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PROTECTION KEY MANAGEMENT AND PREFIXING IN VIRTUAL
ADDRESS SPACE LEGACY EMULATION SYSTEM

TECHNICAL FIELD

The present invention relates to techniques for implementing protected
memory access and particularly to the implementation of storage protection keys in
systems whose processors and operating systems do not support storage protection

keys.

BACKGROUND

An important limitation of computer systems is that a given compiled program
can only run under the operating system and machine instruction set for which it was
compiled. This is true because compiled programs are written to a particular
instruction set (i.e. instructions that the system recognizes and can execute), with a
known set of registers, and the ability to carry out input/output operations by making
calls to a known operating system. For example, as illustrated in FIG. 1, a compiled
application (10), is configured to execute on a particular platform including a
particular operating system (20), and hardware platform (30). Such operating systems
(20) and hardware platforms (30) may be of varying degrees of complexity. But, if
one wishes to run the application in an environment that implements a different set of
hardware instructions, or under an operating system with differing function calls,
typically the application program must be recompiled. This restriction limits the
ability of computer programs to operate in a heterogeneous environment.

To extend a computer program from one platform to another, a cross compiler,
may be used to recompile the program so that it will run natively on a different
hardware platform. However, in many situations it is undesirable to recompile source
code. Recompiling may result in errors, changes in system performance, or changes
in system behavior. Resolving these issues may require changes to the original source
code, which fragments the code base and increases management complexity.
Additionally, the source code for a particular application may not always be available,
placing further restrictions on the ability to operate a given program on a different

platform.
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One approach to address this problem is to use emulated systems, which run
on a target platform but emulate the behavior of a different (e.g. legacy) platform.
FIG. 2 depicts such an emulated system. The emulated system (90) typically includes
a target hardware platform (80), suitable device drivers (70), and a native operating
system (60). To simulate a legacy system environment, an emulator (50) is provided
that includes instruction handling routines that translate instructions for one
architecture into corresponding sets of instructions for the target architecture. In
execution, the emulator invokes native operating system (60) functions and runs on
the target hardware (80) to simulate the behavior of a legacy hardware system. If a
guest operating system (40) of the legacy platform is installed in the emulated system,
a compiled application program (10) can execute in the emulated environment,
unaware that it is actually running on a different platform. Examples of legacy,
mainframe computers include IBM mainframes running OS/360™, System/370™,
System/390™ or ESA/390™, and system/Z (International Business Machines Corp.
NY, US).

Emulators for various hardware platforms are known. For example, Hercules
is an emulator that allows an X86 machine running LINUX® (Linux Foundation, CA,
US), WINDOWS® (Microsoft Corp. WA, US), SOLARIS® (Oracle America, Inc.,
CA, US), or the OS X® (Apple Inc., CA, US) operating system to imitate mainframe
System/370, ESA/390, and z/Architecture hardware. Using a hardware emulator such
as Hercules a mainframe operating system such as MVS® ((International Business
Machines Corp. NY, US), OS/360™ or the like may be installed, thus providing a
mainframe environment on a different platform. Applications including executable
load modules that were compiled to run on a legacy platform under a legacy operating
system may thus run in an instance of that operating system installed on the hardware
emulator.

This conventional emulation approach may suffer from reduced performance
due to the multiple layers of translation required to execute the software. In
particular, such emulation systems typically must not only determine the virtual guest
addresses accessed by guest programs running in emulation, but also emulate dynamic

address translation and prefixing to emulate real addresses and absolute system
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addresses respectively. In addition, in order to run the application, a copy of the
operating system must be installed and validated for use on the emulated machine.

An address space is a consecutive range of integer numbers that correspond to
byte locations in computer storage. A real address or physical address refers to the
address of a location in physical memory. An absolute address is a physical address
that refers to the address of a location in system memory. Systems that employ
prefixing translate real addresses to absolute addresses. A virtual address, on the
other hand is converted into a physical address by means of an address translation
mechanism. Dynamic address translation (DAT), is one such mechanism as is known
in the art of memory addressing.

Current 64 bit processors support a 256TiB virtual address space (with a
theoretical maximum of 16EiB). Paging is a technique that allows each process to see
the full virtual address space, without actually requiring the full amount of physical
RAM to be physically installed. In fact, many current implementations have a
physical RAM limit of 1TiB and a theoretical limit of 4PiB of physical RAM. In
addition, to accommodating a reduced amount of physical RAM, paging introduces
the benefit of page-level protection. Such systems can provide hardware isolation
because user-level processes can only see and modify data which is paged in to their
own address space. System pages can also be protected from user processes. In the
case of a 64 bit x86 architecture, page-level protection now supersedes segmentation
as the memory protection mechanism. In such a system, the memory management
unit or MMU is a unit that transforms virtual addresses into physical addresses. The
MMU typically performs this memory mapping transformation through the use of two
tables the paging directory, and the paging table.

In one example of an Intel implementation, both tables comprise 1024 8-byte
entries. In the page directory, each entry points to a page table. In the page table,
each entry points to a physical address that is then mapped to the virtual address
found by calculating the offset within the directory and the offset within the table.
This can be done as the entire table system represents a linear 4GB virtual memory
map.

