branches with if-else expressions. Indentation is syntactically significant, and is

used to indicate the hierarchical structure of the program.

;=secret[;random{100)]

;output
I've picked a number between 1 and 100.
Can you guess the number?

;jwhile (*T*)

;=guess (; input {Your guess: 1]

;if(~[qQl$ ~ :.guess)
;leav
else
;1f(. .secret == ;.guess)

;outpud [Congratulation!]

-8-

WO 98/15894

; leave
;else(;.secret < ;.guess)
;output [Smaller}
;else(;.secret > ;.guess)

;output [Bigger]

The syntax for setting and getting the value of a variable is a bit unusual.

variable is set to the value of the random function by

;=secret|;random(100)]

and the value of the variable is gotten by ; . secret.

PCT/US97/17915

The secret

The expressions inside the parentheses of the if and else expressions are various predicates:

~ is a regular expression pattern match predicate; ==. <, and > are the usual relational

predicates for numbers. The infix notation for the binary predicate operators is syntactic sugar

to make the predicates more readable.

When the document representing the program is processed with an interpreter customized

for the procedural jargon, the document is “run” to play the following game (user input is in

bold):

I‘'ve picked a number between 1 and 100.
Can you guess the number?

Your guess: 50

Bigger

Your guess: 75

Bigger

Your guess: 88

WO 98/15894 PCT/US97/17915

Bigger
Your guess: 94
Bigger
Your guess: 97
Smaller
Your guess: 95
Congratulation!

This example shows that a jargon for representing procedures looks and behaves like a

conventional procedural programming language. But jargons intended for other purposes look

very different, as we see in the next example.

Text Markup Jargon

A jargon for representing the high-level semantic structure of a text document resembles
a text formatting markup language like troff (Emerson & Paulsell, 1987)., Scribe (Read, 1980),

LaTex (Knuth, 1984), and SGML (Goldfarb, 1990). Here’s a simple letter marked up using the

markup jargon:

; date [September 8, 1994]

; from
Dr. Lloyd Nakatani
AT&T Bell Laboratories

Murray Hill, NJ 07974

Dr. David Barter

School of Technology

- 10 -

WO 98/15894 PCT/US97/17915

Evergrc=:s (College

Evergree.. CO 80800

Dear Dr. Barter:

Thank you for your interest in ;i[Infowiz]. With ;i[InfoWiz],
you can easily make a new ;i[jargon] by following

these steps:

;list(c)
1. Model the information structure using jargon terms
2. Write actions defining the meaning of the jargon terms
3. Make a jargon interpreter incorporating the actions

Then the end-user can process information by following these steps:

; list (c)

1. Using the jargon, a document representing the information to
process

2. Process the document with the interpreter

You will find that ;i[InfoWiz] makes it easy to create customized information

processing applications that end-users find easy to use.

: clcsing (Sincerely) [Lloyd Nakatani]

- 11 -

WO 98/15894 PCT/US97/17915

Notice that an expression may occur in the . “le of plaintext, which is ordinary text that

is not an expression of the jargon; an example from the letter is

Thank you for your interest in ; i[InfoWiz].

The leading ; distinguishes an expression from its surrounding plaintext. This syntactic
feature of jargons made with InfoWiz permits the commingling of expressions and plaintext, and

makes possible a text markup jargon.

When the letter document is processed with an interpreter customized for the markup

jargon, and the resulting output — or product — is sent to a printer, we get the following version

of the letter:

January 2, 1995

Dr. Lloyd Nakatani
AT&T Bell Laboratories

Murray Hill, NJ 07974

Dr. David Barter
School of Technology
Evergreen College

Evergreen, CO 80800

Dear Dr. Barter:

212 -

WO 98/15894 PCT/US97/17915

Thank you for your interest in InfoWiz. With InfoWiz, you can eas. -+ make a new

jargon by following these steps:

1. Model the information structure wing using jargon terms
2. Write actions defining the meaning of the jargon terms
3. Make a jargon interpreter incorporating the actions

Then the end-user can process information by following these steps:

1. Using the jargon, write a document representing the information to
process
2. Process the jargon with the interpreter

You will find that InfoWiz makes 1t easy to create customized information

processing applications that end-users find easy to use.

Sincerely,

Lloyd Nakatani

The procedural and markup jargons share no expression in common. This is typical. Each
jargon is characterized by expressions that make it uniquely suited to the problems in its domain,
and simuitaneously make it unsuited to problems in domains covered by other jargons. Later,
we'll see how several jargons can be pooled to make hybrid jargons that address problems

spanning muitiple domains.

- 13 -

WO 98/15894 PCT/US97/17915

InfoWiz Systi - - for Making Jargons

The InfoWiz system for making a jargon comprises three components:
® the WizTalk information language is a general-purpose language for modeling
complex, hierarchically structured information;
® the FIT programming language is a language for writing actions that define the
semantics of the expressions of a jargon; and
* the Wiz base interpreter is a genetic interpreter for WizTalk that is customized into a specialized

interpreter for a particular jargon by integrating the jargon’s action into Wiz.

WizTalk General-Purpose Information Language

WizTalk is a general-purpose information language that is the base language of all the
artificial jargons made with InfoWiz, just as English, French or any other natural language is the
base language of its natural jargons that experts speak to each other. The syntax of WizTalk is
the syntax of every jargon. However, WizTalk has no expression with application-specific
semantics, so for the purpose of making a jargon, WizTalk is effectively a tabula rasa. It is only
by extending WizTalk with application-oriented expressions that it becomes a jargon capable of

representing solutions for a particular domain.

- 14 -

WO 98/15894 PCT/US97/17915

The syntax of every WizTalk expressic - .3 essentially the same, but optional elements and

variant forms create the impression of greater variety. The syntax of the simplest WizTalk
expression is

; term{memo]
an inset memo indented with a tab
; term
memo
or a block memo
; term/
memo

]

The terminating] of an expression’s block memo is vertically aligned with its marker.
Multiline memos are more readable in either inset or block form. A memo may contain nested
WizTalk expressions.

An expression may have one or mor- aotes. In the syntax, the notes of an expression

follow its term, precede its memo (if any), are enclosed in parentheses, and are separated by |
when there are two or more notes:

; term(note, ... | note,) [memo]

How many notes a particular expression may have — none, one, two, or a variable number
— depends on its semantics as defined by it< action. Notes are stripped of leading and trailing

whitespaces. A note may contain nested Wiz Talk expressions.

=15 -

WO 98/15894 PCT/US97/17915

Because a WizTalk expression can have both a note and a memo, it = ~apable of expressing

procedural programming constructs such as

;1if(:.secret == ;.guess)
;output [Congratulationt]
; leave

else(;.secret < ;.guess)
;output [Smaller]

;else(; .secret > ;.guess)

;output [Bigger]

where the notes of the if and else expressions are predicates, and their memos specify the

processing steps to take when the predicates are true.

The special symbols of WizTalk's concrete syntax can be changed to suit personal taste,
or to avoid clashes between WizTalk's special characters and verbatim characters of the

information. For example, the marker is changed to . and the note separator to a , by

;wiztalk{.term(note,note) [memo]]

- 16 -

WO 98/15894 PCT/US97/17915

WizTalk commcs with about three dozen base expressions that are generic to many jargons, and best

provided once and for all in the base language. Some examples of base expressions are the

comment expression

; [This 1s a comment]

to put comments in a document, and the ! verbatim expression

;1 IThis is verbatim information that should not be processed]

to quote verbatim information that should not be processed. The # expression evaluates the

arithmetic expression in its memo

to compute a number. The define expression (we'll see an example later) lets us define a new

expression in terms of existing expressions to customize and extend a jargon.

FIT Programming Language and Environment

Tue FIT programming language (Nakatani & Ruedisueli, 1991, 1992) is a high-level,

general-purpose, interpreted programming language that is used in InfoWiz for writing actions that

-17 -

WO 98/15894 PCT/US97/17915

define the semantics of the expressions f a jargon. A high-level programming language is more
powerful and flexible than a macro laniguage, and easier to use than a low-level language like C.
It's an important feature of InfoWiz that the WizTalk information language is not doing
double-duty as a macro language for defining actions. In our view, a language well-suited to

representing information is not well-suited to defining actions. Hence the need for both WizTalk

and FIT.

Here is an example of a simple action:

A_uc

WizOut UpperCase GetWizMemo

With this semantics for the uc expression, processing the ;ucfinfowiz] expression yields
INFOWIZ. The A_ prefix signifies that this FIT function is an action, and the uc portion of the
function name links this action to the uc expression.

InfoWiz comes with a library of API (Application Programming Interface) functions written in FIT
for interfacing with the Wiz interpreter, which is also written in FIT. The GetizMemo API
function gets and processes the expression’s memo, and returns the product. UpperCase is a FIT
general-purpose library function that converts text to upper case. The WizOut API function
appends its argument to the output buffer where Wiz accumulates the products of expressions.

The output buffer serves as a conduit or passing the results of nested child expressions to their

parent expression.

