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PROTECTION KEY MANAGEMENT AND PREFIXING IN VIRTUAL 

ADDRESS SPACE LEGACY EMULATION SYSTEM 

TECHNICAL FIELD 

5 The present invention relates to techniques for implementing protected 

memory access and particularly to the implementation of storage protection keys in 

systems whose processors and operating systems do not support storage protection 

keys.  

10 BACKGROUND 

An important limitation of computer systems is that a given compiled program 

can only run under the operating system and machine instruction set for which it was 

compiled. This is true because compiled programs are written to a particular 

instruction set (i.e. instructions that the system recognizes and can execute), with a 

15 known set of registers, and the ability to carry out input/output operations by making 

calls to a known operating system. For example, as illustrated in FIG. 1, a compiled 

application (10), is configured to execute on a particular platform including a 

particular operating system (20), and hardware platform (30). Such operating systems 

(20) and hardware platforms (30) may be of varying degrees of complexity. But, if 

20 one wishes to run the application in an environment that implements a different set of 

hardware instructions, or under an operating system with differing function calls, 

typically the application program must be recompiled. This restriction limits the 

ability of computer programs to operate in a heterogeneous environment.  

To extend a computer program from one platform to another, a cross compiler, 

25 may be used to recompile the program so that it will run natively on a different 

hardware platform. However, in many situations it is undesirable to recompile source 

code. Recompiling may result in errors, changes in system performance, or changes 

in system behavior. Resolving these issues may require changes to the original source 

code, which fragments the code base and increases management complexity.  

30 Additionally, the source code for a particular application may not always be available, 

placing further restrictions on the ability to operate a given program on a different 

platform.
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One approach to address this problem is to use emulated systems, which run 

on a target platform but emulate the behavior of a different (e.g. legacy) platform.  

FIG. 2 depicts such an emulated system. The emulated system (90) typically includes 

a target hardware platform (80), suitable device drivers (70), and a native operating 

5 system (60). To simulate a legacy system environment, an emulator (50) is provided 

that includes instruction handling routines that translate instructions for one 

architecture into corresponding sets of instructions for the target architecture. In 

execution, the emulator invokes native operating system (60) functions and runs on 

the target hardware (80) to simulate the behavior of a legacy hardware system. If a 

10 guest operating system (40) of the legacy platform is installed in the emulated system, 

a compiled application program (10) can execute in the emulated environment, 

unaware that it is actually running on a different platform. Examples of legacy, 

mainframe computers include IBM mainframes running OS/360TM System/370TM, 

System/390TM or ESA/390TM, and system/Z (International Business Machines Corp.  

15 NY, US).  

Emulators for various hardware platforms are known. For example, Hercules 

is an emulator that allows an X86 machine running LINUX® (Linux Foundation, CA, 

US), WINDOWS® (Microsoft Corp. WA, US), SOLARIS® (Oracle America, Inc., 

CA, US), or the OS X (Apple Inc., CA, US) operating system to imitate mainframe 

20 System/370, ESA/390, and z/Architecture hardware. Using a hardware emulator such 

as Hercules a mainframe operating system such as MVS ((International Business 

Machines Corp. NY, US), OS/360TM or the like may be installed, thus providing a 

mainframe environment on a different platform. Applications including executable 

load modules that were compiled to run on a legacy platform under a legacy operating 

25 system may thus run in an instance of that operating system installed on the hardware 

emulator.  

This conventional emulation approach may suffer from reduced performance 

due to the multiple layers of translation required to execute the software. In 

particular, such emulation systems typically must not only determine the virtual guest 

30 addresses accessed by guest programs running in emulation, but also emulate dynamic 

address translation and prefixing to emulate real addresses and absolute system
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addresses respectively. In addition, in order to run the application, a copy of the 

operating system must be installed and validated for use on the emulated machine.  

An address space is a consecutive range of integer numbers that correspond to 

byte locations in computer storage. A real address or physical address refers to the 

5 address of a location in physical memory. An absolute address is a physical address 

that refers to the address of a location in system memory. Systems that employ 

prefixing translate real addresses to absolute addresses. A virtual address, on the 

other hand is converted into a physical address by means of an address translation 

mechanism. Dynamic address translation (DAT), is one such mechanism as is known 

10 in the art of memory addressing.  

Current 64 bit processors support a 256TiB virtual address space (with a 

theoretical maximum of 16EiB). Paging is a technique that allows each process to see 

the full virtual address space, without actually requiring the full amount of physical 

RAM to be physically installed. In fact, many current implementations have a 

15 physical RAM limit of ITiB and a theoretical limit of 4PiB of physical RAM. In 

addition, to accommodating a reduced amount of physical RAM, paging introduces 

the benefit of page-level protection. Such systems can provide hardware isolation 

because user-level processes can only see and modify data which is paged in to their 

own address space. System pages can also be protected from user processes. In the 

20 case of a 64 bit x86 architecture, page-level protection now supersedes segmentation 

as the memory protection mechanism. In such a system, the memory management 

unit or MMU is a unit that transforms virtual addresses into physical addresses. The 

MMU typically performs this memory mapping transformation through the use of two 

tables the paging directory, and the paging table.  

25 In one example of an Intel implementation, both tables comprise 1024 8-byte 

entries. In the page directory, each entry points to a page table. In the page table, 

each entry points to a physical address that is then mapped to the virtual address 

found by calculating the offset within the directory and the offset within the table.  

This can be done as the entire table system represents a linear 4GB virtual memory 

30 map.  