FIG. 3A depicts an example of a page directory entry. The page table 4-KB
aligned address found in bits 12-63 represents the physical address of the page table
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that manages the four megabytes at that point. It is important that this address be 4K
aligned, as the lower order bits contain the values of access bits and are not part of the
address. Bits 9-11 are available for use by the system programmer. Bit 8, labelled G
for ‘Global’ is ignored. Bit 7, labeled “S” for ‘Page Size’ stores the page size for that
specific entry. If the bit is set, then pages are 4MB in size. Otherwise, they are 4KB
in size. Bit 6, denoted with a “0” is reserved for future use and is set to the value “0.”
Bit 5, labeled A for ‘Accessed’ is used to indicate whether a page has been read or
written. This bit is set by the MMU whenever the page is accessed. Bit 4, labelled D
for ‘Disabled’ is the cache disable bit. If the bit is set, the page will not be cached.
Bit 3, labelled ‘W’ for ‘Write-Through’ indicates whether write-through caching is
enabled. Bit 2, labeled U for ‘User/Supervisor’ controls access to the page based on
privilege level. If the bit is set, then the page may be accessed by all processes. If the
bit is not set, then the page may only be accessed by supervisor processes. In the case
of a page directory entry, the user bit controls access to all the pages referenced by the
page directory entry. Therefore, if it is desired to make a page accessible to a user
process, the user bit must be set in the relevant page directory entry as well as in the
page table entry. Bit 1, labelled R for ‘Read/Write’ is the read/write permissions flag.
If the bit is set, the page is a read/write page. Otherwise, when the bit is not set, the
page is a read-only page. The WP bit in CRO determines if this is only applied to user
processes, allowing the kernel write access in the default setting, or whether the R bit
setting controls access by both user and kernel processes. Bit 0, labelled P for
‘Present’ indicates that the page is resident in physical memory when set, or that is not
present in physical memory when not set. If the bit is clear, then a page fault will
occur upon a reference attempt.

FIG. 3B depicts an example of a page table entry. The page table entries are
very similar to page directory entries, with the following exceptions: Bit 8, labeled G
for ‘Global’ prevents a look aside buffer from updating the address if it is cached and
CR3 is reset. The address will remain valid regardless of the CR3 setting. Bit 7 of
the page table entry is reserved, rather than bit 6, which was reserved in the case of
the page directory entry. Bit 6, labeled D for ‘Dirty’ indicates that the page has been
written. Bit 5, labeled C for ‘Cache Disabled’” in the page table entry performs the

same function as bit 4 labeled D in the page directory.
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In a legacy mainframe environment, each process is assigned a virtual address
space. A given process may initiate multiple tasks, and tasks operating under a
common process operate in the same virtual address space.

Mainframe CPUs typically store a portion of their state information in block 0,
or in storage locations corresponding to 0-4095 bytes. To allow multiple processors
to share the same physical memory more easily, such systems often employ a
technique known as prefixing which allows real addresses in the range of 0-4095 to
correspond to different locations in real memory for each CPU, while the remaining
real addresses will be the same. Prefixing thus converts the real addresses, which
denote the locations in real storage of the processor into absolute addresses, which are
physical addresses assigned in main system storage. This permits each processor to
have its own prefix storage area for storing the current program status word, old
program status word, and other state information. The size of the prefix area may
vary. For example, some sixty-four bit systems assign a prefix area to addresses
corresponding to locations 0-8191.

An important function of the MMU is to prevent a process or task from
accessing memory that has not been allocated to that process or task. An attempt to
access memory that has not been allocated results in a hardware fault, which is
intercepted by the Operating System, often called a segmentation fault, which causes
generally termination of the process. As further protection against unauthorised
storing of data into memory, mainframe systems implement a concept of storage keys
to control access to memory. Each contiguous 4k block of memory or page frame has
an associated storage key. The storage keys are stored in a table in a reserved space in
system memory. Only tasks that have the required storage access key, or tasks that
have a storage access key of zero, are given complete access to the block.

The storage keys are typically stored in a table that has a control byte
associated with each 4 KB block of memory. In a mainframe system, such as the
System/360™, System/390™., or System/Z architecture, the storage key is associated
with a physical memory address. More specifically, for each physical page of
memory, there is a control byte storing the storage key, and there are as many storage
keys as there are 4k byte blocks in memory. In a mainframe system, the control byte

typically includes seven bits of a one-byte field including a four-bit storage key, a
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protect bit, and two bits used to record changes and references respectively. FIG. SA
depicts an example of the seven bits of the control byte (500), with the four-bit key
510 stored in bits 0-3, the protect bit 520 stored in bit 4, the change bit 530 stored in
bit 5, and the reference bit 540 stored in bit 6. If the fetch bit of a given control byte
is set to zero, only write accesses are protected, and a task operating with any
protection key is permitted to read the block. If the fetch bit is set to one, protection
applies to both reads (fetches) and write accesses (stores) to the block.

In a system that encodes the protection key in four bits, there are 16 protection
keys numbered zero to fifteen. The protection key associated with a given task is
stored in the program status word (PSW), also referred to as the storage access key.
In operation, the system checks the storage access key against the storage key and the
access control bits stored in the control byte for a block of memory to determine
whether access is permitted. When the storage key does not match the access control
bits, storage protection logic will return, interrupt the task, and initiate a protection
exception. Storage key value zero is a special case. When a task operates with an
access key value of zero, access is permitted whatever the value of the storage key in
system memory for that address. Typically, only memory areas that are reserved for
use by the operating system are assigned a storage key value of zero.