- 18 -

WO 98/15894 PCT/US97/17915

Wiz Generic Interpreter

Wiz is the base interpreter for WizTalk that is customized for a jargon by integrating
(automatically) the jargon’s actions into the interpreter. Wiz parses a Wiz Talk document to
produce a parse tree with nodes corresponding to the WizTalk expressions, and does a depth-first,
left-to-right traversal of the tree, executing the action associated with the expression at each node.
Each action controls the evaluation of the nested expressions in its notes and memo, so how deeply
a branch is traversed depends entirely on the actions. Wiz merely caries out the intent of the
actions. In other words, evaluation is top-down rather than bottom-up, as is typical of most
programming languages,. However, data flow is bottom-up, where the bottom is not necessarily
the leaves of a branch, but the depth to which an action traverses its subtree. The ability of actions
to dictate the evaluation strategy is essential for realizing the semantics of some kinds of jargons.
In the procedural jargon, for example, the action of an if expression must =valuate its memo only
if the predicate in its note evaluates to true. This semantics can be realized only when the action

dictates.

Infocentric Paradigm

The infocentric paradigm for processing information involves (a) creating a jargon to model
the information using domain terminology and relationships, (b) devcloping tasks by programming
coordinated sets of actions, and (c) using jargons to write and process documents. The roles of
jargon creator, task developer, and jargon user may be filled by a siagle individual, or by different
individuals. The jargon creator is a domain expert, the task developer is a programmer, and the

-19-

WO 98/15894 PCT/US97/17915

jarg -~ user is a domain worker who need not be a programmer. The following discussi

demonstrates the steps in making and using a jargon to produce banners like this:

-20 -

WO 98/15894 PCT/US97/17915

Jargon Creators

A jargon creator must first analyze the domain to come up with a model for representing
information for that domain. The model should be abstract and not tied to any particular problem,
so that a jargon based on the model is capable of representing solutions not only for known
problems, but also for future problems not yet imagined. The goal is to make a jargon for writing
documents that can be reused to svive not only known problems, but also unanticipated problems
when they arise. The more abstract the jargon, the greater the leeway in interpreting expressions,

and the greater is the possibility of information reuse.

The information model .akes its inspiration from the natural jargon that domain experts use
to talk about things, concepts, and operations. The presumption is that, in many cases, the
appropriate model already exists, and is implicit in the natural jargons that flourish in nearly every
area of human endeavor. Pipe-fitters, cross-stitchers, and computer scientists, to mention just a
few, all speak in well-established, but evolving, natural jargons. By following the natural jargon

of a domain, an artificial jargon will give its users a head start.

WO 98/15894 PCT/US97/17915

For the banner example, we model the banner as a yrduct of three primitive operations.

The first operation brackets the message with stars. This operation is represented by this

expression

;star [INFOWIZ]

which will produce

* ok INFOWIZ rEk,

The second operation frames the message. This operation is represented by

; frame [INFOWIZ]

which will produce

The final operation expands a message by inserting a blank space between its letters. This

operation is represented by

;expand [INFOWIZ]

-22 -

WO 98/15894 PCT/US97/17915

which will produce

INFOWIZ

Task Developers

Each possible type of document reuse corresponds to a new task. A task developer
specifics a task by defining the semantics of the jargon expressions. In InfoWiz' this is done by
defining actions as functions in the FIT programming language. Each action processcs the
information in the notes and memo of its expression. Here are some actions for the task of

displaying a banner written in the banner jargon:

O but *** before and after message
A_star

WizOut **** * (GetWizMemo) * *okokx
B —————————————— Frame the message
A_frame

Set msg GetWizMemo

Set top_bottom<Thru 1 Smsg+10> "=~

223 -

WO 98/15894 PCT/US97/17915

WizOut top_ .>-tom “"\n”

WizOQut “/” (Frame |/ “C” | $msg+8 msg) “/\n”

WizOut top_bottom "“\n”

e bPut blank space between each letter of
Message
A_expand

wizout [/ " ” | (Cut 1 GetWizMemo) []

This is all the programming necessary to implement the display task. No code need be
written to integrate the actions into the Wiz interpreter, because the integration is automatic, as

we will see shortly.

The module file containing the definitions of actions and other supporting functions, if any,
is called a wizer. Specifically, the three actions for the display task with the banner jargon are in
the wizer named banner.w.

An interpreter for a barticular jargon and task is made by integrating the actions into the

Wiz base interpreter. This is done simply by compiling together the Wiz interpreter with the

wizer containing the acrin: definitions as follows:

_24 -

WO 98/15894 PCT/US97/17915

$ fit wiz.t banner.w -o banner

The fit command runs the FIT interpreter to compile the wiz.t module file defining the Wiz
interpreter together with banner.w wizer defining the three actions. The -o option specifies that
the byte-code object produced by the compilation be written to the banner file, which becomes the
command that runs the interpreter for displaying a banner. The actions are automatically

integrated into the base interpreter to produce a variant of the interpreter that is customized for the

display task on the banner jargon.

As new uses for old documents arise, task developers will have the on-going job of writing
new actions to generate different products from existing documents. Later, we will present
examples of several different wizers which implement different tasks for the same jargon.

An alternative to writing actions is to have a prcgram generate them automatically from a
specification. We have programmed a query utility, for example, that takes a tree query (a
hierarchical path expression and a frontier regular expression) and generates a set of actions which
implements the query. Such queries can be issued over any WizTalk document in any jargon.
Nonetheless, we don’t have enough experience with automatic generation of actions to know

whether non-programmers can be task developers for an interesting range of useful tasks.

Jargon Users

WO 98/15894 PCT/US97/17915

The jargon users in the infocentric programs write documents in a jarge . and process
those documents to generate various products. We choose to call it a documcut instead of a
program, because it often looks more like a description of information than a program written in

a conventional programming language. The neutral terminology is less likely to prejudice us to
see it as either information or program.

This document in file banner.doc

; frame(;expand(;star [INFOWIZ]]]

written the banner jargon will display the banner we want. Judging from this example, we surmise
that the jargon user need not be a programmer in the usual sense, because a jargon lets the user,
who is presumably familiar with the domain, model the information and operations in a familiar
terminology. Furthermore, the high-level, declarative nature of a jargon, and its simple, uniform
syntax should make it easier to learn and use than conventional programming languages. This
conjecture is buttressed by the fact that most jargons look like a markup language, which we know

non-programmers are capable of using, judging from experience with markup languages such as

troff and LaTex.

Writing a document in a more procedural jargons, such as the one for the guessing game
example seen earlier, will feel more like programming. As a special case, .. programming
language can be viewed as a jargon intended for specifying procedures, and i.. users must be

programmers. The notion that jargon - usage can shade into programming raises an interesting

226 -

WO 98/15894 PCT/US97/17913

question about the - is required for jargon users in general. In using a text formatting jargon,
the user is effectively programming without possibly realizing it, even though the task entails the
ordering and composing jargon expressions, just like programming. LaTex and HTML show that
non-programmers can manage programming at the level of text formatting jargons. In its full
glory, programming is more complex than text formatting, because the programmer must take Into
account many relationships among statements besides order arid composition, such as variable
assignment, conditional execution, and non-sequential control flow. The resulting complexity
makes programmirg (and understanding programs) notoriously difficult. Jargons which reflect

a high degree of procedurality will generally require greater programming skill of its users than

those which represent information more declaratively.

A document written in a jargon is processed with the appropriate interpreter to generate
the desired product. The banner document in banner.doc is processed with the banner interpreter

made earlier to display a banner written in the banner jargon. The following command does the

processing:

S banner banner.doc

The result is this p:oduct written to the standard output:

WO 98/15894 PCT/US97/17915

Processing a document is equivalent to running a program: as before, the neutral

terminology is less prejudicial.

Benefits of Jargons

Jargons and the infocentric paradigm provide numerous benefits for information processing
compared to the usual ways of malting an AOL and processing information. They can be

summarized by Easier, faster, better."

Jargons are Easy to USE

Jargons can improve productivity dramatically if the power of programming is put in the
hands of people who are not programmers, and they are able to automate the work they now do
manually. By comparison productivity will improve only marginally if jargons succeed merely
in speeding up the work of relatively few skille'i programmers who are already into automation.

For this promise to be realized, jargons must - 2asy enough for non-programmers to use.

-28 -

WO 98/15894 PCT/US97/17915

As a demonstration of what is possible for a non-trivial task, the s.~ ¢y jargon shown
below should enable someone who is skilled in the design and construction of surveys but who is
not a programmer to write a survey document that administers the survey automatically. Here is

a survey on ice cream preferences written in the survey jargon:

; frame (start)
;message [This is a survey about ice cream]
;next [like]
; frame (like)
; message [Do you like ice cream?)
; prompt (;yes.no) [Type yes or no]j
; next (yes) [flavor]
; next (no) [done]
; frame (flavor)
; message [What is your favorite flavor>]
; menu (scramble)
Vanilla
Chocolate
Strawberry
; next (Vanilla) (vanilla_kind]
; next [brand]
; frame (vanilla_kind
; message [What kind of vanilla?]
; menu
Plain
Vanilla bean
; next [brand]
; frame (brand)

; message [What is your favorite brand of ; .flavor.choice?]

