US009361715B2

a2 United States Patent (10) Patent No.: US 9,361,715 B2
Blanco et al. 45) Date of Patent: Jun. 7, 2016
(54) GLOBAL COMPOSITION SYSTEM 6,697,063 Bl 2/2004 Zhu
6,961,065 B2 11/2005 Sasaki
(75) Inventors: Leonardo E. Blanco, Redmond, WA ;’(1) é%’gg? E% 1?%882 IS(‘ZSFIEZLge?ﬁL
(US); Silvana Patricia Moncayo, 7:154:503 B2 122006 Yuan ‘
Seattle, WA (US); Reiner Fink, Mercer .
Island, WA (US) (Continued)
(73) Assignee: Microsoft Technology Licensing, LL.C, FOREIGN PATENT DOCUMENTS
Redmond, WA (US) P 2007510202 A 4/2007
Jp 2007510976 A 4/2007
(*) Notice: Subject to any disclaimer, the term of this Continued
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 69 days.
OTHER PUBLICATIONS
(21) Appl. No.: 13/152,133 : :
Humphreys, Greg, et al. “Chromium: a stream-processing frame-
(22) Tiled: Jun. 2, 2011 work for interactive rendering on clusters”” ACM Transactions on
Graphics (TOG). vol. 21. No. 3. ACM, 2002 .*
(65) Prior Publication Data (Continued)
US 2012/0306912 Al Dec. 6,2012
(51) Int.CL Primary Examiner — Maurice L McDowell, Jr.
GO6T 11/60 (2006.01) Assistant Examiner — Raffi Isanians
GO6T 120 (2006.01) (74) Attorney, Agent, or Firm — Timothy Churna; Judy Yee;
GO6F 3/14 (2006.01) Micky Minhas
G09G 5/14 (2006.01)
GO6F 9/44 (2006.01)
(52) US.CL (57) ABSTRACT
CPC s GO6T 11/60 (2013.01); GOGF 3/1454 A global composition system is described. In one or more
(201 328 11 g; 0G10~6g 0123922200]1/200 12)61G308117 g/égg“; implementations, the global composition sy.stem may be con-
(22]0)2])’2013 o): G09G(5/]4' 28’13 o1): figured to perform rendering for a plurality of applications.
G09G 2§40/]é (2)(’)13 01): G09(G 235.8/0)0’ Fordexample, the global compos?ion. system may be cqnﬁg-
: P ured to expose one or more application programming inter-
. . (201,3'01)’ G09G 2370/022 (2013.01) faces (APIs) that are accessible to the applications. The APIs
(58) Field of Classification Se.arch)) may then be used to cause a single composition engine to
CPC .o GOGT 15/005; GOGT 1/00; GOGT 15/00; perform the rendering for the plurality of applications. The
GO6T 1/20; GO9G 5/363
L > use of a single composition engine may be used to support a
See application file for complete search history. variety of different functionality, such as to perform efficient
(56) References Cited rendering by knowing what elements are provided by each of

U.S. PATENT DOCUMENTS

5,745,095 A
6,172,684 Bl

4/1998 Parchem et al.
1/2001 Lapidous

the applications and how those items relate for rendering to a
display device.

20 Claims, 6 Drawing Sheets

US 9,361,715 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,168,048 B1* 1/2007 Goossenetal. ... 715/797

7443401 B2 10/2008 Blanco et al.
7,450,130 B2 11/2008 Swedberg et al.
7,548,237 B2 6/2009 David et al.
7,609,280 B2 10/2009 Subramanian et al.
7,681,143 B2 3/2010 Lindsay et al.
7,839,410 B1 11/2010 Brown et al.
7,839,419 B2 11/2010 Hanggie et al.
7,847,755 B1 12/2010 Hardebeck et al.
8,248,412 B2 8/2012 Fowler et al.

2003/0076328 Al
2003/0078956 Al
2003/0208744 Al
2003/0210267 Al
2004/0222992 Al
2005/0088436 Al*
2005/0140692 Al
2005/0219258 Al
2006/0050078 Al
2006/0061591 Al
2006/0195520 Al
2007/0013723 Al
2007/0052723 Al*

4/2003 Beda et al.
4/2003 Ravichandran et al.
11/2003 Amir et al.
11/2003 Kylberg et al.
11/2004 Calkins et al.
4/2005 Swedberg etal. 345/420
6/2005 Swedberg et al.
10/2005 Stokes et al.
3/2006 Monahan
3/2006 Anderson
8/2006 Stevens et al.
1/2007 Souza et al.
3/2007 Subramanian et al. 345/619
2007/0061733 Al 3/2007 Schechter et al.
2008/0303835 Al 12/2008 Swift et al.
2009/0172245 Al* 7/2009 Dunstan 711/101
2010/0289804 Al 11/2010 Jackman et al.
2011/0080416 Al 4/2011 Duluk, Jr. et al.
2013/0063445 Al 3/2013 Blanco et al.
2013/0063459 Al 3/2013 Schneider et al.
2013/0063464 Al 3/2013 Schneider et al.
2013/0063482 Al 3/2013 Moncayo et al.
2014/0333637 Al 11/2014 Blanco et al.
2014/0344729 Al 11/2014 Blanco et al.
2015/0334908 P1 11/2015 Miller

FOREIGN PATENT DOCUMENTS

JP 2009507306 A 2/2009

WO WO 2005045736 5/2005

WO WO 2007032846 3/2007

WO WO 2011060442 5/2011

WO 2012/166189 Al 12/2012
OTHER PUBLICATIONS

Piringer, et al., “A Multi-Threading Architecture to Support Interac-
tive Visual Exploration”, Retrieved at <<http://www.informatik.uni-
rostock.de/~ct/pub__files/Piringer09MultiThreading pdf>>, IEEE
Transactions on Visualization and Computer Graphics, vol. 15, Issue
06, Nov.-Dec. 2009, pp. 8.

Stoyanov, Stanimir, “The Desktop Window Manager API”, Retrieved
at <<http://www.stoyanoff.info/blog/projects-and-researches/dwm-
api-overview/>>, Retrieved Date: Apr. 20, 2011, pp. 3.
“International Search Report”, Mailed Date: May 22, 2012, Appli-
cation No. PCT/US2011/055531, Filed Date: Oct. 9, 2011, pp. 10.
“Architecture and Components”, Retrieved from <http://msdn.
microsoft.com/en-us/library/windows/desktop/hh43750(v=vs.85).
aspx>on Apr. 11, 2013, (Nov. 28, 2012), 6 pages.

“Basic Concepts”, Retrieved from <http://msdn.microsoft.com/en-
us/library/windows/desktop/hh43751(v=vs.85).aspx>, (Nov. 28,
2012),10 pages.

