WO 2006/089194 A2 || 0000000 0 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 August 2006 (24.08.2006)

2|) R
2 {0 0O 0 0RO A

(10) International Publication Number

WO 2006/089194 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2006/005782

(22) International Filing Date:
16 February 2006 (16.02.2006)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/062,221 17 February 2005 (17.02.2005) US

(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; 5775 Morehouse
Drive, San Diego, California 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRIDGES, Jef-
frey Todd [US/US]; 3513 Timberwood Court, Raleigh,
North Carolina 27606 (US). AUGSBURG, Victor
Roberts [US/US]; 304 Versailles Drive, Cary, North
Carolina 27511 (US). DIEFFENDERFER, James Norris

(74)

(81)

(84)

[US/US]; 4000 Inkberry Court, Apex, North Carolina
27539 (US). SARTORIUS, Thomas Andrew [US/US];
1600 Olde Chimney Court, Raleigh, North Carolina 27614
Us).

Agents: WADSWORTH, Philip R. et al.; 5775 More-
house Drive, San Diego, California 92121 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: UNALIGNED MEMORY ACCESS PREDICTION

22

2

INSTRUCTION
CACHE

e __F
42
MISALIGNMENT
PREDICTOR
567
____________ DCD
EXA

14

ADDR, SIZE

(57) Abstract: In an instruction execution pipeline, the
misalignment of memory access instructions is predicted.
Based on the prediction, an additional micro-operation
is generated in the pipeline prior to the effective address
generation of the memory access instruction. The
additional micro-operation accesses the memory falling
across a predetermined address boundary. Predicting
the misalignment and generating a micro-operation
early in the pipeline ensures that sufficient pipeline
control resources are available to generate and track the
additional micro-operation, avoiding a pipeline flush if the
resources are not available at the time of effective address
generation. The misalignment prediction may employ
known conditional branch prediction techniques, such as a
flag, a bimodal counter, a local predictor, a global predictor,
and combined predictors. A misalignment predictor may
be enabled or biased by a memory access instruction flag
or misaligned instruction type.

WO 2006/089194 A2 I} N0 NDVYH) AT VKO 00 RO AR

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, — asto the applicant’s entitlement to claim the priority of the
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, earlier application (Rule 4.17(iii))
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, pyblished:

GN, GQ, GW, ML, MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report
Declarations under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-
— as to applicant’s entitlement to apply for and be granted a ance Notes on Codes and Abbreviations" appearing at the begin-
patent (Rule 4.17(ii)) ning of each regular issue of the PCT Gazette.

WO 2006/089194 PCT/US2006/005782

UNALIGNED MEMORY ACCESS PREDICTION

BACKGROUND

[001] The present invention relates generally to the field of processors and in
particular to predicting an unaligned memory access in a pipelined processor.

[002] Portable electronic devices have become commonplace. Two trends in
portable electronic devices are increased functionality and decreased size. Increased
functionality is facilitated by increased computing power provided by faster and more
powerful processors.

[003] As well as providing advanced features and functionality, portable electronic
devices themselves continue to shrink in size and weight. One impact of this shrinking
trend is the decreasing size of batteries used to power the processor and other .
electronics in the device. While increases in battery technology partially offset the
problem, the decreasing size of batteries imposes a strict power budget on all portable
electronic device electronics. A significant portion of the power budget of portable
electronic devices is power consumed by the processor.

[004] Hence, processor improvements that increase performance and decrease power
consumption are desirable for many applications such as portable electronic devices.
Commonly modern processors employ a pipelined architecture, where sequential
instructions, each having multiple execution steps, are overlapped in execution. For
maximum performance, the instructions should flow through continuously through the
pipeline. Any situation that causes instructions to be flushed from the pipeline, and
subsequently restarted, can detrimentally impact both performance and power

consumption.

WO 2006/089194 PCT/US2006/005782
2

[005] Some pipeline resources, such as queue locations for instruction status and
tracking, are allocated as the instruction enters the pipeline. If it is discovered later in
the pipeline that a single instfuction requires more resources than originally allocated,
subsequent instructions may need to be flushed to allow their resources to be reallocated
to the instruction that needs them.

[006] A memory access instruction loading or storing misaligned data from or to
memory is one example of an instruction that may need more pipeline resources than
were originally allocated to it, the discovery of which may not occur until deep in the
pipeline. Misaligned data are those that, as they are stored in memory, cross a
predetermined memory boundary, such as a word or half-word boundary. Due to the
way memory is logically structured and addressed, and physically coupled to a memory
bus, data that cross a memory boundary commonly cannot be read or written in a single
cycle. Rather, two successive bus cycles may be required — one to read or write the data
on one side of the boundary, and another to read or write the remaining data.

[007] A memory access instruction — that is, a load or store instruction ~ to unaligned
data must generate an additional instruction step, or micro-operation, in the pipeline to
perform the additional memory access required by the unaligned data. However, the
alignment of the data cannot be determined until the effective address of the memory
access and the data size are known, which may occur only deep in the pipeline, in an
execute stage. By the time the effective address is generated and the misalignment of
the data is discovered, there may be insufficient pipeline control resources available to
generate a micro-operation to perform the second memory access. In the case of such
misalignment, the pipeline must be flushed of at least all following instructions, to free
up such resources. The flushed instructions must then be re-fetched and re-executed in

the pipeline, degrading processor performance and wasting power.

WO 2006/089194 PCT/US2006/005782
3

SUMMARY

[008] Data misalignment for memory access instructions may be predicted early in
the pipeline, prior to the instruction’s effective address generation. Pipeline resources
may be allocated and the pipeline controlled to create a second micro-operation. The
second micro-operation is utilized to perform a second memory access cycle, required
by the misaligned data.