-29 -

WO 98/15894 PCT/US97/17915

prompt [Type the name of the brand)
; next [donel
; frame (done)
; message [Thank you]

; finish

The yes.no expression in the note of the prompt expression of the like frame constrains the
response to be either yes or no. The memo of the next expression specifies the next frame to
administer when the response on the current frame matches the note of the expression. The
flavor.choic~ variable in the prompt of the drand frame is automatically set to the chosen flavor

by the menu expression in the flavor frame.

Although the survey looks more like a description than a program, it can be administered

automatically when processed with appropriate actions supplied by the jargon developer, as this

session illus.rates:

This is a survey about ice cream

Do you like ice cream?
Type yes or no --> yes

What 1s your favorite flavor?
1 - Vanilla
2 - Chocolate
3 - Strawberry
Type the number of your choice --> 1

Wh.. kind of vanilla?
1l - Plain
2 - Vanillia bean
Type the number of your choice --> 2

_130 -

WO 98/15894 PCT/US97/17915

What 1s your favorite I.. .1d of Vanillav?
Type the name of t . brand --> YumYum

Thank you

Certain features of jargons should contribute to their ease of use. The terms of expressions
reflect. ideally, the natural terminology of the domain, and should thereby tap into existing
knowledge via a familiar vocabulary. The information in an expression is labeled by its term, and
the composition of the expressions serves to arrange the information into a familiar pattern. The

above points are illustrated by this docun.ent sample:

;employee

;name
;first(Joe]
;last[Martino]

;address
;loc[MH]
;room[2B-654]

;phone
;office[908/555-4321]

;fax[908/555-7654]

Notice how the indentation of inset memos makes the hierarchical structure of the
information readily apparent to the eye. vMore generally, the WizTalk syntax should be easy to
learn and use, because every expression .23 the same, simple syntax. Yet the syntax, despite its

simplicity, is capable of representing dive:se kinds of information ranging from a procedure for

=31 -

WO 98/15894 PCT/US97/17915

a game, a letter marked up for formatting, and the hierarchical structurc -;+ a survey, as we've seen
so far. Most jargons tend to be declarative — as opposed to the procedural — in character,
thereby making a document seem less like a description of an algorithm and more lilts a statement
of facts. That is, a declarative jargon says what but not how. The menu expression in the survey,
for example, only says what the choices are, and nothing about how they are presented or how a
choice is made. Experience with text formatting markup languages such as troff and LaTex shows
that Non-programmers can use declarative languages, and by extension, declarative jargons.

However, we expect that only programmers can use a procedural jargon like the one for the

number guessing game.

Jargons are Easy to Learn and Remember

If jargons are easy to make, users face the possibility of having to learn and remember a

different jargon for each application. If jargons were like conventional AOLs, this would be a
significant problem because learning the different AOLSs is akin to learning French to talk about
cooling, Chinese to talk about philosophy, and Italian to talk about music. By contrast, learning
different artificial jargons is akin to learning the natural jargons of cooking, philosophy, and music
in a natural language we already speak. Having learned one artificial jargon, learning a new one
is just a matter of “picking up” the expressions and their semantics. Of learning the “buzzwords”

of a domain. The syntax, programming environment, idioms, pitfalls. :nd folklore gained through

-32 -

WO 98/15894 PCT/US97/17915

hard e:»ecience carries over from one artificial jargon to the next, because they are common to

all jargons. Learn one, learn all.

The commonality between jargons forestalls forgetting, too. When using a conventional
programming language, we get increasingly “out of practice” with all the others we know but are
not using at the moment. By contrast, when we use any jargon, we continue to practice everything

it shares in common with every other jargon. Practice one, practice all.

Jargor's are Easy to Make

Jargons are easy to make because InfoWiz provides canned solutions for most of the tasks
entailed in designing and implementing a programming language. The syntax of the jargon is
prescribed by Wiz Talk, so the work of syntax design is eliminated. Wiz provides a parser for
WizTalk, so the work of writing a grammar and parser is eliminated. The parse tree of a
document is automatically traversed and actions automatically invoked, so programming of control
flow is eliminated. The notes and memo of an expression are automatically made accessible to
its action, so programming to supply the inputs to actions is eliminated. And the product of an

action is accumulated in an output buffer, so programming to manage the outputs of actions is

eliminated.

All that remains is to model the information, and to define the semantics of the expressions.

Actions tend to be simple and easy to write, because each deals with only a small part of the

-33-

WO 98/15894 PCT/US97/17915

problem, and usually have only loc ~ concerns. There is no need for high-level program design,
because a wizer is just a collection of actions in one-to-one correspondence with their expressions.
When the behavior of an expression requires modification or correction, this correspondence

makes it easy to find the expression’s action.

The FIT programming language contributes to the ease of writing actions. FIT has the
power of C/C+ + but is much easier to use, because FIT is a high-level, interpreted language with
a rich assortment of data types including multidimensional associative arrays, objects, and
sequences that unify the processing of strings, files, and input/output. FIT comes standard with
a large library of reusable functions, supplemented with API functions specifically for writing
actions. FIT programs are typically one tenth the size of equivalent C programs, less prone to
bugs because of automatic memory allocation and garbage collection, and are easier to debug.
FIT’s interactive interpreter and powerful debugging facilities make for a good programming
environment. FIT’s debugging environment is enhanced by options for the wiz command to set
breakpoints and evoke the debugger in event of fatal errors. Debugging is further facilitated by

the stop base expression for setting a breakpoint in an action, and the dump base expression for

dumping the entire context at any point in processing a document.

Because FIT is a general - ~urpose programming language, not a special-purpose macro
language intended only for wri:g action code, it offers facilities for writing well-designed

programs. FIT offers a choice of programming paradigms to suit the problem at hand, including

-34 -

WO 98/15894 PCT/US97/17915

imperative, functional, and objected-oriented programming pars »=.ns. FIT comes standard with
a library of over 250 reusable functions oriented toward text processing, and application-specific

function libraries to support a domain can be built.

FIT runs on UNIX, PCS, and Macintoshes, so InfoWiz, which is written in FIT, also runs

on those platforms.

Because a jargon is so easy to make, InfoWiz is useful for prototyping a computer
language. Many alternatives for a language design can be explored at little cost, and the best
alternative implemented using whatever technology is most appropriate as the final step. The
syntax of WizTalk, because of its generality, may not be ideal for the final language, but it should
be good enough for a prototype. By compromising on the syntax in the early going, the more
important semantics issues can be explored without the distracti.ns of syntax design issues. Once

the substance of the language has been worked out, the syntax can be designed tc suit.

Jargons are "Deluxe" AOLs

Jargons are not your stripped-down, bare-bones AOLs. Rather, jargons are "deluxe"
AOLs with features seldom found even in mainstream programming languages like C/C++.
Many of the features come as WizTalk base expressions that are standard in every jargon. A few

of the features that go beyond the conventional are described hclow.

-35-

WO 98/15894 PCT/US97/17915

The parser in Wiz can be programmed with certain reader expressions. One is the v .1k

expression we saw earlier that changes the metacharacters of WizTalk's concrete syntax. Ancther

is the binary expression

;binary (20) [<binary data>]

whose memo is 20 bytes of binary information that may contain any character, including

metacharacters of the WizTalk syntax that would otherwise confuse the Wiz parser.

Several base expressions enable a document to control its own processing by dynamically

loading actions. This wizer expression

;wizer(format)

dynamically loads the format wizer and uses the actions defined therein to process the document.

Wizers can be grouped into packages with the package expression; for example

;package(report) [toc format index]

specifies that the report package is composed of the three wizers mentioned in its memo. This

slossary expression

;glossary(/base/report)

- 36 -

WO 98/15894 PCT/US97/17915

dynamically loads the report . <age to augment the base expressions with the expressions defined

in the package.

Wiz supplies a default proxy action for otherwise undefined expressions. The proxy action
transforms an undefined expression into a field of a FIT record (associative array). For example,

when this document

;name
;first[James !

;last[Smith]

is processed with this action

A_name
Set n GetWizRecord

WizOut nf["last"] ", " n["first"] "/n"

to produce

Smith, James

the GetWizRecord API funciion returns this FIT record

first “James’

Last “Smith”

-37 -

WO 98/15894 PCT/US97/17915

representing the memo of the name expression. The rcuead is the product of the proxy action,
because the first and last expressions were undefined. In general, any portion of a document may
be regarded as either data or program depending on which expressions are defined or undefined.
This document duality makes for more flexible processing of documents. The jargon creator can

define an action named A_default to override the default proxy action.

The define base expression defines a new expressions in terms of existing expressions.
This is equivalent to defining new functions in a conventional programming language. For

example, a banner expression to produce a particular style of banner is defined by

; define (; banner [msg])

; frame [; star [;.msg]]

in terms of the frame and star expressions we saw earlier. Similarly, a Roman expression to

produce capitalized Roman numerals is defined by

; define (; Roman [a])

; uc [; roman [;al]]
in terms of the uc (for upper case) expression and the roman expression that converts an Arabic

numeral into a Roman numeral. Given both definitions in source file mybanner.so, a wizer

containing the banner and Roman actions is made by processing the source file with this command:
$ wiz mybanner.so > mybanner.w

These actions are incorporated into the banne; i aerpreter we made earlier to make a new
version of the interpreter:

$ fit banner mybanner.w -o my banner

- 38 -

WO 98/15894 PCT/US97/17915

Now a document with an expression such as
; banner [superbowl ; Roman [29]

is processed with the mybanner interpreter to produce this banner

The define expression enables someone who is a jargon user but not a FIT programmer to

customize the jargon with new expressions.