“DCompositionCreateSurfaceHandle Function”, Retrieved from
<http://msdn.microsoft.com/en-us/library/windows/desktop/
hh437360(v=vs.85).aspx> Apr. 11, 2013, (Nov. 28, 2012), 3 pages.
“Resource Manager Class”, Retrieved from <http://msdn.microsoft.
com/en- us/library/system.resources.resourcemanager.aspx> on
Apr. 12,2013, (2013), 28 pages.

“Why Use DirectComposition?”, Retrieved from <http://msdn.
microsoft.com/en-us/library/windows/desktop/hh449195(v=vs.85).
aspx>on Apr. 11, 2013, (Nov. 28, 2012), 2 pages.

“WPF Graphics Rendering Overview”, Retrieved from <http://msdn.
microsoft.com/en-us/library/ms748373.aspx> on Apr. 11, 2013,
(2013), 20 pages.

Boudon, et al., “A Survey of Computer Representations of Trees for
Realistic and Efficient Rendering”, Technical Report 2301, LIRIS,
No. 2301-2006, Available at <http:/liris.cnrs.fr/Documents/Liris-
2301.pdf>, (Feb. 2006), 20 pages.

Kobbelt, et al., “A Survey of Point-Based Techniques in Computer
Graphics”, Computers and Graphics, vol. 28, No. 6, (Jul. 12, 2004),
23 pages.

Tonouchi, et al., “Creating Visual Objects by Direct Manipulation”,
In IEEE International Workshop on Visual Languages, Available at
<http://pdf.aminer.org/000/641/485/creating_ visual_objects_by__
direct__manipulation.pdf>, (Sep. 15, 1992), 7 pages.

“International Search Report & Written Opinion for PCT Patent
Application No. PCT/US2013/060775”, Mailed Date: Jan. 9, 2014,
Filed Date: Sep. 20, 2013, 8 Pages.

“Extended European Search Report”, EP Application No. 11866466.
3, Jan. 8, 2015, 13 pages.

“Non-Final Office Action”U.S. Appl. No. 13/895,239, Jan. 20, 2015,
28 pages.

Translated Japanese Office Action mailed Sep. 29, 2015 for Japanese
Patent Application 2014-513493, a counterpart foreign application of
U.S. Appl. No. 13/152,133, 10 pages.

“NET Framework version history—Wikepedia the free encyclope-
dia”, Retrieved at: http://en.wikipedia.org/wiki/ NET__Framework _
version__history, Mar. 24, 2015, 11 pages.

“Windows Presentation Foundation—Wikipedia, the free encyclo-
pedia”, Retrieved at: http://en. wikipedia.org/wiki/Windows_ Pre-
sentation_ Foundation, May 12, 2013, 12 pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2013/060776, Apr. 2, 2015, 16 Pages.

“Shapes and Basic Drawing in WPF Overview”, Retrieved at: https://
msdn.microsoft.com/en-us/library/ms747393%28v=vs.110%29.
aspx, Aug. 15, 2012, 8 pages.

“Painting with Solid Colors and Gradients Overview”, Retrieved at:
https://msdn.microsoft.com/en-us/library/ms754083%28v=vs.
110%29 .aspx, Aug. 15, 2012, 9 pages.

“Final Office Action”, U.S. Appl. No. 13/895,239, Jun. 19, 2015, 26
pages.

“Non-Final Office Action”, U.S. Appl. No. 13/891,598, Jun. 29,
2015, 16 pages.

“Second Written Opinion Issued in PCT Application No. PCT/
US2014/063616”, Mailed Date: Sep. 29, 2015, 4 Pages.

* cited by examiner

U.S. Patent

10

s,
"

Jun. 7,2016

Sheet 1 of 6

US 9,361,715 B2

4 7
& o p R R
He o [Emai =10

79

182 e,

Efie's Bday

Sara

B Windooms Ligmd

tods Uoryyet's Samad

dean Sy veors yel?

Snond

Network

F3

T

Wiah Service 104

Glabat
Cormpesiiion
System 118

- s
e

4 Cenmputing Device 102 A

i

{ (slobat Composition }
System 114 .

L%
i Era ™
¥ a X
w
{ Apptications 130
')
3,
N\

e

O
-

{ Composition
Erggdne 1318

U.S. Patent Jun. 7, 2016 Sheet 2 of 6 US 9,361,715 B2

G
%\
%
114 -,
“w
B Appicaiion Application Pm{,m& 14
Ps“f}«:‘;{‘rs’;& 218 Procass 212 (“@ﬁ“tgamimﬁ
arizos M 1 apizo) Engire 116
AR
User Mode 218
Kerne! Mo 220 , _
S S
Kermet 216
[Oirjort Databass Module 204)

U.S. Patent Jun. 7, 2016 Sheet 3 of 6 US 9,361,715 B2

g
Viauad 4

Child

Ssunt & X Bitrmap]

)
i
H
Lo ey
mmmmmm , §
? i
! i
f 7 ~ }
e] GO Content 11
(/ Chid () - 2!
Visuat 3 HWHND gﬁm"‘p} .i DX Content |-
) A" § L
e HWIRD
Contant

Fig. 3

U.S. Patent Jun. 7, 2016 Sheet 4 of 6 US 9,361,715 B2

#HE
Ganarale g graph that desuribas slements that have been specified for
rendaring by a plurslily of apgiications thal are axeculsd by ong or more
eovpnding devices

Comrradcate $ie graph Tor roteint by & single compoesition enging
0 cause the slements 1o be sernderad

408
Covomunicale the graph rom a web semvice
vig a network for receipt by 8 computing device that
exgcuies the single composition engine

408
Communiogie the graph from an objedt datebase module
i ihe single composiiion angine

Yo

U.S. Patent Jun. 7, 2016 Sheet 5 of 6 US 9,361,715 B2

500 e
%,

Platiorm 510

Giiobat Gomposiion §
Systern 118 i

Globast Composition

P,
: N

Tolovigion
‘*”%{’ ’ﬁs

Camrgnater BOE

U.S. Patent Jun. 7, 2016 Sheet 6 of 6 US 9,361,715 B2

Devvice 800

4 4 4
s e Emmciaiie hndin | Ft v sorrrrunioalion
Computer-Readable Media 834 | Cnvices
' Device Operating N '
Applications System s -
€18 (pf 820 Device
e i b § Drats
Y N 804
InputiOigput § imerface 2 T
doduls Applination Y -
624 622 | Data
" % ;J 1 inpstis)
Yoy
f’ -
pgéi;’:’;;g ; Croamwnunication |
Storage -‘fi‘ ?2 interfaneds}
Muedia 3 : £08
N
i) 7
Agidic et
System v Pocassoris}
5 £259] F4 8%
Audio 7 Video \ gas L w1
inpest £ Chutped
RN 4
et . Displey
Bysdam
N

US 9,361,715 B2

1
GLOBAL COMPOSITION SYSTEM

BACKGROUND

A wide variety of elements may be rendered on a comput-
ing device, such as icons, windows, animations, and so on.
Further, the numbers of applications typically executed on the
computing device continues to increase as well as the number
of elements each of the applications typically provides, such
as to provide additional functionality and a richer user expe-
rience.