FIG. 3A depicts an example of a page directory entry. The page table 4-KB 

aligned address found in bits 12-63 represents the physical address of the page table
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that manages the four megabytes at that point. It is important that this address be 4K 

aligned, as the lower order bits contain the values of access bits and are not part of the 

address. Bits 9-11 are available for use by the system programmer. Bit 8, labelled G 

for 'Global' is ignored. Bit 7, labeled "S" for 'Page Size' stores the page size for that 

5 specific entry. If the bit is set, then pages are 4MB in size. Otherwise, they are 4KB 

in size. Bit 6, denoted with a "0" is reserved for future use and is set to the value "0." 

Bit 5, labeled A for 'Accessed' is used to indicate whether a page has been read or 

written. This bit is set by the MNMU whenever the page is accessed. Bit 4, labelled D 

for 'Disabled' is the cache disable bit. If the bit is set, the page will not be cached.  

10 Bit 3, labelled 'W' for 'Write-Through' indicates whether write-through caching is 

enabled. Bit 2, labeled U for 'User/Supervisor' controls access to the page based on 

privilege level. If the bit is set, then the page may be accessed by all processes. If the 

bit is not set, then the page may only be accessed by supervisor processes. In the case 

of a page directory entry, the user bit controls access to all the pages referenced by the 

15 page directory entry. Therefore, if it is desired to make a page accessible to a user 

process, the user bit must be set in the relevant page directory entry as well as in the 

page table entry. Bit 1, labelled R for 'Read/Write' is the read/write permissions flag.  

If the bit is set, the page is a read/write page. Otherwise, when the bit is not set, the 

page is a read-only page. The WP bit in CRO determines if this is only applied to user 

20 processes, allowing the kernel write access in the default setting, or whether the R bit 

setting controls access by both user and kernel processes. Bit 0, labelled P for 

'Present' indicates that the page is resident in physical memory when set, or that is not 

present in physical memory when not set. If the bit is clear, then a page fault will 

occur upon a reference attempt.  

25 FIG. 3B depicts an example of a page table entry. The page table entries are 

very similar to page directory entries, with the following exceptions: Bit 8, labeled G 

for 'Global' prevents a look aside buffer from updating the address if it is cached and 

CR3 is reset. The address will remain valid regardless of the CR3 setting. Bit 7 of 

the page table entry is reserved, rather than bit 6, which was reserved in the case of 

30 the page directory entry. Bit 6, labeled D for 'Dirty' indicates that the page has been 

written. Bit 5, labeled C for 'Cache Disabled' in the page table entry performs the 

same function as bit 4 labeled D in the page directory.



WO 2017/103651 PCT/IB2015/059646 

5 

In a legacy mainframe environment, each process is assigned a virtual address 

space. A given process may initiate multiple tasks, and tasks operating under a 

common process operate in the same virtual address space.  

Mainframe CPUs typically store a portion of their state information in block 0, 

5 or in storage locations corresponding to 0-4095 bytes. To allow multiple processors 

to share the same physical memory more easily, such systems often employ a 

technique known as prefixing which allows real addresses in the range of 0-4095 to 

correspond to different locations in real memory for each CPU, while the remaining 

real addresses will be the same. Prefixing thus converts the real addresses, which 

10 denote the locations in real storage of the processor into absolute addresses, which are 

physical addresses assigned in main system storage. This permits each processor to 

have its own prefix storage area for storing the current program status word, old 

program status word, and other state information. The size of the prefix area may 

vary. For example, some sixty-four bit systems assign a prefix area to addresses 

15 corresponding to locations 0-8191.  

An important function of the MMU is to prevent a process or task from 

accessing memory that has not been allocated to that process or task. An attempt to 

access memory that has not been allocated results in a hardware fault, which is 

intercepted by the Operating System, often called a segmentation fault, which causes 

20 generally termination of the process. As further protection against unauthorised 

storing of data into memory, mainframe systems implement a concept of storage keys 

to control access to memory. Each contiguous 4k block of memory or page frame has 

an associated storage key. The storage keys are stored in a table in a reserved space in 

system memory. Only tasks that have the required storage access key, or tasks that 

25 have a storage access key of zero, are given complete access to the block.  

The storage keys are typically stored in a table that has a control byte 

associated with each 4 KB block of memory. In a mainframe system, such as the 

System/360TM, System/390TM, or System/Z architecture, the storage key is associated 

with a physical memory address. More specifically, for each physical page of 

30 memory, there is a control byte storing the storage key, and there are as many storage 

keys as there are 4k byte blocks in memory. In a mainframe system, the control byte 

typically includes seven bits of a one-byte field including a four-bit storage key, a
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protect bit, and two bits used to record changes and references respectively. FIG. 5A 

depicts an example of the seven bits of the control byte (500), with the four-bit key 

510 stored in bits 0-3, the protect bit 520 stored in bit 4, the change bit 530 stored in 

bit 5, and the reference bit 540 stored in bit 6. If the fetch bit of a given control byte 

5 is set to zero, only write accesses are protected, and a task operating with any 

protection key is permitted to read the block. If the fetch bit is set to one, protection 

applies to both reads (fetches) and write accesses (stores) to the block.  

In a system that encodes the protection key in four bits, there are 16 protection 

keys numbered zero to fifteen. The protection key associated with a given task is 

10 stored in the program status word (PSW), also referred to as the storage access key.  

In operation, the system checks the storage access key against the storage key and the 

access control bits stored in the control byte for a block of memory to determine 

whether access is permitted. When the storage key does not match the access control 

bits, storage protection logic will return, interrupt the task, and initiate a protection 

15 exception. Storage key value zero is a special case. When a task operates with an 

access key value of zero, access is permitted whatever the value of the storage key in 

system memory for that address. Typically, only memory areas that are reserved for 

use by the operating system are assigned a storage key value of zero.  