Anyone who has developed an AOL in a conventional way knows that these deluxe features
cost dearly in effort to provide. And because the effort can’t be amortized over may AOLs, the
benefits are often not considered worth the effort, to the detriment of the AOL and its users. By
rontrast, all of these features come for free in jargons made with InfoWiz. Jargon users may
expect these features to be in every jargon, and to work the same way in all. This makes the

features learning-free in that, once learned, they take no effort to learn for a new jargon.

Different Jargons Can Work Together

Unlike conventional AOLs, different jargons pan work together. Suppose that, working
independently, Betty made jargon Alpha to produce a report, and Joe made jargo= cta for text
formatting with multiple fonts in different sizes. Now suppose that Betty wants the report to be

nicely formatted with headings in large letters and highlighted items in italic or bold face. Betty

-39 -

WO 98/15894 PCT/US97/17915

can make the needed h :id jargon Gamma simply by pooling together Alpha and Beta. This is
possible because Alpha and Beta have the same syntax, have a common interpreter, and the
architectures of their action codes are identical. All jargons will share these features in common
even when they are made independently. The interpreter for Gamma is made by compiling the

wizers for both existing jargons with the Wiz interpreter:

S fit wiz.t alpha.w beta.w -o gamma

Some work mizht be necessary to resolve incompatibilities, if any, between Alpha and
Beta, but the work should be limited to changing the products of some actions. The one-to-one

mapping between expressions and actions makes the relevant code easy to find.

By comparison, if Alpha and Beta were conventional AOLs, Gamma would have to be
made almost from scratch. Alpha and Beta would in all probability have different syntaxes, so
Alpha's interpreter would not understand Beta and vice versa. Perhaps the code for the semantics
of Alpha and Beta could be salvaged and reused for Gamma, but this entails extracting the relevant
code and resolving incompatibilities between them. This will probably take much effort, because

the program architecture and data structures are likely to be incompatible between Alpha and Beta.

Jargons with certain characteristics are easy to pool. When all actions of the pooled
jargons produce a coinmon data type such as strings, then all expressions arc compatible and can

be freely composed. Text formatting jargons are examples of this case. Jargons are also easy to

- 40 -

WO 98/15894 PCT/US97/17915

pool when only a small subset of the expressions ¢ .2 pooled jargons are relevant to the hybrid
jargon. In this situation, the irrelevant expressions are left undefined, so that a default action
defined to do nothing is automatically evoked for all undefined expressions and causes the

irrelevant expressions to be ignored.

Jargons Enable Information Reuse

InfoWiz enables information reuse. To appreciate the value of information reuse, consider
the information repositories on the World Wide Web. A Web site might provide data on stock
prices in a representation that graphs the data on our (the Web client's) display. If we want to do
something else with the data, it will take hard work, if it is possible at all, to extract the data from
its representation designed for only a particular, single use. The data is effectively locked in its
representation and unavailable for reuse. Howeve , if the data were a WizTalk document, we can
display it as intended using a display wizer supplied with the data. More important, we are free

to write our own actions to reuse the data for different purposes not envisioned by its supplier.

To show information reuse in practice, we will reuse this document that specifies the size

and message of a sign:

;sign
;width([25] ;height[5]

;label (Hello world]

- 41 -

WO 98/15894 PCT/US97/17915

Information reuse with InfoWiz is a consequence of processing the sa.::= document with
different wizers. When the sign document is processed with a wizer having "drawing" semantics

for the four expressions in the document we get this picture of the sign:

25x5 poster board (125 sg. In. @ 0.05 cents/sg. In.)$6.25

Message "Hello world” (11 letters @ 0.25/letter) e e82.75

Finally, with a wizer having “SGML” semantics, we convert the WizTalk document into

a SGML document:

<sign>
<width>25</width> <height>5</height>
<label>Hello world</label>

</sign>

-42 -

WO 98/15894 PCT/US97/17915

We have ~+v.sed the sign document to generate four different products by processing it with

four different wizers.
A more complex example of information reuse produces a printed version of the survey

we saw earlier. When processed with a wizer having “print” semantics in lieu of the interactive

administration semantics, the survey document produces this printed version:

This 1s a survey about 1ice cream.
1. Do you like ice cream?
Yes

No

If you answered "Yes,” go to the next guestion.
If you answered "No,“ skip to question 5.

2. What is your favorite flavor?

Strawberry
____ Vanilla
Chocolate

If you answered "“Vanilla,” go to the next gquestion.
Otherwise, skip to question 4.

3. What kind of vanilla?

Plain

Vanilla bean

4. That is your favorite brand favorite flavor?

5. “hank you.

- 43 -

WO 98/15894 PCT/US97/17915

It is instructive to note that this reuse ...« not foreseen when the survey jargon was created

and the ice cream survey document written.

Legacy information stands to benefit from translation into WizTalk, which "opens" the
information for reuse. For example, we have written a program to translate electronic mail
messages into WizTalk. The translation preserves all of the original characters including
whitespaces, and the expressions and their organization make explicit the structure of the message
(headers, body parts, fields within headers, and so on). We can reconstruct the original message
by simply defining all expressions to evaluate to their memos. Message bodies may contain
embedded WizTalk which can be executed to realize mail-enabled applications or active messages.

Such messages can be scheduled for execution based on properties such as sender, subject and

date.

Code reuse and information reuse are complementary aspects of program reuse. When the
expression semantics of the program is kept fixed and the data changed for each execution, we
have conventional code reuse. When the data (information) is kept fixed and the expression
semantics changed with each execution processing), we have information reuse. In other words,
the data variables are the free parameters in code reuse, whereas the expression semantics are the

free parameters in information reuse.

- 44 -

WO 98/15894 PCT/US97/17915

Information reuse is easy with jargons, but hard with conventional ; - gramming languages.
Information embedded in a program written in a conventional programining language can't be
reused because the semantics of built-in expressions of the language can't be changed. For

example, we can't generate different products from this fragment of C code

if (x == 0)
printf (hello\n");
else

printf("good bye\n");

because we can't change the semantics of the if and else expressions. The only way we can reuse
the information embedded in a C program is by writing cede analyzers. Examples of cede
analyzers for C are its gompiler, pretty-printer, profile, debugger, and code browser. But most
programming languages are hard to parse, so reusing a program for novel purposes is difficult
even for reasonably sophisticated programmers. Systems such as Genoa (Devanbu, 1991), which
allow queries to execute on C/C+ + parse trees are a limited response to this situation. In
contrast, InfoWiz provides built-in parsing and interpretation services for any task, making it
relatively easy to define new tasks. In addition, the common syntactic framework for documents
across different domains makes it possible to implement generic tasks such as structure-sensitive

searching which have applicability across domains and with different jargons.

- 45 -

WO 98/15894 PCT/US97/17915

T.- .uccess of information reuse depends in large measure on the ease with which actions
can be written, particularly by inexpert programmers. We are currently developing a graphical
viewer for jargon documents analogous to spreadsheet programs for tabular data. In many

domains, it may be possible to reuse a document by mapping a predefined set of actions to terms

in the jargon.

SGML was the first to propose that information be represented in a way that made it
suitable for reuse. The key difference between the SGML and InfoWiz is that InfoWiz comes with
a ready-made interpreter for the WizTalk information language, whereas we must write our own
for SGML. The consequence is that promise of SGML for information reuse has been hard to

realize in practice, whereas information reuse is made a practical reality with InfoWiz.

WizTaik is a Lingua Franca for Information Exchange

WizTalk can serve as a lingua franca for information exchange. In our ideal vision of the
future information world, any information that lends it self to representation in a jargon is so
represented. The payoff is information that is easily exchanged, and usable for purposes that were
not anticipated. Each new use extracts further value from the information. A lingua franca like
Wiz Talk can be the basis for an “open information” society that treats information as a valuable

commodity made even more valuable by its easy processability and reusability.

- 46 -

WO 98/15894 PCT/US97/17915

Many different kinds of info. i=tion can be modeled in Wiz Talk, because there is
practically nothing about WizTalk thai stands in the way of the representation we desire. We can
make up whatever expressions we want, compose them as we see fit, and define their semantics

to suit. If any base expression gets in the way, it can be discarded or its semantics redefined.

The recipe shown below is a good example of the kind of complex, hierarchically

structured information that can be represented in WizTalk:

Date Bars

(Serving: 24 bars)

2 eggs 1 cup dates, cut into
1l cup sugar small pieces
1 cup flour, sifted 3/4 cup walnuts, chopped
1/4 tsp salt 1 tsp vanilla

1 tsp baking powder

1. Beat eggs until thick. Gradually beat in sugar. Sift
together the flour, salt, and baking powder. Fold into
the egg mixture. Add dates, nuts, and vanilla, folding
in gently.