[009] The present invention relates in one embodiment to a method of processing a
memory access instruction in an instruction execution pipeline. Misalignment for the
memory access instruction is predicted, and at least one micro-operation is generated in
the pipeline in response to the prediction, prior to effective address generation for the
memory access instruction, the micro-operation performing a second memory access for
misaligned data

[0010] In another embodiment, the present invention relates to a pipelined processor.
The processor includes an instruction execution pipeline comprising a plurality of pipe
stages, and a mjsalignment predictor generating a prediction that a memory access
instruction will access misaligned data. The processor additionally includes control
logic generating an additional micro-operation in the pipeline for the memory access
instruction, in response to the prediction, prior to generating an effective address for the

memory access instruction.

BRIEF DESCRIPTION OF DRAWINGS

[0011] Figure 1 is a functional block diagram of a processor.
[0012] Figure 2 is a diagram of memory organization.

[0013] Figure 3 is a functional block diagram of part of a processor pipeline.

WO 2006/089194 PCT/US2006/005782
4

DETAILED DESCRIPTION

[0014] Pipelining is a processor implementation technique whereby multiple
instructions are simultaneously overlapped in execution. Each instruction in a typical
architecture is typically executed in a plurality of execution steps, such as Fetch,
Decode, one or more Execute steps, Memory Access, and Write-Back. A processor
pipeline comprises a plurality of “pipe stages,”. Each pipe stage, which commonly
comprises logic and - storage, completes an execution step or part of an execution step
of an instruction. The pipe stages are coupled together to form the pipeline.
Instructions enter the pipeline and are successively processed in the pipe stages.
Additional instructions enter the pipeline before previous instructions complete
execution — hence, multiple instructions may be processed within the pipeline at any
given time. This ability to exploit parallelism among instructions in a sequential
instruction stream contributes significantly to improved processor performance. Under
ideal conditions and in a processor that completes each pipe stage in one cycle,
following the brief initial process of filling the pipeline, an instruction may complete
execution every cycle.

[0015] Such ideal conditions are seldom realized in practice, due to a variety of factors
including data dependencies among instructions (data hazards), control dependencies
such as branches (control hazards), processor resource allocation conflicts (structural
hazards), interrupts, cache misses, and the like. In addition, some instructions may
require more than one pass through one or more of the pipe stages. In this case, the
processor may generate multiple micro-operations for the instruction. As used herein, a
micro-operation is a logical entity that occupies one pipe stage at a time, and flows
through the pipeline. Ideally, most instructions comprise a single micro-operation in the

pipeline (to approach the one-instruction-per-cycle goal). However, an instruction may

WO 2006/089194 PCT/US2006/005782
5

comprise two or more micro-operations, or may be split into two or more, each of which
flows through the pipeline sequentially.

[0016] One form of structural pipeline hazard arises from misaligned memory
accesses. Many memory access instructions calculate an effective memory address —
that is, the address from which data is loaded or to which data is stored — during an
execution stage. However, processor resources — in particular, pipeline control
resources that allocate pipe stages to instructions and track the instructions through the
pipeline — are allocated to the load or store instruction during the decode stage. In the
usual case of memory addresses being aligned on word, half-word, or other
predetermined address boundaries, the load or store operation may be performed in a
single pipe stage (although the pipeline may be halted while the data are retrieved from
memory).

[0017] If a memory access instruction is directed to data that crosses the
predetermined address boundary, two load or store operations are required, requiring
two micro-operations in the pipeline to perform. However, most likely only one micro-
operation was allocated to the load or store in the decode stage. The need to generate a
new micro-operation in an execute stage of the pipeline is problematic. In the case of
pipeline resources being fully allocated, the need for a new micro-operation will cause
an exception, requiring all following instructions to be flushed from the pipeline to free
up the necessary pipeline control resources.

[0018] Figure 1 depicts a functional block diagram of a processor 10. The processor
10 executes instructions in an instruction execution pipeline 12 according to control
logic 14, which may include an instruction execution FIFO 15. The pipeline includes
various registers or latches 16, organized in pipe stages, and one or more Arithmetic

Logic Units (ALU) 18. A General Purpose Register (GPR) file 20 provides registers

WO 2006/089194 PCT/US2006/005782
6

comprising the top of the memory hierarchy. The pipeline fetches instructions from an
Instruction Cache 22, with memory addressing and permissions managed by an
Instruction-side Translation Lookaside Buffer (ITLB) 24. Data is éccessed from a Data
Cache 26, with memory addressing and permissions managed by a main Translation
Lookaside Buffer (TLB) 28. In various embodiments, the ITLB may comprise a copy
of part of the TLB. Alternatively, the ITLB and TLB may be integrated. Similarly, in
various embodiments of the processor 10, the I-cache 22 and D-cache 26 may be
integrated, or unified. Misses in the I-cache 22 and/or the D-cache 26 cause an access
to main (off-chip) memory 32, under the control of a memory interface 30, which may
include a cache miss processing queue 29. The processor 10 may include an
Input/Output (I/O) interface 34, controlling access to various peripheral devices 36.
Those of skill in the art will recognize that numerous variations of the processor 10 are
possible. For example, the processor 10 may include a second-level (I.2) cache for
either or both the I and D caches. In addition, one or more of the functional blocks
depicted in the processor 10 may be omitted from a particular embodiment.