The storage keys in the control bytes of such a system are under the control of 

20 the operating system, which stores and modifies the bits in each entry as a page of 

data is copied into physical memory, or is accessed or modified by a process or task.  

Many user tasks access only key number eight, but the use of multiple storage keys 

associated with a given task is supported, and takes place, for example, under CICS, 

which typically uses key number nine. Most system processes operate under key zero 

25 Storage keys are unlike ring systems not hierarchical , the storage key of zero 

is a 'master key' which always grants access, non-zero storage keys are unique and 

their value has no specific meaning other then being unique. Preferably, in a system 

that uses storage keys, each memory address is assigned a single key.  

Systems that emulate mainframe operations typically do so on a target 

30 processor that has a different instruction set than that of the mainframe system. Such 

target processors do not provide hardware support for key-controlled access to 

storage. Therefore, in a system that emulates mainframe operations on an x86
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architecture, it would be desirable to emulate the operation of the storage keys. At the 

same time, prior-art emulation systems such as the Hercules emulator implemented 

emulation the DAT of virtual addresses to real addresses, and subsequently 

implemented the emulation of the management of physical addresses. The 

5 implementation of emulated dynamic address translation introduces complexities in 

the emulation of key-controlled access to storage, and limits system performance due 

to the need to perform multiple emulated table lookups.  

In order for a program that was compiled to run on first architecture to be 

enabled to run on a different target architecture, another alternative is to translate the 

10 program be decompiling the object code, and then recompiling it to run on the target 

architecture. Though various decompilers are known, the decompilation and 

recompilation of object code from one platform is difficult because it is not generally 

possible for a decompiler to identify and separate computer instructions from data 

with the certainty required for the recompiled program to accurately reproduce the 

15 behavior of the original program. However, where decompilation and translation are 

applied to a set of programs whose code and data can be correctly identified, such as 

programs output by a known compiler or initially compiled with a known set of flags 

or settings, decompilation of code compiled to run on a first architecture, and 

recompilation of the decompiled code to create executable code for a target platform 

20 presents an alternative to emulation. In one example, a load module compiler that 

receives as input, a relocatable cobol load module compiled to run on an IBM 

mainframe is received as input, and an executable object program adapted to run on 

an x86 machine is generated as output.  

25 SUMMARY 

An emulated system that provides support for key-controlled access to storage, 

without the added overhead of emulated dynamic address translation is described. In 

addition, it would be beneficial for an emulated system to execute multiple tasks that 

would be associated with multiple processors without the overhead associated with 

30 saving and restoring the prefix area in response to interrupts or context switches 

between tasks. A system that employs a load module compiler translate load modules 

that are executable on a mainframe into executable code for an alternative platform is
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also described, in which the system provides support for key-controlled access to 

storage in order to make the executable generated by the load module compiler 

interoperable with mainframe systems or emulated systems that employ key

controlled access to storage.  

5 In one embodiment, the invention provides a computing system having a 

processor not adapted to support protection key memory access control, the processor 

including a memory management unit (MMU) and executing an operating system that 

manages virtual memory, the processor adapted to execute user processes and tasks.  

The system may be used for a method of implementing protection key memory 

10 access control by assigning to each process, a contiguous range of virtual address 

memory and a storage key to each 4k block in the contiguous address space, assigning 

a storage access key to each task in the process, initiating execution of a task using a 

specfic access key by assigning a virtual address mapping to that task with its 

assigned access key, assigning a virtual address mapping to the task for the assigned 

15 storage key. In response to a subsequent memory access by said task, if the 

subsequent memory access uses an access key different from access keys previously 

used by said task, determining whether the said task is authorized to use said different 

access key, and if the second task is authorized, assigning a subsequent virtual address 

mapping to the task and key. In response to a command to allocate or to free storage 

20 by the task, setting control bytes including setting the storage key data and an 

indicator that the page associated with each control byte is valid. Upon execution of a 

computer instruction of said task using the access key, the method further includes 

generating a virtual address in the address space associated with the task, determining 

whether the first address lies within the range of addresses associated with the first 

25 process, if the address lies within the range of addresses associated with the first 

process, generating by the MMU a segmentation fault indicating that the page 

corresponding to the virtual address is not present in physical memory or that the task 

is attempting to write to a page that is present in memory with a read only access 

permission setting, verifying by an exception handler that said access key value is 

30 zero or that said task is authorized to access the virtual address using the access key, 

upon said verifying an exception handler, changing the native protection settings 

associated with the page of data comprising said guest virtual address in the MNMU to
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allow access to the virtual address, and subsequently retrying the instruction, and 

allowing by the MMU, the instruction of said task to access virtual addresses in said 

page of data.  

In additional embodiments of the method, which may be combined with one 

5 another and with the embodiment above, the task includes a second task of said 

process, prefix data associated with the first and second tasks is stored at the same 

logical address, but in different physical addresses, changing includes setting the 

value of bit zero of the corresponding page table entry to indicate that the physical 

page is present in memory, and the method may further include invoking the 

10 MPROTECT() function to change the native protection setting.  

Embodiments of the invention further provide a computing system that may be 

able to implement any of the above methods. The computing system includes a 

processor not adapted to support protection key memory access control, the processor 

including a memory management unit (MMU) and executing an operating system that 

15 manages virtual memory, the processor adapted to execute user processes and tasks 

and a non-transient memory storing instructions which, when executed on the 

processor, cause the processor to assign to a process, a contiguous range of virtual 

address memory and a storage key to each 4k block in the contiguous address space, 

assign a storage access key to each task in the process, initiate execution of a task 

