Office de la Propriete Canadian CA 2530099 A1 2006/0//18

Intellectuelle Intellectual Property
du Canada Office (21) 2 530 099
Un organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de dépét/Filing Date: 2005/12/14 (51) CLInt./Int.Cl. GO6F 21/00 (2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2006/07/18 GO6F 21/22(2006.01), HO4L 9/00(2000.01)
(30) Priorité/Priority: 2005/01/18 (US11/037,566) (71) Demandeur/Applicant:

MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
SCHWARTZ, JONATHAN D., US;
SIE, YU LIN, US:

HALLIN, PHILIP JOSEPH, US

(74) Agent: SMART & BIGGAR

54) Titre : SYSTEMES ET METHODES PERMETTANT DE VALIDER L'INTEGRITE DES FICHIERS EXECUTABLES AU
MOYEN DE CONDENSES D'IMAGE PARTIELS

54) Title: SYSTEMS AND METHODS FOR VALIDATING EXECUTABLE FILE INTEGRITY USING PARTIAL IMAGE
HASHES

COoMPUTING DEVICE 102
4 ProOGRAM MODULES 104
e e 100
PER-PORTION BINARY IMAGE 110
HASHING MODULE

IMAGE PORTION INTEGRITY VALIDATION MODULE 412
(E.G., PER-PAGE CODE INTEGRITY CHECKS)

el

MEMORY MANAGER 124

1 . . -— — —

I OT 0
{ | (E.G., EXECUTING CODE, DEVELOPMENT ENVIRONMENT
|\ SUCH AS BUILD PROCESS, MAKE AND/OR UFPDATE SYSTEM

CATALOG APPLICATIONS, ETC.)
km

A AR
PARTIAL | A 108

(E.G., PER-PAGE OR OTHER IMAGE PORTION SIZ& HASHES)

o e e TS
SYSTEM CATALOG(S) 120

(BINARY IMAGE(S) PACKAGED WITH CORRESPONDING
PARTIAL IMAGE HASHES)

T " P——

v
1

4 SELF-SIGNER FiL 122
(BINARY IMAGE(S) PACKAGED WITH CORRESPONDING

PARTIAL IMAGE HASHES) |
. e Bats 0
CTHER LIATA 114

(E.G., BINARY IMAGE(S) SUCH AS PE FILES, DLLS;
COMPUTED HASHES FOR VERIFICATION , CERTIFICATE DATA,

OPEN AND/OR IN-PAGE REQUEST{S), EXCEPTION(S), AND/OR
ETC.)
- —

(57) Abréegée/Abstract:
Systems and methods for validating integrity of an executable file are described. In one aspect, multiple partial iImage hashes are
generated, the combination of which represent a digest of an entire executable file. Subsequent to loading the executable file on a

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

CA 2530099 A1 2006/0//18

(21) 2 530 099
(13) A1

(57) Abrege(suite)/Abstract(continued):

computing device, a request to page a portion of the executable file into memory for execution Is intercepted. Responsive to
Intercepting the request, and prior to paging the portion into memory for execution, a validation hash of the portion Is computed.

The validation hash Is compared to a partial hash of the multiple partial iImage hashes to determine code integrity of the portion. The
partial hash represents a same code segment as the portion.

CA 02530099 2005-12-14

51331-355

ABSTRACT

Systems and methods for validating integrity of an executable file are
described. In one aspect, multiple partial image hashes are generated, the
combination of which represent a digest of an entire executable file. Subsequent
to loading the executable file on a computing device, a request to page a portion of
the executable file into memory for execution is intercepted. Responsive to
Intercepting the request, and prior to paging the portion mto memory for
execution, a validation hash of the portion 1s computed. The validation hash is
compared to a partial hash of the multiple partial image hashes to determine code
integrity of the portion. The partial hash represents a same code segment as the

portion.

CA 02530099 2005-12-14

51331-355

SYSTEMS AND METHODS FOR VALIDATING EXECUTABLE FILE INTEGRITY
USING PARTIAL IMAGE HASHES

TECHNICAL FIELD

[0001] This disclosure relates to data authentication or verification.

BACKGROUND

[0002] An executable file run on a user's computer may contain a virus or a
Trojan horse. An executable file 1s also called a binary image and includes, for
example, any executable object such as portable executables (PEs), macros, scripts
like Visual Basic script (VBS), etc. A virus i1s a program or piece of code that
modifies a binary image on disk, typically against the user’s wishes and without
the user’s knowledge. Viruses can also replicate themselves. A simple virus that
can make a copy of itself over and over again i1s relatively easy to produce. Even
such simple viruses are dangerous because they may quickly use all available
memory and bring a system to a halt. Other dangerous types of viruses are capable
of transmutting themselves across networks and bypassing security systems.
Unlike viruses, Trojan horses do not replicate themselves but they can be just as
destructive, often masquerading themselves as benign applications. For instance, a
Trojan horse may be independently launched by an unsuspecting user. An
insidious type of Trojan horse 1s a program that claims to rid your computer of
viruses but instead introduces viruses onto your computer. Thus, executable files
can be risky to run on a computer.

[0003] One approach to identify executable code that has been corrupted,
for example, with a virus or a Trojan horse, involves the use of trusted
cryptographic hashes when installing or downloading an executable onto a
computing device. A cryptographic hash, or simply a “hash”, compiles an

executable mnto a summarized form, or digest. A trusted hash is known to be good,
1

CA 02530099 2005-12-14

51331~355

or represent uncorrupted code, at the time of the hashes’ creation. To generate
trusted hashes for a an executable file (i.e., a binary image, executable code,
scripts, macros, etc.), a message digest or checksum calculation 1s performed on
the executable, including associated resources such as data, to obtain a first result
before transferring the executable from one location to another. The same
calculation 1s made on the transferred executable to obtain a second result. The
first result 1s compared to the second result to determine 1f the received executable
1s the same data that was originally sent. For instance, if the before and after
calculation results match, then the received data 1s likely accurate. Otherwise, the
received executable has been corrupted. In this manner, use of a full binary image
hash effectively reduces the risk of downloading or installing a corrupted binary

1mage.