2. Spread in thin layer in 9" x 13" baking pan lightly
greased inside. Bake in slow (300 degrees) oven 15 to
20 minutes. Cut into bars while warm.

3. Roll in confectionsrs’ sugar 1f desired. For variety,
leave some plain - 1 sugar others. Store in a tightly

closed container.

-47 -

WO 98/15894 PCT/US97/17915

The recipe consists of three major parts: general informar -.;* (name and servings), a list
of ingredients, and direction steps for preparation. Each ingredient in the list comprises a name
and quantity, and the quantity in turn comprises a value and its unit. Each direction step is

described by a short paragraph consisting of several lines.

The recipe is represented in a recipe jargon by the following document:

;: name [Date Bars]
; serving ([wr bars]
; lngredients
; 1 [; count [2] ; item [eggs]]
; 2 [; measure [1 cup] ; item [sugar]]
; 3 [; measure [l cup] ; item [flour, sifted[]
; 4 [; measure [1/4 tsp] ; item [salt]]
; 5 [; measure [1 tsp] ,; item [salt]]
; 6 [; measure [l cup] ; item [dates, cut ‘:.to small pieces]]
; 7 [; measure [3/4 cup] ; item [walnuts, chopped]]
; 8 [; measure [l tsp] , item (vanilla]l]
; directions
;1
Beat eggs until thick. Gradually beat in sugar. Sift
together the flour, salt, and baking powder. Fold into the

egg mixture. Add dates, nuts, and vanilla, folding in gently.

;2
Spread in thin layer in ;pan(9"x13" bai..ng pan] lightly greased
inside. Bake in slow (300 degrees) oven - to 20 minutes. Cut into
bars while warm.

;3

- 48 -

WO 98/15894 PCT/US97/17915

Roll in confectioners' sugar 1f desired. For variety, leave so.

plain and sugar others. Store in a tightly closed container.

An expression with a numerical term such as

;2[;measure (1 cupl] ;item[sugar]]

represents an item in a list—in this example, a list of ingredients. The numerical term is the

ordinal index of the item in the list.

The expressiveness of an information language like WizTalk has both a horizontal and
vertical aspect. A language that is horizontally expressive is capable of representing information
for many different kinds of applications. This is illustrated by WizTalk's ability to represent a
procedure for playing a game, a letter marked up for formatting, a survey, and a recipe. A
language that is vertically expressiveness is capable of representing all levels of information within
a given application, from the top-level structure of a document down to the lowest-level
expressions that apply to a single word—even a single character—in running text. Because

WizTalk is vertically expressive, we can avoid a situation like this

:banner [Superbowl <Roman>29</Roman>]

witere expressions in the middle of plaintext, such as the conversion from Arabic to Ro:m:n

numeral, must be expressed in a different language, SGML in this example. By design, WizTalk

- 49 .

WO 98/15894 PCT/US97/17913

is expressive both horizonta - and vertically, so one information language suffices for
representing information for diverse applications as well as for all levels of information within a

single application.

Jargons Foster an Infocentric View of Information Processing

To solve an information processing problem with the infocentric paradigm, you first make
a jargon and then use the jargoii to represent the solution. That is, the information processing
problem is viewed as essentially one of designing and implementing a programming language,
which means that we can take a principled approach toward a solution rooted in the discipline of
programming languages. Contrast this to the conventional paradigm for information processing:
(1) design an ad hoc "input for.nat" and use it to represent the information; (2) design an ad hoc
"output format," usually a human readable report, for the results; (3) write a program is to read
and parse the information, process it, and write the results. Let's see what's wrong with this

paradigm.

The input format usually suffers from these limitations: information can't be nested;
information spanning multiple ! nes isn't allowed; information is not self-describing because it isn't
labeled and its meaning de:-:ads on its position; information can't contain certain special

characters; missing or extra infcrmation is an error. Even when the input format is well designed,

-50 -

WO 98/15894 PCT/US97/17915

certain problems are inescapable. The format is different i .:r1 other applications, and requires
learning and documentation. The format is likely to change as the limitations are encountered and
overcome, and each change triggers a cascade of other problems: different versions of
incompatible information, obsolescence of information pre-dating the change, programming to
translate the old format to new format, updating programs dependent on the format whether or not
they benefit from the change, and need for more learning and documentation. Most of these

problems can be avoided by using an information language like WizTalk that is known beforehand

to be capable of coping with the unforeseen complexity of an application.

The output format often suffers from one critical limitation; it’s meant only for human
consumption. Later, when another use for the output arises, relevant information might be hard
to extract from the output, perhaps so hard that it reuse is impractical. This problem can be
avoided if a jargon is designed as a filter that takes its own jeTy,0n as inputs, and outputs the results
in another jargon. Then different products, including a human-readable report, are easily

generated from the output document.

The program to process the information is likely to be bare-bones, with no debugging
facilities, poor handling of exceptions and errors, no extensibility, and on and on. Even without
these features, the program is likely to require significantl* more code than the equivalent set of
actions, and the code will be more complex because ' :as to deal with parsing the input,

constructing data structures, and managing control and da2 flow. More complex code means

-51 -

WO 98/15894 PCT/US97/17915

:nore bugs, reduced comprehensibility, and costlier maintenance. By contrast, the actior: ..x.e for
the infocentric paradigm is close to the minimum possible, because they need only detine the
semantics of the application. Anything beyond the application semantics is extra coding that the

infocentric paradigm eliminates, along with all the problems that comes with the extra code.

The Scalability of Jargons, Documents and Tasks

Will a jargon scale gracefully as it increases in size and complexity? When a jargon grows
to hundreds or even thousands of expressions, will it still be easy to deal with? Although we have
little experience with jargons so big, features of the infocentric paradigm give us reasons to believe
that infocentric paradigm for making jargons will scale well compared to other programming
paradigms. In this section, we assess the scalability of jargons, documents and task d:finitions

in InfoWiz.

-52 -

WO 98/15894 PCT/US97/17915

The Scalability of Ja<ons

As a jargon grows in size and complexity, the need also grows for a specification of its
expressions and the constraints that hold between them. Such a specification can be used to check
existing documents, or can be employed in a syntax-directed editing environment to permit only
the construction of legal documents. Note that this specification describes the configurations of
expressions wh.ich may appear, but intentionally does not describe their denotations or types,
which are resolved only with respect to a given task. At *this time, we do not have a particular
document specification language to propose. It is likely that different systems of constraints will
be best served by their own unique “constraint jargons.” An obvious first candidate is something

along the lines of SGML Document Type Definition (DTD).

The complexity of the domain objects will determine the richness of the specification. In
some simple information processing applications, nearly any mixture of expression and plaintext
may be permissible (e.g., the banner jargon). For complex information, immediate dominance
(ID) constraints which specify its structure may be the most prevalent. A text formatting markup
jargon typically requires both immediate dominance and linear precedence (LP) constraints. For
example, a book contains chapters which contain sections which contain subsections (ID
constraints). The table of contents precedes the chapters which precede the references which
precedes the index (LP i astraints). Procedures in programming languages may have elaborate

non-local constraints (e.g., scoping rules and declaration/use rules) in addition to more context-

-53-

WO 98/15894 PCT/US97/17915

free syntactic formation rules. Existence constraints ‘ nich govern the minimum and maximum

number of appearances of a term, are another important class of constraints.

The Scalability of Documents

Large documents are not necessarily more complex than smaller ones, but they are apt to
be. At one extreme is a database with many simple, identically structured records in it. Adding
more records does not change the complexity of the database. On the other hand, a document such
as this one, may start as a simple outline and end up as a complex document with subsections,

footnotes, references, appendices, etc. To remain intellectually manageable, complex documents

must be compositional and intuitive.

In a stream-oriented approach such as Infc'Wiz, the time to process the document will
unavoidably grow as document size increases. The processing cost can be broken dawn into the
cost of reading and parsing the document, and the cost of interpreting the expressions with a given
set of actions. The cost of reading and parsing a document that will be reused many times in the
same form can be amortized by saving the document in a machine-readable, parsed form. For
some tasks, efficient indexing into the document structure can significantly reduce the processing
time. One possible approach is to provide a muliilevel access strategy for large documents.
Suppose, for example that we have a query which .73 for certain properties of an object, and that

our document is a large collection of such objects. Rather than streaming through the entire

.54 -

WO 98/15894 PCT/US97/17915

database, we may be able to consult a pre-computed index to select a small subs. . - f candidate
objects, and then test only the selected objects exhaustively. This is similar to the approach we

have taken in the searching utility glimpse, which combines coarse-grained inverted indexing with

finegrained, run-time searching.

The Scalability of Task Definitions

Probably the hardest part about the infocentric paradigm is writing actions to define a task.
To compound the difficulty, the benefit of information reuse is obtained only at the cost of
defining new actions for each reuse. This means that the hardest part may be repeated many
times. The saving grace is that writing actions is much easier than writing an equivalent program

from seraph, especially for complex tasks. Several factors make actions easy to write:

the Wiz interpreter provides a stable and proven foundation for
complex applications that eliminates much of the “'churn" and
uncertainty in the early stages of application development;
actions have a prescribed architecture and are limited to realizing
the application-specific semantics of the task;

the Iinfocentric paradigm affords a new approach to the
divide-and-conquer strategy for managing application development;
and

the document and actions provide a complete, easily ~:mwrehensible
picture of the computation that simplifies action development and

debugging.