The storage keys in the control bytes of such a system are under the control of
the operating system, which stores and modifies the bits in each entry as a page of
data is copied into physical memory, or is accessed or modified by a process or task.
Many user tasks access only key number eight, but the use of multiple storage keys
associated with a given task is supported, and takes place, for example, under CICS,
which typically uses key number nine. Most system processes operate under key zero

Storage keys are unlike ring systems not hierarchical , the storage key of zero
is a ‘master key’ which always grants access, non-zero storage keys are unique and
their value has no specific meaning other then being unique. Preferably, in a system
that uses storage keys, each memory address is assigned a single key.

Systems that emulate mainframe operations typically do so on a target
processor that has a different instruction set than that of the mainframe system. Such
target processors do not provide hardware support for key-controlled access to

storage. Therefore, in a system that emulates mainframe operations on an x86
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architecture, it would be desirable to emulate the operation of the storage keys. At the
same time, prior-art emulation systems such as the Hercules emulator implemented
emulation the DAT of virtual addresses to real addresses, and subsequently
implemented the emulation of the management of physical addresses. The
implementation of emulated dynamic address translation introduces complexities in
the emulation of key-controlled access to storage, and limits system performance due
to the need to perform multiple emulated table lookups.

In order for a program that was compiled to run on first architecture to be
enabled to run on a different target architecture, another alternative is to translate the
program be decompiling the object code, and then recompiling it to run on the target
architecture.  Though various decompilers are known, the decompilation and
recompilation of object code from one platform is difficult because it is not generally
possible for a decompiler to identify and separate computer instructions from data
with the certainty required for the recompiled program to accurately reproduce the
behavior of the original program. However, where decompilation and translation are
applied to a set of programs whose code and data can be correctly identified, such as
programs output by a known compiler or initially compiled with a known set of flags
or settings, decompilation of code compiled to run on a first architecture, and
recompilation of the decompiled code to create executable code for a target platform
presents an alternative to emulation. In one example, a load module compiler that
receives as input, a relocatable cobol load module compiled to run on an IBM
mainframe is received as input, and an executable object program adapted to run on

an x86 machine is generated as output.

SUMMARY

An emulated system that provides support for key-controlled access to storage,
without the added overhead of emulated dynamic address translation is described. In
addition, it would be beneficial for an emulated system to execute multiple tasks that
would be associated with multiple processors without the overhead associated with
saving and restoring the prefix area in response to interrupts or context switches
between tasks. A system that employs a load module compiler translate load modules

that are executable on a mainframe into executable code for an alternative platform is
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also described, in which the system provides support for key-controlled access to
storage in order to make the executable generated by the load module compiler
interoperable with mainframe systems or emulated systems that employ key-
controlled access to storage.

In one embodiment, the invention provides a computing system having a
processor not adapted to support protection key memory access control, the processor
including a memory management unit (MMU) and executing an operating system that
manages virtual memory, the processor adapted to execute user processes and tasks.
The system may be used for a method of implementing protection key memory
access control by assigning to each process, a contiguous range of virtual address
memory and a storage key to each 4k block in the contiguous address space, assigning
a storage access key to each task in the process, initiating execution of a task using a
specfic access key by assigning a virtual address mapping to that task with its
assigned access key, assigning a virtual address mapping to the task for the assigned
storage key. In response to a subsequent memory access by said task, if the
subsequent memory access uses an access key different from access keys previously
used by said task, determining whether the said task is authorized to use said different
access key, and if the second task is authorized, assigning a subsequent virtual address
mapping to the task and key. In response to a command to allocate or to free storage
by the task, setting control bytes including setting the storage key data and an
indicator that the page associated with each control byte is valid. Upon execution of a
computer instruction of said task using the access key, the method further includes
generating a virtual address in the address space associated with the task, determining
whether the first address lies within the range of addresses associated with the first
process, if the address lies within the range of addresses associated with the first
process, generating by the MMU a segmentation fault indicating that the page
corresponding to the virtual address is not present in physical memory or that the task
is attempting to write to a page that is present in memory with a read only access
permission setting, verifying by an exception handler that said access key value is
zero or that said task is authorized to access the virtual address using the access key,
upon said verifying an exception handler, changing the native protection settings

associated with the page of data comprising said guest virtual address in the MMU to
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allow access to the virtual address, and subsequently retrying the instruction, and
allowing by the MMU, the instruction of said task to access virtual addresses in said
page of data.

In additional embodiments of the method, which may be combined with one
another and with the embodiment above, the task includes a second task of said
process, prefix data associated with the first and second tasks is stored at the same
logical address, but in different physical addresses, changing includes setting the
value of bit zero of the corresponding page table entry to indicate that the physical
page is present in memory, and the method may further include invoking the
MPROTECT() function to change the native protection setting.