20 using a specific access key by assigning a virtual address mapping to that task with its 

assigned access key. assign a virtual address mapping to the task for the assigned 

storage key, in response to a subsequent memory access by said task, if the 

subsequent memory access uses an access key different from access keys previously 

used by said task, determine whether the said task is authorized to use said different 

25 access key, and if the second task is authorized, assign a subsequent virtual address 

mapping to the task and key, in response to a command to allocate or to free storage 

by the task, set control bytes including setting the storage key data and an indicator 

that the page associated with each control byte is valid, and upon execution of a 

computer instruction of said task using the access key, generate a virtual address in 

30 the address space associated with the task, determine whether the first address lies 

within the range of addresses associated with the first process, if the address lies 

within the range of addresses associated with the first process, generate by the MMU
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a segmentation fault indicating that the page corresponding to the virtual address is 

not present in physical memory or that the task is attempting to write to a page that is 

present in memory with a read only access permission setting, verify by an exception 

handler that said access key value is zero or that said task is authorized to access the 

5 virtual address using the access key, upon said verifying an exception handler, change 

the native protection settings associated with the page of data comprising said guest 

virtual address in the MNMU to allow access to the virtual address, and subsequently 

retry the instruction, and allowing by the MMU, the instruction of said task to access 

virtual addresses in said page of data.  

10 In additional embodiments of the system, which may be combined with one 

another and with the embodiment above, the task includes a second task of said 

process, the prefix data associated with the first and second tasks are stored in the 

same logical address, but in different physical addresses, changing the native 

protection settings includes setting the value of bit zero of the corresponding page 

15 table entry to indicate that the physical page is present in memory, and the system 

further includes an MPROTECT() function in the operating system of said system, 

operable to change the native protection setting.  

BRIEF DESCRIPTION OF THE DRAWINGS 

20 For a more complete understanding of the present disclosure and its features 

and advantages, reference is now made to the following description, taken in 

conjunction with the accompanying drawings, in which: 

FIG. 1 is a schematic representation of a prior art application, operating 

system, and hardware; 

25 FIG. 2 is a schematic representation of a prior art emulated system; 

FIG. 3A is a schematic representation of a page directory entry that may be 

used with the prior art or with embodiments of the present invention; 

FIG. 3B is a schematic representation of a page table entry that may be used 

with the prior art or with embodiments of the present invention; 

30 FIG. 4A is a schematic representation of an appliance according to an 

embodiment of the present invention; 

FIG. 4B is a schematic representation of the relationship between modules that
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have been recompiled into a load module compiled application for use in the 

appliance of FIG. 4A; 

FIG. 5A is a schematic representation of a prior art control byte; 

FIG. 5B is a schematic representation of a control byte that may be used with 

5 embodiments of the present invention; 

FIG. 6 is a flow chart of the operation of a system according to an embodiment 

of the present invention; and 

FIG. 7 is a schematic representation of a four processor system that may be 

used with embodiments of the present invention.  

10 

DETAILED DESCRIPTION 

As indicated in FIG. 2, emulation systems may provide a facility for the 

installation of a guest operating system (40) to execute, in order to support the 

execution of guest applications. In one aspect of the inventive system, an appliance is 

15 provided including a legacy application engine is constructed to enable execution of a 

guest application without employing a guest operating system. FIG. 4A illustrates 

one embodiment in which an x86 computer or compute blade (410) is configured and 

runs a target operating system (420). In one example, the target operating system is 

LINUX®. A set of native APIs (440) are further provided to enable the rapid 

20 execution of emulated instructions. These native APIs are invoked by a legacy 

application environment (430), which is adapted to emulate the behavior of the guest 

system (not shown), enabling a legacy or guest application to run on the appliance. In 

one embodiment, the legacy application environment is made up of a legacy operating 

engine module (432), which operates as a container for processes, and a legacy 

25 hardware environment module (435), which implements memory management and 

other hardware emulation functions.  

FIG. 4B illustrates the relationship between modules in the case of a legacy 

application that has been recompiled using the load module compiler into a load 

module compiled application (451). As with emulated tasks or processes, a load 

30 module compiled application (451) operates in the container provided by the legacy 

operating environment module (432). The application can invoke native APIs (440) 

and the legacy hardware environment module (435), which implements memory
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management functions. Unlike the legacy application of FIG. 4A, the load module 

compiled application (451) does not make legacy hardware calls that correspond to 

the legacy platform, as it has been compiled to execute on the target architecture.  

The virtual address space of a process running on a legacy mainframe system 

5 is typically 2GB, which corresponds to 31 bits to address the space. Because it would 

be too expensive to allocate the full address space worth of physical memory to each 

process, virtual memory typically divides physical memory into smaller amounts of 

physical memory, typically 4K, but other amounts are also used. Indeed, such 

mainframe systems typically operate with a total physical memory that is much 

10 smaller than the 2GB limit for the virtual address space. In operation, such legacy 

systems perform DAT to convert virtual memory addresses to physical addresses that 

are used to access physical storage devices. Virtual memory also enables the sharing 

of protected memory space, the automatic management of a computer memory 

hierarchy, and facilitates the loading and execution of programs.  

15 An emulator generally refers to hardware or software that allows one system 

to behave in accordance with the specifications of another system. For example, an 

emulator will permit software that is designed to run on a so-called guest system to 

run on a host system, which may incorporate hardware of a different design or 

architecture. Emulation systems that enable software that designed to run on a 

20 mainframe guest system, to instead operate on a different computer system are 

known. Such emulators typically emulate the hardware of the underlying mainframe 

system, in order for the emulation system to replicate hardware features of the guest 

system on the target architecture. In the case of memory management, such hardware 

emulators typically emulate physical memory, and would therefore emulate dynamic 

25 address translation behaviors.  