SUMMARY

[0004] Systems and methods for validating integrity of an executable file
using partial image hashes are described. In one aspect, multiple partial image
hashes are generated, the combination of which represent a digest of an entire
binary image. Subsequent to loading the binary image on a computing device, a
request to page a portion of the binary image into memory for execution 1is
intercepted. Responsive to intercepting the request, and prior to paging the portion
into memory for execution, a validation hash of the portion 1s computed. The
validation hash is compared to a partial hash of the multiple partial image hashes
to determine code ntegrity of the portion. The partial hash represents a same code

segment as the portion.

CA 02530099 2005-12-14

51331-355

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] In the Figures, the left-most digit of a component reference number
identifies the particular Figure in which the component first appears.

[0006] Fig. 1 1llustrates an exemplary system to validate executable file
integrity using partial hashes.

[0007] Fig. 2 shows an exemplary procedure to validate executable file
integrity using partial hashes.

[0008] Fig. 3 shows an example of a suitable computing environment in
which systems and methods to validate executable file integrity using partial

hashes may be fully or partially implemented.

DETAILED DESCRIPTION

Overview

[0009] Mapping only a portion of executable code into memory at any one
time prior to executing the code 1s commonly performed to efficiently utilize
processing and memory resources. For example, paging 1s a technique used by
virtual memory operating systems to load / map, at any one time, only a certain
number of bytes from an executable file (e.g., a PE file) from a storage device into
memory as code. For instance, when a computer-program needs a page that is not
In main memory, the operating system copies the required page into memory. In
another example, a script engine such as a VB script engine may map a portion of
script (the portion being independent of any page or page size concept) from a
storage device into memory as code.

[0010] In view of the different techniques used to load different types and

amounts of executable code into memory for execution, and for purposes of

CA 02530099 2005-12-14

51331-355

discussion, the phrase “a portion” heremafter indicates an arbitrary number of
bytes, wherein the number of bytes 1s appropriate to the particular code-to-
memory loading operation being performed. For example, for paging operations,
the phrase “a portion™, or “portion” refers to a number of bytes delineated by a
page boundary (one or more pages). In another example, and with respect to non-
paging operations (e.g., executable code memory loading operations performed by
a scripting engine), the phrase “a portion”, or “portion” refers to a number of bytes
appropriate to the particular implementation used to move code / script into
memory for subsequent execution. Regardless of what techniques 1s used to load
executable code into memory for execution, the number of bytes 1n such a portion
1s arbitrary and generally a lesser number of bytes than the number of bytes in a
complete executable file, typically being a function of the particular executable
code loading architecture being implemented.

[0011] One reason why the byte size of a portion of executable code for
loading into memory 1s typically less than full executable file size i1s because of the
prohibitive amounts of memory and processing resources that would generally be
required to load the full executable file into memory, especially when only a small
portion (e.g., one or more pages) of the executable file 1s scheduled for execution.
For instance, after an executable file is installed onto a data storage device, if a
single hash of the entire 1mage (executable file) was to be validated immediately
prior to loading the first portion of that image into memory for execution, memory
and processor resources would not be efficiently utilized. This 1s because
calculating the full-image hash would require paging the entire executable file into

memeory.

CA 02530099 2005-12-14

51331-355

[0012] Such a process requires paging in pieces of code, data, and/or
resources that, under normal paging operation circumstances, would not be paged
in at that particular time, 1f ever. Again, such portion loading operations would be
substantially prohibitive in terms of resource and performance costs. For these
reasons, using a full-image hash is not practical when mapping a portion of code
into memory for execution to determine 1f code associated with the portion has
been corrupted. Accordingly, executable code loading architectures typically
load much less than a full executable file into memory for execution. This ensures
that that memory and processing resources are efficiently used.

[0013] In view of the above, when a portion of an executable file 1s being
paged into memory, 1f the portion was corrupted since the last full executable file
hash integrity check was made, existing systems will not detect the corrupted code
until after the corrupted code is executed, if at all. By this time, the corrupted
code has likely compromised the integrity of one or more parts of the system. In
other words, any existing system that implements full-image integrity checks can
run 1nto problems if the page 1s corrupted after the check. For these reasons,
executable files are still very risky to run.

[0014] In contrast to conventional code integrity infrastructures, the
following described systems and methods for validating executable file integrity
use partial hashes to detect any code that has been corrupted after 1t was installed
on the system immediately prior to moving (paging, etc.) the code mnto memory
for execution. The systems and methods accomplish this without relying on the
full-image hash infrastructure of conventional systems. To this end, the systems

and methods generate multiple hashes for each executable file. Each individual

CA 02530099 2005-12-14

51331-355

hash represents a respective portion of the executable file, such that each hash 1s a
digest of less than all of the bytes of the executable file. In this implementation,
for example, each hash is a digest of a respective page of the executable file—i.e.,
a per-page hash. (The number of bytes in a page 1s arbitrary and a function of the
particular implemented paging architecture). In another implementation, each
hash 1s not a per-page hash, but represents a digest of less than a page or more than
a page of the executable file.