[0019] Table 1 below depicts a diagram of a representative pipeline operation.
Instructions in the representative architecture execute in six steps:

[0020] IF — Instruction Fetch

[0021] ID - Instruction Decode

[0022] EXI1 - Execution (Fetch Address Operands for Memory Access Instructions)
[0023] EX2 — Execution (Effective Address Calculation for Memory Access
Instructions)

[0024] MEM — Memory Access

[0025] WB — Write Back

WO 2006/089194 PCT/US2006/005782

7
Instruction Clock Cycle
Number 1 2 3 4 5 6 7 8 9 10
I IF | ID | EX1 | EX2 | MEM | WB
i+1 IF | ID | EX1 | EX2 | MEM | WB
+2 IF ID | EX1 | EX2 |MEM | WB
i+3 IF ID | EX1 | EX2 |MEM | WB
i+4 IF ID | EX1 | EX2 | MEM | WB

Table 1: Representative Pipeline Operation

[0026] If each pipe stage executes in one cycle, and if there are no pipeline stalls,
hazards, or interrupts, from clocks six through ten one instruction completes and
performs a write-back of its results in each cycle. Clock cycles one through four
represent an initialization process of filling the pipeline, which is performed, for
example, following a reset, context switch, interrupt or any other flush of the pipeline.
As additional instructions follow the i+4™, the one-instruction-per-cycle performance
may continue indefinitely in the ideal case. The pipeline structure of Table 1 is
representative only. In any given processor implementation, a pipeline may include any
number of pipe stages for any instruction step.

[0027] Load (LD) and store (ST) instructions access memory to read and write data,
respectively. The memory is organized to simultaneously access a predetermined
amount of data at a time. Figure 2 is a block diagram of one memory structure in an
electronic device, including a processor 10, a bus 31 and memory 32. In this example,
the bus 31 is 32 bits wide, and the memory 32 (which may comprise, for example, cache
memory in the processor or off-chip RAM) is aligned on word (32-bit) boundaries. As
will be readily apparent to one of skill in the art, numerous different bus and memory
architectures may be implemented, with corresponding different data alignment

boundaries.

[0028] As an example of an unaligned memory access, Fig. 2 depicts memory read by

WO 2006/089194 PCT/US2006/005782
8

a LD instruction with an effective starting byte address of 0x0A, and a size field of three
bytes. For word-aligned memory 32, this data cannot be read from the memory in one
bus cycle. Rather, the processor 10 must first read the full word beginning at 0x08
(masking out bytes 0x08 and 0x09), and then read the full word beginning at 0x0C
(masking out bytes 0x0D through 0xOF). In a system with double-word memory
alignment and a 64-bit bus, this data could be read in a single cycle; however; a 3-byte
datum beginning at 0x07 could not. In general, any real-world bus 31 and memory 32
configuration may give rise to the problem of unaligned memory accesses.

[0029] Because unaligned data require two bus cycles, a memory access instruction
directed to unaligned data (referred to herein as an “unaligned memory instruction™)
will result in the creation, in the execute stage, of two micro-operations. For example, if
the i+3"™ instruction in Table 1 were an unaligned memory access instruction, the

pipeline would perform as depicted in Table 2 below.

Instr. Clock Cycle

No. | 1 2 | 3 | 4] 576] 7 8 9 | 10 | 11
i | IF | ID |EXI | EX2 1\1\/[413 WB

i1 IF | D |EX1|EX2 Nl\[f WB

i+2 IF | ID |EX1 | EX2 Nl\[f WB

i+3 IF | D |EX]|EX2 1\1\/[/;3 WB

@+3) | (only if sufficient resources available) | " | Ex2 | ME | wa

2 p-op M

i+4 F | D |EXI (St)a” EX2 NI\E[E WB

Table 2: Representative Pipeline with Unaligned Memory Access Instruction

[0030] The effective address for the memory access instruction i+3 is determined in
clock cycle seven, during the EX2 stage. It is only at this point that the processor
control logic can determine that the effective memory access is unaligned — that is, it

crosses a predetermined memory boundary, and cannot be accessed in a single bus

WO 2006/089194 PCT/US2006/005782
9

cycle. If sufficient pipeline resources are available, the processor will generate an
additional micro-operation (“gen p-op” in Table 2) for the memory access instruction,
denoted as (i+3),. The initially allocated micro-operation and the new micro-operation
then proceed sequentially through the remaining pipeline.

[0031] The original micro-operation, having computed the address of the first memory
access at EX2, then accesses the first part of the addressed data at MEM, and writes the
data at WB. The newly created micro-operation will calculate the address of the second
memory access (e.g., by adding a one-word offset) at EX2 in clock cycle eight, then
access the second part of the addressed data at MEM, and write the data at WB.

[0032] Instruction i+4 stalls in clock cycle eight, due to the additional micro-operation
required by the misaligned data for instruction i+3. To implement this stall in the
pipeline, the clocks to the EX1 latch must gated, the outputs to the EX1 latch recycled
to an multiplexer at the input to the EX1 latch, or some other mechanism must be
employed to hold the EX1 contents through both clock cycles seven and eight.
Similarly, a following instruction i+5 would stall at the DCD latch, and so on
throughout the pipeline. Implementing this stall control presents design challenges,
particularly when the need for the stall is only discovered late in the pipeline.
Furthermore, the need to “recycle” the pipe stages — both for the memory access
instruction at EX2 and for other instructions in preceding pipe stages — adds a
multiplexer select delay on one or more critical paths, potentially decreasing
performance by increasing the machine cycle time. Minimizing the events that can

cause a pipeline stall improves performance.

[0033] The misaligned memory access may also be described in more detail with

reference to Figure 3, a functional block diagram of part of an instruction pipeline 12.