In accordance with one embodiment, an emulation system emulates a 2GB 

virtual address space associated with the virtual address space of a mainframe, 

without emulating the underlying physical storage. The emulation system may be 

implemented on a native machine whose hardware and operating system support 

30 larger address spaces. In a preferred embodiment, a 64-bit processor, with word size 

and memory address width of 64-bits, and a 64-bit operating system that uses 64-bit 

virtual memory addressing is employed. A person of ordinary skill in the art would
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recognize that an emulation system could be implemented with processors having 

other word size, address bus width, or with operating systems employing other 

numbers of bits for virtual addresses.  

In accordance with one embodiment, each task or process in the emulated 

5 system is assigned a distinct set of mappings to the 2GB address space. In a preferred 

embodiment, each task is assigned a distinct mapping for each storage key associated 

with the task or process. Preferably, when storage is allocated to the task, a storage 

allocation routine changes the bits in the control block indicating that a particular 

page can be accessed by a given key. In one example, the eighth bit of the control 

10 byte is reserved for future use. In another implementation, bit eight may be used to 

indicate whether a page is presently valid because it has been acquired through a 

memory allocation routine such as malloc or getmain. In this embodiment, the eighth 

bit of the control byte holding the storage key contains a valid/invalid bit that can be 

set by the storage allocation routine to indicate that a particular page of virtual address 

15 space has been allocated. If the page is deallocated, a routine will similarly set the 

valid/invalid bit to indicate that the page is no longer allocated.  

In such a system, each task or process would be assigned from one to sixteen 

different address mappings. In one embodiment, the emulation system runs under the 

LINUX@ operating system on an x86 processor and emulates the operation of storage 

20 keys to control access to virtual storage in an S390 mainframe system. The LINUX® 

function MPROTECTO changes the protection in the MNMU status for a calling 

process's memory pages. If a calling process attempts to access memory in a manner 

that violates the protection, the kernel generates a SIGSEGV signal for the process.  

In one example, the storage protection bits are stored in a control byte, 

25 together with a valid/invalid bit indicating that a particular memory address has been.  

FIG. 5B depicts an example of the eight bits of the exemplary control byte (550), with 

the four-bit key 555 stored in bits 0-3, the protect bit 560 stored in bit 4, the change 

bit 565 stored in bit 5, and the reference bit 570 stored in bit 6, and a valid/invalid bit 

575 stored in bit 7. The use of a single byte should be understood to be exemplary, as 

30 the control information could be stored in a control word of different size, or in non

contiguous bits in other storage locations.
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A description of the operation of the system is made with reference to FIG. 6.  

In accordance with one embodiment, the physical page settings (FIG. 3B) in the 

MMU for all pages of data are initially set to prohibit access. For example, the 

Present bit (bit 0) for the corresponding page table entry will be set to "0" indicating 

5 that the page is not present in memory. In operation, when a task or process operating 

in emulation executes an instruction to a virtual legacy memory address, the system 

first determines the specific virtual address associated with the task operating under 

the given storage key, as indicated at 610. The system then checks whether the 

address lies within a range of addresses assigned to the task. If the address is not 

10 within a range of addresses assigned to the process (615), access is denied (680). If 

the address lies within a range assigned to the process, the system then determines 

whether or not the page has already been accessed 620. In the event of a first access, 

the page has not previously been accessed, the access control bits of the physical page 

are zero, where the MNU will prohibit access and and the kernel generates a 

15 SIGSEGV signal. Though the example implementation described below uses the 

LINUX® MPROTECTO operation to set the access control bits of the physical page 

and signal the MMU that the access bits have changed in response to detecting that 

the page is not present, in a different system, a different signal to detect a 

segmentation fault, and a different routine to change the state of a page from not

20 present to present could be used in accordance with the invention. In the event that 

the page was previously accessed, read/write access permission is verified. If write 

access is sought for a page for which only read access has been set, control returns to 

the interrupt handler as indicated (625). If read/write access permissions match (625), 

then access is permitted (627).  

25 In one embodiment of the invention, the interrupt handler of the LNUX® 

system on which the emulator runs is modified to include a key verification routine, 

and the key verification routine is invoked 620. The key verification routine that 

compares the storage access key associated with the current task to the storage key 

555 in the control byte 550 of the storage key table to see whether the keys are equal 

30 640. In one embodiment, the protection key associated with the current process is 

maintained by legacy operating environment (432) in a data structure containing 

registers, keys, control blocks, prefix information, and other context information. If
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the key verification routine finds that the access key is the same as the storage key, 

access should be permitted and the routine changes the native protection status 

associated with the storage logical address 650. In one example under the LINUX® 

operating system, the MPROTECTO operation is used to set the protection status 

5 from PROTNONE to PROTREAD, or PROTWRITE. The MPROTECT() 

operation in this example will set the Present bit (bit 0) of a corresponding page table 

entry to "1", and will set the Read/Write bit (bit 1) to zero or one. In one 

embodiment, the emulator implements a tri-state table, and changes the setting to 

PROTWRITE though additional protection states could be supported. The Present 

10 bit for the corresponding page table entry is also changed from "0" to "1" to indicate 

that the page is now present. At this time, the emulation system retries execution of 

the processor instruction 650 that initially caused the segmentation fault.  

