(19) 中华人民共和国国家知识产权局
(12) 发明专利申请
(10) 申请公布号 CN 104175612 A
(43) 申请公布日 2014.12.03

(21) 申请号 201410384631.8
(22) 申请日 2014.08.06
(71) 申请人 浙江联洋新材料股份有限公司
地址 314511 浙江省嘉兴市桐乡市崇福镇湾里村燕京桥6号
(72) 发明人 蔡正杰 沈瑞 李江 胡莉明
(74) 专利代理机构 北京科亿知识产权代理事务所（普通合伙）11350
代理人 汤东风

(51) Int.Cl.
B32B 3/12 (2006.01)
B32B 27/08 (2006.01)
B32B 27/32 (2006.01)
B32B 17/04 (2006.01)
B32B 27/04 (2006.01)
B32B 37/06 (2006.01)

(54) 发明名称
一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材及其制造方法
(57) 摘要
本发明为一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材及其制造方法，包括上层热塑性面板、中间PP蜂窝夹心层，下层热塑性面板，所述上层热塑性面板以及下层热塑性面板依次为外层改性PP膜、中间热塑性玻璃纤维织物层以及内层改性PP膜。该产品优势在于上热塑性面板和下热塑性面板均使用改性PP膜与热塑性玻璃纤维织物复合铺层热压成型，成本上大大低于玻璃/聚丙烯复合纤维织物制成的预固化片材，而且仍然适合连续化、规模化生产，降低面板原料成本50％以上。
1. 一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材，包括上层热塑性面板、中间 PP 蜂窝夹层，下层热塑性面板，其特征在于，所述上层热塑性面板以及下层热塑性面板依序为外层改性 PP 膜、中间热塑性玻璃纤维织物层以及内层改性 PP 膜。

2. 根据权利要求 1 所述的一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材，其特征在于，所述上层热塑性面板以及下层热塑性面板中的外层改性 PP 膜和内层改性 PP 膜与中间热塑性玻璃纤维织物层之间通过热压成型制得。

3. 根据权利要求 1 所述的一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材，其特征在于，所述中间热塑性玻璃纤维织物层的织物为平纹/斜纹方格布或者热塑性纤维短切毡。

4. 一种权利要求 1-3 所述的一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材的制造方法，其特征在于，包括以下步骤：

 (1) 按照面板厚度确定铺层方式，确定所需的放卷装置；

 (2) 通过放卷装置，将改性 PP 膜与中间热塑性玻璃纤维织物铺设成所需铺层，进入预热烘箱，烘箱温度根据 PP 膜的熔点设置在 150-170℃，预热铺层；

 (3) 进入高压加热辊筒压制，滚筒的压力根据面板厚度在 5-30MPa，滚筒温度 170-230℃则由使用的 PP 膜特性决定，速度在 1-2m/min；

 (4) 上下面板同时从高压加热滚筒内压制出来后，在两层面板之间放入板材要求厚度的 PP 蜂窝；

 (5) 将蜂窝夹层结构的板材送入卷带复合机，复合机的组成如下；前端为加热滚筒，加热加压夹芯板材保持面板温度使其与蜂窝贴合并仍有粘性，中段为厚度控制段，夹芯板进入该段得到所需的厚度，最后为冷却段，在所需厚度下，利用风冷装置将夹芯板材温度冷却至 100℃以下，此时 PP 已经凝胶成型，玻璃纤维增强聚丙烯热塑性蜂窝板材生产完成；

 (6) 进行切割，按照客户要求的宽度与长度进行修边、切割；

 (7) 储存，产品冷却至室温后，需要 8-16 小时才能达到使用强度。
一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材及其制造方法

技术领域
[0001] 本发明涉及一种复合材料领域，尤其是一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材及其制造方法。

背景技术
[0002] 连续纤维增强热塑性板材早在上世纪 90 年代就已用于飞机之中，近年还有发展，很多厂商都研制了这种材料，与热固性塑料不一样，热塑性塑料不耐热，不固化，因而可以多次加热、冷却而不损失性能。这一特点促使增强热塑性材料的供应商们向用户提供预固化片（板）材，这种材料可以与 PP 蜂窝热压成型为所需的三明治状的最终制品。主要的玻璃纤维增强聚丙烯热塑性板材工艺有 GMT、LFT，但它只是面板半成品，必须压制形成后在与 PP 蜂窝复合。还有一种 Twintex P PP 片材是用 Saint-Gobain Vetrotex 公司之 Twintex 玻璃 / 聚丙烯复合纤维织物制成的预固结片材，能够在线压制热压成热塑性板材后与 PP 蜂窝直接热压成最终的蜂窝夹芯板材，减少了生产中间环节，从而提升产品的生产效率，降低生产成本。
[0003] GMT、LFT 的前期设备投入相当巨大，产品为预固件，制作所需固定高度的热塑性板材需要再次铺层热压，费时费力不合适大规模生产，而 Twintex P PP 玻璃 / 聚丙烯复合纤维的价格非常高，通过制造成织物又提高了成本，导致最终板材的价格相当昂贵，需要一种简单直接又能有效降低成本的新方法来提升玻璃纤维增强聚丙烯热塑性蜂窝板材的附加值。