However, this increase in elements may consume a signifi-
cant amount of resources of the computing device, such as
processor, memory, graphics hardware, and other resources.
Further, this consumption may also have an effect on execu-
tion of the applications themselves.

SUMMARY

A global composition system is described. In one or more
implementations, the global composition system may be con-
figured to perform rendering for a plurality of applications.
For example, the global composition system may be config-
ured to expose one or more application programming inter-
faces (APIs) that are accessible to the applications. The APIs
may then be used to cause a single composition engine to
perform the rendering for the plurality of applications. The
use of a single composition engine may be used to perform
efficient rendering by knowing what elements are provided
by each of the applications and how those items relate for
rendering to a display device.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The use of the same reference numbers
in different instances in the description and the figures may
indicate similar or identical items.

FIG. 1 is an illustration of an environment in an example
implementation that is operable to implement a global com-
position system.

FIG. 2 illustrates an example system in which the global
composition system is illustrated in greater detail as including
a composition engine of FIG. 1 as well as a user-mode library
and object database module.

FIG. 3 depicts an example of a graph configured as a global
composition tree that is consumable by a composition engine
to render elements.

FIG. 4 is a flow diagram depicting a procedure in an
example implementation in which a graph is generated that
describes elements for rendering by a single composition
engine.

FIG. 5 illustrates an example system that includes the com-
puting device as described with reference to FIG. 1.

FIG. 6 illustrates various components of an example device
that can be implemented as any type of computing device as
described with reference to FIGS. 1, 2, and 5 to implement
embodiments of the techniques described herein.

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

Overview

Conventional techniques used to render elements by a
computing device employed a distributed system in which
each application was assigned a corresponding composition
engine. Because of this, the different composition engines
were unaware of what was being performed by other compo-
sition engines. This could lead to redundancies, unnecessary
rending of elements, and so on that could hinder the efficiency
of a computing device that implemented the conventional
techniques and thus could make these conventional tech-
niques ill suited for use by “thin” computing devices.

Global composition techniques are described herein. In
one or more windows, a single composition engine is acces-
sible by a plurality of different applications via one or more
APIs. Thus, the composition engine may be made “aware” of
what is being contributed by the various applications and how
those elements relate. This knowledge may then be leveraged
to improve efficiency in the rendering of elements of the
applications. In one or more implementations, the composi-
tion engine runs asynchronous from threads belonging to
those applications, which allows applications to cause con-
tent to be animated within their windows and use disparate
rendering technologies to rasterize such content. Addition-
ally, composition data from each application in the system
may be managed in a single graph (e.g., a global composition
tree) which allows the composition engine to perform global
optimizations such as occlusion detection, as well as to mix
and match content from multiple applications in an efficient
and secure fashion. Further discussion of these and other
techniques may be found in relation to the following figures.

In the following discussion, an example environment is
first described that may employ the techniques described
herein. Example procedures are then described which may be
performed in the example environment as well as other envi-
ronments. Consequently, performance of the example proce-
dures is not limited to the example environment and the
example environment is not limited to performance of the
example procedures.

Example Environment

FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ tech-
niques described herein. The illustrated environment 100
includes a computing device 102 that is communicatively
coupled to a web service 104 via a network 106. The com-
puting device 102 as well as computing devices that may
implement the web service 104 may be configured in a variety
of ways.

For example, a computing device may be configured as a
computer that is capable of communicating over the network
106, such as a desktop computer, a mobile station, an enter-
tainment appliance, a set-top box communicatively coupled
to a display device, a wireless phone, a game console, and so
forth. Thus, the computing device 102 may range from full
resource devices with substantial memory and processor
resources (e.g., personal computers, game consoles) to a low-
resource device with limited memory and/or processing
resources (e.g., traditional set-top boxes, hand-held game
consoles). Additionally, although a single computing device
102 is shown, the computing device 102 may be representa-
tive of a plurality of different devices, such as multiple servers
utilized by a business to perform operations such as by the
web service 104, a remote control and set-top box combina-
tion, an image capture device and a game console configured
to capture gestures, and so on.

US 9,361,715 B2

3

Although the network 106 is illustrated as the Internet, the
network may assume a wide variety of configurations. For
example, the network 106 may include a wide area network
(WAN), a local area network (LLAN), a wireless network, a
public telephone network, an intranet, and so on. Further,
although a single network 106 is shown, the network 106 may
be configured to include multiple networks.

The computing device 102 is further illustrated as includ-
ing an operating system 108. The operating system 108 is
configured to abstract underlying functionality of the com-
puting device 102 to applications 110 that are executable on
the computing device 102. For example, the operating system
108 may abstract processing, memory, network, and/or dis-
play functionality of the computing device 102 such that the
applications 110 may be written without knowing “how” this
underlying functionality is implemented. The application
110, for instance, may provide data to the operating system
108 to be rendered and displayed by the display device 112
without understanding how this rendering will be performed.

The operating system 108 may also represent a variety of
other functionality, such as to manage a file system and user
interface that is navigable by a user of the computing device
102. An example of this is illustrated as a desktop that is
displayed on the display device 112 of the computing device
102.

The operating system 108 is also illustrated as including a
global composition system 114. The global composition sys-
tem 114 may represent a system that includes a direct com-
position component that is configured to allow applications
110 to use a single global composition engine 116 (hereinaf-
ter also referred to simply as composition engine 116) to draw
items on the display device 112. Although illustrated as part
of an operating system 108, the global composition system
114 may be implemented in a variety of other ways, such as
part of a browser, as a stand-alone module, and so forth.
Further, the global composition system 114 may be distrib-
uted across the network 106, an example of which is illus-
trated as inclusion of a global composition system 118 on the
web service 104.

User experiences (e.g., user interfaces generated for appli-
cations 110) may include a signification number of elements
that may interact with each other, such as windows, anima-
tions (e.g., text scrolling), and so on. For example, a first
window may correspond to an email application and a second
window 122 may correspond to a browser as illustrated on the
display device 112. Thus, a multitude of different rendering
components may be involved at any one particular point in
time. Further, these different elements may have different
refresh rates, such as an animation of a “ticker” display along
with video and static text.