If the key verification routine determines that the key does not match, it then 

checks to see whether the access key is key zero 670. Because key zero is typically 

15 used for system operations, if the access key is zero, the emulator proceeds to step 

650 and changes the native protection setting to allow system access. If the key does 

not match and the key is other than key zero, then the system denies access 680, and 

the emulation system does not execute the instruction, and the emulation system 

emulates a storage protection exception.  

20 Subsequent accesses to the same virtual address by the same task or process 

running on the emulator operate in an accelerated fashion. When the virtual address 

associated with the task and key is determined, the system sees that the page has 

previously been accessed 620 because there is no segmentation fault and no 

SIGSEGV signal. Preferably, the MNMU checks the state of the Protect bit (bit 0) of 

25 the page table entry corresponding to the requested page to see whether the page is 

already present in memory. If the page is present, this means that key verification 

was previously performed for this task accessing this address using this particular 

storage key. Thus, access under the protected storage key is permitted because the 

permission settings were previously verified. Repeated accesses to a page that is 

30 present experience reduced overhead, as the key verification need not be performed 

repeatedly while the page remains present in memory. Tasks or processes operating in 

emulation in this fashion will experience a considerable performance improvement
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due to the elimination of exception handling, context switching, and table lookup 

steps that would otherwise be performed for each access.  

If the same task or process subsequently executes an instruction that accesses 

the same location in virtual mainframe storage, but does so using a different storage 

5 access key, the system will determine a different virtual address 610 because there is a 

distinct address mapping associated with each task and storage access key. Under this 

condition, if the access to virtual storage using the different access key is the first such 

access using the key, the emulator will again experience a segmentation fault, 

invoking the key verification routine and, if the access key matches the storage key 

10 640, invoke the MPROTECT() operation 650 to change the protection status of the 

page. If access is not permitted under the different storage key, then the instruction 

will not execute in emulation, and the emulator will emulate and log the appropriate 

exception.  

Another aspect of the inventive use of separate virtual address in an emulator 

15 that emulates virtual, but not physical addresses, is the accelerated emulation of 

multiple tasks or processes. As discussed above, legacy mainframe systems 

implement a technique known as prefixing, which enables each processor in an 

emulated system to access a different physical block of memory using the same 

physical addresses in the range of 0-4095 bytes. An example of a four-processor 

20 system is illustrated in FIG. 7. In this example, real physical addresses 0-4095 for 

CPU 0, which is shown having a prefix setting of zero are mapped to absolute 

physical address 0-4095. In the case of CPU 1, the prefix setting is shown as 1, and 

the real physical addresses 0-4095 are mapped into the absolute system physical 

addresses at an offset of 4k. Similarly, CPU 2 and CPU 3 having prefix settings of 

25 two and three respectively have their real physical addresses from 0-4095 mapped at 

offsets of 8k and 12k respectively into the absolute system physical address space. In 

this illustration, the prefix area for each CPU is 4k bytes, and the prefix setting is 

denoted by an integer indicating an increment of 4k. Other increments for different 

size prefix areas could be used. Alternatively, the prefix setting could be stored an 

30 offset address, such as 4k, 8k, and 12k in this example, or a set of offset address bits 

stored in a prefix register. Contiguous addresses are shown in FIG. 7 for ease of 

illustration. However, the prefix addresses may be at other locations in the address
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space, and need not point to contiguous locations in memory. Although prefixing 

allows multiple processors to manage state information in their respective block zero 

locations without overwriting one another's data, in the case of interrupts and context 

switches, the need to swap out an manage the prefix area data increases the overhead 

5 associated with handling such interrupts or context switches.  

Because the prefix area in a legacy system is set in hardware and associated 

with a physical CPU, it cannot be managed by virtual addressing. In an emulated 

environment, the prefix area need not be fixed to real addresses. However, emulation 

systems that emulate hardware behavior of such legacy systems would emulate the 

10 prefix area in emulated physical storage. Such systems experience significant 

overhead when emulating interrupts or context switches due to the need to emulate 

the copying, modifying, and later restoring of the prefix area. For example, the use of 

prefixing increases the overhead associated with state changes, since saving state of 

not only the CPU registers and program status word, but also of the prefix storage 

15 area in emulation consumes computing resources and adversely impacts system 

performance. It would be beneficial, in such an emulation system, to reduce or 

eliminate the overhead associated with copying the prefix storage area, to allow more 

rapid interrupt handling and context switching.  

As described above, embodiments of the novel system assign a unique set of 

20 virtual address mappings to each task or process, with a separate mapping for each 

storage key used by the task or process. In one aspect of the novel system, the prefix 

area is also managed in emulated virtual address space rather than in emulated real 

CPU address space and emulated absolute system address space.  

In one example, a copy of the prefix area is stored in each of the virtual 

25 address mappings associated with each of the storage keys of a given task. Though 

this approach requires writing multiple copies of the prefix area when a task is 

initiated, storing the prefix area in virtual storage, rather than in block zero of real 

storage or in set locations in absolute physical storage improves system performance.  

In a System 390TM system, or in an emulation system that emulates the physical 

30 storage of a System 390TM system, interrupts or context switches result in increased 

overhead due to the need to copy the prefix area to a different location in memory, 

and to restore the prefix area when the task resumes. In a production environment
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with a large number of context switches, and in the case of applications that perform 

large amounts of I/O, the performance penalty associated with copying this extra data 

is considerable.  

As explained above, a set of tasks associated with a common process in a 

5 legacy mainframe environment operate in a shared virtual address space. In a 

multiprocessor system, the tasks may be assigned to the same CPU, or to separate 

CPUs. In accordance with an embodiment of the invention, each task is assigned its 

own set of virtual address spaces-one for each storage key, and is assigned its own 

virtual CPU. Each virtual CPU may be implemented as a separate LINUX@ thread.  