[0015] As the systems and methods load a portion (e.g., a page or
otherwise) of the executable file into memory from a storage device, the systems
and methods check the integrity of only that portion. This results in very little
resource or performance impact, since the portton 1s validated without loading any
additional/extraneous portions of the executable file (e.g., the entire executable
f1le).

[0016] When the systems and methods for validating executable file
integrity using partial hashes identify a corrupt portion of an executable being
loaded into memory, for example, as part of an in-page operation, the corrupt
portion 1s not mapped into memory for execution. In one implementation, when a
corrupt portion of an executable 1s 1identified during paging operations, the
corresponding in-page operation 1s failed, which in some implementations will
cause an exception to be thrown. In this manner, the systems and methods detect

corrupt pages of code before the code can be executed. This substantially reduces

the risks of executing an executable file, and thereby provides additional
protection against viruses, Trojan attacks, and/or the like, mmvolving executable

files.

CA 02530099 2005-12-14

51331-355

[0017] These and other aspects of the systems and methods for validating

executable file integrity using partial hashes are now described in greater detail.

An Exemplary System
[0018] Although not required, the systems and methods for validating

executable file integrity using partial hashes are described in the general context of
computer-executable instructions (program modules) being executed by a
computing device such as a personal computer. Program modules generally
include routines, programs, objects, components, data structures, etc., that perform
particular tasks or implement particular abstract data types. While the systems and
methods are described in the foregoing context, acts and operations described
hereinafter may also be implemented 1n hardware.

[0019] Fig. 1 illustrates an exemplary system 100 for validating executable
file integrity using partial hashes. In this implementation, system 100 includes
client computing device 102. Computing device 102 1s any type of computing
device such as a personal computer, a laptop, a server, small form factor mobile
computing device (e.g., a cellular phone, personal digital assistant, or handheld
computer), etc. Computing device 102 includes program modules 104 and
program data 106. Program modules 102 include, for example, one or more
computer-program modules to generate multiple cryptographic hashes (i.e., partial
image hashes 108) for respective portions of an executable file, and program
modules to validate the executable file with respective ones of the multiple
cryptographic hashes during code paging (or portion loading) operations. For
instance, per-portion executable file hashing module 110 generates partial image

hashes 108 for respective portions of an executable file. Image portion integrity

CA 02530099 2005-12-14

51331-355

validation module 112, which 1n this implementation 1s a file system plug-in (e.g.,
a filter driver), validates the executable file using the generated cryptographic
hashes during code paging operations. For purposes of illustration, executable
file(s) for cryptographic hashing to generate partial image hashes 108 are shown as
a respective part of “other data” 114.

[0020] For purposes of discussion and illustration, per-portion executable
file hashing module 110 and image portion integrity validation module 112 are
shown as being implemented on single computing device 102. However, these
program modules may be implemented on different computing devices with all or
a subset of the program modules 104 and the program data 106 of computing
device 102. For example, in one implementation, a first computing device
implements executable file hashing module 110 to generate a package comprising
an executable file and corresponding partial image hashes 108 for installation
and/or download onto a second computing device. A second computing device
implements image portion integrity validation module 112 to validate the
executable file with respective ones of the multiple cryptographic hashes during
code paging (or portion loading) operations.

[0021] We now describe the operations of system 100 in greater detail by
first describing exemplary operations of per-portion executable file hashing
module 110 and then describing exemplary operations of image portion integrity

validation module 112.

CA 02530099 2005-12-14

01331-355

Exemplary Per-Portion Executable file Cryptographic Hashing

[0022] As indicated above, per-portion executable file hashing module 110
generates partial 1mage hashes 108 for respective portions of an executable file.
Each partial hash 108 of the partial image hashes 108 represents a hash of a
respective portion of an executable file, such that each hash 108 1s a digest of less
than all of the bytes of the executable file (unless the size of the entire executable
1s less than or equal to the portion size). In one implementation, for example, each
hash 108 1s not a per-page hash, but represents a digest of less than a page, or
more than a page, of the executable file (1.e., a digest that 1s not based on a page
size boundary). In this implementation, and for purposes of discussion, each
hash 108 1s a digest of a respective page of the executable file—i.e., a per-page
hash. (The number of bytes in a page 1s arbitrary and a function of the particular
implemented paging architecture). The particular hashing algorithm(s)
implemented by per-portion executable file hashing module 110 to create the
multiple partial hashes 108 1s arbitrary and can be any algorithm used to generate a
hash of bmary code. Examples of such algorithms include, for example, SHA-1
and MDS3.

[0023] System 100 can associate an executable file with its corresponding
partial 1mage hashes 108 in many different ways. In one implementation, for
example, system 100 utilizes a make or update system catalog application (see,
“other program modules” 118) to package an executable file with its
corresponding partial image hashes 108 into a system catalog 120. Such
packaging may be performed as part of system catalog 120 creation operations, or

as part of a system catalog 120 updating process. In one implementation, the

CA 02530099 2005-12-14

01331-355

system catalog 120 1s based on a cabinet file structure that also includes partial
image hashes 108. Although system catalog use 1s common, a conventional
system catalog does not include partial image hashes 108 of any executable file.
Rather, 1f a conventional system catalog includes any type of executable file hash,
the executable file hash will be a single executable file hash for the entire
executable file. In one implementation, system catalog 120 includes partial image
hashes 108 and a full executable file hash; the full executable file hash being for
backward compatibility with conventional code integrity infrastructure.

[0024] In another 1mplementation, system 100 utilizes a cryptographic
signing application (see, “other program modules™ 118) to package an executable

file with 1ts corresponding partial image hashes 108 into a self-signed file 122. In

this implementation, the self signed file is in a PKCS#7 data format, allowing an
end-user to trace an associated signature and X.509 certificate to an ultimate
certificate authority. In one implementation, self-signed file 122 includes partial
image hashes 108 and a full executable file hash; the full executable file hash

being for backward compatibility with conventional code integrity infrastructure.