The global composition system 114 may be utilized to
abstract this functionality such that different applications 110
may offload this rendering and thus be unaware of how the
rendering is performed. For example, applications 110 may
provide data that describe elements to be rendered, placement
of the elements, and how the elements interrelate with each
other.

Additionally, the global composition system 114 may sup-
port “independent” animation. An application 110, for
instance, may communicate a declaration description of an
animation that describes how an animation is to be rendered.
For example, the description may describe what is being
animated, a rate at which redraws are to occur, a location at
which the animation is to begin, a curve over which the
animation is to move, an ending location of the animation, an
amount of time the animation is to be rendered, and so forth.

20

25

30

35

40

45

50

55

60

65

4

This rendering may then be performed by the global com-
position system 114 and continue without further instruction.
In this way, the rendering of the animation is independent of
the caller (e.g., the application 110), such that loss of com-
munication with the application 110, inconsistent processing
of'the application 110, and so on does not have an effect on the
rendering of the animation. Thereby, this may be used to
improve “smoothness” and “fluidity” of the animation as well
as resources of the computing device 102 (and even network
106 are further described below) by cutting down on the
number of communications by the application 110 to render
the animation.

Conventionally, each of the applications 110 that were
executed by a computing device 102 interacted with a corre-
sponding composition engine to perform the processing and
rendering of a display for the respective application. There-
fore, conventional composition engines were often imple-
mented “per process.” Accordingly, conventional techniques
may involve execution of a plurality of different composition
engines at any one time. Additionally, conventional compo-
sition engines were typically “not aware” of the rendering
performed by other composition engines. This could result in
inefficient use of resources of the computing device 102, such
as to draw a window even though it may be occluded by
another window which could result in unnecessary use of
processor, graphical processor, memory, and other resources
of the computing device 102.

In one or more implementations, the global composition
system 114 follows a global architecture such that a plurality
of applications 110 may access the composition engine 116,
e.g., via an application programming interface. For example,
a single composition engine 116 may be responsible for an
entire desktop and elements from applications 110 that are
currently being executed. Thus, the single composition
engine 116 may be “aware” of the different elements that are
to be rendered for the plurality of applications and react
accordingly.

Continuing with the previous example, the composition
engine 116 may be aware that an element of an application
(e.g., a window) is to be occluded by an element to be ren-
dered for another application, e.g., another window. As shown
in FIG. 1, for instance, the application may have a window
that is to be displayed behind the window 120 that corre-
sponds to the email application. Previously, even though the
corresponding window of the application was not viewable to
a user of the computing device 102, the window was still
rendered. However, the composition engine 116 may use the
present techniques to skip the rendering of the occluded win-
dow, thereby conserving resources of the computing device
102.

The global composition system 114 may be used to provide
a wide variety of functionality. As previously described, the
global composition system 114 may perform global analysis
of' what is to be rendered by the plurality of applications and
efficiently determine which of the elements are to be drawn,
such as in the case of occlusion in which rendering of ele-
ments may be skipped as previously described. Additionally,
resources may be pooled by the global composition system
114, such as to share intermediate memory by a plurality of
applications 110 instead of fragmented memory as could be
consumed by conventional composition engines both by the
engines themselves as well as what is being drawn by the
engines.

The global composition system 114 may also support secu-
rity techniques. For example, the global composition system
114 may be employed to draw protected video, such as
encrypted movies and corresponding licensing. For conven-

US 9,361,715 B2

5

tional composition engines, the application composes the
content and then transfers the content to a corresponding
composition engine. This may result in the content being
“transferred in the clear” (e.g., transfer of uncompressed
video frames) without the protections and thus the content
could be exposed to malicious parties.

However, in one or more implementations described herein
the content may be provided to the global composition system
114 and may be executed within a protected area that is not
touchable directly by the applications 110. Thus, trust of the
composition engine 116 to not further communicate the con-
tent may be used to protect that content. For instance, the
composition engine may be relied upon to generate pixels for
rendering without exposing those pixels to applications that
are executed by the computing device 102. Thus, this “one
way flow” may help ensure that the wrong application (e.g.,
from a malicious entity) does not receive the unprotected
content.

Further, conventional composition engines and corre-
sponding applications “owned” a particular portion of a
screen of a display device 112. Therefore, some display tech-
niques were difficultto support using these conventional tech-
niques. One such technique was transparency for multiple
applications because the area of the display device 112 could
be owned by one or the other conventional composition
engines, but not both. For instance, a particular area of the
display device 112 may involve windows from at least two
different applications and their corresponding conventional
composition engines. Conventionally, to support techniques
such as transparency each instance of the windows was drawn
to memory and then effects were applied to the combination,
which was resource intensive.

However, because the global composition system 114 may
be aware of the different windows and react accordingly, the
desired result may be achieved without drawing the windows
separately to memory beforehand and then applying the
visual effects to the windows. For example, the global com-
position system 114 may utilize a single hierarchical tree that
describes elements to be rendered and thus “know” how the
elements relate. Therefore, the global composition system
114 may draw directly to memory of the computing device
102 without the intermediate steps that were performed using
conventional techniques. Thus, these techniques may be
employed by “thin” computing devices that could not employ
conventional composition engines due to memory and/or pro-
cessing limitations.

Additionally, conventional composition engines were gen-
erally executed asynchronously to support different render-
ing rates by different applications. Although this did support
functionality such that rendering specified an application
associated with one composition did not affect the rendering
specified by another application, this could result in an inef-
ficient use of computing device 102 resources.

Further, priorities assigned to the different conventional
composition engines may cause errors both to the conven-
tional composition engine as well as associated application.
For instance, conventional composition engines may be given
a relatively high priority for execution by a processor of the
computing device 102. However, instances may occur in
which the composition engines consume a signification
amount of the resources, such as to support multiple anima-
tions. Because of this, the composition engines as well as the
applications themselves may not have sufficient resources
available to execute as intended when confronted with such
resource intensive tasks.

In one or more implementations, the composition engine
116 may be assigned a high priority, e.g., a high thread pri-

20

25

30

35

40

45

55

60

65

6

ority may be assigned to the composition engine 116 relative
to priorities assigned to other threads executed by the com-
puting device 102. The global composition system 114 may
then mange priority of how eclements from the different
sources are rendered by the composition engine 116, which is
given a high priority to ensure that the rendering occurs. For
example, the global composition system 114 may manage
which elements are updated, a frequency at which this update
occurs (e.g., to switch from 60 Hz to 30 Hz), and so on. Thus,
the global composition system 114 may help promote avail-
ability of resources of the computing device 102 for other
uses, such as the applications 110 that provide the elements
for rendering.