WO 2006/089194 PCT/US2006/005782
10

A LD instruction is fetched from the instruction cache 22 and loaded into the IF latch 40
in the pipeline. The instruction is decoded by decode logic 42. In one embodiment, the
LD calculates an effective address by adding a base address, located in a first register r1,
to an offset, located in a second register 12. The addresses of the two registers r1 and r2
and the size of the datum are decoded from the instruction and latched in the DCD latch
44. These register addresses may then index a register file, such as the GPR file 20,
which returns the contents of the registers, denoted as (r1) and (r2). These values are
stored in the EX1 latch 46, added by ALU 18, and an effective memory address is
stored in the EX2 latch 48. A memory access then proceeds at 50, accessing the data
cache 26. If the access misses in the data cache 26, the memory access operation 50
will perform a address translations as necessary, and access off-chip memory 32,
stalling the pipeline until the memory access is resolved. In any event, the memory
access operation 50 returns the first portion of the unaligned data, which is stored in
MEM latch 52.

[0034] Upon generation of the effective address at 48 by adding (r1) and (12), control
logic 14 inspects the effective address and size field, and detects for the first time that
the memory access is unaligned. If sufficient processor resources are available, the
effective address is “recycled” at the EX2 latch 48, as indicated by the arrow 54. The
address is updated with a one-word offset, to generate an effective address for the
second memory access. This adds a micro-operation to the pipeline; and no following
instruction is allowed to proceed to the EX2 pipe stage. The second word is accessed at

50, and stored in MEM latch 52 as data extracted from the first word proceeds down the

pipeline. The data may then be written to the GPR consecutively, or combined and then

written, as appropriate.

WO 2006/089194 PCT/US2006/005782
11

[0035] Note that, for the purpose of explanation, Figure 3 depicts each stage of the
pipeline 12 with the relevant LD instruction step in that stage. In reality, once the
relevant LD instruction step completes in a pipe stage and the corresponding micro-
operation moves to a subsequent stage, another instruction’s micro-operation is loaded
into the pipe stage for processing. Thus, by the time an effective address for the LD
instruction is latched at 48, the preceding three pipe stages are loaded with three micro-
operations, which may correspond to up to three different instructions. By the time of
effective address generation at EX2 latch 48, if insufficient pipeline control resources
are available to cycle the address as depicted at 54 and generate a second micro-
operation to perform a second memory access, a structural hazard is created and an
exception will occur. In this case, all of the instructions behind the misaligned LD
instruction must be flushed from the pipeline to make available the necessary control
resources. These instructions must later be re-fetched and reprocessed, incurring both a
performance penalty and wasting the power associated with performing the operations
twice.

[0036] The pipeline control resources that must be available for the creation of the
micro-operation in the EX2 pipe stage may include an entry in an instruction tracking
FIFO 15 (Fig. 1). The instruction tracking FIFO 15 includes an entry for each issued
instruction, in program order. Entries in the FIFO 15 are allocated when the
corresponding instructions issue, and updated several cycles later, when the pipeline
control logic 14 determines whether the instructions have exceptions that might cause
an interrupt. Entries are removed from the instruction tracking FIFO 15 in order,
popping each one off after it has been "confirmed" (i.e., the pipeline controller
determines the instruction will complete execution with no exceptions) and "committed"

(i.e., the pipeline controller has recognized that it and all of its predecessors have been

WO 2006/089194 PCT/US2006/005782
12

confirmed, so the instruction is clear to complete execution in the pipeline).

[0037] If each entry in the instruction tracking FIFO 15 corresponds to a single micro-
operation, the structure and control -of the instruction tracking FIFO 15 is simplified.
On the other hand, if an unaligned memory access instruction causes the generation of
an additional micro-operation deep in the pipeline, such as in the EX2 pipe stage, then
each entry in the instruction tracking FIFO 15 must be able to track multiple potential
micro-operations, increasing the hardware resources and control complexity for each
FIFO entry. This increased complexity and size is required for each FIFO entry, yet
unaligned memory access instructions — the only instructions to require late, multiple
micro-operation tracking — are relatively rare. As an alternative to designing the
instruction tracking FIFO 15 to track multiple micro-operations per entry, each entry
may track only one micro-operation. In this case, a late misaligned memory access
instruction will cause the pipeline (and instruction tracking FIFO 15) to be flushed of all
instructions behind it, two entries to be allocated in the instruction tracking FIFO 15,
corresponding to two micro-instructions, and all following instructions re-fetched and
re-issued. This incurs significant performance and power penalties.

[0038] In addition to the instruction tracking FIFO 15, another resource necessary for
a misaligned memory instruction that may be unavailable late in the pipeline is an entry
in a cache miss queue 29. When data accesses miss in the data cache, the access may be
placed in a queue 29 to access main memory on the external bus. If there are no queue
entries available, the pipeline must stall. In the case of a memory access instruction, the
cache miss queue 29 may be checked during the DCD stage, and if an entry is available,
control logic 14 allows the instruction to proceed, knowing a cache miss will not stall
the pipeline 12. However, if an unaligned memory access instruction must generate an

additional micro-operation late in the pipe, to perform an additional memory access, and

WO 2006/089194 PCT/US2006/005782
13

if the memory access misses in the cache, a second cache miss queue entry is required.
Since only one was reserved in the DCD pipe stage, insufficient queue resources may be
available, causing the pipeline 12 to stall. |
[0039] According to one embodiment of the present invention, the misalignment of
data in a memory access instruction is predicted, and a micro-operation is created in
~ response to the prediction, before the effective address generation for the memory
access instruction. The new micro-operation performs the second memory access that is
required to access the misaligned data. This allows pipeline control resources to be
allocated early in the pipeline — such as immediately upon decoding the instruction.
[0040] Referring again to Fig. 2, a misalignment predictor 56 detects a memory access
instruction as soon as the instruction is decoded at 42. In response to a misalignment
prediction, a second micro-operation may be created immediately, as indicated by the
LD instruction being “recycled” at IF latch 40. The second micro-operation will follow
the primary load instruction micro-operation through the pipeline, and will be available
to perform a second memory access cycle if the predicted misalignment of data is
correct. The additional micro-operation need not actually perform the register accesses
and address generation described above for the LD instruction, since the address of is
memory access is known to be the same as that of the LD instruction, with, e.g., a one-
word offset. Following a first memory access by the LD instruction at 50, if the
misalignment prediction was correct, the address for the second memory access
necessary to read the misaligned data is calculated and stored in the EX2 latch 48, when

the first datum is stored in the MEM latch 52. A second memory access is then

performed, and the second datum obtained from the cache 26 or memory 32, and loaded

into the MEM latch 52.