Embodiments of the invention further provide a computing system that may be
able to implement any of the above methods. The computing system includes a
processor not adapted to support protection key memory access control, the processor
including a memory management unit (MMU) and executing an operating system that
manages virtual memory, the processor adapted to execute user processes and tasks
and a non-transient memory storing instructions which, when executed on the
processor, cause the processor to assign to a process, a contiguous range of virtual
address memory and a storage key to each 4k block in the contiguous address space,
assign a storage access key to each task in the process, initiate execution of a task
using a specific access key by assigning a virtual address mapping to that task with its
assigned access key. assign a virtual address mapping to the task for the assigned
storage key, in response to a subsequent memory access by said task, if the
subsequent memory access uses an access key different from access keys previously
used by said task, determine whether the said task is authorized to use said different
access key, and if the second task is authorized, assign a subsequent virtual address
mapping to the task and key, in response to a command to allocate or to free storage
by the task, set control bytes including setting the storage key data and an indicator
that the page associated with each control byte is valid, and upon execution of a
computer instruction of said task using the access key, generate a virtual address in
the address space associated with the task, determine whether the first address lies
within the range of addresses associated with the first process, if the address lies

within the range of addresses associated with the first process, generate by the MMU
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a segmentation fault indicating that the page corresponding to the virtual address is
not present in physical memory or that the task is attempting to write to a page that is
present in memory with a read only access permission setting, verify by an exception
handler that said access key value is zero or that said task is authorized to access the
virtual address using the access key, upon said verifying an exception handler, change
the native protection settings associated with the page of data comprising said guest
virtual address in the MMU to allow access to the virtual address, and subsequently
retry the instruction, and allowing by the MMU, the instruction of said task to access
virtual addresses in said page of data.

In additional embodiments of the system, which may be combined with one
another and with the embodiment above, the task includes a second task of said
process, the prefix data associated with the first and second tasks are stored in the
same logical address, but in different physical addresses, changing the native
protection settings includes setting the value of bit zero of the corresponding page
table entry to indicate that the physical page is present in memory, and the system
further includes an MPROTECT() function in the operating system of said system,

operable to change the native protection setting.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its features
and advantages, reference is now made to the following description, taken in
conjunction with the accompanying drawings, in which:

FIG. 1 is a schematic representation of a prior art application, operating
system, and hardware;

FIG. 2 is a schematic representation of a prior art emulated system,;

FIG. 3A is a schematic representation of a page directory entry that may be
used with the prior art or with embodiments of the present invention;

FIG. 3B is a schematic representation of a page table entry that may be used
with the prior art or with embodiments of the present invention;

FIG. 4A is a schematic representation of an appliance according to an
embodiment of the present invention;

FIG. 4B is a schematic representation of the relationship between modules that
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have been recompiled into a load module compiled application for use in the
appliance of FIG. 4A;

FIG. 5A is a schematic representation of a prior art control byte;

FIG. 5B is a schematic representation of a control byte that may be used with
embodiments of the present invention;

FIG. 6 is a flow chart of the operation of a system according to an embodiment
of the present invention; and

FIG. 7 is a schematic representation of a four processor system that may be

used with embodiments of the present invention.

DETAILED DESCRIPTION

As indicated in FIG. 2, emulation systems may provide a facility for the
installation of a guest operating system (40) to execute, in order to support the
execution of guest applications. In one aspect of the inventive system, an appliance is
provided including a legacy application engine is constructed to enable execution of a
guest application without employing a guest operating system. FIG. 4A illustrates
one embodiment in which an x86 computer or compute blade (410) is configured and
runs a target operating system (420). In one example, the target operating system is
LINUX®. A set of native APIs (440) are further provided to enable the rapid
execution of emulated instructions. These native APIs are invoked by a legacy
application environment (430), which is adapted to emulate the behavior of the guest
system (not shown), enabling a legacy or guest application to run on the appliance. In
one embodiment, the legacy application environment is made up of a legacy operating
engine module (432), which operates as a container for processes, and a legacy
hardware environment module (435), which implements memory management and
other hardware emulation functions.

FIG. 4B illustrates the relationship between modules in the case of a legacy
application that has been recompiled using the load module compiler into a load
module compiled application (451). As with emulated tasks or processes, a load
module compiled application (451) operates in the container provided by the legacy
operating environment module (432). The application can invoke native APIs (440)

and the legacy hardware environment module (435), which implements memory
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management functions. Unlike the legacy application of FIG. 4A, the load module
compiled application (451) does not make legacy hardware calls that correspond to
the legacy platform, as it has been compiled to execute on the target architecture.

The virtual address space of a process running on a legacy mainframe system
is typically 2GB, which corresponds to 31 bits to address the space. Because it would
be too expensive to allocate the full address space worth of physical memory to each
process, virtual memory typically divides physical memory into smaller amounts of
physical memory, typically 4K, but other amounts are also used. Indeed, such
mainframe systems typically operate with a total physical memory that is much
smaller than the 2GB limit for the virtual address space. In operation, such legacy
systems perform DAT to convert virtual memory addresses to physical addresses that
are used to access physical storage devices. Virtual memory also enables the sharing
of protected memory space, the automatic management of a computer memory
hierarchy, and facilitates the loading and execution of programs.

An emulator generally refers to hardware or software that allows one system
to behave in accordance with the specifications of another system. For example, an
emulator will permit software that is designed to run on a so-called guest system to
run on a host system, which may incorporate hardware of a different design or
architecture. Emulation systems that enable software that designed to run on a
mainframe guest system, to instead operate on a different computer system are
known. Such emulators typically emulate the hardware of the underlying mainframe
system, in order for the emulation system to replicate hardware features of the guest
system on the target architecture. In the case of memory management, such hardware
emulators typically emulate physical memory, and would therefore emulate dynamic
address translation behaviors.