[0025] Regardless of how system 100 associates the partial 1mage
hashes 108 with a corresponding executable file (e.g., associating an executable
f1le with 1its partial image hashes 108 into system catalog 120 or a self-signed
file 122), such association allows image portion integrity validation module 112 to
perform executable file validation during code loading operations with minimal
resource and pertormance impact. This 1s because, as individual portions of the

executable file are copied from a storage device into memory during paging (or

10

CA 02530099 2005-12-14

51331-355

portion loading) operations for subsequent execution, respective ones of partial
image hashes 108 associated with the individual portions are used to validate
individual portions. (Exemplary RAM, ROM, and storage devices such as a disk
drive, CD-ROM, DVD, etc. are shown and described below in reference to Fig. 3).
As described below, this 1s accomplished independent of any need to pull in
extraneous/additional code and resources (e.g., pages or script) into memory.
[0026] File system 116, memory manager 124, and image portion integrity
validation module 112 cooperate during operating system (OS) paging (or portion
loading) operations to validate portions of an executable file that are being pulled
into memory for execution. (In one implementation, the memory manager and the
file system are implemented as respective parts of an operating system). To these
ends, when executing code (see, “other program modules™ 118) wants to load a
portion of an executable file that is stored on a storage device for subsequent
execution, memory manager 124 sends an open request to file system 116 to open
the executable file as part of a section creation process. Subsequently, memory
manager communicates one or more in-page (or in-portion) requests to the file
system 116 to page or map one or more pages of an executable file into memory
for execution. For purposes of discussion, during paging operations, an “in-
portion request” 1s an in-page request. In another implementation, an “in-portion
request” 1s a request for some other number of bytes not delineated by a page
boundary, but rather delineated by the code loading architecture being
implemented (e.g., scripting engine loading architectures, etc.). Open, in-page
requests, and in-portion requests are shown as respective portions of “other

data” 114.

11

CA 02530099 2005-12-14

01331-355

[0027] To verify the integrity of these one or more portions of code prior to
execution of the code, executable file portion integrity validation module 112
intercepts such requests. Responsive to receipt of an open file (e.g., a create
request), executable file portion integrity validation module 112 evaluates the
source of the data (target) identified by the open request to determine if the target
1s data or code. Data is typically not mapped as code, and vice versa. If the target
is to be mapped as code, executable file portion integrity validation module 112
locates the partial image hashes 108 associated with the target, and maps each of
the hashes into memory. In one implementation, this 1s accomplished by
determining whether the partial image hashes are packaged in system catalog 120,
or in a self-signed file 122. To accomplish this, executable file portion integrity
validation module 112 first computes a hash of the executable file’s header using
the same algorithm used by per-portion executable file hashing module 110 to
create the partial image hashes 108. The computed hash 1s of the same
configurable byte size as each of the partial image hashes 108. For purposes of
illustration, this computed hash i1s shown as a respective one of “hashes computed
for verification” in “other data” 114.

[0028] Executable file portion integrity validation module 112 compares the
computed hash to respective ones of the partial image hashes 108 stored in the
system catalog 120 to search for an executable file with an associated partial
image hash 108 that matches all bits of the computed hash. If such a matching
hash 108 i1s found, the executable file of interest 1s ‘“catalog-signed”, or
represented in the system catalog 120. In this case, executable file portion

integrity validation module 112 reads each of the partial image hashes 103

12

CA 02530099 2005-12-14

91331-355

associated with the executable file into RAM. Note that this copy operation is not
an integrity-checked paging (or other code portion loading) operation as the list of
hashes 1s data from a non-executable data file and not information being
read/paged in from an executable binary.

[0029] If the executable file of interest (the target) is not catalog signed,
then executable file portion integrity validation module 112 determines if the
executable file of interest 1s self-signed, for example with embedded PKCS#7
signed content. If so, validation filter 112 reads the certificate data, validates that
the certificate can ultimately be traced up to one of a set of well-known/trusted
certificate roots, and then copies the embedded list of per-page hashes 108
(located in the target’s signature) into memory. In one implementation, the self-
singed file also includes a full hash of the executable, for performing conventional
code integrity checks.

[0030] Responsive to intercepting, by executable file portion integrity
validation module 112, an “in-portion” request communicated by memory
manager 124 to file system 116 for one or more portions of an executable file,
wherein the executable file was the subject of a previous open file request,
executable file portion integrity validation module 112 validates the integrity of
each portion of the requested one or more portions. More particularly, executable
file portion integrity validation module 112 computes a hash for each page /
portion 1dentified by the in-page / in-portion request and compares each respective
hash with the previously-computed and corresponding partial image hash 108 of
that portion. (The partial image hashes 108 were copied to memory responsive to

an open file request, as described above).

13

CA 02530099 2005-12-14

51331-355

[0031] If the computed and stored hashes match, executable file portion
integrity validation module 112 allows the in-page / in-portion operation to
complete, resulting in the requested portion being mapped to memory for
execution. If the computed hash and the corresponding partial image hash 108 do
not match, executable file portion integrity validation module 112 fails the in-page
/ 1in-portion request and the modified/corrupted/tampered code 1s not pulled into
memory as code, and therefore, 1s not subsequently executed.