- 55-

WO 98/15894 PCT/US97/17915

Further discussion. ./t these factors follow.

Stable Foundation

From the standpoint of application development, InfoWiz eliminates two significant perils:
syntax design, and interpreter writing. The syntax of an AOL designed from scratch tends to be
volatile in the early stages as various paths are explored, found waning, and rejected in favor of
new paths. This volutility wreaks havoc on early users. At some stage, the syntax must be frozen
to prevent obsolescence of an ever increasing body of documents written in the AOL. Any
subsequent demands for new syntactic "features” have to be satisfied by accretion rather than
redesign. The result over the long run may be a syntax that is complex and incoherent. All of
these problems are avcided with InfoWiz, because the WizTalk syntax is fully mature and stable,

and is sufficiently flexible to accommodate new needs as they arise. This claim for flexibility can

- 56 -

WO 98/15894 PCT/US97/17915

be made with confidence, because WizTalk sy: :«" is a notation for function invocation and

COmposition.

InfoWiz eliminates the question. “Is this an interpreter bug or a bug in my program?”
because the Wiz interpreter has been proven over many jargons. In general, a bug in the
interpreter or compiler of a general-purpose language is rare, because they are the archetype of
reusable code tested by each program processed. By comparison, a special-purpose interpreter
written from scratch is rife with bugs, because 1 is a complex program requiring expertise to write
and understand, and has not been extensively tesied. To make matters worse, as the ALL grows,
its interpreter undergoes change, growing ever bigger and more complex, and perhaps never
stabilizing to a point where the question raised above can be confidently answered. Every change
raises the possibility of breaking code that worked before. Not only is a special-purpose
interpreter unstable and buggy, it is almost c.rtain to lack debugging features, and hence can
provide little help in helping us to find bugs in our code. With InfoWiz, we can be confident that
the bug is in our actions, not in the InfoWiz interpreter, and its debugging features will help us
find the bug. Furthermore, the clean separation between Wiz and our actions serves to isolate the

impact of any bug in our actions to our task; or bug will not break wizers for other tasks.

Action Code

InfoWiz eliminates another issue in d¢ +#loping an application; the design of the program

architecture. With InfoWiz, the architecture is ¢ given, and is simply a collection of actions. The

-57 -

WO 98/15894 PCT/US97/17915

architecture is also stable over the life of the jargon, so our program will r::- et have to undergo

a redesign of its architecture.

The compositional nature of WizTalk results in jargons with primitive expressions from
which more complex expressions are built. The primitive expressions usually have simple
semantics with correspondingly simple actions that are typically context-free and referentially
transparent, so they can be composed without fear of hidden interactions. Primitive expressions
with referentially transparent actions only interact with each other via their composition in a

document, a fact that makes the interactions visible.

The complexity of actions varies widely. The simplest tasks lend themselves to a
cooperative, context-free computational structure which reflects the document structure. In such
cases, actions need not create explicit data structures to hold document strur ;ures and parameters,
and the output product is directly synthesized as the document streams through the Wiz interpreter.
But some tasks require that actions build intermediate data structures that other actions and
functions can use to compute the product. While this approach may be necessary for tasks with

no true locality (e.g., sorting), it is not the best fit to the datadriven nature of an InfoWiz

processing.

Tasks whose actions produce a uniform type (e.g. strings or assv.:.{ive arrays) result in

expressions that can be freely composed without fear of type incompatibility. But for tasks whose

.58 -

WO 98/15894 PCT/US97/17915

actions produ~= different - even context-dependent - data types, jargon usage is complicated by
the need to avoid composing expressions with incompatible types. A possible solution is to
introduce static typing into InfoWiz to insure that only type-compatible expressions are composed.
However, static typing into InfoWiz to insure that only type-compatible expressions are composed.

However, static typing just be flexible enough to allow a document to be processed with different

sets of actions that yield different but self-consistent types.

Actions are automatically integrated into the customized interpreter, so there is no
integration code to write, understand, and maintain. As the saying goes, “The best code is code
we don’t have to write.” Without automatic integration, we would to have to study and
understand a large body of application code in odder to integrate our new actions into the
application. The effort to write a simple action would pale in comparison to the effort to integrate
the action ir.c a large application. And the entire system might break if the integration is done
incorrectly. With automatic integration, the effort to extend a jargon amounts to writing the action

code and nothing more. If the action is simple, the effort 1S commensurately small.

The scope of actions can be restricted to program modules called packages, which are
named collections of wizers. By restricting the scope of actions to a specific package, we can
specify whi..l: actions are visible during a span of processing by specifying which packages are
active. In ;=reral, scoping of actions to packages gives us fine grain control over the interactions

between ma;¢ modules of a large jargon.

-50 .-

WO 98/15894 PCT/US97/17915

Divide and Conquer

The divide-and-conquer strategy for coping with complexity due to scale is given a new
twist by InfoWiz. A complex problem can be divided into subproblems, a subjargon made to
solve each subproblem, and then the subjargons pooled to solve the entire problem. Different
developers can work fairly independently with modest coordination, because the nature of jargons
assure that the subjargons will work together when pooled. Refinements can be made and

incompatibilities resolved when the subjargons are pooled.

Our experience is that the multiple jargons manifestation of the divide and conquer strategy
is often called for. For example, one problem requiréd a jargon to represent a process as a finite
state machine, a second jargon to represent the "objects” to be processed, and a third jargon to
represent the messages that drove the prccess. By virtue of all the jargons being specializations
of WizTalk and being processable by a common interpreter, it was easy to pool the jargons to
realize the solution. Another example was a problem that required a jargon to represent an
interactive telephone service, a second jargon to represent a simple database, a third jargon to
represent a symbol table, and a fourth jargon to represent a mapping between keys and abstract
events. Again, the ability to have a separate and distinct — yet poolable — jargons for
subproblems of a large problem made tk> solution easy to achieve. These examples paint to the

advantages of having a multiplicity of spw.ialized jargons, each taiiored to a part of the problem,

- 60 -

WO 98/15894 PCT/US97/17915

rather than a single multipurpose language. Multiple jargons are or. - practical because each is

so easy to make, and they work together.

Visualizable Computation

Developing and debugging a jargon is greatly facilitated by the fact that a jargon document
is a surrogate for the execution trace of the computation that processes the document. The
document shows which expressions are processed in which order (i.e., the control flow), and also
shows the information that will be processed (i.¢., the data values and Jdata flow). By correlating

the buggy output with the document, it's usually trivial to pinpoint the expression whose action

is at fault.

Debugging is further facilitated by the one-to-one mapping b- iween an expression and its
action. When an expression produces the wrong result, the mapping makes it trivial to find the
portion of the code — namely the action definition — that either contains the bug, or is the head
of the trail that leads to the bug. The occurrence of the expression term in the action name makes
it easy to search automatically for the action in a large body of code. The Wiz command also has
an option to set a breakpoint in the action of an expression. When the breakpoint is encountered,

the debugging facilities of FIT con be used to examine the action code, and to find the wizer

containing the action.

-61 -

WO 98/15894 PCT/US97/17915

‘inally, it might be argued that the InfoWiz execution model which permits any
combination of top-down and bottom-up evaluation of the expressions of a document is too
powerful, and as a consequence, the reader cannot predict from the form of a document what will
be the results of its processing. So in the abstract, a document succeeds in making the
computation invisible, rather than visible as claimed, because the document neither embodies nor
conveys any semantics whatsoever. This is necessarily so for information reuse. In the
programming language community, the conventional wisdom is that this is a bad thing. We
coun‘er that the contract between the document author and the jargon maker is limited to the
jargon specification, and is entirely silent about its semantics. Things usually don't go seriously
awry because the task developer is obligated to write actions that are consistent with the jargon
and its usage. This is no different from the requirement that conventional programs be given
"correct” input. Upon being given a “correct” set of actions, it will be apparent from the
document what the product will be. That a particular set of action bindings is necessary to
understand the computation is not more an indictment of the infocentric paradigm than the fact that
a particular set of variable bindings is necessary to understand the computation of a conventional

programming paradigm.

Rei:ited Work

InfoWiz comprises three major components: the WizTalk general-purpose information

language, the Wiz base interpreter (and associated API functions), and the FIT general-purpose

-62 -

WO 98/15894 PCT/US97/17915

programming language. The esse;. » uf InfoWiz lies in Wiz’s processing model for documents,
and the automatic integration of actions to realize the semantics of a jargon. WizTalk and FIT
could be replaced with a number of alternatives while preserving the “infocentrism: of InfoWiz,
just as the engine and transmission of an automobile can be replaced while preserving its essential
“car-ness.” We discuss below alternatives to these components, and thereby show the connection

of InfoWiz with previous work. We also discuss precursors to the notions of jargons and the

infocentric paradigm.