In accordance with one embodiment, an emulation system emulates a 2GB
virtual address space associated with the virtual address space of a mainframe,
without emulating the underlying physical storage. The emulation system may be
implemented on a native machine whose hardware and operating system support
larger address spaces. In a preferred embodiment, a 64-bit processor, with word size
and memory address width of 64-bits, and a 64-bit operating system that uses 64-bit

virtual memory addressing is employed. A person of ordinary skill in the art would
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recognize that an emulation system could be implemented with processors having
other word size, address bus width, or with operating systems employing other
numbers of bits for virtual addresses.

In accordance with one embodiment, each task or process in the emulated
system is assigned a distinct set of mappings to the 2GB address space. In a preferred
embodiment, each task is assigned a distinct mapping for each storage key associated
with the task or process. Preferably, when storage is allocated to the task, a storage
allocation routine changes the bits in the control block indicating that a particular
page can be accessed by a given key. In one example, the eighth bit of the control
byte is reserved for future use. In another implementation, bit eight may be used to
indicate whether a page is presently valid because it has been acquired through a
memory allocation routine such as malloc or getmain. In this embodiment, the eighth
bit of the control byte holding the storage key contains a valid/invalid bit that can be
set by the storage allocation routine to indicate that a particular page of virtual address
space has been allocated. If the page is deallocated, a routine will similarly set the
valid/invalid bit to indicate that the page is no longer allocated.

In such a system, each task or process would be assigned from one to sixteen
different address mappings. In one embodiment, the emulation system runs under the
LINUX® operating system on an x86 processor and emulates the operation of storage
keys to control access to virtual storage in an S390 mainframe system. The LINUX®
function MPROTECT() changes the protection in the MMU status for a calling
process’s memory pages. If a calling process attempts to access memory in a manner
that violates the protection, the kernel generates a SIGSEGYV signal for the process.

In one example, the storage protection bits are stored in a control byte,
together with a valid/invalid bit indicating that a particular memory address has been.
FIG. 5B depicts an example of the eight bits of the exemplary control byte (550), with
the four-bit key 555 stored in bits 0-3, the protect bit 560 stored in bit 4, the change
bit 565 stored in bit 5, and the reference bit 570 stored in bit 6, and a valid/invalid bit
575 stored in bit 7. The use of a single byte should be understood to be exemplary, as
the control information could be stored in a control word of different size, or in non-

contiguous bits in other storage locations.
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A description of the operation of the system is made with reference to FIG. 6.
In accordance with one embodiment, the physical page settings (FIG. 3B) in the
MMU for all pages of data are initially set to prohibit access. For example, the
Present bit (bit 0) for the corresponding page table entry will be set to “0” indicating
that the page is not present in memory. In operation, when a task or process operating
in emulation executes an instruction to a virtual legacy memory address, the system
first determines the specific virtual address associated with the task operating under
the given storage key, as indicated at 610. The system then checks whether the
address lies within a range of addresses assigned to the task. If the address is not
within a range of addresses assigned to the process (615), access is denied (680). If
the address lies within a range assigned to the process, the system then determines
whether or not the page has already been accessed 620. In the event of a first access,
the page has not previously been accessed, the access control bits of the physical page
are zero, where the MMU will prohibit access and and the kernel generates a
SIGSEGYV signal. Though the example implementation described below uses the
LINUX® MPROTECTY() operation to set the access control bits of the physical page
and signal the MMU that the access bits have changed in response to detecting that
the page is not present, in a different system, a different signal to detect a
segmentation fault, and a different routine to change the state of a page from not-
present to present could be used in accordance with the invention. In the event that
the page was previously accessed, read/write access permission is verified. If write
access 1s sought for a page for which only read access has been set, control returns to
the interrupt handler as indicated (625). If read/write access permissions match (625),
then access is permitted (627).

In one embodiment of the invention, the interrupt handler of the LINUX®
system on which the emulator runs is modified to include a key verification routine,
and the key verification routine is invoked 620. The key verification routine that
compares the storage access key associated with the current task to the storage key
555 in the control byte 550 of the storage key table to see whether the keys are equal
640. In one embodiment, the protection key associated with the current process is
maintained by legacy operating environment (432) in a data structure containing

registers, keys, control blocks, prefix information, and other context information. If
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the key verification routine finds that the access key is the same as the storage key,
access should be permitted and the routine changes the native protection status
associated with the storage logical address 650. In one example under the LINUX®
operating system, the MPROTECT() operation is used to set the protection status
from PROT NONE to PROT READ, or PROT WRITE. The MPROTECT()
operation in this example will set the Present bit (bit 0) of a corresponding page table
entry to “1”7, and will set the Read/Write bit (bit 1) to zero or one. In one
embodiment, the emulator implements a tri-state table, and changes the setting to
PROT WRITE though additional protection states could be supported. The Present
bit for the corresponding page table entry is also changed from “0” to “1” to indicate
that the page is now present. At this time, the emulation system retries execution of
the processor instruction 650 that initially caused the segmentation fault.