WO 2006/089194 PCT/US2006/005782
14

[0041] If the misalignment prediction was erroneous, the second memory access is not
performed, and the additional micro-operation is abandoned. In the event of a pipeline
stall, an instruction following the LD may advance, consuming the resources allocated
for the second micro-operation and effectively removing it from the pipeline.

[0042] Table 3 below depicts the pipeline where instruction i+3 is a misaligned

memory access instruction for which the misalignment is correctly predicted.

Instr. Clock Cycle

No. [1] 2131415761 7 T8 9 10711
i | ® | D |BX1|EX2 Nh[f WB

i+1 F | D |EBX1|EX2 1\1\/[/}3 WB

i+2 F | D |EXI | EX2 I‘I\‘EIE WB

i+3 F | D |EBXI|EX2 NI\I/IE WB

. (sufficient pipeline

(+3) resources known to be gin D EX1 | EX2 1\1\4? WB

2 available) H-0p

i+4 v (St)an o | Ex1 | Ex2 1\16{'3 WB

Table 3: Rep. Pipeline with Correctly Predicted Unaligned Memory Access Instruction

[0043] In response to decoding the instruction as a LD and predicting a misalignment,
a second micro-operation (i+3), is generated in clock cycle five at the decode pipe
stage. This early generation of the micro-operation — before the effective address of the
LD instruction is calculated in the EX2 pipe stage at clock cycle seven — ensures that
sufficient pipeline control resources are available for the micro-operation (i+3),. The
timing of the instruction execution is otherwise similar to that of Table 2, which
assumed the availability of sufficient resources for the creation of the second micro-
operation (i+3), in the EX2 pipe stage. One difference is that the instruction i+4 is
stalled by the same amount, but the stall comes earlier in its execution sequence, as the

micro-operation (i+3), is generated earlier in the pipeline.

WO 2006/089194 PCT/US2006/005782
15

[0044] If the misalignment prediction is accurate, precisely the correct pipeline control
resources are allocated for performing the misaligned memory access, and subsequent
instructions may be loade& in to the pipeline and executed without fear of their being
flushed due to the misalignment. If the misalignment prediction is erroneous, processor
performance and power management degrade. The degradation in performance,
however, is not symmetrical. Table 4 below depicts the relative performance and power

impact for the misalignment prediction accuracy possibilities.

Predicted Actual Impact Comments

This is the normal case, and should occur in

Aligned Aligned Optimal 99-+9% of applications

Must take exception and flush pipe if
insufficient resources available to generate
micro-operation

Potentially

Aligned Misaligned Terrible

One-stage pipe bubble — unneeded micro-

Misaligned | Aligned Bad operation created at DCD

Guarantee sufficient resources available for

Misaligned | Misaligned | Optimal . .
necessary micro-operation

Table 4: Impact of Misalignment Prediction Accuracy

[0045] The correctly predicted cases provide optimum performance by allocating
precisely the required number of micro-operations to the memory access instruction as
needed to fully execute the instruction. The erroneously predicted case of predicted
aligned but actually misaligned is described above, where data alignment is not checked
until the effective address is generated for a memory access instruction ~ in the EX2
pipe stage in the example discussed above. As discussed, if sufficient pipeline control
resources are available, the only performance degradation is an increased latency in
completion of the instructions following the memory access instruction, as a micro-
operation is created to perform a second memory access operation. However, if

sufficient pipeline control resources are not available, an exception will occur, and the

WO 2006/089194 PCT/US2006/005782
16

pipeline 12 will be flushed of all instructions loaded after the memory access
instruction, to free up the necessary resources to create and manage an additional micro-
operation. This is the worst possibility in terms of performance and power
optimization.

[0046] The erroneously predicted case of predicted misaligned but actually aligned
generates a superfluous micro-operation or “bubble” in the pipeline 12 following the
memory access instruction. Once the effective address for the memory access
instruction is generated and control logic 14 can detect that it is in fact aligned, the
superfluous micro-operation may be abandoned. If, for example, the memory access
instruction misses in the cache 26, forcing an access to off-chip memory 32, the pipeline
12 will be stalled pending the completion of the memory access operation. If another
instruction behind the generated micro-operation does not encounter any hazards in the
EX1 or EX2 pipe stages, it may advance to just behind the memory access instruction,
making the bubble disappear. In this case, there is no performance degradation,
although some power was wasted in creating and managing the micro-operation. In the
more likely case that the memory access instruction hits in the cache 26 (and the
pipeline 12 does not otherwise stall), the bubble will flow through the pipeline 12,
causing a one-cycle performance degradation (assuming one cycle per pipe stage).
However, an erroneously predicted misalignment will not cause an exception or flush
the pipeline 12 for lack of necessary control resources.

[0047] The misalignment prediction may be performed in various other ways, some of
which are disclosed herein. However, the present invention is not limited to the specific
misalignment prediction algorithms disclosed. Prediction — by any means — of
misalignment of a memory access instruction, and the generation of a micro-operation

before the instruction’s effective address generation, in response to the prediction, to

WO 2006/089194 PCT/US2006/005782
17

access the misaligned data, is within the scope of the present invention.