[0032] In view of the above, as system 100 implements paging and other
memory code loading operations to pull a portion (e.g., a page) of an executable
file into memory from a storage device, system 100 checks the integrity of only
that portion of code being pulled in. This results mn very little resource or
performance 1mpact, since only the portion 1s validated without loading any

additional/extraneous portions of the executable file (e.g., the entire executable

file).

An Exemplary Procedure
[0033] Fig. 2 shows an exemplary procedure 200 for validating executable

file integrity using partial hashes. For purposes of discussion and illustration,
operations of the procedure are described with respect to components of Fig. 1.
The left-most digit of a component reference number identifies the particular
figure 1n which the component first appears. At block 202, per-portion executable
file hashing module 110 (Fig. 1) generates partial image hashes 108 for an
executable file. At block 204, the partial image hashes 108 are associated with the
executable file. In one implementation, this 1s accomplished by encapsulating the

executable file and the partial image hashes 108 into a system catalog 120. In

14

CA 02530099 2005-12-14

91331-355

another implementation, this 1s accomplished by encapsulating the executable file
and the partial image hashes 108 into a self-singed file 122. The system
catalog 120 and/or the self signed file 122 may be installed or downloaded onto a
different computing device.

[0034] At block 206, image portion integrity validation module 112 (Fig. 1)
intercepts a file open (create section) request from memory manager 124 to file
system 116. At block 208, and responsive to receipt of the file open request,
image portion integrity validation module 112 evaluates the target data source of
the request to determine whether it is code (an executable file) or data (not an
executable file). If the target 1s an executable file, image portion integrity
validation module 112 locates each partial image hash 108 associated with the
target and copies them into memory for quick access (e.g., access when an in-page
request 1S received associated with one or more of the partial image hashes 108).
At block 210, responsive to intercepting an in-page or in-portion request directed
by memory manager 124 to file system 116, image portion integrity validation
module 112 computes a hash (computed hash for validation) for that portion of
code targeted by the intercepted request. The portion of code was pulled off a data
storage location by the file system for pulling into memory for execution—if the
portion 1s subsequently validated as not being corrupt.

[0035] To this end, and at block 212, image portion integrity validation
module 112 compares the computed hash to the corresponding one partial image
hash 108 to verify the integrity of the portion of code requested via the intercepted
request (block 210). At block 214, if the portion of code is determined not to be

corrupt (1.e., the computed hash matches the corresponding one partial image

15

CA 02530099 2005-12-14

51331-355

hash 108), image portion integrity validation module 112 allows the portion of
code to be mapped into memory during the paging operations for subsequent
execution. Otherwise, at block 216, if the portion of code 1s determined to be
corrupt (i.e. the computed hash does not match the corresponding one partial
image hash 108), image portion integrity validation module 112 fails the
intercepted request such that the portion of code is not mapped into memory for

execution.

An Exemplary Operating Environment

[0036] Fig. 3 illustrates an example of a suitable computing
environment 300 in which the systems and methods for validating executable file
integrity using partial hashes may be fully or partially implemented. Exemplary
computing environment 300 is only one example of a suitable computing
environment for the exemplary system of Fig. 1 and exemplary operations of
Fig. 2, and is not intended to suggest any limitation as to the scope of use or
functionality of systems and methods the described heremn. Neither should
computing environment 300 be interpreted as having any dependency or
requirement relating to any one or combination of components 1illustrated 1n
computing environment 300.

(0037] The methods and systems described herein are operational with
numerous other general purpose or special purpose computing system,
environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for use include, but are

not limited to, personal computers, laptops, small form factor mobile computing

16

CA 02530099 2005-12-14

51331-355

device (e.g., a cellular phone, personal digital assistant, or handheld computer),
server computers, multiprocessor systems, microprocessor-based systems, network
PCs, minicomputers, mainframe computers, distributed computing environments
that include any of the above systems or devices, and so on. Compact or subset
versions of the framework may also be implemented in clients of limited
resources, such as handheld computers, or other computing devices. The
invention 1s practiced i a distributed computing environment where tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be
located 1n both local and remote memory storage devices.

[0038] With reference to Fig. 3, an exemplary system 300 illustrates an
example of a suitable computing environment in which systems and methods for
validating executable file integrity using partial hashes may be fully or partially
implemented. System 300 includes a general purpose computing device in the
form of a computer 310 implementing, for example, client computer 102 of
Fig. 1. Components of computer 310 may include, but are not limited to,
processing unit(s) 320, a system memory 330, and a system bus 321 that couples
various system components including the system memory to the processing

unit 320. The system bus 321 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of example and not limitation,

such architectures may include Industry Standard Architecture (ISA) bus, Micro

Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics

17

CA 02530099 2005-12-14

51331-355

Standards Association (VESA) local bus, and Peripheral Component Interconnect

(PCI) bus also known as Mezzanine bus.

[0039] A computer 310 typically includes a variety of computer-readable
media. Computer-readable media can be any available media that can be accessed
by computer 310 and includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limitation, computer-readablie
media may comprise computer storage media and communication
media. Computer storage media includes volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but 1s not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or any
other medium which can be used to store the desired information and which can be
accessed by computer 310.

[0040] Communication media typically embodies computer-readable
instructions, data structures, program modules or other data in a modulated data
signal such as a carrier wave or other transport mechanism, and includes any
information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example and not limitation, communication
media includes wired media such as a wired network or a direct-wired connection,

and wireless media such as acoustic, RF, infrared and other wireless

18

CA 02530099 2005-12-14

51331-355

media. Combinations of the any of the above should also be included within the
scope of computer-readable media.