If the key verification routine determines that the key does not match, it then
checks to see whether the access key is key zero 670. Because key zero is typically
used for system operations, if the access key is zero, the emulator proceeds to step
650 and changes the native protection setting to allow system access. If the key does
not match and the key is other than key zero, then the system denies access 680, and
the emulation system does not execute the instruction, and the emulation system
emulates a storage protection exception.

Subsequent accesses to the same virtual address by the same task or process
running on the emulator operate in an accelerated fashion. When the virtual address
associated with the task and key is determined, the system sees that the page has
previously been accessed 620 because there is no segmentation fault and no
SIGSEGYV signal. Preferably, the MMU checks the state of the Protect bit (bit 0) of
the page table entry corresponding to the requested page to see whether the page is
already present in memory. If the page is present, this means that key verification
was previously performed for this task accessing this address using this particular
storage key. Thus, access under the protected storage key is permitted because the
permission settings were previously verified. Repeated accesses to a page that is
present experience reduced overhead, as the key verification need not be performed
repeatedly while the page remains present in memory. Tasks or processes operating in

emulation in this fashion will experience a considerable performance improvement
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due to the elimination of exception handling, context switching, and table lookup
steps that would otherwise be performed for each access.

If the same task or process subsequently executes an instruction that accesses
the same location in virtual mainframe storage, but does so using a different storage
access key, the system will determine a different virtual address 610 because there is a
distinct address mapping associated with each task and storage access key. Under this
condition, if the access to virtual storage using the different access key is the first such
access using the key, the emulator will again experience a segmentation fault,
invoking the key verification routine and, if the access key matches the storage key
640, invoke the MPROTECT() operation 650 to change the protection status of the
page. If access is not permitted under the different storage key, then the instruction
will not execute in emulation, and the emulator will emulate and log the appropriate
exception.

Another aspect of the inventive use of separate virtual address in an emulator
that emulates virtual, but not physical addresses, is the accelerated emulation of
multiple tasks or processes. As discussed above, legacy mainframe systems
implement a technique known as prefixing, which enables each processor in an
emulated system to access a different physical block of memory using the same
physical addresses in the range of 0-4095 bytes. An example of a four-processor
system is illustrated in FIG. 7. In this example, real physical addresses 0-4095 for
CPU 0, which is shown having a prefix setting of zero are mapped to absolute
physical address 0-4095. In the case of CPU 1, the prefix setting is shown as 1, and
the real physical addresses 0-4095 are mapped into the absolute system physical
addresses at an offset of 4k. Similarly, CPU 2 and CPU 3 having prefix settings of
two and three respectively have their real physical addresses from 0-4095 mapped at
offsets of 8k and 12k respectively into the absolute system physical address space. In
this illustration, the prefix area for each CPU is 4k bytes, and the prefix setting is
denoted by an integer indicating an increment of 4k. Other increments for different
size prefix areas could be used. Alternatively, the prefix setting could be stored an
offset address, such as 4k, 8k, and 12k in this example, or a set of offset address bits
stored in a prefix register. Contiguous addresses are shown in FIG. 7 for ease of

illustration. However, the prefix addresses may be at other locations in the address
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space, and need not point to contiguous locations in memory. Although prefixing
allows multiple processors to manage state information in their respective block zero
locations without overwriting one another’s data, in the case of interrupts and context
switches, the need to swap out an manage the prefix area data increases the overhead
associated with handling such interrupts or context switches.

Because the prefix area in a legacy system is set in hardware and associated
with a physical CPU, it cannot be managed by virtual addressing. In an emulated
environment, the prefix area need not be fixed to real addresses. However, emulation
systems that emulate hardware behavior of such legacy systems would emulate the
prefix area in emulated physical storage. Such systems experience significant
overhead when emulating interrupts or context switches due to the need to emulate
the copying, modifying, and later restoring of the prefix area. For example, the use of
prefixing increases the overhead associated with state changes, since saving state of
not only the CPU registers and program status word, but also of the prefix storage
area in emulation consumes computing resources and adversely impacts system
performance. It would be beneficial, in such an emulation system, to reduce or
eliminate the overhead associated with copying the prefix storage area, to allow more
rapid interrupt handling and context switching.

As described above, embodiments of the novel system assign a unique set of
virtual address mappings to each task or process, with a separate mapping for each
storage key used by the task or process. In one aspect of the novel system, the prefix
area is also managed in emulated virtual address space rather than in emulated real
CPU address space and emulated absolute system address space.

In one example, a copy of the prefix area is stored in each of the virtual
address mappings associated with each of the storage keys of a given task. Though
this approach requires writing multiple copies of the prefix area when a task is
initiated, storing the prefix area in virtual storage, rather than in block zero of real
storage or in set locations in absolute physical storage improves system performance.
In a System 390™ gystem, or in an emulation system that emulates the physical
storage of a System 390™ system, interrupts or context switches result in increased
overhead due to the need to copy the prefix area to a different location in memory,

and to restore the prefix area when the task resumes. In a production environment
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with a large number of context switches, and in the case of applications that perform
large amounts of I/O, the performance penalty associated with copying this extra data
is considerable.