10 Because the emulated system emulates virtual, but not physical addresses, the 

emulation system need not associate the tasks with virtual CPUs in correspondence 

with the assignment of tasks to CPUs that would occur in the legacy system. Indeed, 

since the emulated CPUs are virtual, the emulator need not be constrained in resource 

allocation as the legacy hardware would be.  

15 In accordance with one embodiment, when a task begins and a virtual CPU is 

started, a storage initialization routine initializes a set of tables of control bytes 

containing storage key values and bit settings to indicate that the storage is valid for 

the particular task. Because a set of virtual address mappings, one mapping for each 

storage key associated with the task is needed, the initialization routine creates entries 

20 corresponding to each available storage key. In this embodiment, after the storage is 

mapped, then the system invokes a routine called remap prefix that uses the LINUX® 

system call remap filepages() to remap virtual address 0 to the prefix page and to 

remap the prefix page back to address zero.  

When storage is deallocated from the task, a routine sets that native protection 

25 status to PROTNONE to prohibit access using the mprotecto operation, and also sets 

the corresponding valid/invalid bits to invalid in the control bytes of to indicate that 

the corresponding page frames are invalid for that task.  

The emulation system described above is an example of an emulation system 

that emulates a legacy mainframe's virtual addresses, but does not emulate dynamic 

30 address translation to real or absolute addresses. The system improves performance 

through the mapping of distinct sets of virtual address spaces to each task, and 

techniques to improve the performance of emulation of storage key protection and
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prefixing in an emulated environment. Embodiments are described using an x86 

target platform and x86 target operating system. Other target processor architectures 

or operating systems could be used. Techniques to implement storage key protection 

that use the features of the MMU, which cause the LINUX® operating system to 

5 generate a SIGSEGV signal and that invoke the LINUX@ mprotecto operation are 

described. Other methods of detecting that the page corresponding to a virtual 

address is available or unavailable, or protected or unprotected could be implemented 

using other operating systems and computer platforms.  

The above described technique of mapping distinct sets of virtual address 

10 spaces to each task can also be applied to the execution of a program that was 

compiled using the load module compiler described above. In such a system, the 

executable x86 program that is output by the load module compiler is assigned to a 

range of virtual addresses, just as a program running in emulation would be assigned a 

range of virtual addresses. In accordance with one embodiment, the legacy operating 

15 environment operates as a container, not only for the execution of emulation 

programs, but also for the execution of programs that have been compiled to execute 

natively on the x86 platform using the load module compiler. As for tasks or 

processes running in emulation, the legacy operating environment also maintains 

context information including registers, keys, control blocks, and prefix information 

20 associated with LMC compiled processes.  

One or more aspects of the present invention can be included in an article of 

manufacture (e.g. one or more computer program products) comprising, for example, 

physical computer readable media. Such media contain, for example, computer 

program instructions which may be in source or object code format, or other 

25 commands or logic configured to provide the capabilities of the present invention.  

The article of manufacture can be included in a disk drive, optical drive, 

semiconductor memory, tape drive, or in a storage device that may be separate or 

installed in a computer or computer system.  

The examplary system described above employed the memory management 

30 unit found on an Intel processor and employed a special exception handler to perform 

protection key verification in the management of the page tables used by the 

LINUX® operating system to control which pages may be placed into physical
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memory for use by a particular task. Though the embodiments disclosed herein used 

computers with Intel processors, other processors such as processors provided by 

AMD (CA, US), IBM, Motorola (IL, US), ARM (UK), or other sources may be used 

without effect on the invention disclosed herein.  

5 A system for storing and/or executing program instructions typically includes 

at least one processor coupled to memory through a system bus or other data channel 

or arrangement of switches, buffers, networks, and channels. The memory may 

include, cache memory, local memory employed during execution of the program.  

Main memory can be Random Access Memory (RAM), or other dynamic storage 

10 devices known in the art. Preferably, such a system employs battery backup to ensure 

the persistance of memory. Read only memory used by the system can be ROM, 

PROM, EPROM, Flash/EEPROM, or other known memory technologies. Mass 

storage can be used to store data or program instructions. Examples of mass storage 

include disks, arrays of disks, tape, solid state drives, and may be configured in direct 

15 attached, networked attached, storage area network, or other storage configurations 

that are known in the art. Removable storage media include tapes, hard drives, floppy 

disks, zip drives, flash memory and flash memory drives, optical disks and the like.  

Many examples are provided herein. These examples may be modified 

without departing from the spirit of the present invention. The examples and 

20 embodiments described herein are offered as examples, and other components, 

routines, or modules may also be used.  

Throughout this specification and the claims which follow, unless the context 

requires otherwise, the word "comprise", and variations such as "comprises" and 

"comprising", will be understood to imply the inclusion of a stated integer or step or 

25 group of integers or steps but not the exclusion of any other integer or step or group of 

integers or steps.  

The reference to any prior art in this specification is not, and should not be 

taken as, an acknowledgement or any form of suggestion that the prior art forms part 

of the common general knowledge in Australia.  