[0041] System memory 330 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 331 and
random access memory (RAM) 332. A basic iput/output system 333 (BIOS),
containing the basic routines that help to transfer information between elements
within computer 310, such as during start-up, 1s typically stored 1n
ROM 331. RAM 332 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing
unit 320. By way of example and not limitation, Fig. 1 illustrates operating
system 334, application programs 335, other program modules 336, and program
data 337.

[0042] The computer 310 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By way of example only,
Figure 3 illustrates a hard disk drive 341 that reads from or writes to non-
removable, nonvolatile magnetic media, a magnetic disk drive 351 that reads from
or writes to a removable, nonvolatile magnetic disk 352, and an optical disk
drive 355 that reads from or writes to a removable, nonvolatile optical disk 356
such as a CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the éxemplary
operating environment include, but are not limited to, magnetic tape cassettes,
flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 341 1s typically connected to

the system bus 321 through a non-removable memory interface such as

19

CA 02530099 2005-12-14

51331-355

interface 340, and magnetic disk drive 351 and optical disk drive 355 are typically
connected to the system bus 321 by a removable memory interface, such as
intertace 350.

[0043] The drives and their associated computer storage media discussed
above and 1illustrated 1n Figure 3, provide storage of computer-readable
instructions, data structures, program modules and other data for the
computer 310. In Figure 3, for example, hard disk drive 341 i1s illustrated as
storing operating system 344, application programs 345, other program
modules 346, and program data 347. Note that these components can either be the
same as or different from operating system 334, application programs 335, other
program modules 336, and program data 337. Application programs 335 include,
for example, program modules 104 of Fig. 1. Program data 337 includes, for
example, program data 106 of Fig. 1. Operating system 344, application
programs 345, other program modules 346, and program data 347 are given
different numbers here to illustrate that they are at least different copies.

[0044] A user may enter commands and information into the computer 310
through input devices such as a keyboard 362 and pointing device 361, commonly
referred to as a mouse, trackball or touch pad. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, or the
like. These and other input devices are often connected to the processing unit 320
through a user input interface 360 that is coupled to the system bus 321, but may
be connected by other interface and bus structures, such as a parallel port, game

port or a universal serial bus (USB).

20

CA 02530099 2005-12-14

51331-355

[0045] A monitor 391 or other type of display device 1s also connected to

the system bus 321 via an interface, such as a video interface 390. In addition to
the monitor, computers may also include other peripheral output devices such as
printer 396 and audio devices 397, which may be connected through an output
peripheral interface 395.

[0046] The computer 310 operates in a networked environment using
logical connections to one or more remote computers, such as a remote
computer 380. In one 1mplementation, remote computer 380 represents a
computing device than installs or downloads an executable file and partial image
hashes 108 of Fig.1 for subsequent per-executable file portion by a local
implementation of image portion integrity validation module 112 during code
paging operations. The remote computer 380 may be a personal computer, a
server, a router, a network PC, a peer device or other common network node, and
as a function of its particular implementation, may include many or all of the
elements (e.g., program module(s) 104 and program data 106, etc.) described
above relative to the computer 102, although only a memory storage device 381
has been illustrated in Figure 3. The logical connections depicted in Figure 3
include a local area network (LAN) 371 and a wide area network (WAN) 373, but
may also 1nclude other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets and the

Internet.
[0047] When used in a LAN networking environment, the computer 310 1s

connected to the LAN 371 through a network interface or adapter 370. When used

in a WAN networking environment, the computer 310 typically includes a

21

CA 02530099 2005-12-14

01331-355

modem 372 or other means for establishing communications over the WAN 373,
such as the Internet. The modem 372, which may be internal or external, may be
connected to the system bus 321 via the user input interface 360, or other
appropriate mechanism. In a networked environment, program modules depicted
relative to the computer 310, or portions thereof, may be stored in the remote
memory storage device. By way of example and not limitation, Figure 3
illustrates remote application programs 385 as residing on memory
device 381. The network connections shown are exemplary and other means of

establishing a communications link between the computers may be used.

Conclusion

Although the systems and methods for validating executable file integrity
using partial hashes have been described in language specific to structural features
and/or methodological operations or actions, it is understood that the
implementations defined in the appended claims are not necessarily limited to the
specific features or actions described. For example, although image portion
integrity validation module 112 is shown as being incorporated as a plug-in into
file system 116, program module 112 could also be a plug-in, or otherwise
incorporated, into a program module other than the file system. For instance, in
one 1mplementation, operations of image portion integrity validation module 112
are directly accessed (as a plug-in or otherwise) by memory manager 124.
Accordingly, the specific features and operations are disclosed as exemplary forms

of implementing the claimed subject matter.

22

CA 02530099 2005-12-14

21331-355

CLAIMS

1. A computer-implemented method comprising:
generating multiple partial image hashes representing an executable file,
each partial hash of the multiple partial image hashes representing less than all of

the bytes of the executable file;

subsequent to loading the executable file on a computing device,
Intercepting a request to page a portion of the executable file into memory for

execution; and
responsive to intercepting the request, and prior to paging the portion into
memory for execution:
computing a validation hash of the portion; and
comparing the validation hash to a partial hash of the multiple partial
image hashes to determine code integrity of the portion, the partial hash

representing a same code segment as the portion.

2. A method as recited in claim 1, wherein the multiple partial image hashes

are calculated prior to loading the executable file onto the computing device.

3. A method as recited in claim 1, wherein the multiple partial image hashes

are stored 1n a system catalog or a self-signed cryptographic file.

4. A method as recited in claim 1, and further comprising:

determining that the validation hash matches the partial hash; and

23

CA 02530099 2005-12-14

01331-355

responsive to the determining, paging the portion into memory for

execution.

S. A method as recited in claim 1, and further comprising:
determining that the validation hash does not match the partial hash; and
responsive to the determining, failing the request to page the portion into

memory for execution.