As explained above, a set of tasks associated with a common process in a
legacy mainframe environment operate in a shared virtual address space. In a
multiprocessor system, the tasks may be assigned to the same CPU, or to separate
CPUs. In accordance with an embodiment of the invention, each task is assigned its
own set of virtual address spaces—one for each storage key, and is assigned its own
virtual CPU. Each virtual CPU may be implemented as a separate LINUX® thread.
Because the emulated system emulates virtual, but not physical addresses, the
emulation system need not associate the tasks with virtual CPUs in correspondence
with the assignment of tasks to CPUs that would occur in the legacy system. Indeed,
since the emulated CPUs are virtual, the emulator need not be constrained in resource
allocation as the legacy hardware would be.

In accordance with one embodiment, when a task begins and a virtual CPU is
started, a storage initialization routine initializes a set of tables of control bytes
containing storage key values and bit settings to indicate that the storage is valid for
the particular task. Because a set of virtual address mappings, one mapping for each
storage key associated with the task is needed, the initialization routine creates entries
corresponding to each available storage key. In this embodiment, after the storage is
mapped, then the system invokes a routine called remap prefix that uses the LINUX®
system call remap_file pages() to remap virtual address O to the prefix page and to
remap the prefix page back to address zero.

When storage is deallocated from the task, a routine sets that native protection
status to PROT NONE to prohibit access using the mprotect() operation, and also sets
the corresponding valid/invalid bits to invalid in the control bytes of to indicate that
the corresponding page frames are invalid for that task.

The emulation system described above is an example of an emulation system
that emulates a legacy mainframe’s virtual addresses, but does not emulate dynamic
address translation to real or absolute addresses. The system improves performance
through the mapping of distinct sets of virtual address spaces to each task, and

techniques to improve the performance of emulation of storage key protection and
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prefixing in an emulated environment. Embodiments are described using an x86
target platform and x86 target operating system. Other target processor architectures
or operating systems could be used. Techniques to implement storage key protection
that use the features of the MMU, which cause the LINUX® operating system to
generate a SIGSEGYV signal and that invoke the LINUX® mprotect() operation are
described. Other methods of detecting that the page corresponding to a virtual
address is available or unavailable, or protected or unprotected could be implemented
using other operating systems and computer platforms.

The above described technique of mapping distinct sets of virtual address
spaces to each task can also be applied to the execution of a program that was
compiled using the load module compiler described above. In such a system, the
executable x86 program that is output by the load module compiler is assigned to a
range of virtual addresses, just as a program running in emulation would be assigned a
range of virtual addresses. In accordance with one embodiment, the legacy operating
environment operates as a container, not only for the execution of emulation
programs, but also for the execution of programs that have been compiled to execute
natively on the x86 platform using the load module compiler. As for tasks or
processes running in emulation, the legacy operating environment also maintains
context information including registers, keys, control blocks, and prefix information
associated with LMC compiled processes.

One or more aspects of the present invention can be included in an article of
manufacture (e.g. one or more computer program products) comprising, for example,
physical computer readable media. Such media contain, for example, computer
program instructions which may be in source or object code format, or other
commands or logic configured to provide the capabilities of the present invention.
The article of manufacture can be included in a disk drive, optical drive,
semiconductor memory, tape drive, or in a storage device that may be separate or
installed in a computer or computer system.

The examplary system described above employed the memory management
unit found on an Intel processor and employed a special exception handler to perform
protection key wverification in the management of the page tables used by the

LINUX® operating system to control which pages may be placed into physical
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memory for use by a particular task. Though the embodiments disclosed herein used
computers with Intel processors, other processors such as processors provided by
AMD (CA, US), IBM, Motorola (IL, US), ARM (UK), or other sources may be used
without effect on the invention disclosed herein.

A system for storing and/or executing program instructions typically includes
at least one processor coupled to memory through a system bus or other data channel
or arrangement of switches, buffers, networks, and channels. The memory may
include, cache memory, local memory employed during execution of the program.
Main memory can be Random Access Memory (RAM), or other dynamic storage
devices known in the art. Preferably, such a system employs battery backup to ensure
the persistance of memory. Read only memory used by the system can be ROM,
PROM, EPROM, Flash/EEPROM, or other known memory technologies. Mass
storage can be used to store data or program instructions. Examples of mass storage
include disks, arrays of disks, tape, solid state drives, and may be configured in direct
attached, networked attached, storage area network, or other storage configurations
that are known in the art. Removable storage media include tapes, hard drives, floppy
disks, zip drives, flash memory and flash memory drives, optical disks and the like.

Many examples are provided herein. These examples may be modified
without departing from the spirit of the present invention. The examples and
embodiments described herein are offered as examples, and other components,
routines, or modules may also be used.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" and
"comprising", will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of
integers or steps.