[0048] Where misaligned data accesses are common, a reasonable trivial
misalignment prediction algoﬂthﬁ may be simply to assume misaligned, and always
generate an additional micro-operation before generating an effective address for a
memory access instruction. This would guarantee no exception or pipeline flush due to
the misalignment, at the price of a performance hit of one cycle per actually aligned
memory access. According to one embodiment of the present invention, a “predict
misaligned” mode is defined by a bit in a control register. When an application
anticipates a large number of misaligned memory accesses, it may enable the mode by
setting the bit. While the bit is set, all memory accesses are predicted to be misaligned.
In another embodiment, misalignment prediction is controlled by attributes in the
memory access instruction’s page table, such that all memory accesses by instructions
from a single page will be predicted the same way — aligned or misaligned.

[0049] Most code may not encounter misaligned memory accesses that are so readily
identified as being within a particular segment of code or area of memory. Hence a
more sophisticated method of misalignment prediction is desirable — a prediction that
may be continuously enabled, but which does not blindly predict all memory accesses,
or all on a particular page, will be misaligned. For example, in one embodiment the
misalignment prediction may follow the stack pointer alignment. If the stack pointer is
misaligned, memory accesses are predicted to be misaligned.

[0050] Methods of predicting the behavior of conditional branch instructions are well
known, and many may be applicable to predicting misalignment. For example, recent
past memory access patterns may be a good indicator of the alignment of future memory
accesses. In one embodiment, a plurality of one-bit flags, indexed by address bits of

memory access instructions, indicate the alignment of the most recent memory access

WO 2006/089194 PCT/US2006/005782
18

by the corresponding instruction — for example, a one indicating a misaligned access,
and a zero indicating an aligned access (or vice versa). The misalignment flags may
include tags that compare all or a significant portion of the memory access instruction
address to prevent misalignment aliasing among memory access instructions, which
may lower prediction accuracy. Alternatively, to conserve resources, only the least
significant few bits of the address may be used to index the misalignment flags.

[0051] Prior to generating the effective address of a-memory access instruction, and
preferably as early as possible, the corresponding misalignment flag is checked. If the
most recent execution of the memory access instruction was misaligned, the pipeline
controller may predict a pending access will also be misaligned, and generate a micro-
operation to perform a second memory access. Since the type of instruction (i.e.,
memory access instruction) is first known in the instruction decode pipe stage, the
micro-operation is preferably created there. However, the micro-operation may be
created later in the pipeline. Any creation of a micro-operation prior to the generation
of the effective address of a memory access instruction, in response to a misalignment
prediction, is within the scope of the present invention.

[0052] One consequence of a single-bit misalignment flag is that an odd misaligned
memory access instruction in a stream of aligned memory access instructions will
mispredict twice — once when the misaligned instruction is first encountered, and again
on the next, aligned execution of the instruction (whose misalignment flag is now set).

A solution to this problem, also known in conditional branch prediction, is a bimodal

misalignment predictor comprising a table of two-bit saturating counters, indexed by
memory access instruction addresses. Each counter has one of four states:

[0053] 11 — Strongly misaligned

WO 2006/089194 PCT/US2006/005782
19

[0054] 10 — Weakly misaligned

[0055] 01 — Weakly aligned

[0056] 00 — Strongly aligned

[0057] When the effective address for a memory access instruction is generated, the
corresponding counter is updated. Misaligned memory access instructions increment
the state towards strongly misaligned, and aligned memory access instructions
decrement the state towards strongly aligned. Such a bimodal counter will only
mispredict once on an odd misaligned access in a stream of aligned accesses, at the
expense of mispredicting twice at the beginning of a stream of misaligned accesses.
[0058] Another misalignment prediction algorithm that may be borrowed from
conditional branch prediction is a local misalignment predictor. A local misalignment
predictor maintains two tables. The first table is a local misalignment history table. It is
indexed by address bits of the memory access instruction, and it records the
aligned/misaligned history of the n most recent executions of each memory access
instruction. The other table is a pattern history table. Like the bimodal predictor, this
table contains bimodal counters; however, its index is generated from the misalignment
history in the first table. To predict an alignment, the misalignment history is looked up,
and that history is then used to look up a bimodal counter that makes a misalignment
prediction.

[0059] Still another option for predicting misalignments is a global misalignment
predictor, which makes use of the fact that the behavior of many memory accesses is
strongly correlated with the history of other recent memory accesses. A global
misalignment predictor keeps a single shift register updated with the recent
misalignment history of every memory access instruction executed, and uses this value

to index into a table of bimodal counters.

WO 2006/089194 PCT/US2006/005782
20

[0060] Alternatively, the table of bimodal counters may be indexed with the recent
misalignment history concatenated with a few bits of the address of the memory access
instruction, known as the gselect predictor. Gselect may yield more accurate results than
local prediction for small table sizes. As another alternative, the memory access
instruction address may be XOR’ed with the global history, rather than concatenated, _
known as the gshare predictor. Gshare may yield more accurate misalignment
predictions than gselect for large tables. Even if gselect and gshare are less accurate
than local prediction, they may be preferred for implementation reasons. Gselect and
gshare require a single table lookup per alignment prediction, where local prediction
requires two table lookups in series.

[0061] In 1993, Scott McFarling proposed combining branch predictors in the Digital
Western Research Laboratory Technical Note TN-36, “Combining Branch Predictors,”
incorporated herein by reference in its entirety. The techniques McFarling proposed
may be advantageously applied to the problem of predicting misaligned memory
accesses, to thereby generate a pipeline micro-operation prior to the effective address
generation of a memory access instruction, according to the present invention.