6. A method as recited in claim 1, and further comprising:
subsequent to loading the executable file on a computing device,
intercepting an open request to create a code segment for the executable file; and
responsive to intercepting the open request:
computing an identifying hash of a header of the executable file;
comparing the identifying hash to respective ones of a plurality of
partial executable file hashes stored in a system catalog to identify a hash of the
plurality of partial binary hashes that matches the header, the hash being a first
hash of the multiple partial image hashes; and
responsive to locating the hash, copying the multiple partial image
hashes of the executable file out of the system catalog into memory for subsequent
partial image hash code integrity validation operations responsive to paging one or

more parts of the executable file into memory for execution.

7. A method as recited in claim 1, and further comprising:

24

CA 02530099 2005-12-14

21331-355

subsequent to loading the executable file on a computing device,
intercepting an open request to create a code segment for the executable file; and

responsive to intercepting the open request, and responsive to determining
that the executable file 1s a self-signed cryptographic file, copying the multiple
partial 1image hashes out of the self-signed cryptographic file into memory for
subsequent partial image hash code integrity validation operations responsive to

paging one or more parts of the executable file into memory for execution.

8. A computer-readable medium comprising computer-program instructions
executable by a processor for:
generating multiple partial 1mage hashes representing a digest of an
executable file, each partial hash of the multiple partial image hashes representing
less than all of the bytes of the executable file;
subsequent to loading the executable file on a computing device,
intercepting a request to page a portion of the executable file into memory for
execution; and
responsive to intercepting the request, and prior to paging the portion into
memory for execution:
computing a validation hash of the portion; and
comparing the validation hash to a partial hash of the multiple partial
image hashes to determine code integrity of the portion, the partial hash

representing a same code segment as the portion.

25

CA 02530099 2005-12-14

51331-355

9. A computer-readable medium as recited in claim 8, wheremn the multiple

partial image hashes are calculated prior to loading the executable file onto the

computing device.

10. A computer-readable medium as recited in claim 8, wherein the multiple

partial image hashes are stored in a system catalog or a self-signed cryptographic

file.

11. A computer-readable medium as recited in claim 8, wherein the computer-
program instructions further comprise instructions for:
determining that the validation hash matches the partial hash; and
responsive to the determining, paging the portion mmto memory for

execution.

12. A computer-readable medium as recited 1n claim 8, wherein the computer-
program instructions further comprise instructions for:
determining that the validation hash does not match the partial hash; and

responsive to the determining, failing the request to page the portion into

memory for execution.

13. A computer-readable medium as recited in claim 8, wherein the computer-
program instructions further comprise instructions for:

subsequent to loading the executable file on a computing device,

Intercepting an open request to create a code segment for the executable file; and

26

CA 02530099 2005-12-14

01331-355

responsive to intercepting the open request:

computing an identifying hash of a header of the executable file;

comparing the identifying hash to respective ones of a plurality of
partial executable file hashes stored in a system catalog to identify a hash of the
plurality of partial binary hashes that matches the header, the hash being a first
hash of the multiple partial tmage hashes; and

responsive to locating the hash, copying the multiple partial image
hashes of the executable file out of the system catalog into memory for subsequent
partial image hash code integrity validation operations responsive to paging one or

more parts of the executable file into memory for execution.

14. A computer-readable medium as recited in claim 8, wherein the computer-
program instructions further comprise instructions for:

subsequent to loading the executable file on a computing device,
intercepting an open request to create a code segment for the executable file; and

responsive to intercepting the open request, and responsive to determining
that the executable file 1s a self-signed cryptographic file, copying the multiple
partial image hashes out of the self-signed cryptographic file into memory for
subsequent partial image hash code integrity validation operations responsive to

paging one or more parts of the executable file into memory for execution.

15. A computing device comprising:

a processor; and

27

CA 02530099 2005-12-14

51331-355

a memory coupled to the processor, the memory comprising computer-

program instructions executable by the processor for:

generating multiple partial image hashes representing a digest of an
executable file, each partial hash of the multiple partial image hashes representing
less than all of the bytes of the executable file;

subsequent to loading the executable file on a computing device,
intercepting a request to page a portion of the executable file into memory for
execution; and

responsive to intercepting the request, and prior to paging the portion
into memory for execution:

computing a validation hash of the portion; and

comparing the validation hash to a partial hash of the multiple partial
image hashes to determine code integrity of the portion, the partial hash

representing a same code segment as the portion.

16. A computing device as recited in claim 15, wherein the multiple partial

image hashes are stored 1n a system catalog, or a self-signed cryptographic file.

17. A computing device as recited in claim 15, wherein the computer-program
instructions further comprise instructions for:
determining that the validation hash matches the partial hash; and
responsive to the determining, paging the portion into memory for

execution.

28

CA 02530099 2005-12-14

51331-355

18. A computing device as recited in claim 15, wherein the computer-program
instructions further comprise instructions for:
determining that the validation hash does not match the partial hash; and
responsive to the determining, failing the request to page the portion nto

memory for execution.

19. A computing device as recited in claim 15, wherein the computer-program
instructions further comprise instructions for:
subsequent to loading the executable file on a computing device,
intercepting an open request to create a code segment for the executable file; and
responsive to mtercepting the open request:
computing an 1dentifying hash of a header of the executable file;
comparing the identifying hash to respective ones of a plurality of
partial executable file hashes stored 1n a system catalog to identify a hash of the
plurality of partial binary hashes that matches the header, the hash being a first
hash of the multiple partial image hashes; and
responsive to locating the hash, copying the multiple partial image
hashes of the executable file out of the system catalog into memory for subsequent
partial image hash code integrity validation operations responsive to paging one or

more parts of the executable file into memory for execution.