Alternatives to WizTalk

There is a rich legacy of programming languages and markup languages that could serve
as a base language for jargons. The principle requirement of a base language is that it be capable
of representing a mixed document, which is a mixture f plaintext and nested jargon expressions;
an ancillary requirement is that the evaluation of nested expressions leaves all other aspects of the

information intact.

The most obvious alternative to WizTalk is SGML (Goldfarb, 1990), a general-purpose
information language for representing structured textual information. However, we feel that
WizTalk makes a better base langusge. Compared to SGML, Wiz Talk is less verbose and easier
to type (cf. ;I [infowiz] versus <> infowiz</I>); allows nested expressions in its notes (SGML
does not allow nested expressions in its attribute values); is more readable for complex documents

-63 -

WO 98/15894 PCT/US97/17915

because of inset memos; has arrays and data structures; and lets -+, application decide whether to
discard or retain indentations, has arrays and data structures; and lets the application decide
whether to discard or retain indentations, newlines and blank lines. For many applications, these
differences between SGML and WizTalk are not critical. What may prove critical in some
applications is that SGML is a widespread and established standard, whereas WizTalk is a
newcomer. For those applications, SGML could be substituted for WizTalk without less of

generality. The substitution would entail changing the parser to understand the SGML syntax.

The TEX (Knuth, 1984) markup language and macro programming language could also
be used as a base language for jargons. The TEX system even comes with a base interpreter that
can be supplied with definitions of the semantics of new expressions that make up a jargon. TEX
could be used in place of WizTalk, but we should avoid the mistake of misusing TEX as a
replacement for FIT. Our experience is that one language cannot serve well as both an
information and programming language. An information language has a simple syntax that
permits mixed documents, and requires a top-down evaluation strategy, whereas a programming
language typically has a much richer syntax and semantics for representing procedures, doesn’t

permit mixed documents, and works best with a bottom-up evaluation strategy.

The Tcl (Ousterhout, 1994) programming language is : means of representing arbitrary

command languages, and by extension, structured informatic . Tcl is, however, ill-suited as an

- 64 -

WO 98/15894 PCT/US97/17915

-‘ormation language. The problem is that the Tcl interpreter fails to preserve the integ -, of

whitespaces in mixed documents. For example, x is set to a mixed document by

$ set x (one [expr 2] three)

Notice the double biank spaces between the words. When x is evaluated in order to

evaluate the nested expression, each double blank spaces become a single blank space

% eval concat S$x

% one 2 three

This behavior preciudes the use of Tcl as an information language.

Aliernatives to FIT

Tcl, Lisp, or other programming languages could replace FIT as the language for writing
actions. For reasons stated below, C and C+ + would be poor replacements for FIT. (The Wiz
interpreter must also be written in the same language to enable the interpreter and actions to
interface easily with each other via the API functions.) The ideal action language is very
high-level and interpreted, includes support for dynamic loading and context switching (to rebind
‘he actions to expressions), provides dynamic allocation of strings and arrays (suppor ed by
automatic garbage collection), and is a good match paradigmaticaily for the kinds of tasis to be
programmed. For the applications of interest to us, FIT's excellent string manipulation facilities,

- 65 -

WO 98/15894 PCT/US97/17915

associative arrays (records; ad debugging facilities make it a good choice as a programming

language for actions.

Tools for Making Programming Languages

InfoWiz is a tool for making a programming language. Beginning with yacc, various tools
have reduced the effort and skill required to make a programming language, but they require more
expertise to use than InfoWiz. Tools such as yacc (Johnson & Sethi, 1990), MetaTool (Cleveland
& Kintala, 1988; Anonymous, 1990), and A* (Ladd & Ramming, 1993) require that we design
the syntax of the language, write a BNF grammar for the syntax, and write C code (Awk code in
the case of A*) in order to realize the semantics of the language. These tools demand expertise
in the design and implementation of programming languages, because they arc essentially tools
for making an interpreter fcr the programming language of interest. By contrast, Informs is much
easier to use because it eliminates some of the hardest aspects of making a programming language
with canned solutions: a prescribed syntax for the jargon, and a ready-made base interpreter.
Furthermore, InfoWiz makes what is left to do — namely, writing actions — easier by providing

a high-level programming language with a good programming environment for the purpose.

- 66 -

WO 98/15894 PCT/US97/17915

Precursors to Jargons and the Infocentric Paradigm

The backtalk (Greer & Belanger, 1993) system comes closest in spirit to InfoWiz as a
realization of jargons and the infocentric paradigm. Greer and Belanger, inventors of backtalk,
clearly anticipated jargons built on a base language

Backtalk has a built-in parser for a “universal” language. A wide variety

of descriptive information can be captured easily by just this one

language. [and] backtalk can read them In for processing without further
ado. Backtalk can be used in so many different capacities precisely
because so many different kinds of information can be represented in this

common, somewhat universal data representation language. (Greer &

Belanger, 1993. P. 27)

backtalk provides the BT general-purpose programming language for specifying the
traversal of a parse tree, and as a high-level programming language for writing actions. BT also
does double-duty as the base language for representing information, so like TEX, it suffers from
the fact that one language cannot serve both purposes well. The ability to traverse the parse tree
in any order, and to manipulate the tree make backralk more flexible for applications where the
default top-down, left-to-right traversal of InfoWiz is inappropriate. However, defining the
semantics of a jargon is made more complex by the ne:d for explicit specification of parse tree

traversal and action invocation. It would be straightfor--..vd to achieve the same effect in InfoWiz

-67 -

WO 98/15894 PCT/US97/17915

by the addition of functions which explicitly manipulate the parse tree. For c¢::unple, the

following code would visit the parse tree nodes in reverse order:

WizMemo Reverse GetWizTree

Tcl also anticipated jargons
The entire Tcl “language” consists of about a half-dozen simple rules for parsing
arguments and performing substitutions. The interpreter and its substitution rules
are fixed, but new commands can be defined at any time and existin3 commands
can be replaced. Tcl is powerful enough to allow a rich set of structures such as
loops and procedures to be build as ordinary comments. Applications can extend

Tcl not jut with new command but also with new control structures. (Ousterhout,

1994, p. 15-16):

However, Tcl suffers from some critical shortcomings as a realization of the infocentric
paradigm. As mentioned earlier, Tcl is unsuitable for use as an information language because of
its failure to preserve the integrity of mixed documents. Unlike backralk, Ousterhout foresaw that
the information language and the programming language should not be the same. Unfortunately,
the programming language for writing actions for jargons made with Tcl was C, not a high-level
interpreted language. As a consequence, most users of Tcl write actions in Tcl. a~d suffer the

consequences of programming in a macro language.

- 68 -

WO 98/15894 PCT/US97/17915

The infocentri =uradigm is modeled after the paradigm for markup languages such as toff
and LaTex, but with a critical difference. The important advance of InfoWiz is that the language
used to write actions is not the markup macro language, as is the case with toff and LaTex, but
rather a separate procedural programming language. Actions define procedures, so it’s best to use
a procedural programming language designed specifically for representing procedures, rather than

to “stretch” the base language with procedural extensions so that it can be used as a macro

language for writing actions.

Our effort to contrast programming in the base macro language with programming in a real
procedural programming language may sound academic and not of much practical consequence.
This is far from the truth and reality. Macro languages have the unfortunate property of making
simple things easy, but complex things virtually impossible. Macro languages typically lack
features for managin. the complexity of large programs such as scoped variables and functions,
functional and object-oriented programming paradigms for programming at higher levels of
abstraction, and most important, they lack a rich assortment of data types and data structures.
Macro languages are also notoriously hard to debug, because the executing code often bears little
resemblance to the written code. Unlike macro languages, high-level programming languages such
as FIT can make complex things manageable; actions with supporting functions can run to

hundreds, even thot ;ands, of lines without running into problems of scale.

- 69 -

WO 98/15894 PCT/US97/17915

Naming: Information Reuse in Spreadsheets

In some ways, electronic spreadsheets representing and processing numerical information
are another realization of the infocentric paradigm. A spreadsheet is a two-dimensional, tabular
representation of (typically) numerical information. The spreadsheet uses (row, column)
coordinates to locate information. The spreadsheet’s use of a coordinate naming scheme rather
than hierarchical nesting makes it simple for many different formulas to co-refer to the same
information by specifying the same cell ranges. Naming permits an interesting reuse of
information within the same document which can aiso be simulated in WizTalk in various ways.

The most straightforward approach is to use WizTalk variables:

=x(111) [30] ;=x(112)[40] ;=x(113)[;#[;.x(111) +
;.x(112)]]
Row 1 sum = ;.x(113)

;=x(211) [50] ;=x(212)[60] ;=x(213)[;#[;.x(211) + ;.x(212)]]

Row 2 sum = ;.x(2[3)

Processing this document yields this product:

Row 1 sum = 70

Row 2 sum = 110

-70 -

WO 98/15894 PCT/US97/17915

Formulas like those in cells x(113) and x (2|3) above typically apply so, - junction (e.g.,
sum, difference, average) to values which refer to other cells or cell ranges. InfoWiz offers the
additional flexibility of rebinding the formula actions to carry out alternative tasks. For example,
the # action could be rebound to return the cell dependency relationships. In fact, InfoWiz
variables can also capture expressions in raw form (unevaluated); by dynamically changing the

binding environment, different computations can be performed using the same expressions during

the same task.