[0062] In one embodiment, combined misalignment prediction uses three predictors in
parallel: bimodal, gshare, and a bimodal-like predictor to pick which of bimodal or
gshare to use on a per-memory-access instruction basis. The choice predictor is yet
another 2-bit up/down saturating counter, in this case the MSB choosing the prediction
to use. In this case the counter is updated whenever the bimodal and gshare predictions
disagree, to favor whichever predictor was accurate.

[0063] In another embodiment, the misalignment predictor may maintain a
misalignment cache, which may be fully associative or set associative, and may be

indexed by part of the memory access instruction address, or part of that address

WO 2006/089194 PCT/US2006/005782
21

concatenated or XOR’ed with other recent misalignment history, such as for the gselect
and gshare parameters above. Early in the pipeline, such as during the instruction fetch
pipe stage (e.g., before it is even known that the instruction is a memory access
instruction), the cache may be indexed. If the misalignment cache hits, the memory
access was recently misaligned, and may be predicted misaligned. If this cache access
misses, the memory access is predicted aligned. Entries are added to the cache for
unpredicted misaligned memory access instructions, and removed from the cache for
aligned memory accesses that were predicted unaligned.

[0064] Various other misaligned prediction algorithms are possible. For example, the
misalignment predictor may keep detailed statistics of the alignment behavior of
memory access instructions, and predict misalignment based on a statistical average of
past alignment experience, either per-instruction or globally. Similarly, the
misalignment predictor may maintain a rolling average of the alignment of the n most
recent memory access instructions.

[0065] Some instruction set architectures include static prediction bits in the opcode
that can be specified by the programmer, based on his or her specific knowledge of the
application. For example, if a branch is used in a “branch on error” situation, and errors
are relatively rare, the programmer may statically predict those branches as “not taken.”
Similarly, a programmer may have insight into the memory alighment behavior of
particular applications. For example, many data processing applications utilize well-
designed and orderly data structures, and should expect few if any unaligned memory
accesses. On the other hand, some applications may expect a high number of unaligned
data accesses. Examples may include a communications program extracting specific
data from a continuous data stream in a shared channel, or a data acquisition application

logging data from a continuous output in response to an asynchronous trigger. In such

WO 2006/089194 PCT/US2006/005782
22

applications, enabling misalignment prediction, or alternatively biasing misalignment
prediction to a more aggressive mode, may improve processor performance and power
conservation. According to one embodiment of the present invention, a programmer
may influence the misalignment prediction behavior of a program via a flag in memory
access instructions, or a set of unaligned memory access instructions.

[0066] In one embodiment, memory access instructions such as LD and ST
instructions include a flag in the parameter list that indicates misalignment prediction
should be performed. Alternatively, the instruction set may include new instructions
such as LDMAL and STMAL for likely misaligned load and store operations,
respectively. This flag or new instruction provides an input to the misalignment
predictor 56 to enable memory alignment prediction, and the early generation of micro-
operations prior to effective address generation, to perform additional memory access
cycles to access unaligned data.

[0067] In another embodiment, the misalignment prediction flag or instruction type
places the misalignment predictor 56 in a mode where it makes more aggressive
misalignment predictions than it would without the flag. For example, the flag or
instruction type may switch the misalignment predictor from using a two-bit bimodal
saturation counter, as described above, to a three-bit saturation counter, wherein five or
six of the eight states indicate degrees of predicted misalignment. One advantage of
such a misalignment prediction flag or instruction type is that it places control of

misalignment prediction in-the programmer, who by virtue of his or her knowledge of

application behavior may be better able to predict when misalignment prediction may
lead to processor performance and power management improvements.

[0068] Although the present invention has been described herein with respect to

WO 2006/089194 PCT/US2006/005782
23

particular features, aspects and embodiments thereof, it will be apparent that numerous
variations, modifications, and other embodiments are possible within the broad scope of
the present invention, and accordingly, all variations, modifications and embodiments
are to be regarded as being within the scope of the invention. The present embodiments
are therefore to be construed in all aspects as illustrative and not restrictive and all
changes coming within the meaning and equivalency range of the appended claims are

intended to be embraced therein.

WO 2006/089194 PCT/US2006/005782

24
CLAIMS
[0069] What is claimed is:
1. A method of processing a memory access instruction that performs a first

memory access, in an instruction execution pipeline, comprising:
predicting data misalignment for said memory access instruction; and
generating at least one micro-operation in said pipeline in response to said
prediction, prior to effective address generation for said memory access
instruction, said micro-operation performing a second memory access for

misaligned data.

2. The method of claim 1 wherein generating at least one micro-operation in said

pipeline comprises generating said micro-operation in an instruction decode pipe stage.

3. The method of claim 1 wherein generating at least one micro-operation

comprises allocating pipeline control resources for said micro-operation.

4. The method of claim 3 wherein said pipeline control resources include at least

one entry in an instruction tracking FIFO.

5. The method of claim 3 wherein said pipeline control resources include an

available slot in a cache miss queue.

6. The method of claim 1 wherein predicting data misalignment for said memory

access instruction comprises setting a misalignment prediction bit in a control register,

WO 2006/089194 PCT/US2006/005782
25

such that while said bit is set, all memory access instructions are predicted as

misaligned.

7. The method of claim 1 wherein predicting data misalignment for said memory
access instruction comprises setting one or more attributes on said memory access
instruction page table entry, such that where said attributes are set, all memory access

instructions on the corresponding page are predicted as misaligned.

8. The method of claim 1 wherein predicting data misalignment for said memory
access instruction comprises predicting data misalignment when a stack pointer is

misaligned, and predicting data alignment when said stack pointer is aligned.

9. The method of claim 1 wherein predicting data misalignment for said memory
access instruction comprises storing alignment history, and predicting misalignment in

response to said alignment history.

10. The method of claim 9 wherein storing alignment history comprises storing

alignment history associated with said memory access instruction.