FIG. 2 illustrates an example system 200 in which the
global composition system 114 is illustrated in greater detail
as including the composition engine 116 of FIG. 1 as well as
a user-mode library 202 and an object database module 204.
The user-mode library 202 supports a variety of APIs 206,
208 that are illustrated as being used by respective application
processes 210, 212 to interact with the object database mod-
ule 204. The composition engine 116 is illustrated in this
example system 200 as being executed within its own process
214.

Conventional use of a plurality of distributed composition
engines protected execution of the engines as well as appli-
cations of a computing device from each other. For example,
if a first application fails, a first conventional composition
engine coupled to the first application may also fail. However,
a second composition engine that was coupled to a different
conventional composition engine was protected by the failure
due to the lack of “knowledge” that the conventional compo-
sition engines had of each other.

In one or more implementations, the global composition
system 114 may employ techniques to protect against corrup-
tion of state of the composition engine 116 by applications
110 that provide elements for rendering. One such technique
is to employ the composition engine 116 within a kernel 216
of the operating system 108. Thus, the composition engine
116 may “trust” other components that are also executed in
the kernel 216.

In this way, the global composition system 114 may
employ a “trust boundary” between a user mode 218 and a
kernel mode 220 such that checks are performed by the ker-
nel. In one or more implementations, applications may be
relied upon to determine “correctness” provided by the appli-
cations such as parameter checking to improve efficiency of
processing done by the global composition system 114.

Another such technique involves tracking such that the
global composition system 114 “knows” which data (e.g.,
elements for rendering) belongs to which application. There-
fore, a failure of one application (e.g., a crash) does not affect
the elements of another application. Further, the global com-
position system 114 may “clean up” the elements in case of
such failure, such as to remove the elements from being
rendered after a predetermined amount of time. In this way,
the global composition system 114 may allow an application
to fail gracefully and not affect other applications and corre-
sponding elements to be rendered.

As illustrated the composition engine 116 is executed on a
dedicated system process 214, which is different than pro-
cesses used to execute other code such as other application
processes 210, 212 of the computing device 102. Addition-
ally, this process 214 may be assigned high levels of trust and
priority. This process 214, for instance, may be trusted from a
point of view of getting composition data and thus may be
used for protected data, such as protected video data, email
protected with rights management, and so on.

US 9,361,715 B2

7

As illustrated in FIG. 2, the global composition system 114
may be implemented using three parts. A first part is illus-
trated as the composition engine 116, which is representative
of functionality to perform the rendering, i.e., “do the draw-
ing” to the display device 112. A second part is illustrated as
a user-mode library 202, which is representative of an entity
that is called by the applications by exposing application
programming interfaces (API) 206, 208. For example, the
user-mode library 202 may act as a “mail slot” to receive
composition data from the applications, such as through use
of'a dynamic linked library (DLL).

A third part is illustrated as an object database module 204
that is illustrated as residing in the kernel 216. The object
database module 204 is representative of functionality that is
responsible for moving data between the user-mode library
202 and the composition engine 116.

The object database module 204 may also perform valida-
tion. For example, an application may call the user-mode
library 202 to create an element, such as a bitmap. If the
requested element does not meet criteria that are enforced by
the object database module 204 (e.g., less than “N” number of
pixels), the object database module 204 may return a failure
message to the application that called the user-mode library
202. Thus, the object database module 204 may operate
within the kernel 216 to control what is provided to the
composition engine 116. A variety of other policies may be
enforced by the object database module 204.

Therefore, the composition engine 116 may rely on data
that is provided by the object database module 204 as com-
plying with policies implemented by the object database
module 204. In other words, the composition engine may
assume that the data is valid and correct and thus suitable for
rendering. Consequently, the validation may be performed a
single time by the object database module 204 and then uti-
lized by the composition engine 116 to perform the rendering
without further validation.

The object database module 204 may also be representative
of functionality to inform the composition engine 116 of
when data to be rendered has changed. For example, an API
implemented via the user-mode library may be configured to
consume a graph that describes what is to be rendered, an
example of which is shown in FIG. 3. The graph 300 may
include a list of elements to be rendered as well as a descrip-
tion of where to render the elements on the display device
112, which may include how the elements are to move in an
instance of an animation.

Additionally, the elements to be rendered may be formed
using sub-elements and thus the graph 300 may assume a
hierarchical structure. Further, the graph 300 may describe
how the elements are to be rendered, e.g., draw text once,
render an animation, and so forth. Thus, the graph 300 may
describe the elements and how the elements relate to each
other.

The graph 300 represents two sets of objects that may be
used by the composition engine 116 to render a scene, bit-
maps that are composed together and visuals that define the
spatial relationships according to which those bitmaps are
composed. In this model, the bitmaps are the “what” and the
visuals are the “how” of the composition engine 116. Those
objects are arranged in a tree structure and bound to a top-
level or child window for composition. In this figure, a child
visual 4 is also illustrated as pointing to the DX bitmap. This
describes functionality of the composition system that allows
developers to use the same content for multiple Ul elements,
which may helps conserve resources of the computing device
102, e.g., memory.

20

25

30

35

40

45

50

55

60

65

8

Returning again to FIG. 2, once received by the composi-
tion engine 116, the application does not need to further call
the composition engine 116 to keep rendering the elements.
Thus, the composition engine 116 may conserve resources as
compared to conventional techniques that could involve an
application making sixty calls per second to render an anima-
tion at a refresh rate of the display device 112. Thus, the
application 110 may call an API of the user-mode library 202
to construct a structure and an API to construct elements to be
rendered by the composition engine.

In order to make a change to the content that is rendered by
the composition engine 116, the application may call another
application programming interface of the user-mode library
202 to update the structure and/or elements. For example, the
application may provide data via an update API to provide
information to be used for a stock ticker animation.

In one or more implementations, batching techniques may
also be leveraged to define which elements are to be rendered
using frames. As previously described, the global composi-
tion system 114 may receive a variety of different elements
for rendering at a variety of different rates. Accordingly, the
global composition system 114 may support a structure in
which a list of elements to be rendered together is formed.
Thus, the global composition system 114 may implement a
definition of begin and end for the elements in which the
elements received in between are not rendered until the “end”
is received. Thus, the frame may support an “all or nothing”
approach to the rendering of elements for particular frames
and ensure that the elements are rendered together for display
when desired.

For example, the object database module 204 may track
two different states for an application. The first state may
reference elements that are for current display. The second
state may reference elements that are to be displayed subse-
quent to the first state and that are changed. Thus, the second
state may be used to build a list of elements for rendering by
the composition engine 116 once the list is completed, e.g.,
once an indication is received from the application that the list
is complete.