We are not advocating InfoWiz as a replacement for spreadsheet programs. Spreadsheets
are specialized representations for processing numerical, tabular data Spreadsheet programs are
highly interactive, maintain dependency relationships, and automatically recalculate dependent
quantities when changes are made. InfoWiz, as currently structured, utilizes a stream-oriented
execution model. In principle, however, InfoWiz could also be cast in a niore interactive,

dependency framework.

Summary

The InfoWiz system comprises the WizTalk general-purpose informatio:. anguage, the FIT
general-purpose programming language, and the Wiz base interpreter for --iztalk. With the

infocentric paradigm that ties them all together, it's easy to make an ALL or jargon for

-71 -

WO 98/15894 PCT/US97/17915

representing and svving problems in a domain. Jargons are members of a family of programming
languages that share a common syntax, but differ in their expressions (and associated semantics).
InfoWiz shows that computer languages we usually consider different — markup languages versus
procedural programming languages, for example — are all closely related, and are in fact can be
realized as jargons of a common base language. A jargon is in effect an application that puts the
power of programming in the hands of end users with minimal programming skills, and enables
the users to customize and extend the application. The shared features of jargons, their domain
specificity, and their declarative character make them easy to learn and remember. Their common
syntax and interpreter lets us pool existing jargons lo make a new jargon suitable for problems
spanning multiple domains, each covered by one of the constituent jargons. Pooling suggests that
large applications can be built as a collection of components, each dealing with a coherent chunk
of the application, and collaborating with each other via a pooled jargon. The infocentric
paradigm also makes practical the dream of SGML to reuse information by changing the

expression semantics for each processing of a document to produce different products.

Although a specific embodiment of the invention has been disclosed, those skilled in the
art will understand that modifications to the disclosed embodiment remain within the spirit and the

scope of the invention.

72 -

WO 98/15894 PCT/US97/17915

What is claimed is:
Claim 1

A method for automatically producing an application-oriented language to process
hierarchically structured information, comprising:

providing a general purpose information language having expressions for modeling a

hierarchically structured information in a jargon,

providing a general purpose programming language for writing actions that define the

semantics of said jargon; and

providing an interpreter written in saia general purpose programming language, customized

for said jargon, by integrating the jargon’s actions into the interpreter.

Claim 2
A method for automatically producing an application-oriented language and processing
hierarchically structured information, comprising:

providing a general purpose information language having expressions for modeling a

hierarchically structured information in a jargon;

providing a general purpose programming language for writing actions that define the

semantics of said jargon;

preparing a mixed document cont:" ng said expressions and said actions defining in said

jargon a process in a domain associated v/ith said jargon;

-73 -

WO 98/15894 PCT/US97/17915

providing an interpreter written in said general purpose programu::..:s;, language, customized
for said jargon, by integrating the jargon’s actions into the interpreter;
parsing with said interpreter said document to produce a parse tree; and

executing an action associated with an expression at each node in the parse tree.

Claim 3

A method for automatically producing an application-oriented language and processing
hierarchically structured information, comprising:
defining a jargon, comprising the steps of:

providing an information structure, written in a general purpose information language,
using jargon terms;

writing actions defining a meaning of the jargon terms, in a general purpose programming
language; and

providing a jargon interpreter incorporating the actions, in said general purpose
programming language;
and
processing information, comprising the steps of:

preparing a document representing the information to process, using the jargon;

processing the document with the interpreter; |

whereby, a customized information processing application can be cr:. d and used.

_74 -

WO 98/15894 PCT/US97/17915

Claim 4.

The method for automatically producing an épplication—oriented language and processing

hierarchically structured information of claim 3, that further comprises:

said jargon includes a debugger, an error handler, a function definition, associative arrays,

varibles, and an incremental loader.

-75 -

WO 98/15894 PCT/US97/17915

Clamm 5
The method for automatically producing an application-oriented language and processing
hierarchically structured information of claim 3, that further comprises:
providing a syntax of jargon terms including:
a first symbol to put comments in a document,

a second symbol to quote verbatim information that should not be processed; and

a third symbol to evaluate an arithmetic expression.

-76 -

WO 98/15894 PCT/US97/17915

claim 6
The method for automatically producing an application-oricnted language and processing
hierarchically structured information of claim 3, that further comprises:

said jargon interpreter being customized for a jargon by automatically integrating the

jargon’s actions into the interpreter;
said processing of a document further comprising:

parsing a document to produce a parse tree with nodes cotresponding to information language

expressions; and
traversing the pars tree in a depth-first, left-to-right directi n; and

executing an action associated with an expression at each node in the parse tree, each action

controlling an evaluation of an expression.

Claim 7

The method for automatically producing an application-oriented language and processing
hierarchically structured information of claim 6, that further comprises:

said processing step further comprising:

evaluating actions in a top-down direction,;

said actions controlling an evaluation strategy for realizing a semantic meaning of jargons.

-77 -

WO 98/15894 PCT/US97/17915

cle =8
A method for processing information, comprising:
creating a jargon to model the information using domain terminology and relationships;
developing tasks by programming coordinated sets of actions; and

using jargons to write and process documents.

claim 9

A method for automatically producing an application-oriented language for processing
hieraichically structured information, comprising:

providing a general-purpose information language for writing expressions associated with
a domain of application;

providing a general-purpose programming language for writing actions to be executed on
s..i@ expressions;

providing an interpreter written in said general-purpose programming language for
interpreting documents written with said expressions and actions; and

making an application oriented language that is a member of a family of programming
languages that share a common syntax, but differs in its expressions and actions, depending on the

domain of application.

- 78 -

WO 98/15894 PCT/US97/17915

1/3

D = (/»Cc(/MM/

W = wirzév /(a//(’c'/////m a/ A(-//kn/)
L - /}./J'W/z (A/ov vt Fév
f < product

X Jocument woltor 77_ 2
/h jﬂfﬁlf 7,
//mw;ﬁ Jn

WO 98/15894 PCT/US97/17915

2/3

WO 98/15894 PCT/US97/17915

3/3

F{g-g

The inderad NMW of o dociamant (te.
Hre dloShrack ngwhxm n ’D\-Cowis s as follows ¢

() B dscumed s am srdnad Begistasr ol
nedas * doc = < wnode, node .

() A wode is tihen planiext or am
A
aote[] noeln] mewo

\

doc doc.

The QMSMWM can e lewed as o
MW*W n wiich e aan %zo,cweﬂ.ﬂ u,‘)-’ra

At (n20 netes amd an op\-lam& mams) docwnesiks
assocddnd vtk wch bpriasion. The TabWiy

APT (Peplicarim protﬁ\roww Twkarface)

dpewmands 4o e accessed ;«\AL'\;'{A&AXZA by the ackion
A @voCst«&\g .

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/17915

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : GO6F 9/45, 17/28
US CL : 395/70S, 707/500,514

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

u.s. 395/705, 701-703, 707/500,514

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A KRISTENSEN B.B. et al., Specification and implementation of| 1-9
Application -Oriented Languages , Proceedings of the Twenty-Third
Annual Hawaii International Conference on System Sciences, IEEE
Computer Soc. Press, vol. 2, 1990, pages 55-61.
A LADD D. A. etal., A*: A Language for Implementing Language| 1-9
Processors, IEEE Transactions on Software Engineering, November
1995, Vol. 21, No. 11, pages 894-901.
AP ARDIS M. A. etal., Defining Families : The Commonality Analysis| 1-9
, Proceedings of the 1997 International Conference on Software
Engineering, IEEE, May 1997, pages 649-650.
Further documents are listed in the continuation of Box C. D See patent family annex.
. Special categories of cited documents: T later document published after the international filing date or priority
e . .) date and not in conflict with the application but cited to understand
"A* d t defining the g atate of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
B arlior document published on or afler the intermational filing date %" e T e o oL o0
e dooument which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of ther citation or other X) X i R
special reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
h{o) document referring to an oral discl e, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
b d document published prior to the international filing date but later than ~ » g document member of the same patent family

the priority date claimed

Date of the actual completion of the international search

11 FEBRUARY 1998

D/late of mailﬁf Mﬂﬁvggg search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

0\E.TODD VOELTZ

/Luthorized officer :
Jow WM

(703) 305-9600

[elephone No.

Form PCT/ISA/210 (second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/17915
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AP GUPTA N. K. et al. , Auditdraw: Generating Audits the FAST 1-9

Way, Proceedings of ISRE '97 Third IEEE International
Symposium on Requirement Engineering, IEEE Comp. Soc. Press,
January 1997, pages 188-197.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/17915

B. FIELDS SEARCHED

APS , STN (FILE COMPUTER), IEEE CD-ROM LIBRARY
search terms: application oriented language , jargon

Electronic data bases consulted (Name of data base and where practicable terms used):

Form PCT/ISA/210 (extra sheet)(July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