I1. The method of claim 10 wherein said alignment history is indexed by a plurality

of instruction address bits associated with said memory access instruction.

12. The method of claim 11 wherein said alignment history comprises a flag

indicating the alignment of the most recent said memory access instruction.

WO 2006/089194 PCT/US2006/005782

13.

14.

15.

26
The method of claim 11 wherein
storing said alignment history comprises incrementing or decrementing a
bimodal saturation counter in response to the alignment of each said
memory access instruction; and wherein
predicting data misalignment in response to said alignment history comprises

outputting the MSB of said bimodal saturation counter.

The method of claim 11 wherein
storing said alignment history comprises incrementing or decrementing a
bimodal saturation counter in response to the alignment of each said

memory access instruction; and wherein

" predicting data misalignment in response to said alignment history comprises

outputting a data misalignment prediction based on the encoding of bits

of said counter.

The method of claim 14 wherein

storing said alignment history comprises storing indications of the alignment for
a predetermined number of the most recent said memory access
instructions; and wherein

predicting data misalignment in response to said alignment history comprises
using said indications to index a table of bimodal counters, and

outputting the MSB of the indexed bimodal counter.

WO 2006/089194 PCT/US2006/005782
27

16. The method of claim 9 wherein
storing alignment history comprises storing alignment history associated with all
memory access instructions; and wherein
predicting misalignment in response to said alignment history comprises using
said alignment history to index a table of bimodal counters, and

outputting the MSB of the indexed bimodal counter.

17. The method of claim 16 wherein indexing said table of bimodal counters with
said alignment history concatenated with a plurality of address bits associated with said

memory access instruction.

18. The method of claim 16 wherein indexing said table of bimodal counters with
said alignment history XOR’ed with a plurality of address bits associated with said

memory access instruction.

19. The method of claim 9 wherein storing alignment history comprises:
incrementing or decrementing a separate bimodal saturation counter in
response to the alignment of each said memory access
instruction; and
storing comprehensive alignment history associated with all memory
access instructions;
and wherein predicting misalignment in response to said alignment history

comprises:

WO 2006/089194 PCT/US2006/005782
28

generating a first predictor comprising the MSB of said bimodal
saturation counter associated with said memory access
instruction;

generating a second predictor comprising the MSB of a bimodal counter
in a table indexed by said comprehensive alignment history
XOR’ed with a plurality of address bits associated with said
memory access instruction; and

outputting the MSB of a selection bimodal saturating counter, said
selection bimodal saturating counter being updated when said
first predictor and said second predictor disagree, in a direction

favoring which of said first and second predictor was accurate.

20. The method of claim 9 wherein storing past alignment experience comprises:

maintaining a statistical average of the alignment of past memory access instructions.

21. The method of claim 9 wherein storing past alignment experience comprises
maintaining a rolling average of the alignment of a predetermined number of the most

recent memory access instructions.

22. The method of claim 9 wherein storing past alignment experience comprises
maintaining a misalignment cache of misaligned memory accesses that were predicted
aligned, and wherein predicting misalignment in response to said alignment history

comprises hitting in said misalignment cache.

WO 2006/089194 PCT/US2006/005782
29

23. The method of claim 22 wherein predicting misalignment in response to said
alignment history further comprises indexing said misalignment cache prior to decoding

said memory access instruction.

24. The method of claim 22 further comprising removing from said cache aligned

memory accesses that were predicted misaligned.

25. The method of claim 1 wherein predicting data misalignment for said memory
access instruction comprises predicting data misalignment in response to a flag in said

memory access instruction.

26. The method of claim 1 wherein predicting data misalignment for said memory"
access instruction comprises predicting data misalignment in response to said memory

access instruction comprising a likely misaligned memory access instruction.

27. A pipelined processor, comprising:
an instruction execution pipeline comprising a plurality of pipe stages;
a misalignment predictor generating a prediction that a memory access
instruction will access misaligned data; and
control logic generating, in response to said prediction, an additional micro-
operation in said pipeline to perform an additional memory access, prior

to generating an effective address for the memory access instruction.

28. The processor of claim 27 wherein said additional micro-operation is generated

in an instruction decode pipe stage.

WO 2006/089194 PCT/US2006/005782
30

29. The processor of claim 27 wherein said micro-operation occupies at least one

said pipe stage.

30. The processor of claim 27 wherein said misalignment predictor includes

memory storing the memory access instruction alignment history.

31. The processor of claim 27 further comprising an instruction execution FIFO, and
wherein said control logic generates an entry in said instruction execution FIFO

corresponding to said micro-operation.

WO 2006/089194 PCT/US2006/005782

1/3
/'10
PROCESSOR 24 22
ITLB 1$ -«
f‘14 r12
PIPELINE
CONTROL |_——__r16
,~15 > v o8
FIFO ——71'6 e [
26
20 W“‘ s o5 [
GPR - >
——'6 I
\ 186 4 f30
34 MEMORY I/F
/O 28_
I/F QUEUE
/\ .
] —31
36 ~36 Y 32
MEMORY

FIG. 1

WO 2006/089194 PCT/US2006/005782

2/3

00
04 32

o8 0
ocy

10
14
1\ J
Y
32
32
. \-31
132
/'10
CPU

FIG. 2

WO 2006/089194

22

3/3

MISALIGNMENT |
PREDICTOR

14

56

20'\

GPR |—

CTRL

A

54

FIG. 3

PCT/US2006/005782

12
INSTRUCTION e
CACHE
58{\ \ 40
'\/ — N -
42
/'44
RI,R2,SIZE | DCD
Y y 46
Ri,R2,8IZE | EX1
y Y
Y
+
\ /
/'48
ADDR, SIZE e
D$ |« MEM
26 \-32
50 3
r52
paA [MEM

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