20. A computing device as recited in claim 15, wherein the computer-program

instructions further comprise nstructions for:

29

CA 02530099 2005-12-14

51331-355

subsequent to loading the executable file on a computing device,
intercepting an open request to create a code segment for the executable file; and

responsive to intercepting the open request, and responsive to determining
that the executable file 1s a self-signed cryptographic file, copying the multiple
partial image hashes out of the self-signed cryptographic file into memory for
subsequent partial image hash code integrity validation operations responsive to

paging one or more parts of the executable file into memory for execution.

30

CA 02530099 2005-12-14

COMPUTING DEVICE 102

PROGRAM MODULES 104

PER-PORTION BINARY IMAGE
HASHING MODULE

FILE SYSTEM

IMAGE PORTION INTEGRITY VALIDATION MODULE
(E.G., PER-PAGE CODE INTEGRITY CHECKS)

MEMORY MANAGER

OTHER PROGRAM MODULES 118
(E.G., EXECUTING CODE, DEVELOPMENT ENVIRONMENT
SUCH AS BuiLD PROCESS, MAKE AND/OR UPDATE SYSTEM
CATALOG APPLICATIONS, ETC.)

PROGRAM DATA 106

PARTIAL IMAGE HASHES
(E.G., PER-PAGE OR OTHER IMAGE PORTION SIZE HASHES)

SYSTEM CATALOG(S) 120

(BINARY IMAGE(S) PACKAGED WITH CORRESPONDING
PARTIAL IMAGE HASHES)

SELF-SIGNED FILE(S) 122
(BINARY IMAGE(S) PACKAGED WITH CORRESPONDING

PARTIAL IMAGE HASHES) '

OTHER DATA , 114
(E.G., BINARY IMAGE(S) SUCH AS PE FILES, DLLS;
COMPUTED HASHES FOR VERIFICATION , CERTIFICATE DATA,
OPEN AND/OR IN-PAGE REQUEST(S), EXCEPTION(S), AND/OR
ETC.)

CA 02530099 2005-12-14

Generate Partial Image Hashes for a
Binary Image

Associate the Binary Image with the
Partial Image Hashes

Intercept an Open File Request

Responsive to Determining that the
Target Data of the Open Fiie Request
Is Executable Code, Locate Each of
the Per-Portion (Partial) Hashes
Associated with the Target

Responsive to Receipt of an In-Page
or In-Portion Request to Map a Portion
of Code associated with the Target
into Memory For Execution, Compute
a Hash for the Portion of Code

Compare the Computed Hash to a
Corresponding One of the Partial
Image Hashes to Verify the Integrity of
the Portion of Code Prior to Its Being
Mapped into Memory for Execution

If the Integrity of the Portion of Code is

Not Corrupt, Allow the Portion of Code
to be Mapped to Memory for
Execution

If the Integrity of the Portion of Code is
Corrupt, Fail the In-Page / In-Portion
Request such that the Portion of Code
is Not Mapped to Memory for
Execution

CA 02530099 2005-12-14

SEIE] (ole

SNVHO0dd
NOILVOIlddV
410W3dY

G8e

—

AHOMLAN V3HY 3AIM

- = -— | —

AHOMLAN

V3yV 1vOO]

AN

1\ dOLINOW

6€
16€

€

J0Viddd1NI

JOV4d3LNI

IOVASIINI AJOW3IN A AL | e
STIOMIIN “TOA"NON >%_.¥_%z 9%t STTNaON
TTGYAONTY N NYI9049d 9310

G€€ SWVYUD0Oud
NOILYOTdadvY

SN NILSAS

W1SAS
ONILYH3dO

(S)FOVITIIN | e | | & v TN
WVa3rdgag || 3PY39UNN | Soaaaanag

1Nd1N0O

(SJIINN
ONISS3IO0Hd

AJOWIW WILSAS

W - E—
COMPUTING DEVICE 102
s e "\
PROGRAM MODULES 104
r e \
PER-PORTION BINARY IMAGE 110
HASHING MODULE
\ —— y,
—_——
FiLE SYSTEM 118
IMAGE PORTION INTEGRITY VALIDATION MODULE 112
(E.G., PER-PAGE CODE INTEGRITY CHECKS)
\ e o J
| —— N
MEMORY MANAGER 124
_ - -/
(OT 0 118
(E.G., EXECUTING CODE, DEVELOPMENT ENVIRONMENT
SucH AS BUILD PROCESS, MAKE AND/OR UPDATE SYSTEM
L CATALOG APPLICATIONS, ETC.))
e — U ——
2 PROGRAM DaTA 408)
- ™\
PARTIAL | A 108
(E.G., PER-PAGE OR OTHER IMAGE PORTICN SIZE HASHES)
——ae
/'" T — - - W‘
SYSTEM CATALOG(S) 120
(BINARY IMAGE(S) PACKAGED WITH CORRESPONDING
L _ PARTIAL IMAGE HASHES) y
é SELF-SIGNER FIL 122 h
i (BINARY IMAGE(S) PACKAGED WITH CORRESPONDING
PARTIAL IMAGE HASHES))
e —_ —
r N ™\
| OTHER DATA 114
(E.G., BINARY IMAGE(S) SUCH AS PE FILES, DLLs;
COMPUTED HASHES FOR VERIFICATION , CERTIFICATE DATA,
OPEN AND/OR IN-PAGE REQUEST{S), EXCEPTION(S), AND/OR
9 ETC.) y J
\. e e

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - abstract drawing