Once complete, the changes may be sent to the composi-
tion engine 116. Further, the timing of the receipt of the
indication from the application that the list is complete may
be used to determine when those changes are displayed, e.g.,
which frame. Thus, the composition engine 116 may receive
a batch of changes described in one or more lists that are
completed but lists that have not been indicated as complete
are not communicated. This batching may thus define frames
that are rendered by the composition engine 116. Further, this
may help limit display of erroneous visual artifacts as could
occur using conventional techniques that did not support such
a definition. As should be readily apparent, an amount of time
that corresponds to the frames may be set for a variety of
different amounts as desired.

Thus, the object database module 204 may remember what
was previously rendered by the composition engine 116 (e.g.,
elements and properties of those elements), as well as know
what is going to be rendered. Therefore, the object database
module 204 may determine which elements are changed by
comparing this information. Accordingly, the object database
module 204 may communicate information which describes
this change without communicating information that is not
changed to the composition engine 116.

Additionally, the use of frames may further improve effi-
ciency. For example, an application may communicate data
that describes that an object is to be moved a certain distance
and return back to an original position. The object database
module 204 may determine that this movement is to occur

US 9,361,715 B2

9

within a time period of a single frame. Accordingly, the object
database module 204 may refrain from communicating this
data to the composition engine 116 and rather have the object
remain at its previous state. For instance, this movement may
occur within a time period used to refresh a display device
112 and thus would not be viewable by a user, regardless.

In this way, the object database module 204 may discard
intermediate states in the construction of the list that is to be
provided to the composition engine 116 for rendering. This
list may then be communicated in a variety of ways, such as
an array of commands to be performed by the composition
engine 116 to implement the changes. Further, this technique
may also be used to address instances of unbounded data sent
by application because a single instance is reported to the
composition engine.

The object database module 204 and the composition
engine 116 may also employ acknowledgement techniques
that describe that a change was implemented. For example,
the composition engine 116 may receive a communication
from the object database module 204 that describes a change
to be made. While the change is being made, the object
database module 204 may wait to send additional changes
until an acknowledgement has been received that the previous
change was made. Once the acknowledgment is received by
the object database module 204, the additional changes may
then be communicated to the composition engine.

Further, this technique may be used to provide “throttling”
and thus further conserve resources of the computing device
102. For example, an application may make a number of
requests that exceed the rate at which a display device is
refreshed. By using the frames and batching the changes, the
amount of resources that would otherwise be consumed is
reduced.

Applications that make changes to what is displayed by
calling the API of the user-mode library 202 may be multi-
threaded. Accordingly, in one or more implementations the
object database module 204 may employ techniques such that
multiple calls from the multiple threads of a single applica-
tion do not corrupt the state. This may be performed by the
application locking its threads together, itself, e.g., one thread
may be blocked while another thread of the application com-
pletes a task.

The changes from the multiple threads may then be stored
in a queue which may be managed by the operating system
108, such as through interlocked access that may be
employed for variables such that different threads may make
“complete” changes before passing control to another thread.
This may support the frame techniques described above to
arrive at atomic units of work that are to be processed by the
composition engine. Additionally, for frames in which
updates are not received, execution ofthe composition engine
may be paused until the next frame thereby further conserving
resources of the computing device 102.

The kernel 216 may also add a variety of functionality in
conjunction with the global composition system 114. For
example, when an application fails (e.g., crashes) the kernel
216 may inform the composition engine 116 of this occur-
rence. The composition engine 116 may then perform tech-
niques that are similar to those that would be used if the
application ceased execution “naturally” through a normal
exit procedure. In this way, the composition engine 116 may
arrive to a “clean up” state such that the elements that corre-
spond to the application are removed from display on the
display device 112 of the computing device 102. Thus, this
promotes robustness in the execution of the composition
engine 116.

20

25

30

35

40

45

50

55

60

65

10

The execution of the composition engine 116 may also be
secured by implementing a write-only API for the user-mode
library 202. In this way, the composition engine 116 may
generate the pixels but not expose those pixels back to the
applications, thereby protecting the images from malicious
parties.

As previously described, implementation of these tech-
niques may also involve devices “outside” of the computing
device 102, which may be distributed across one or more
entities such as the web service 104. For example, these
techniques may be employed to support terminal services, a
remote desktop environment, and so on through communica-
tion of the batch of elements and properties (e.g., a composi-
tion tree such as a graph 300 of FIG. 3) via the network 106.
Thus, the graph 300 may be generated elsewhere (e.g.,
through implementation of the user-mode library 202 and/or
the object database module 204 on the web service 104) and
transfer the composition tree for rendering by the composi-
tion engine 116 through execution of the computing device
102. In this way, the animations may be smoothly displayed
even in instances in which the network 106 is unreliable.
Further discussion of these and other techniques may be
found in relation to the following procedures.

The global composition system 114 may also be config-
ured to take advantage of functionality available from hard-
ware (e.g., a graphics card) to perform operations, which
means operations can be made faster and show better perfor-
mance. Examples of which include use of a graphics process-
ing unit (GPU) to add transparency to a composition element
(e.g., piece of UL, entire window), by blending two overlaying
semitransparent windows, drawing geometric clips (rounded
corners), and so on. When the hardware (e.g., GPU) is not
available, the global composition system 114 may still per-
form these operations by “falling back” to software render-
ing.

Generally, any of the functions described herein can be
implemented using software, firmware, hardware (e.g., fixed
logic circuitry), or a combination of these implementations.
The terms “module,” “functionality,” and “engine” as used
herein generally represent software, firmware, hardware, or a
combination thereof. In the case of a software implementa-
tion, the module, functionality, or engine represents program
code that performs specified tasks when executed on a pro-
cessor (e.g., CPU or CPUs). The program code can be stored
in one or more computer readable memory devices. The fea-
tures of the techniques described below are platform-inde-
pendent, meaning that the techniques may be implemented on
avariety of commercial computing platforms having a variety
of processors.

For example, the computing device 102 may also include
an entity (e.g., software) that causes hardware of the comput-
ing device 102 to perform operations, e.g., processors, func-
tional blocks, and so on. For example, the computing device
102 may include a computer-readable medium that may be
configured to maintain instructions that cause the computing
device, and more particularly hardware of the computing
device 102 to perform operations. Thus, the instructions func-
tion to configure the hardware to perform the operations and
in this way result in transformation of the hardware to per-
form functions. The instructions may be provided by the
computer-readable medium to the computing device 102
through a variety of different configurations.

One such configuration of a computer-readable medium is
signal bearing medium and thus is configured to transmit the
instructions (e.g., as a carrier wave) to the hardware of the
computing device, such as via a network. The computer-
readable medium may also be configured as a computer-

US 9,361,715 B2

11

readable storage medium and thus is not a signal bearing
medium. Examples of a computer-readable storage medium
include a random-access memory (RAM), read-only memory
(ROM), an optical disc, flash memory, hard disk memory, and
other memory devices that may use magnetic, optical, and
other techniques to store instructions and other data.