The reference to any prior art in this specification is not, and should not be
taken as, an acknowledgement or any form of suggestion that the prior art forms part

of the common general knowledge in Australia.
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CLAIMS
1. A method of implementing protection key memory access control in a
computing system having a processor not adapted to support protection key memory access
control, the processor including a memory management unit (MMU) and executing an
operating system that manages virtual memory, the processor adapted to execute user
processes comprising tasks, the method comprising:
assigning a contiguous range of addressable virtual memory containing blocks to each
USEr process;
assigning a storage access key to each task;
initiating execution of a specific task in a specific user process using the storage
access key assigned to that specific task by assigning a first virtual address mapping in the
contiguous range of addressable virtual memory to that specific task with its assigned storage
access key;
in response to a subsequent memory access by the specific task, if the subsequent
memory access uses a storage access key different from any storage access key previously
used by the specific task, determining whether the specific task is authorized to use the
different storage access key, and if the specific task is authorized, assigning a subsequent
virtual address mapping to the specific task and the different storage access key;
in response to a command to allocate or to free storage used by the specific task,
setting control bytes including setting storage key data and an indicator that a page
comprising data associated with each control byte is valid; and
upon execution of a computer instruction of the specific task using any storage access
key,
generating a virtual address associated with the specific task;
determining whether the virtual address associated with the specific task lies
within the contiguous range of virtual address memory; and
if the address lies within the contiguous range of addressable virtual memory:
generating by the MMU a segmentation fault;
verifying by an exception handler that said storage access key has a
value of zero or that said task is authorized to access the virtual address using
that said storage access key;
upon said verifying an exception handler, changing native protection
settings associated with the page stored in the virtual memory and associated

with the task to allow access to the associated virtual address; and
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subsequently re-executing the computer instruction of the specific task

to allow access to the page.

2. The method of claim 1, wherein the blocks comprise 4K blocks.

3. The method of claim 1, wherein the segmentation fault comprises indicating

that the page corresponding to the virtual address is not present in physical memory.

4. The method of claim 1, wherein the segmentation fault comprises indicating
that the task is attempting to write to the page which is present in memory with a read only

access permission setting.

5. The method of claim 1, wherein the segmentation fault comprises indicating

that the task is attempting to read the page without a matching access permission setting.

6. The method of claim 1, wherein prefix data associated with the first and
subsequent executions of the specific task of the specific user process is stored at the same

logical address, but in different physical addresses.

7. The method of claim 1, wherein changing native protection settings associated
with the page stored in the virtual address memory and associated with the task comprises
setting the value of bit zero of a corresponding page table entry to indicate that the physical

page comprising the data is present in memory.

8. The method of claim 1, further comprising invoking the MPROTECT()
function to change native protection settings associated with the page stored in the virtual

address memory and associated with the specific task.

9. The method of claim 1, wherein changing native protection settings comprises

changing access control bits.

10. The method of claim 1, further comprising, in response to the segmentation
fault, executing a routine to change a state of the page stored in the virtual address memory

and associated with the specific task from not-present to present.
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11. A computing system comprising:

a processor not adapted to support protection key memory access control, the
processor including a memory management unit (MMU) and executing an operating system
that manages addressable virtual memory, the processor adapted to execute user processes
comprising tasks; and

a non-transient memory storing instructions which, when executed on the processor,
cause the processor to:

assign to a user process, a contiguous range of addressable virtual memory
containing blocks and assign a storage key to each block;
assign a storage access key to each task;
initiate execution of a specific task in a specific user process using a specific
storage access key assigned to that specific task by assigning a first virtual address
mapping in the contiguous range of addressable virtual memory to that specific task
with its assigned storage access key;
in response to a subsequent memory access by the specific task, if the
subsequent memory access uses a storage access key different from any storage
access keys previously used by the specific task, determine whether the specific task
is authorized, assign a subsequent virtual address mapping to the specific task and
different storage access key;
in response to a command to allocate or to free storage by the specific task, set
control bytes including setting the storage key data and an indicator that the page
comprising data associated with each control byte is valid; and
upon execution of a computer instruction of the specific task using any storage
access key,
generate a virtual address in the address associated with the specific
task;
determine whether the virtual address associated with the specific task
lies within the range of contiguous range of addressable virtual memory; and
if the address lies within the contiguous range of addressable virtual
memory:
generate by the MMU a segmentation fault;
verify by an exception handler that said storage access key has

a value of zero or that said task is authorized to access the virtual
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address in the addressable virtual memory using that said storage
access key;

upon said verifying an exception handler, change native
protection settings associated with the page stored in the virtual
memory and associated with the task to allow access to the associated
virtual address; and

subsequently re-execute the computer instruction of the specific

task to allow access to the page.

12.  The system of claim 11, wherein the blocks comprise 4K blocks.

13. The system of claim 11, wherein the segmentation fault comprises and
indication that the page corresponding to the virtual address is not present in physical

memory.

14. The system of claim 11, wherein the segmentation fault comprises an
indication that the task is attempting to write to the page which is present in memory with a

read only access permission setting.

15. The system of claim 11, wherein the segmentation fault comprises an
indication that the task is attempting to read the page without a matching access permission

setting.

16. The system of claim 11, wherein prefix data associated with the first and
subsequent executions of the specific task of the specific user process is stored at the same

logical address, but in different physical addresses.

17. The system of claim 11, wherein to change native protection settings
associated with the page stored in the virtual address memory and associated with the task,
the value of bit zero of a corresponding page table entry is set to indicate that the physical

page comprising the data is present in memory.

18. The system of claim 11, further comprising the non-transient memory storing

instructions which, when executed on the processor, cause the processor to invoke the
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MPROTECT() function to change native protection settings associated with the page stored

in the virtual address memory and associated with the specific task.

19.  The system of claim 11, wherein the instructions cause the processor to

change native protection settings by changing access control bits.

20. The system of claim 11, further comprising, in response to the segmentation
fault, executing a routine to change a state of the page stored in the virtual address memory

and associated with the specific task from not-present to present.
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