发明内容
[0004] 本发明的目的是为了解决上述技术的不足而提供一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材，该蜂窝板材成本上大大低于玻璃 / 聚丙烯复合纤维织物制成的预固结板材，而且仍然适合连续化、规模化生产，降低面板原料成本 50% 以上。
[0005] 为了达到上述目的，本发明所设计的一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材，包括上层热塑性面板、中间 PP 蜂窝夹心层，下层热塑性面板，所述上层热塑性面板以及下层热塑性面板依序为外层改性 PP 膜、中间热塑性玻璃纤维织物层以及内层改性 PP 膜。
[0006] 作为优选，所述上层热塑性面板以及下层热塑性面板中的外层改性 PP 膜和内层改性 PP 膜与中间热塑性玻璃纤维织物层之间通过热压成型制得。
[0007] 作为又一优选，所述中间热塑性玻璃纤维织物层的织物为平纹 / 斜纹方格或热塑性纤维短切毡。
[0008] 本发明还提供一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材的制造方法，包括以下步骤：
[0009] (1) 按照面板厚度确定铺层方式，确定所需的放卷装置；
[0010] (2) 通过放卷装置，将改性 PP 膜与中间热塑性玻璃纤维织物铺设成所需铺层，进
入预热烘箱，烘箱温度根据 PP 膜的熔点设置在 150-170℃，预热铺层；
[0011] (3) 进入高压加热辊筒压制，滚筒的压力根据面板厚度在 5-30MPa，滚筒温度
170-230℃则由使用的 PP 膜特性决定，速度在 1-2m/min；
[0012] (4) 上下面板同时从高压加热滚筒内压制出来后，在两层面板之间放入板材要求
厚度的 PP 蜂窝；
[0013] (5) 将蜂窝夹层结构的板材送入履带复合机，履带复合机的组成如下：前端为加
热滚筒，加热加压夹芯板材保持面板温度使其与蜂窝粘合仍有粘性；中段为厚度控制段，
夹芯板进入该段得到所需要的厚度；最后为冷却段，在所需厚度下，利用风冷装置将夹芯板
材温度冷却至 100℃以下，届时 PP 已经凝胶成型，玻璃纤维增强聚丙烯热塑性蜂窝板材生
产完成；
[0014] (6) 进行切割，按照客户要求的宽度与长度进行修边、切割；
[0015] (7) 储存，产品冷却至室温后，需要 8-16 小时才能达到使用强度。
[0016] 上述连续玻璃纤维增强聚丙烯热塑性蜂窝板材的优势在于上热塑性面板和下热
塑性面板均使用改性 PP 膜与热塑性玻璃纤维织物复合铺层热压成型，成本上大大低于玻
璃 / 聚丙烯复合纤维织物制成的预固结片材，而且仍然适合连续化、规模化生产，降低面板
原料成本 50%以上。
[0017] 上述连续玻璃纤维增强聚丙烯热塑性蜂窝板材制造方法的优点为：

附图说明
[0018] 图 1 为本发明连续玻璃纤维增强聚丙烯热塑性蜂窝板材的结构示意图。

具体实施方式
[0019] 下面通过实施例结合附图对本发明作进一步的描述。
[0020] 实施例 1：
[0021] 如图 1 所示，本实施例描述的一种连续玻璃纤维增强聚丙烯热塑性蜂窝板材，包
括上层热塑性面板 1、中间 PP 蜂窝夹层 2、下层热塑性面板 3，所述上层热塑性面板以及下
层热塑性面板依序为外层改性 PP 膜 4、中间热塑性玻璃纤维织物 5 以及内层改性 PP 膜
6。其中所述上层热塑性面板以及下层热塑性面板中的外层改性 PP 膜和内层改性 PP 膜与
中间热塑性玻璃纤维织物层之间通过热压成型制得。
[0022] 上述连续玻璃纤维增强聚丙烯热塑性蜂窝板材的制造方法，包括以下步骤：
[0023] (1) 按照面板厚度确定铺层方式，确定所需的放卷装置；
[0024] (2) 通过放卷装置，将改性 PP 膜与中间热塑性玻璃纤维织物铺设成所需铺层，进
入预热烘箱，烘箱温度根据 PP 膜的熔点设置在 150-170℃，预热铺层；
[0025] (3) 进入高压加热辊筒压制，滚筒的压力根据面板厚度在 5-30MPa，滚筒温度
170-230℃则由使用的 PP 膜特性决定，速度在 1-2m/min；
[0026] (4) 上下面板同时从高压加热滚筒内压制出来后，在两层面板之间放入板材要求
厚度的 PP 蜂窝；
[0027] (5) 将蜂窝夹层结构的板材送入履带复合机，履带复合机的组成如下：前端为加
热滚筒，加热加压夹芯板材保持面板温度使其与蜂窝粘合仍有粘性；中段为厚度控制段，

夹芯板进入该段得到所需要的厚度；最后为冷却段，在所需厚度下，利用风冷装置将夹芯板材温度冷却至 100℃以下，届时 PP 已经凝胶成型，玻璃纤维增强聚丙烯热塑性蜂窝板材生产完成；

[0028] （6）进行切割，按照客户要求的宽度与长度进行修边、切割；

[0029] （7）储存，产品冷却至室温后，需要 8-16 小时才能达到使用强度。
图 1