Example Procedures

The following discussion describes global composition
system techniques that may be implemented utilizing the
previously described systems and devices. Aspects of each of
the procedures may be implemented in hardware, firmware,
or software, or a combination thereof. The procedures are
shown as a set of blocks that specify operations performed by
one or more devices and are not necessarily limited to the
order shown for performing the operations by the respective
blocks. In portions of the following discussion, reference will
be made to the environment 100 of FIG. 1, the system 200 of
FIG. 2, and the graph 300 of FIG. 3.

FIG. 4 depicts a procedure 400 in an example implemen-
tation in which a graph is generated that describes elements
for rendering by a single composition engine. A graph is
generated that describes elements that have been specified for
rendering by a plurality of applications that are executed by
one or more computing devices (block 402). As shown in FIG.
3, the graph 300 may include a list of elements to be rendered
as well as a description of where to render the elements on the
display device 112, which may include how the elements are
to move in an instance of an animation. Additionally, the
elements to be rendered may be formed using sub-elements
and thus the graph 300 may assume a hierarchical structure.
Further, the graph 300 may describe how the elements are to
be rendered. Thus, the graph 300 may describe the elements
and how the elements relate to each other. A variety of other
graphs are also contemplated.

The graph is communicated for receipt by a single compo-
sition engine to cause the elements to be rendered (block
404). This may be performed in a variety of ways. For
example, the graph may be communicated from a web service
via a network for receipt by a computing device that executes
the single composition engine (block 406), such as from the
global composition system 118 of the web service 104 via the
network 106 to the composition engine 116 of the computing
device 102. In another example, the graph may be communi-
cated from an object database module to the single composi-
tion engine (block 408). The object database module 204, for
instance, may generate the graph based on data received from
the plurality of applications and communicate the graph to the
composition engine to reference elements that are updated. A
variety of other examples are also contemplated.

Example System and Device

FIG. 5 illustrates an example system 500 that includes the
computing device 102 as described with reference to FIG. 1.
The example system 500 enables ubiquitous environments
for a seamless user experience when running applications on
a personal computer (PC), a television device, and/or a
mobile device. Services and applications run substantially
similar in all three environments for a common user experi-
ence when transitioning from one device to the next while
utilizing an application, playing a video game, watching a
video, and so on. In the illustrated instance, the computing
device 102 is illustrated as implementing at least part of the
global composition system 114 described above.

In the example system 500, multiple devices are intercon-
nected through a central computing device. The central com-
puting device may be local to the multiple devices or may be
located remotely from the multiple devices. In one embodi-
ment, the central computing device may be a cloud of one or

20

25

30

35

40

45

50

55

60

65

12

more server computers that are connected to the multiple
devices through a network, the Internet, or other data com-
munication link. In one embodiment, this interconnection
architecture enables functionality to be delivered across mul-
tiple devices to provide acommon and seamless experience to
a user of the multiple devices. Each of the multiple devices
may have different physical requirements and capabilities,
and the central computing device uses a platform to enable the
delivery of an experience to the device that is both tailored to
the device and yet common to all devices. In one embodiment,
aclass oftarget devices is created and experiences are tailored
to the generic class of devices. A class of devices may be
defined by physical features, types of usage, or other common
characteristics of the devices.

In various implementations, the computing device 102
may assume a variety of different configurations, such as for
computer 502, mobile 504, and television 506 uses. Each of
these configurations includes devices that may have generally
different constructs and capabilities, and thus the computing
device 102 may be configured according to one or more ofthe
different device classes. For instance, the computing device
102 may be implemented as the computer 502 class of a
device that includes a personal computer, desktop computer,
a multi-screen computer, laptop computer, netbook, and so
on.

The computing device 102 may also be implemented as the
mobile 502 class of device that includes mobile devices, such
as a mobile phone, portable music player, portable gaming
device, a tablet computer, a multi-screen computer, and so on.
The computing device 102 may also be implemented as the
television 506 class of device that includes devices having or
connected to generally larger screens in casual viewing envi-
ronments. These devices include televisions, set-top boxes,
gaming consoles, and so on. The techniques described herein
may be supported by these various configurations of the com-
puting device 102 and are not limited to the specific examples
the techniques described herein.

The cloud 508 includes and/or is representative of a plat-
form 510 for content services 512. The platform 510 abstracts
underlying functionality of hardware (e.g., servers) and soft-
ware resources of the cloud 508. The platform is illustrated as
supporting at least part of a global composition system 118,
such as the user-mode library and/or object database module
204. Thus, the platform may help support remote processing
of all or a portion of a global composition system 118.

The platform 510 may abstract resources and functions to
connect the computing device 102 with other computing
devices. The platform 510 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the global composition system 118
that are implemented via the platform 510. Accordingly, in an
interconnected device embodiment, implementation of func-
tionality of the functionality described herein may be distrib-
uted throughout the system 500. For example, the function-
ality may be implemented in part on the computing device
102 as well as via the platform 510 that abstracts the func-
tionality of the cloud 508.

FIG. 6 illustrates various components of an example device
600 that can be implemented as any type of computing device
as described with reference to FIGS. 1, 2, and 5 to implement
embodiments of the techniques described herein. Device 600
includes communication devices 602 that enable wired and/
or wireless communication of device data 604 (e.g., received
data, data that is being received, data scheduled for broadcast,
data packets of the data, etc.). The device data 604 or other
device content can include configuration settings of the
device, media content stored on the device, and/or informa-

US 9,361,715 B2

13

tion associated with a user of the device. Media content stored
on device 600 can include any type of audio, video, and/or
image data. Device 600 includes one or more data inputs 606
via which any type of data, media content, and/or inputs can
be received, such as user-selectable inputs, messages, music,
television media content, recorded video content, and any
other type of audio, video, and/or image data received from
any content and/or data source.

Device 600 also includes communication interfaces 608
that can be implemented as any one or more of a serial and/or
parallel interface, a wireless interface, any type of network
interface, a modem, and as any other type of communication
interface. The communication interfaces 608 provide a con-
nection and/or communication links between device 600 and
a communication network by which other electronic, com-
puting, and communication devices communicate data with
device 600.

Device 600 includes one or more processors 610 (e.g., any
of microprocessors, controllers, and the like) which process
various computer-executable instructions to control the
operation of device 600 and to implement embodiments of the
techniques described herein. Alternatively or in addition,
device 600 can be implemented with any one or combination
of hardware, firmware, or fixed logic circuitry that is imple-
mented in connection with processing and control circuits
which are generally identified at 612. Although not shown,
device 600 can include a system bus or data transfer system
that couples the various components within the device. A
system bus can include any one or combination of different
bus structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.