30
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CLAIMS 

1. A method of implementing protection key memory access control in a 

computing system having a processor not adapted to support protection key memory access 

control, the processor including a memory management unit (MMU) and executing an 

operating system that manages virtual memory, the processor adapted to execute user 

processes comprising tasks, the method comprising: 

assigning a contiguous range of addressable virtual memory containing blocks to each 

user process; 

assigning a storage access key to each task; 

initiating execution of a specific task in a specific user process using the storage 

access key assigned to that specific task by assigning a first virtual address mapping in the 

contiguous range of addressable virtual memory to that specific task with its assigned storage 

access key; 

in response to a subsequent memory access by the specific task, if the subsequent 

memory access uses a storage access key different from any storage access key previously 

used by the specific task, determining whether the specific task is authorized to use the 

different storage access key, and if the specific task is authorized, assigning a subsequent 

virtual address mapping to the specific task and the different storage access key; 

in response to a command to allocate or to free storage used by the specific task, 

setting control bytes including setting storage key data and an indicator that a page 

comprising data associated with each control byte is valid; and 

upon execution of a computer instruction of the specific task using any storage access 

key, 

generating a virtual address associated with the specific task; 

determining whether the virtual address associated with the specific task lies 

within the contiguous range of virtual address memory; and 

if the address lies within the contiguous range of addressable virtual memory: 

generating by the MMU a segmentation fault; 

verifying by an exception handler that said storage access key has a 

value of zero or that said task is authorized to access the virtual address using 

that said storage access key; 

upon said verifying an exception handler, changing native protection 

settings associated with the page stored in the virtual memory and associated 

with the task to allow access to the associated virtual address; and
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subsequently re-executing the computer instruction of the specific task 

to allow access to the page.  

2. The method of claim 1, wherein the blocks comprise 4K blocks.  

3. The method of claim 1, wherein the segmentation fault comprises indicating 

that the page corresponding to the virtual address is not present in physical memory.  

4. The method of claim 1, wherein the segmentation fault comprises indicating 

that the task is attempting to write to the page which is present in memory with a read only 

access permission setting.  

5. The method of claim 1, wherein the segmentation fault comprises indicating 

that the task is attempting to read the page without a matching access permission setting.  

6. The method of claim 1, wherein prefix data associated with the first and 

subsequent executions of the specific task of the specific user process is stored at the same 

logical address, but in different physical addresses.  

7. The method of claim 1, wherein changing native protection settings associated 

with the page stored in the virtual address memory and associated with the task comprises 

setting the value of bit zero of a corresponding page table entry to indicate that the physical 

page comprising the data is present in memory.  

8. The method of claim 1, further comprising invoking the MPROTECTO 

function to change native protection settings associated with the page stored in the virtual 

address memory and associated with the specific task.  

9. The method of claim 1, wherein changing native protection settings comprises 

changing access control bits.  

10. The method of claim 1, further comprising, in response to the segmentation 

fault, executing a routine to change a state of the page stored in the virtual address memory 

and associated with the specific task from not-present to present.
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11. A computing system comprising: 

a processor not adapted to support protection key memory access control, the 

processor including a memory management unit (MMU) and executing an operating system 

that manages addressable virtual memory, the processor adapted to execute user processes 

comprising tasks; and 

a non-transient memory storing instructions which, when executed on the processor, 

cause the processor to: 

assign to a user process, a contiguous range of addressable virtual memory 

containing blocks and assign a storage key to each block; 

assign a storage access key to each task; 

initiate execution of a specific task in a specific user process using a specific 

storage access key assigned to that specific task by assigning a first virtual address 

mapping in the contiguous range of addressable virtual memory to that specific task 

with its assigned storage access key; 

in response to a subsequent memory access by the specific task, if the 

subsequent memory access uses a storage access key different from any storage 

access keys previously used by the specific task, determine whether the specific task 

is authorized, assign a subsequent virtual address mapping to the specific task and 

different storage access key; 

in response to a command to allocate or to free storage by the specific task, set 

control bytes including setting the storage key data and an indicator that the page 

comprising data associated with each control byte is valid; and 

upon execution of a computer instruction of the specific task using any storage 

access key, 

generate a virtual address in the address associated with the specific 

task; 

determine whether the virtual address associated with the specific task 

lies within the range of contiguous range of addressable virtual memory; and 

if the address lies within the contiguous range of addressable virtual 

memory: 

generate by the MMU a segmentation fault; 

verify by an exception handler that said storage access key has 

a value of zero or that said task is authorized to access the virtual



24 

address in the addressable virtual memory using that said storage 

access key; 

upon said verifying an exception handler, change native 

protection settings associated with the page stored in the virtual 

memory and associated with the task to allow access to the associated 

virtual address; and 

subsequently re-execute the computer instruction of the specific 

task to allow access to the page.  

12. The system of claim 11, wherein the blocks comprise 4K blocks.  

13. The system of claim 11, wherein the segmentation fault comprises and 

indication that the page corresponding to the virtual address is not present in physical 

memory.  

14. The system of claim 11, wherein the segmentation fault comprises an 

indication that the task is attempting to write to the page which is present in memory with a 

read only access permission setting.  

15. The system of claim 11, wherein the segmentation fault comprises an 

indication that the task is attempting to read the page without a matching access permission 

setting.  

16. The system of claim 11, wherein prefix data associated with the first and 

subsequent executions of the specific task of the specific user process is stored at the same 

logical address, but in different physical addresses.  

17. The system of claim 11, wherein to change native protection settings 

associated with the page stored in the virtual address memory and associated with the task, 

the value of bit zero of a corresponding page table entry is set to indicate that the physical 

page comprising the data is present in memory.  

18. The system of claim 11, further comprising the non-transient memory storing 

instructions which, when executed on the processor, cause the processor to invoke the
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MPROTECTO function to change native protection settings associated with the page stored 

in the virtual address memory and associated with the specific task.  

19. The system of claim 11, wherein the instructions cause the processor to 

change native protection settings by changing access control bits.  

20. The system of claim 11, further comprising, in response to the segmentation 

fault, executing a routine to change a state of the page stored in the virtual address memory 

and associated with the specific task from not-present to present.
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