Device 600 also includes computer-readable media 614,
such as one or more memory components, examples of which
include random access memory (RAM), non-volatile
memory (e.g., any one or more of a read-only memory
(ROM), flash memory, EPROM, EEPROM, etc.), and a disk
storage device. A disk storage device may be implemented as
any type of magnetic or optical storage device, such as a hard
disk drive, a recordable and/or rewriteable compact disc
(CD), any type of a digital versatile disc (DVD), and the like.
Device 600 can also include a mass storage media device 616.

Computer-readable media 614 provides data storage
mechanisms to store the device data 604, as well as various
device applications 618 and any other types of information
and/or data related to operational aspects of device 600. For
example, an operating system 620 can be maintained as a
computer application with the computer-readable media 614
and executed on processors 610. The device applications 618
can include a device manager (e.g., a control application,
software application, signal processing and control module,
code that is native to a particular device, a hardware abstrac-
tion layer for a particular device, etc.). The device applica-
tions 618 also include any system components or modules to
implement embodiments of the techniques described herein.
In this example, the device applications 618 include an inter-
face application 622 and an input/output module 624 that are
shown as software modules and/or computer applications.
The input/output module 624 is representative of software
that is used to provide an interface with a device configured to
capture inputs, such as a touchscreen, track pad, camera,
microphone, and so on. Alternatively or in addition, the inter-
face application 622 and the input/output module 624 can be
implemented as hardware, software, firmware, or any com-
bination thereof. Additionally, the input/output module 624

w

10

—_
w

20

25

40

45

50

55

60

65

14

may be configured to support multiple input devices, such as
separate devices to capture visual and audio inputs, respec-
tively.

Device 600 also includes an audio and/or video input-
output system 626 that provides audio data to an audio system
628 and/or provides video data to a display system 630. The
audio system 628 and/or the display system 630 can include
any devices that process, display, and/or otherwise render
audio, video, and image data. Video signals and audio signals
can be communicated from device 600 to an audio device
and/or to a display device via an RF (radio frequency) link,
S-video link, composite video link, component video link,
DVI (digital video interface), analog audio connection, or
other similar communication link. In an embodiment, the
audio system 628 and/or the display system 630 are imple-
mented as external components to device 600. Alternatively,
the audio system 628 and/or the display system 630 are imple-
mented as integrated components of example device 600.

CONCLUSION

Although the invention has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as example forms of implementing the claimed invention.
What is claimed is:
1. A system comprising one or more modules at least
partially implemented in hardware, the one or more modules
configured to implement a single composition engine that is
accessible via a single instance of one or more application
programming interfaces (APIs) to a plurality of applications,
the composition engine programmed to receive data that
describes elements from each of the plurality of applications
to be rendered by the composition engine for display on a
display device, the plurality of applications including at least
a first application different from a second application.
2. A system as described in claim 1, wherein the elements
include a first window that corresponds to a first said appli-
cation and a second window that corresponds to a second said
application.
3. A system as described in claim 1, wherein a first said
element is provided by a first said application and a second
said element is provided by a second said application.
4. A system as described in claim 3, wherein the one or
more modules are configured to:
determine whether the first said element when rendered
would be occluded by the second said element; and

responsive to the determination that the first said element
would be occluded, skip rendering of the first said ele-
ment.

5. A system as described in claim 3, wherein the one or
more modules are configured to:

determine that the first said element when rendered would

share a same location on a display device as the second
said element; and

responsive to the determination, apply one or more visual

effects to create a result such that the first and second
said elements share the same location without rendering
the first and second said elements separately before the
application of the one or more visual effects and after the
determination.

6. A system as described in claim 1, wherein the one or
more modules are further configured to implement an object
database module in a kernel of a computing device that
includes the one or more modules, the object database module

US 9,361,715 B2

15

configured to communicate at least a portion of the data from
the one or more APIs to the composition engine.

7. A system as described in claim 6, wherein the at least the
portion of the data describes a beginning and end of a list of
said elements and the object database module is configured to
provide the list of said elements to the composition engine
responsive to receipt of an indication of the end of the list
from a corresponding said application.

8. A system as described in claim 6, wherein the object
database module is configured to track which of the elements
correspond to which of the plurality of applications.

9. A system as described in claim 6, wherein the object
database module is configured to perform validation that the
data meets criteria for rendering by the composition engine.

10. A system as described in claim 6, wherein the object
database module is configured to communicate the at least the
portion of the data that describes elements that have been
changed to the composition engine and not communicate
another portion of the data that describes elements that have
not been changed.

11. A system as described in claim 1, wherein the one or
more modules are implemented at least in part through execu-
tion of an operating system.

12. A system as described in claim 1, wherein the one or
more APIs that receive the data are configured for write-only
access by the plurality of applications.

13. A system as described in claim 1, wherein the compo-
sition engine is programmed to:

generate pixels that describe the elements; and

not expose the pixels to the plurality of applications.

14. A system as described in claim 1, wherein:

the composition engine is executed alone in a process of a

computing device that implements the one or more mod-
ules and the process;

the process is assigned a high priority relative to at least one

other process of the computing device; and

the composition engine is configured to manage a priority

of rendering of the elements within the process.

15. A system as described in claim 1, wherein the data
describes an animation and the composition engine is config-
ured to generate the animation without further data from a
corresponding said application that provided the data.

10

20

25

30

35

40

16

16. A method implemented by one or more computing
devices, the method comprising:

generating a graph that describes elements that have been
specified for rendering by a plurality of applications that
are executed by the one or more computing devices, the
plurality of applications including at least a first appli-
cation different from a second application;

communicating the graph for receipt by a single composi-
tion engine; and

rendering the elements by the single composition engine of
a computing device of the one or more computing
devices through execution of the single composition
engine on the computing device.

17. A method as described in claim 16, wherein the gener-
ating and the communicating are performed by the one or
more computing devices that implement at least part of a web
service.

18. One or more computer-readable storage media com-
prising instructions stored thereon that, responsive to execu-
tion by a computing device, causes the computing device to
implement a global composition system comprising:

a user-mode library having a one or more application pro-
gramming interfaces that are accessible to a plurality of
applications that are executable on the computing
device;

a single instance of a composition engine configured to
render elements for the plurality of applications to a
display device, the elements described in data received
from each of the plurality of applications and respective
ones of the elements having different render constraints;
and

an object database module configured to communicate the
data from the one or more application programming
interfaces (APIs) to the composition engine.

19. One or more computer-readable storage media as
described in claim 18, wherein the object database module is
configured to be implemented in a kernel of an operating
system that is executed on the computing device.

20. One or more computer-readable storage media as
described in claim 18, wherein the elements include a first
window that corresponds to a first said application and a
second window that corresponds to a second said application.

#* #* #* #* #*

